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Abstract Nonholonomic systems are described by the Lagrange-d’Alembert principle.
The presence of symmetry leads to a reduced d’Alembert principle and to the Lagrange-
d’Alembert-Poincaré equations. First, we briefly recall from previous works how to obtain
these reduced equations for the case of a thick disk rolling on a rough surface using a three-
dimensional abelian group of symmetries. The main results of the present paper are the
calculation of the discrete Lagrange-d’Alembert-Poincaré equations for an Euler’s disk and
the numerical simulation of a trajectory and its energy behavior.
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1 Introduction

In the last years, an extraordinary effort has been given to the study of Lagrangian reduc-
tion and reconstruction for mechanical systems with Lie group symmetries. In the pre-
sence of constraints, it is necessary to modify the equations of motion to incorporate force
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226 C.M.Campos et al.

constraints introduced using the classical Lagrange-d’Alembert’s principle. This principle
imposes restrictions on the set of infinitesimal variations (or constrained forces) in terms of
the constraint functions (see [2,3,11]). The reduced equations are notably simplified in many
interesting cases, thus facilitating the study of the dynamics, even allowing the integration
of the equations of motion in some particular cases. However, this is not the general case,
therefore it is necessary to use numerical methods to simulate the trajectories of the system.
Recent works, such as [9,13], have introduced numerical integrators for nonholonomic sys-
tems with very good energy behavior and properties such as the preservation of the discrete
nonholonomic momentum map (see also [15,16,18]).

Recently, there has been a renewed interest in the study of the dynamics of Euler’s disk (see,
for instance, [4,12,21]), specially motivated by Moffat’s paper [23] (see also [1,5,14,19,24–
27]). In this controversial paper, the ever-intriguing motions of a rolling disk is discussed. For
nonholonomic systems with symmetries, e.g. Euler’s disk, for the analysis of the equations
of motion, it is interesting to use geometric reduction techniques. These methods were intro-
duced in [6] and are based on the notion of nonholonomic connection. This connection is
adapted to the nonholonomic distribution and to the symmetry of the problem simultaneously.
It allows us to split the reduced equations in vertical and horizontal Lagrange-d’Alembert-
Poincaré equations. Then, we summarize the derivation of the reduced equations for the case
of a thick disk rolling on a rough surface (for details, see [7,8]). As a main result, we intro-
duce a nonholonomic integrator for Euler’s disk given by the discrete Lagrange-d’Alembert-
Poincaré equations, and we exhibit its geometric preservation properties numerically. Our
idea is to show that these new numerical methods are notably precise and can be used in
more involved situations, for instance, when introducing some dissipative forces on the sys-
tem simulating a more realistic case.

2 Reduced equations for Euler’s disk

2.1 Lagrange-d’Alembert-Poincaré equations

Let π : Q → Q/G be a principal bundle with structure group G and we denote by V the
vertical distribution. We assume that there is a given G-invariant (non-integrable) distribu-
tion D on Q. As in [6], we also assume that T Q = D + V . Let S = D ∩ V . Choosing a
G-invariant metric on Q, we can define uniquely a principal connection form A : T Q → g

such that the associated horizontal distribution HorA T Q satisfies the condition that, for each
q, the space HorA Tq Q coincides with the orthogonal complement of the space Sq in Dq .

This connection A is called a nonholonomic connection (see [6] for more details).
A given G-invariant Lagrangian L : T Q → R naturally induces a reduced Lagrangian

� : T Q/G → R. Since there exists a vector bundle isomorphismαA : T Q/G → T (Q/G)⊕
g̃, where g̃ = Ad(Q) is the adjoint bundle of the principal bundle Q, we may think of � as
being a map � : T (Q/G)⊕g̃→ R or, with the usual notation in terms of variables, � (x, ẋ, v̄).
Given any torsionless linear connection ∇ on Q/G we have a naturally defined connection

∇ ⊕ ∇̃A on T (Q/G)⊕ g̃. In respect to this connection, the covariant derivatives
∂C�

∂x
and

D

Dt

∂�

∂ ẋ
appearing in the following theorem should be understood (see [6] for details).

Theorem 1 (see [6]) Let q(t) be a curve in Q such that (q(t), q̇(t)) ∈ Dq(t) and let (x(t),
ẋ(t), v̄(t)) = αA ([q(t), q̇(t)]G) be the corresponding curve in T (Q/G) ⊕ s̃, where s̃ =
αA (S /G). The following conditions are equivalent.

Author's personal copy



Euler’s disk: Reduced discrete equations 227

– The Lagrange-d’Alembert principle holds:

δ

t1∫

t0

L(q, q̇)dt = 0 ,

for any variation δq of the curve q such that δq(ti ) = 0, i = 0, 1, and δq(t) ∈ Dq(t).
– The vertical Lagrange-d’Alembert-Poincaré equation, corresponding to vertical varia-

tions, holds:

D

Dt

∂�

∂v̄
(x, ẋ, v̄)

∣∣∣∣
s̃

= ad∗̄v
∂�

∂v̄
(x, ẋ, v̄)

∣∣∣∣
s̃

;

and as does hold the horizontal Lagrange-d’Alembert-Poincaré equation, correspond-
ing to horizontal variations:

∂C�

∂x
(x, ẋ, v̄)− D

Dt

∂�

∂ ẋ
(x, ẋ, v̄) =

〈
∂�

∂v̄
(x, ẋ, v̄), iẋ B̃(x)

〉
,

where B̃ is a g̃-valued 2-form on the base Q/G induced by A (see [6]).

2.2 Lagrange-d’Alembert-Poincaré equations for Euler’s disk

Now, we shall recall from [8] the vertical and horizontal Lagrange-d’Alembert-Poincaré
equations for Euler’s disk. The reader may consult the above-mentioned paper for a more
complete description of the system.

We consider Euler’s disk as a thin cylinder, rolling without sliding on its rim on a horizon-
tal rough plane. We assume that there is only one point of contact between the disk and the
plane. The distribution of mass is assumed to have circular symmetry with respect to the axis
perpendicular to the disk and passing through its geometric center, which coincides with the
center of mass. So, two of the three principal moments of inertia are equal. Let us consider
an Euler’s disk of radius r and thickness re.

– The configuration space for Euler’s disk is Q =]0, π2 [×S1× S1×R
2, and a point q ∈ Q

is written q = (θ, ϕ, ψ, x, y) as depicted in Fig. 1 (ϕ is the angle φ in the figure).
– The constraint distribution is given by

D(θ,ϕ,ψ,x,y) =
{
(θ, ϕ, ψ, x, y, θ̇ , ϕ̇, ψ̇, ẋ, ẏ) | (ẋ, ẏ) = ψ̇ru

}
, (1)

where u is the unitary vector u = −(cosϕ, sin ϕ) tangent to the disk at the contact point
(x, y).

Fig. 1 Euler’s disk
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228 C.M.Campos et al.

– The symmetry group G = SO(2)×R
2 acts on the right on Q by rotation and translation.

Formally, the action of G is R(α,a,b)(θ, ϕ, ψ, x, y) = (θ, ϕ, ψ + α, x + a, y + b), for all
(α, a, b) ∈ G. This defines a principal fiber bundle π : Q → Q/G.

– The vertical distribution V is given by

V(θ,ϕ,ψ,x,y) =
{
(θ, ϕ, ψ, x, y, 0, 0, ψ̇, ẋ, ẏ)

}
,

therefore the vector bundle S = D ∩ V is

S(θ,ϕ,ψ,x,y) =
{
(θ, ϕ, ψ, x, y, 0, 0, ψ̇, ẋ, ẏ) | (ẋ, ẏ) = ψ̇ru

}
.

– We choose the horizontal distribution to be the vector bundle

H(θ,ϕ,ψ,x,y) =
{
(θ, ϕ, ψ, x, y, θ̇ , ϕ̇, 0, 0, 0)

}
,

which is associated to the connection 1-form A : T Q → g̃ = ˜so(2)× R2 given by

A (θ, ϕ, ψ, x, y, θ̇ , ϕ̇, ψ̇, ẋ, ẏ) = (ψ̇, ẋ, ẏ).

– The subbundle s̃ ⊂ g̃ is then given by s̃ = {(ψ̇, ψ̇ru)}.
– The g̃-valued 2-form B̃ is equal to zero because the horizontal distribution is integrable.
– We can write the Lagrangian L : T Q → R of the system, given by the kinetic minus the

potential energy, as follows

L(θ, ϕ, ψ, x, y, θ̇ , ϕ̇, ψ̇, ẋ, ẏ)

= 1

2
Mr2θ̇2 + 1

2
Mr2ϕ̇2 cos2 θ + 1

2

(
I1 + 1

4
Mr2e2

)
(θ̇2 + ϕ̇2 sin2 θ)

+ 1

2
I3(ϕ̇ cos θ + ψ̇)2 + 1

2
M(ẋ2 + ẏ2)− 1

4
Mr2eϕ̇2 sin 2θ (2)

+Mr ẋ

(
θ̇ sin θ sin ϕ − ϕ̇ cos θ cosϕ + 1

2
e(ϕ̇ sin θ cosϕ + θ̇ cos θ sin ϕ)

)

−Mr ẏ

(
θ̇ sin θ cosϕ + ϕ̇ cos θ sin ϕ + 1

2
e(ϕ̇ sin θ sin ϕ − θ̇ cos θ cosϕ)

)

− gMr

(
sin θ + 1

2
e cos θ

)
,

where g is the acceleration of gravity, M is the mass of the disk, and I1(= I2), I3 are the
principal moments of inertia.

– From this Lagrangian, we obtain the reduced Lagrangian �(θ, ϕ, θ̇ , ϕ̇, v̄), where v̄ =
(ψ̇, ẋ, ẏ), which essentially has the same expression as L but different domain

�(θ, ϕ, θ̇ , ϕ̇, v̄) = 1

2
Mr2θ̇2 + 1

2
Mr2ϕ̇2 cos2 θ + 1

2

(
I1 + 1

4
Mr2e2

)
(θ̇2 + ϕ̇2 sin2 θ)

+ 1

2
I3(ϕ̇ cos θ + ψ̇)2 + 1

2
M(ẋ2 + ẏ2)− 1

4
Mr2eϕ̇2 sin 2θ

+ Mr ẋ

(
θ̇ sin θ sin ϕ − ϕ̇ cos θ cosϕ + 1

2
e(ϕ̇ sin θ cosϕ + θ̇ cos θ sin ϕ)

)

− Mr ẏ

(
θ̇ sin θ cosϕ + ϕ̇ cos θ sin ϕ + 1

2
e(ϕ̇ sin θ sin ϕ − θ̇ cos θ cosϕ)

)

− gMr

(
sin θ + 1

2
e cos θ

)
,

(3)
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Euler’s disk: Reduced discrete equations 229

In order to simplify the forthcoming expressions, we redefine � as 2�/Mr2 and we write
Īi = Ii/Mr2 and ē = e/2. Then, the reduced Lagrangian takes the form

�(θ, ϕ, θ̇ , ϕ̇, v̄) = θ̇2 + ϕ̇2 cos2 θ + (
Ī1 + ē2) (θ̇2 + ϕ̇2 sin2 θ)

+ Ī3(ϕ̇ cos θ + ψ̇)2 + (ẋ2 + ẏ2)/r2 − ēϕ̇2 sin 2θ

+ 2ẋ
(
θ̇ sin θ sin ϕ− ϕ̇ cos θ cosϕ+ē(ϕ̇ cosϕ sin θ+θ̇ cos θ sin ϕ)

)
/r

−2 ẏ
(
θ̇ sin θ cosϕ+ϕ̇ cos θ sin ϕ+ē(ϕ̇ sin ϕ sin θ−θ̇ cos θ cosϕ)

)
/r

− 2g/r (sin θ + ē cos θ) .

(4)

According to Theorem 1, we have the following system of Lagrange-d’Alembert-Poincaré
equations for an Euler’s disk (see [8] for details):

(ẋ, ẏ) = ψ̇ru (5)

0 = (
(1+ Ī3) cos θ − ē sin θ

)
ϕ̈ + Ī3ψ̈ + 〈(ẍ, ÿ), u〉 /r

− (
(2+ Ī3) sin θ + 2ē cos θ

)
θ̇ ϕ̇ (6)

0 = (
( Ī1 + ē2) sin2 θ + (1+ Ī3) cos2 θ − ē sin 2θ

)
ϕ̈ + Ī3ψ̈ cos θ

+ (cos θ − ē sin θ) 〈(ẍ, ÿ), u〉 /r (7)

− (
(1− Ī1 + Ī3 − ē2) sin 2θ + 2ē cos 2θ

)
θ̇ ϕ̇ − Ī3θ̇ ψ̇ sin θ

0 = (1+ Ī1 + ē2)θ̈ + (
(1− Ī1 + Ī3 − ē2)/2 sin 2θ + ē cos 2θ

)
ϕ̇2

+ Ī3ϕ̇ψ̇ sin θ + (sin θ + ē cos θ) 〈(ÿ,−ẍ), u〉 /r + g/r(cos θ − ē sin θ) (8)

By introducing the derivative of the rolling constraint (5) into the Eqs. (6–8), we obtain
the following equivalent set of equations (recall that u = −(cosϕ, sin ϕ)):

(ẋ, ẏ) = ψ̇ru (9)

0 = (
(1+ Ī3) cos θ − ē sin θ

)
ϕ̈ + Ī3ψ̈ + 〈(ẍ, ÿ), u〉 /r

− (
(2+ Ī3) sin θ + 2ē cos θ

)
θ̇ ϕ̇ (10)

0 = (
( Ī1 + ē2) sin2 θ + (1+ Ī3) cos2 θ − ē sin 2θ

)
ϕ̈ + (

(1+ Ī3) cos θ − ē sin θ
)
ψ̈

− (
(1− Ī1 + Ī3 − ē2) sin 2θ + 2ē cos 2θ

)
θ̇ ϕ̇ − Ī3θ̇ ψ̇ sin θ (11)

0 = (1+ Ī1 + ē2)θ̈ + (
(1− Ī1 + Ī3 − ē2)/2 sin 2θ + ē cos 2θ

)
ϕ̇2

+ (
(1+ Ī3) sin θ + ē cos θ

)
ϕ̇ψ̇ + g/r(cos θ − ē sin θ) (12)

3 Discrete equations for Euler’s disk

In this section, we shall write a system of reduced discrete equations for the case of an Euler’s
disk and we shall numerically simulate it.

3.1 Discrete Lagrange-d’Alembert’s principle

As it is well known, the dynamical equations of a Lagrangian system follow from a varia-
tional principle. Since the end of the last century, several researchers have been investigating
numerical methods derived from an appropriate discretization of the variational principle
(see [17,20]). From this discrete variational calculus, they derive the so-called discrete
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230 C.M.Campos et al.

Euler-Lagrange equations which produce a geometric integrator preserving symplecticity
and momentun map.

For the case of Lagrangian systems with nonholonomic constraints, the problem is in-
herently more difficult since the nonholonomic flow is not preserving any symplectic form
in general. Despite this problem, the construction of nonholonomic integrators was proposed
in [10] (see also [9,22]), based on a discretization of the Lagrange-d’Alembert’s principle.
These methods do not preserve the symplectic form in the same way that the continuous
nonholonomic flows does not preserve symplecticity, in general. They verify a discrete ver-
sion of the nonholonomic momentum map and have an extraordinarily surprising energy
behavior which remains bounded in all the worked examples, while the energy associated
with a standard method decays due to numerical damping.

The idea of this section is to study the discretization and discrete reduction of Euler’s disk
with thickness. For this purpose, we will use the reduction methods developed by one of the
authors and coworkers (see [18]) using the unifying approach of Lie groupoids.

We use the (local) discretization map τd : (Q×Q)/G → T Q/G, where the configuration
manifold is Q = (

0, π2
) × S1 × S1 × R

2 and the symmetry group is G = SO(2) × R
2,

given by

τh(θk, θk+1, ϕk, ϕk+1, κk, ζk, ηk) =
(
θk+ 1

2
, ϕk+ 1

2
; �θk

h
,
�ϕk

h
,
κk

h
,
ζk

h
,
ηk

h

)

where �θk := θk+1 − θk, �ϕk := ϕk+1 − ϕk, θk+ 1
2
:= θk+θk+1

2 , ϕk+ 1
2
:= ϕk+ϕk+1

2 and
κk := �ψk , ζk := �xk and ηk := �yk .

Besides, observe that a section of the vector bundle T Q/G ∼= T
[(

0, π2
)× S1

]× R
3 is a

pair (X,U ) where X is a vector field on
(
0, π2

)× S1 and U : (
0, π2

)× S1 → R
3 is a smooth

map. Therefore, a basis of sections is

s1 =
(
∂

∂θ
, 0

)
, s2 =

(
∂

∂ϕ
, 0

)
, s3 = (0, E1), s4 = (0, E2), s5 = (0, E3) ;

where {E1, E2, E3} is the canonical basis of R
3.

We can determine a discrete nonholonomic system by the following three elements:

– The reduced Lagrangian is �d = h2 · (� ◦ τd) : (Q × Q)/G → R:

�d(θk, θk+1, ϕk, ϕk+1, κk, ζk, ηk)

= �θ2
k +�ϕ2

k cos2
(
θk+ 1

2

)
+ (

Ī1 + ē2) (
�θ2

k +�ϕ2
k sin2

(
θk+ 1

2

))

+ Ī3

(
�ϕk cos

(
θk+ 1

2

)
+ κk

)2 + (
ζ 2

k + η2
k

)
/r2 − ē�ϕ2

k sin
(

2θk+ 1
2

)

+ 2ζk

(
�θk sin

(
θk+ 1

2

)
sin

(
ϕk+ 1

2

)
−�ϕk cos

(
θk+ 1

2

)
cos

(
ϕk+ 1

2

))
/r

+ 2ζk ē
(
�ϕk sin

(
θk+ 1

2

)
cos

(
ϕk+ 1

2

)
+�θk cos

(
θk+ 1

2

)
sin

(
ϕk+ 1

2

))
/r (13)

− 2ηk

(
�θk sin

(
θk+ 1

2

)
cos

(
ϕk+ 1

2

)
+�ϕk cos

(
θk+ 1

2

)
sin

(
ϕk+ 1

2

))
/r

− 2ηk ē
(
�ϕk sin

(
θk+ 1

2

)
sin

(
ϕk+ 1

2

)
−�θk cos

(
θk+ 1

2

)
cos

(
ϕk+ 1

2

))
/r

− 2h2g/r
(

sin
(
θk+ 1

2

)
+ ē cos

(
θk+ 1

2

))
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Euler’s disk: Reduced discrete equations 231

– The discrete constraint submanifold Mc of (Q × Q)/G is determined by the constraint
functions

ζk = −κkr cosϕk+ 1
2

and ηk = −κkr sin ϕk+ 1
2

– The constraint distribution Dc which is a vector subbundle of T Q/G → Q/G is given
by

Dc = span {s1, s2, S3 = s3 − r cosϕs4 − r sin ϕs5} .
Observe that Dc = D/G where D is defined in (1).

Following [18] the discrete nonholonomic equations are:

←−s1

∣∣∣
(θk ,θk+1,ϕk ,ϕk+1,κk ,ζk ,ηk )

ld −−→s1

∣∣∣
(θk+1,θk+2,ϕk+1,ϕk+2,κk+1,ζk+1,ηk+1)

ld = 0

←−s2

∣∣∣
(θk ,θk+1,ϕk ,ϕk+1,κk ,ζk ,ηk )

ld −−→s2

∣∣∣
(θk+1,θk+2,ϕk+1,ϕk+2,κk+1,ζk+1,ηk+1)

ld = 0

←−
S3

∣∣∣
(θk ,θk+1,ϕk ,ϕk+1,κk ,ζk ,ηk )

ld −−→S3

∣∣∣
(θk+1,θk+2,ϕk+1,ϕk+2,κk+1,ζk+1,ηk+1)

ld = 0

ζk + κkr cosϕk+ 1
2
= 0 ηk + κkr sin ϕk+ 1

2
= 0

ζk+1 + κk+1r cosϕk+1+ 1
2
= 0 ηk+1 + κk+1r sin ϕk+1+ 1

2
= 0

where

←−s1 = ∂

∂θk+1
,
←−s2 = ∂

∂ϕk+1
,
←−
S3 = ∂

∂κk
− r cosϕk+1

∂

∂ζk
− r sin ϕk+1

∂

∂ηk
,

−→s1 = − ∂

∂θk
,
−→s2 = − ∂

∂ϕk
,
−→
S3 = ∂

∂κk
− r cosϕk

∂

∂ζk
− r sin ϕk

∂

∂ηk
.

Substituting the constraints we derive the following system of equations which represents
a geometric discretization of Eqs. (10–12):

0 = 4(1+ Ī1 + ē2)(�θ1 −�θ0)

+ 2h2g/r(cos(θ0+ 1
2
)+ cos(θ1+ 1

2
)− ē(sin(θ0+ 1

2
)+ sin(θ1+ 1

2
)))

+�ϕ2
0((1− Ī1 + Ī3 − ē2) sin(2θ0+ 1

2
)+ 2ē cos(2θ0+ 1

2
))

+�ϕ2
1((1− Ī1 + Ī3 − ē2) sin(2θ1+ 1

2
)+ 2ē cos(2θ1+ 1

2
)) (14)

+ 2�ϕ0κ0((1+ Ī3) sin(θ0+ 1
2
)+ ē cos(θ0+ 1

2
))

+ 2�ϕ1κ1((1+ Ī3) sin(θ1+ 1
2
)+ ē cos(θ1+ 1

2
))

0 = (1+ Ī1 + Ī3 + ē2)(�φ1 −�φ0)

−�ϕ0((1− Ī1 + Ī3 − ē2) cos(2θ0+ 1
2
)− 2ē sin(2θ0+ 1

2
))

+�ϕ1((1− Ī1 + Ī3 − ē2) cos(2θ1+ 1
2
)− 2ē sin(2θ1+ 1

2
)) (15)

+ κ0((�θ0 + 2n) sin(θ0+ 1
2
)− 2(1+ Ī3 − ē�θ0/2) cos(θ0+ 1

2
))

+ κ1((�θ1 − 2n) sin(θ1+ 1
2
)+ 2(1+ Ī3 + ē�θ1/2) cos(θ1+ 1

2
))

0 = − Ī3(�φ0 cos(θ0+ 1
2
)−�φ1 cos(θ1+ 1

2
))
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232 C.M.Campos et al.

(a) (b)

Fig. 2 Step-size h = 0.01, iteration number N = 100

− κ0( Ī3 + cos(�ϕ0/2))

+ κ1( Ī3 + cos(�ϕ1/2))

−�ϕ0 cos(�φ0/2)(cos(θ0+ 1
2
)− ē sin(θ0+ 1

2
)) (16)

+�ϕ1 cos(�φ1/2)(cos(θ1+ 1
2
)− ē sin(θ1+ 1

2
))

−�θ0 sin(�φ0/2)(sin(θ0+ 1
2
)+ ē cos(θ0+ 1

2
))

−�θ1 sin(�φ1/2)(sin(θ1+ 1
2
)+ ē cos(θ1+ 1

2
))

3.2 Numerical simulations of Euler’s disk

The numerical simulations of Euler’s disk have been carried out into Matlab using two dif-
ferent methods: the one proposed here; i.e., the variational integrator given by Eqs. (14–16);
and a second order Runge–Kutta method applied to the continuous Eqs. (10–12). In order to
represent a qualitative view of the solutions obtained by these methods, we have chosen to
plot for each solution the path covered by the contact point of the disk and the total energy of
the corresponding system, always comparing the variational integrator with the Runge–Kutta
method.

The physical system is configured as follows: the gravity’s acceleration is g = 9.8, the
disk’s mass M = 1, its radius r = 1, its thickness re = 0.5 and the principal moments
of inertia are I1 = Mr2/4 = 0.25 and I3 = Mr2/2 = 0.5. The initial conditions are
q0 = (θ0 = π/2, ϕ0 = 0, ψ0 = 0, x0 = 0, y0 = 0) and q1 = q0 + h · v0, where
v0 = (θ̇0 = π/8, ϕ̇0 = π, ψ̇0 = 2π, ẋ1 = −2πr, ẏ1 = 0) and h is the step size, which is
h = 0.01s. For the simulation, we compute N = 10.000 iterations (points), of which Fig.
2a,b covers the first hundred (i.e. T = 1s), Fig. 3a,b covers the first thousand (i.e. T = 10s)
and Fig. 4a,b covers the whole simulation (i.e. T = 100s).

The following aspects are worth noticing in the graphics: the contact point’s path is
“closed” for the variational integrator, while for the Runge–Kutta method slowly draws an
inner spiral. The variational integrator maintains the geometric nature of the solution. Also,
we may see that the energy for the variational integrator remains almost-constant, while for
the Runge–Kutta method it oscillates within a bounded band having a small but non negligible
decreasing slope.
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(a) (b)

Fig. 3 Step-size h = 0.01, iteration number N = 1.000

(a) (b)

Fig. 4 Step-size h = 0.01, iteration number N = 10.000

4 Conclusions and future work

In this paper, we first recall the Lagrange-d’Alembert-Poincaré equations for Euler’s disk
applying reduction by the symmetry group SO(2) × R

2. Then, using discrete variational
calculus adapted to nonholonomic mechanics we derive a numerical method for Euler’s disk.
Finally, we implement some simulations showing its excellent energy behavior.

The knowledge of exact solutions and efficient numerical methods for Euler’s disk should
help to understand its behaviour under the addition of friction forces. One goal is to pre-
dict the finite-time singularity that appears when the disk falls flat (see [23] and subsequent
discussion in [27]).
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