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Abstract

In this paper, we present several representations of the W -weighted WG inverse. These repre-

sentations are expressed in terms of matrix powers as well as in terms of matrix products involving

only the Moore-Penrose inverse. In addition, a new characterization of theW -weighted WG inverse

is presented by using a rank equation.
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1 Introduction

The theory of generalized inverses seems to be maturing very fastly over the last century. It all started

with the Moore-Penrose inverse and grew hand in hand of several contributors. In fact, recently several

new generalized inverses were introduced [1, 2, 3, 4]. Roughly speaking, they are defined either by

using the Moore-Penrose inverse and/or Drazin inverse, or by using projectors. From the viewpoint

of the applications, generalized inverses appear as a useful tool in areas such as Markov chains [5, 6],

Chemical equations [7], Robotics [8], Coding theory [9], etc.

While the Moore-Penrose inverse was introduced for rectangular matrices, Drazin inverse was

firstly considered for square matrices. In 1980, Cline and Greville [10] extended the Drazin inverse

to rectangular matrices and it was called the W -weighted Drazin inverse. This weighted generalized

inverse has attracted great interest for mathematician researchers in the area of generalized inverse

theory [11, 12, 13]. The W -weighted Drazin inverse is useful in various applications (for instance, in

singular equations [14], numerical analysis [15], neural computing [16], partial orders [17, 18], etc.).
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E-mail: deferreyra@exa.unrc.edu.ar
†Universidad Nacional de Ŕıo Cuarto, FCEFQyN, RN 36 KM 601, 5800 Ŕıo Cuarto, Córdoba, Argentina. E-mail:
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Recently, the core-EP inverse has caught the attention of many authors. The core-EP inverse of

a square matrix was defined in [3], and generalized to a rectangular matrix in [19]. Recently, several

weighted generalized inverses such as weighted DMP inverses [20], weighted CMP inverses [21, 22],

and weighted WG inverses [23] have been introduced as well.

We denote by Cm×n the set of all m× n complex matrices. For A ∈ Cm×n, the symbols A∗, A−1,

rk(A), N (A), and R(A) will denote the conjugate transpose, the inverse (whenever it exists), the rank,

the kernel, and the range space of A, respectively. Moreover, In will refer to the n×n identity matrix.

Let A ∈ Cm×n. The Moore-Penrose inverse of A is the unique matrix A† ∈ Cn×m satisfying the

following four equations [5]

AA†A = A, A†AA† = A†, (AA†)∗ = AA†, (A†A)∗ = A†A.

The Moore-Penrose inverse is used to represent the orthogonal projectors PA := AA† and QA := A†A

onto R(A) and R(A∗), respectively.

For a given complex square matrix A, the index of A, denoted by Ind(A), is the smallest nonnegative

integer k such that R(Ak) = R(Ak+1).

Let W ∈ Cn×m be a fixed nonzero matrix. We recall that the W -weighted Drazin inverse of

A ∈ Cm×n is the unique matrix Ad,W ∈ Cm×n satisfying the three equations [10]

Ad,WWAWAd,W = Ad,W , AWAd,W = Ad,WWA, Ad,WW (AW )k+1 = (AW )k,

where k = max{Ind(AW ), Ind(WA)}.
For the particular k = 1 case, the W -weighted Drazin inverse of A is called the weighted group

inverse of A and is denoted by A#,W . When m = n and W = In, we recover the Drazin inverse, that

is, Ad,W = Ad. Moreover, if Ind(A) = 1, then the Drazin inverse is called the group inverse of A and

denoted by A#.

Several representations and properties of the W -weighted Drazin inverse can be found in [10, 12,

13, 15]. The W -weighted Drazin inverse satisfies the following two dual representations

Ad,W = A[(WA)d]2 = [(AW )d]2A, (1)

and the following two important properties

Ad,WW = (AW )d, WAd,W = (WA)d. (2)

The core inverse was introduced by O. Baksalary and G. Trenkler in [1]. For a given matrix

A ∈ Cn×n, the core inverse of A is the unique matrix A#© ∈ Cn×n defined by the conditions

AA#© = PA, R(A#©) ⊆ R(A).

It is well known that A is core invertible if and only if Ind(A) ≤ 1. Some more characterizations were

given in [24] and numerical aspects were investigated in [25].
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K. Manjunatha Prasad and K.S. Mohana extended this concept for n×n complex matrices of arbi-

trary index [3]. They defined the core EP inverse as the (unique) matrix A †© = Ak((A∗)kAk+1)†(A∗)k,

where k = Ind(A).

Later, the core EP inverse was extended from square matrices to rectangular matrices in [19]

and was called the weighted core EP inverse and denoted by A †©,W . We recall that it is given by

A †©,W = (WAWP(AW )k)†.

H. Wang and J. Chen [4] defined other generalized inverse for square matrices by using the core

EP inverse, given by the matrix Aw© = (A †©)2A, and called the weak group inverse of A. Recently, in

[23] the authors extended the weak group inverse from square to rectangular matrices and it is known

as the W -weighted WG inverse. For A ∈ Cm×n, it is given by the unique matrix Aw©,W ∈ Cm×n

satisfying the two conditions

AWAw©,WWAw©,W = Aw©,W , AWAw©,W = A †©,WWA. (3)

Moreover, this new weighted inverse admits the following representation in terms of the weighted core

EP inverse: Aw©,W = A †©,WWA †©,WWA = [A †©,WW ]2A.

Another generalized inverse, named the CMP inverse and considered for rectangular matrices, was

investigated by D. Mosić in [21] and generalized to invertible bounded linear operator between two

Hilbert spaces in [22].

The main aim of this paper is to present several new representations of the W -weighted WG

inverse. These representations are expressed in terms of different matrix powers as well as in terms of

matrix products involving only the Moore-Penrose inverse. The importance of these representations

is that Moore-Penrose inverse can be automatically computed in different computational packages. In

addition, a new characterization of the W -weighted WG inverse is introduced by using a rank equation.

The paper is organized as follows. Section 2 presents some preliminaries. Section 3 provides some

representations for the W -weighted WG inverse in terms of purely Moore-Penrose inverses and other

by means of only weighted WG inverse of square matrices. Section 4 gives a new characterization for

W -weighted WG inverses by studying an adequate rank equation and some consequences are derived.

full-rank decompositions are investigated for computing weighted core EP inverses and weighted WG

inverses. Finally, Section 5 derives an additional representation for W -weighted WG inverses by using

full-rank decompositions.

2 Preliminary results

In [26], H. Wang introduced the core EP decomposition. It was proved that for every nonzero matrix

A ∈ Cn×n with Ind(A) = k, there exist unique matrices A1, A2 ∈ Cn×n such that A = A1 + A2

satifying Ind(A1) ≤ 1, Ak
2 = 0, and A∗1A2 = A2A1 = 0 ([26, Theorem 2.1, Theorem 2.4]). Moreover,
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there exists a unitary matrix U ∈ Cn×n such that A can be represented as the sum of

A1 = U

[
T S

0 0

]
U∗ and A2 = U

[
0 0

0 N

]
U∗, (4)

where T is nonsingular, rk(T ) = rk(Ak), and N is nilpotent of index k. This representation of A is

called the core EP decomposition of A.

Based on decomposition (4) for A, H. Wang proved that the core EP inverse of A has the form

A †© = U

[
T−1 0

0 0

]
U∗. (5)

Similarly, in [4] it was proved that the weak group inverse can be factorized as

Aw© = U

[
T−1 T−2S

0 0

]
U∗, (6)

provided that A = A1 + A2 be written as in (4).

Throughout this paper, a nonzero matrix W ∈ Cn×m will be fixed and used as a weight. In

what follows, this weight matrix W will be not explicitly mentioned. For A ∈ Cm×n, we notice that

AW ∈ Cm×m and WA ∈ Cn×n are both square matrices.

In [19] the authors introduced a new decomposition, called weighted core EP decomposition, ex-

tending the core EP decomposition from square to rectangular matrices. This result establishes a

simultaneous unitary block upper triangularization of a pair of rectangular matrices.

Theorem 2.1. Let A ∈ Cm×n and k = max{Ind(AW ), Ind(WA)}. Then there exist two unitary

matrices U ∈ Cm×m, V ∈ Cn×n, two nonsingular matrices A1,W1 ∈ Ct×t, and two matrices A2 ∈
C(m−t)×(n−t) and W2 ∈ C(n−t)×(m−t) such that A2W2 and W2A2 are nilpotent of indices Ind(AW )

and Ind(WA), respectively, with

A = U

[
A1 A12

0 A2

]
V ∗ and W = V

[
W1 W12

0 W2

]
U∗. (7)

The expressions for A and W provided in Theorem 2.1 give the so called weighted core EP decom-

position of the pair {A,W}.
The weighted core EP inverse of a rectangular matrix can be represented by using the weighted

core EP decomposition [19, Theorem 5.2]. More precisely, the weighted core EP inverse of A ∈ Cm×n

has the form

A †©,W = U

[
(W1A1W1)−1 0

0 0

]
V ∗. (8)

In the same paper, the authors also gave the following useful representations:

(AW ) †© = U

[
(A1W1)−1 0

0 0

]
U∗, (WA) †© = V

[
(W1A1)−1 0

0 0

]
V ∗. (9)
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Remark 2.2. When m = n and W = In, from the representations given in (5) and (8), it is easy to

verify that the weighted core EP inverse and the core EP inverse coincide.

In [23], the authors introduced a new canonical form for the W -weighted Drazin inverse of a

rectangular matrix by using the weighted core EP decomposition of the pair {A,W}.

Theorem 2.3. Let A ∈ Cm×n, with k = max{Ind(AW ), Ind(WA)}, be written as in (7). Then

Ad,W = U

[
(W1A1W1)

−1 A1RWA

0 0

]
V ∗, (10)

where

RWA =

k−1∑
j=0

(W1A1)j−k−2(W1A12 + W12A2)(W2A2)k−1−j .

In particular, if k = 1 we have

A#,W = U

[
(W1A1W1)−1 (A1W1)−2(A12 + W−11 W12A2)

0 0

]
V ∗. (11)

Based on the weighted core-EP decomposition (7), the weighted weak group inverse Aw©,W is

expressed by [23]

Aw©,W = U

[
(W1A1W1)−1 (A1W1)−2(A12 + W−11 W12A2)

0 0

]
V ∗. (12)

Remark 2.4. When k = 1, it is easy to verify that the W -weighted Drazin (group) inverse and the

weighted weak group inverse coincide, i.e., Aw©,W = A#,W .

We finish this section by presenting two propositions that will be useful in the rest of the paper.

Proposition 2.5. [5] Let A ∈ Cn×n with Ind(A) = k. Then for each integer ` ≥ k we have,

Ad = A`
(
A2`+1

)†
A`. (13)

Proposition 2.6. [19] Let A ∈ Cn×n be written as in (4) such that Ind(A) = k. Then, for each integer

` ≥ k,

PA` = U

[
Irk(Ak) 0

0 0

]
U∗. (14)

Proposition 2.7. [27] Let A ∈ Cn×n be written as in (4) such that Ind(A) = k. Then, for each integer

` ≥ k,

A †© = AdPA` . (15)
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3 Representations of the W -weighted WG inverse

As we mentioned in the introduction, in [23, Theorem 6] the authors gave the following representation

for the W -weighted WG inverse of A ∈ Cm×n:

Aw©,W = [A †©,WW ]2A. (16)

On the other hand, in [19] the authors gave the following representation for the weighted core EP

inverse of A ∈ Cm×n:

A †©,W =
(
WAWP(AW )k

)†
=
[
W (AW )k+1

(
(AW )k

)†]†
, (17)

where k = max{Ind(AW ), Ind(WA)}. We can use the expression in (17) to obtain a new representation

of the inverse W -weighted WG inverse, that is,

Aw©,W =

[[
W (AW )k+1

(
(AW )k

)†]†
W

]2
A. (18)

A computational disadvantage of the representation (18) arises from the need of computing the

Moore-Penrose inverse of two different matrices. In [11], the authors obtained some representations

for the weighted core EP inverse which involve only one Moore-Penrose inverse. In the same way, the

following results give new representations for the W -weighted WG inverse involving only one Moore-

Penrose inverse.

Firstly, we recall that the weighted core EP inverse can be represented as A †©,W = Ad,WP(WA)k

[11, Theorem 4.1]. By using Proposition 2.6, it immediately follows the following theorem.

Theorem 3.1. If A ∈ Cm×n with k = max{Ind(AW ), Ind(WA)} then, for each integer ` ≥ k,

A †©,W = Ad,WP(WA)` = Ad,W (WA)`((WA)`)†. (19)

By applying above theorem and some properties of the core EP inverse of a square matrix we obtain

the following interesting representation of the W -weighted WG inverse in terms of the Drazin inverse

and the core EP inverse of a square matrix.

Theorem 3.2. If A ∈ Cm×n with k = max{Ind(AW ), Ind(WA)} then, for each integer ` ≥ k,

Aw©,W = A[(WA)d]2(WA) †©WA. (20)

Proof. From (16), (19), (2), and Theorem 2.7, respectively, we have

Aw©,W = [A †©,WW ]2A

= Ad,WP(WA)`(WAd,W )P(WA)`WA

= Ad,WP(WA)` [(WA)dP(WA)` ]WA

= Ad,WP(WA)`(WA) †©WA

= Ad,W (WA) †©WA,
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where the last equality is due to the fact that R((WA) †©WA) = R((WA) †©) = R((WA)`)).

Now, (20) follows directly from (1).

Corollary 3.3. If A ∈ Cm×n with k = max{Ind(AW ), Ind(WA)} then, for each integer ` ≥ k,

Aw©,W = A[(WA)d]3P(WA)`WA. (21)

Proof. Follows from Theorem 3.2 and Proposition 2.7.

Corollary 3.4. If A ∈ Cm×n with k = max{Ind(AW ), Ind(WA)} then, for each integer ` ≥ k,

Aw©,W = A[(WA)`
(
(WA)2`+1

)†
(WA)`]3(WA)`

(
(WA)`

)†
WA. (22)

Proof. Follows from Corollary 3.3 and Proposition 2.5.

In above corollary we need to compute the Moore-Penrose inverse of two matrices. Next, we

presents a more symmetrical result that requires the computation of only one Moore-Penrose inverse.

Corollary 3.5. If A ∈ Cm×n with k = max{Ind(AW ), Ind(WA)} then, for each integer ` ≥ k,

Aw©,W = A[(WA)`
(
(WA)2`+1

)†
(WA)`]3(WA)2`+1

(
(WA)2`+1

)†
WA. (23)

Proof. Follows from Corollary 3.4 and Proposition 2.6.

Now, we give several new representations and properties of Aw©,W .

Theorem 3.6. For each integer ` ≥ k = max{Ind(AW ), Ind(WA)}, the W -weighted WG inverse of

A ∈ Cm×n can be represented as follows:

(a) Aw©,W = A

[[
(WA)`

(
(WA)2`+1

)†
(WA)`

]2
(WA)`

(
(WA)`

)†
WA

]2
.

(b) Aw©,W = A

[[
(WA)`

(
(WA)2`+1

)†
(WA)`

]2
(WA)2`+1

(
(WA)2`+1

)†
WA

]2
.

Proof. (a) From (16), (19), and (1), respectively, we have

Aw©,W = [A †©,WW ]2A

= Ad,WP(WA)`WAd,WP(WA)`WA

= A((WA)d)2P(WA)`WA((WA)d)2P(WA)`WA

= A
[
[(WA)d]2P(WA)`WA

]2
.

Now, the assertion follows directly from Proposition 2.5.

(b) It follows from part (a) and Proposition 2.6.

Some well-known representations of the weak group inverse can be derived as particular cases by

setting W = In in the above theorem.
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Corollary 3.7. For each integer ` ≥ k = Ind(A), the weak group inverse of A ∈ Cn×n can be

represented as follows:

(a) Aw© = A[A`
(
A2`+1

)†
A`]3A2`+1

(
A2`+1

)†
A.

(b) Aw© = A

[[
A`
(
A2`+1

)†
A`
]2

A`
(
A`
)†

A

]2
.

(c) Aw© = A

[[
A`
(
A2`+1

)†
A`
]2

A2`+1
(
A2`+1

)†
A

]2
.

Before the study of some properties of Aw©,W , we present an auxiliary lemma.

Lemma 3.8. Let A ∈ Cm×n and consider the weighted core EP decomposition of the pair {A,W} as
in (7). It then results that

(i) (AW )w© = U

[
(A1W1)−1 (A1W1)−2(A1W12 + A12W2)

0 0

]
U∗.

(ii) (WA)w© = V

[
(W1A1)−1 (W1A1)−2(W1A12 + W12A2)

0 0

]
V ∗.

Proof. (i) From Theorem 2.1 we obtain

AW = U

[
A1W1 A1W12 + A12W2

0 A2W2

]
U∗. (24)

So, a core EP decomposition of AW is given by AW = (AW )1 + (AW )2, where

(AW )1 = U

[
A1W1 A1W12 + A12W2

0 0

]
U∗, (AW )2 = U

[
0 0

0 A2W2

]
U∗. (25)

Now, by applying (6) we get

(AW )w© = U

[
(A1W1)−1 (A1W1)−2(A1W12 + A12W2)

0 0

]
V ∗.

Part (ii) can be proved in a similar way.

Next, some new properties of Aw©,W are given.

Theorem 3.9. Let A ∈ Cm×n and consider the weighted core EP decomposition of the pair {A,W}
as in (7). It then results that

(i) WAw©,W = (WA)w©.

(ii) Aw©,W = A[(WA)w©]2.

(iii) Aw©,W = (AW )w©A(WA)w©.
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(iv) Aw©,WWAWAw©,W = Aw©,W .

(v) Aw©,W = A[(WA) †©]3WA.

Proof. Items (i)-(v) can be easily derived from (7), (9), (12) and Lemma 3.8.

Remark 3.10. We note that parts (i) and (ii) in Theorem 3.9 give two interesting properties of the

W-weighted WG inverse similar to that satisfied by the W -weighted Drazin inverse (See Eqs. (1) and

(2)). However, the equalities Ad,W = [(AW )d]2A and Ad,WW = (AW )d do not remain valid for the

W -weighted WG inverse, provided that k = max{Ind(AW ), Ind(WA)} ≥ 2, as we can check with the

following examples.

Example 3.11. Let

A =

[
1 0 1

0 1 0

]
and W =


1 1

0 0

0 1

 .

It is easy to check that k = max{Ind(AW ), Ind(WA)} = max{1, 2} = 2.

Aw©,W =

[
1 1 1

0 0 0

]
and [(AW )w©]2A =

[
1 2 1

0 0 0

]
.

Example 3.12. Let

A =


1 1

0 0

0 1

 and W =

[
1 0 1

0 1 0

]
.

It is easy to check that k = max{Ind(AW ), Ind(WA)} = max{1, 2} = 2.

Aw©,WW =


1 2 1

0 0 0

0 0 0

 and (AW )w© =


1 1 1

0 0 0

0 0 0

 .

4 Characterization of the W -weighted WG inverse

In this section we give a new characterization of the W -weighted WG inverse by using a rank equation.

It is well known that if A is a nonsingular matrix of size n × n, then the inverse A−1 of A is the

unique matrix X that satisfies the rank equation

rk

[
A In

In X

]
= rk(A).

The following two results are needed in what follows.
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Lemma 4.1. ([28, Lemma 1]) Let A ∈ Cn×n and M be a 2n× 2n matrix partitioned as

M =

[
A AQ

PA B

]
,

for P , Q, and B being matrices of adequate sizes. Then rk(M) = rk(A) + rk(B − PAQ).

Now, we present the main result of this section.

Theorem 4.2. Let A ∈ Cm×n and consider the weighted core EP decomposition of the pair {A,W}
as in (7) with k = max{Ind(AW ), Ind(WA)} and t = rk(A1) = rk(W1). Then there exist a unique

matrix X such that

X(WA)k = 0, X2 = X, ((WA)k)∗WAX = 0, rk(X) = n− t, (26)

a unique matrix Y such that

Y (AW )k = 0, Y 2 = Y, ((WA)k)∗(WA)2WY = 0, rk(Y ) = m− t, (27)

and a unique matrix Z such that

rk

[
WAW I −X

I − Y Z

]
= rk(WAW ). (28)

The matrix Z is the weighted weak group inverse Aw©,W of A. Furthermore, we have

X = In −WAWAw©,W , Y = Im −Aw©,WWAW. (29)

Proof. We assume that the pair {A,W} is written as in (7) in the weighted core EP decomposition.

It is straightforward to see that

WA = V

[
W1A1 W1A12 + W12A2

0 W2A2

]
V ∗ (30)

and

(WA)k = V

[
(W1A1)k T̃WA

0 0

]
V ∗, (31)

where T̃WA =
k−1∑
j=0

(W1A1)j−k−1(W1A12 + W12A2)(W2A2)k−1−j .

By Lemma 3.8 and Theorem 3.9, it is easy to check that

X := In −WAWAw©,W = In −WA(WA)w©

= V

[
0 −(W1A1)−1(W1A12 + W12A2)

0 In−t

]
V ∗

satisfies conditions X(WA)k = 0, X2 = X, and ((WA)k)∗WAX = 0. Moreover, it is clear that

rk(X) = n− t.
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In order to show uniqueness, let X0 be a matrix which satisfies (26). Let X1 = V ∗X0V , and let X1 be

partitioned as

X1 =

[
E F

G H

]
,

with E and H of sizes t× t and (n− t)× (n− t), respectively.

From X0(WA)k = 0 and the fact that W1A1 is nonsingular we obtain E = 0 and G = 0. Since X0

satisfies X2
0 = X0 and rk(X0) = n− t, it follows that H is nonsingular, and so H = In−t. Therefore,

X1 =

[
0 F

0 In−t

]
.

Finally, from ((WA)k)∗WAX0 = 0, we have ((W1A1)k)∗(W1A1F + W1A12 + W12A2) = 0 which is

equivalent to F = −(W1A1)−1(W1A12 + W12A2). Consequently, we obtain

X0 = V

[
0 −(W1A1)−1(W1A12 + W12A2)

0 In−t

]
V ∗ = X.

Now, we shall prove that there exists a unique matrix Y satisfying condition (27). It is straightforward

to see that

AW = U

[
A1W1 A1W12 + A12W2

0 A2W2

]
U∗ (32)

and

(AW )k = U

[
(A1W1)k T̃AW

0 0

]
U∗, (33)

where T̃AW =
k−1∑
j=0

(A1W1)j(A1W12 + A12W2)(A2W2)k−1−j .

From Lemma 3.8 and (32), it is not difficult to check that

Y : = Im −Aw©,WWAW

= U

[
0 ∗
0 Im−t

]
U∗,

where ∗ is a matrix which will be not necessary in what follows. According to (33), it easy to see that

Y (AW )k = 0, Y 2 = Y , and rk(Y ) = m − t. On the other hand, since BBw© = B †©B when B is a

square matrix, and from the fact that AW (AW ) †© = P(AW )k = (P(AW )k)∗ (see [19, Lemma 2.6]) we
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obtain

((WA)k)∗(WA)2WY = ((WA)k)∗(WA)2W (Im −Aw©,WWAW )

= ((WA)k)∗(WA)2(W −WAw©,WWAW )

= ((WA)k)∗(WA)2(Im − (WA)w©WA)W

= ((WA)k)∗WA(WA−WA(WA)w©WA)W

= ((WA)k)∗WA(Im −WA(WA)w©)WAW

= ((WA)k)∗WA(Im − (WA) †©WA)WAW

= ((WA)k)∗(WA−WA(WA) †©WA)WAW

= ((WA)k)∗(Im −WA(WA) †©)(WA)2W

= ((WA)k)∗(Im − P(AW )k)(WA)2W

=
[
((WA)k)∗ − (P(AW )k(WA)k)∗

]
(WA)2W

= 0.

The uniqueness of such a matrix Y can be similarly proved to that of X.

Finally, let Aw©,W be the weighted weak group inverse of A. Observe that Eq. (29) holds. For these

X and Y , we have [
WAW In −X

Im − Y Z

]
=

[
WAW WAWAw©,W

Aw©,WWAW Z

]
.

Thus, by Lemma 4.1 and the condition (28) we get

rk(Z −Aw©,WWAWAw©,W ) = 0,

which is equivalent to Z = Aw©,W because Aw©,WWAWAw©,W = Aw©,W by Theorem 3.9 (iv). This

completes the proof of theorem.

Consequently, we give a new characterization of the weighted group inverse A#,W of A.

Corollary 4.3. Let A ∈ Cm×n, with max{Ind(AW ), Ind(WA)} = 1 and t = rk(A1) = rk(W1), be

written as in (7). Then there exist a unique matrix X such that

XWA = 0, X2 = X, (WA)∗WAX = 0, rk(X) = n− t, (34)

a unique matrix Y such that

Y AW = 0, Y 2 = Y, (WA)∗(WA)2WY = 0, rk(Y ) = m− t, (35)

and a unique Z such that

rk

[
WAW I −X

I − Y Z

]
= rk(WAW ). (36)
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The matrix Z is the weighted group inverse A#,W of A. Furthermore, we have

X = In −WAWA#,W , Y = Im −A#,WWAW. (37)

Remark 4.4. From (2), we observe that (37) is equivalent to

X = In −WA(WA)#, Y = Im − (AW )#AW.

A well-known characterization of the group inverse [29, 30] can be derived by setting W = In and

A ∈ Cn×n of index 1 in corollary above.

Corollary 4.5. Let A ∈ Cn×n be a matrix of index 1 such that t = rk(A). Then, there exist a unique

matrix Y such that

Y A = 0, AY = 0, Y 2 = Y, rk(Y ) = n− t, (38)

and a unique matrix X such that

rk

[
A In − Y

In − Y X

]
= rk(A). (39)

The matrix X is the group inverse A# of A. Furthermore, we have Y = In −AA#.

5 Algorithm and numerical example

In this section, we derive one more representation for the generalized inverse Aw©,W based on the

procedure of Cline [31]. In addition, we present an algorithm for computing it.

In view of the representations obtained in Section 3, if max{Ind(AW ), Ind(WA)} ≥ 1, it appears

greater than one powers of WA or AW when calculating the W -weighted WG inverse of A ∈ Cm×n.

Specifically, if WA (or AW ) is ill-conditioned, the best method is probably the sequential procedure

of Cline [31], which involves full-rank decomposition of matrices of successively smaller sizes until a

nonsingular matrix is reached. Thus, by [5, p. 166], if we take WA = P1Q1, QiPi = Pi+1Qi+1 is a

full-rank decomposition of QiPi, i = 1, 2, . . . , k − 1, and QkPk nonsingular, then

(WA)d = P (QkPk)−k−1Q. (40)

Next, by using Corollary 3.3, we derive a new representation for computing the W -weighted WG

inverse by means of the sequential procedure of Cline.

Theorem 5.1. Let A ∈ Cm×n and k = max{Ind(AW ), Ind(WA)}. Let P1Q1 be a full-rank decompo-

sition of WA, Pi+1Qi+1 a full-rank decomposition of QiPi, i = 1, 2, . . . , k− 1, and QkPk nonsingular.

Then the following hold:

Aw©,W = A[P (QkPk)−k−1Q]3P (P ∗P )−1P ∗P1Q1, (41)

where P = P1P2 · · ·Pk and Q = Qk · · ·Q2Q1.
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Proof. As WA = P1Q1 is assumed to be a full-rank factorization, from (40) we have (WA)d =

P (QkPk)−k−1Q, where P = P1P2 · · ·Pk and Q = Qk · · ·Q2Q1.

Assuming that Pi+1Qi+1 is a full-rank decomposition of QiPi, for i = 1, 2, . . . , k − 1, and QkPk

is nonsingular, we can see that PQ is a full-rank decomposition of (WA)k. In fact, the equality

(WA)k = PQ is clear; in particular (WA)2 = P1P2Q2Q1. Since rk(WA) = rk(P1) = rk(Q1), we

get that P1 admits a left inverse P
(`)
1 and Q1 admits a right inverse Q

(r)
1 . If P2 ∈ Cn×s, from

rk(P2Q2) ≥ rk(P2) + rk(Q2)− s = rk(P2) = rk(Q2), we get

rk(P2) = rk(Q2) = rk(P2Q2) = rk(P
(`)
1 (WA)2Q

(r)
1 ) ≤ rk((WA)2) ≤ rk(P2Q2).

Following a similar argument we arrive at rk((WA)k) = rk(P ) = rk(Q). Now, for ` ≥ k we have

P(WA)` = P(WA)k = (WA)k((WA)k)† = PQQ∗(QQ∗)−1(P ∗P )−1P ∗ = P (P ∗P )−1P ∗. (42)

Now, expression (41) follows from Corollary 3.3, (40), and (42).

Following the same notation as in Theorem 5.1, we derive a procedure for computing the W -

weighted WG inverse inverse Aw©,W in the following algorithm.

Algorithm

Input: A ∈ Cm×n and W ∈ Cn×m.

Output: Aw©,W .

Step 1

Compute k = max{Ind(WA), Ind(AW )}.
Step 2 Perform elementary row operations on WA to get the full-rank decomposition P1Q1 of WA.

Step 3 For i = 1 to k−1 perform the product QiPi and calculate the full-rank decomposition Pi+1Qi+1

of QiPi.

Step 4 Compute P = P1P2 · · ·Pk and Q = Qk · · ·Q2Q1.

Step 5 Compute Aw©,W = A[P (QkPk)−k−1Q]3P (P ∗P )−1P ∗P1Q1.

End

Now, we give an example to demonstrate the performance of the algorithm for computing the

generalized inverse Aw©,W .

Example 5.2. Let

A =



1 0 1 0 0

1 0 0 0 0

0 0 0 0 0

0 0 −1 0 0

0 0 0 0 0

−1 1 0 0 0


and W =



1 0 0 0 0 0

1 0 0 1 0 0

0 0 0 0 1 0

0 0 0 −1 0 0

0 1 0 0 0 1


.
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We use the above algorithm to compute the W -weighted WG inverse Aw©,W of the matrix A with

respect to weight W .

We have

WA =



1 0 1 0 0

1 0 0 0 0

0 0 0 0 0

0 0 1 0 0

0 1 0 0 0


,

and k = max{Ind(WA), Ind(AW )} = 3 as required in Step 1. Computing a full-rank decomposition

of the product WA, we obtain WA = P1Q1, where

P1 =



1 0 1

1 0 0

0 0 0

0 0 1

0 1 0


and Q1 =


1 0 0 0 0

0 1 0 0 0

0 0 1 0 0



as required in Step 2. Since k = 3, from Step 3, we need to compute full-rank decomposition of Q1P1

and Q2P2, respectively. In fact, for i = 1

Q1P1 =


1 0 1

1 0 0

0 0 0

 = P2Q2,

where

P2 =


1 1

1 0

0 0

 and Q2 =

[
1 0 0

0 0 1

]
.

For i = 2, we have

Q2P2 =

[
1 1

0 0

]
= P3Q3,

where

P3 =

[
1

0

]
and Q3 =

[
1 1

]
.

From Step 4, we obtain

P = P1P2P3 =



1

1

0

0

1


and Q = Q3Q2Q1 =

[
1 0 1 0 0

]
.
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Finally, from Step 5, we conclude that

Aw©,W =



2/3 1/3 1/3 0 0

2/3 1/3 1/3 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


.
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