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This work presents a consistent geometrically exact finite element formulation of the thin-walled

anisotropic beam theory. The present formulation is thought to address problems of composite beams

with nonlinear behavior. The constitutive formulation is based on the relations of composite laminates

and thus the cross sectional stiffness matrix is obtained analytically. The variational formulation is

written in terms of generalized strains, which are parametrized with the director field and its

derivatives. The generalized strains and generalized beam forces are obtained by introducing a

transformation that maps generalized components into physical components. A consistent tangent

stiffness matrix is obtained by parametrizing the finite rotations with the total rotation vector; its

derivation is greatly simplified by obtention of the derivatives of the director field via interpolation of

nodal triads. Several numerical examples are presented to show the accuracy of the formulation and

also its frame invariance and path independence.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

The study of the mechanics of modern high aspect ratio wings
involves two main difficulties; on one hand, the modeling of the
material behavior and, on the other hand, the treatment of finite
deformations. In the last years, shell theories were often preferred
over beam theories to address these problems. This was greatly
helped by the increment in power of computers and the devel-
opment of the finite element method.

Nowadays the scenario is changing, optimization techniques are
widely being applied to the design of modern structures; and of
course high aspect ratio wings are not an exception. This turned
the attention back to beam theories, first because heuristic opti-
mization techniques require massive computations and beam
theories are less resources consuming. In addition, the requisite
of optimization target functions containing analytical expressions
for the cross section stiffness also represents an advantage of beam
formulations. Thus, modern design of high aspect ratio wings could
be facilitated by a beam finite element formulation capable of
representing accurately the material and the kinematic behavior of
the structure as well as feeding the optimization algorithms.

Commonly, the geometrically linear composite thin-walled
beam theories produce accurate results when modeling wings
ll rights reserved.

ravia).
that suffer small deformation. High aspect ratio composite wings
normally suffer finite deformation; this demands a good knowl-
edge of geometrical nonlinearities, which considerably compli-
cates the formulation of the problem. Because of that, most of the
reported composite thin-walled formulations only treat approxi-
mately such geometrical nonlinearities. Sometimes such approx-
imations are not sufficient and higher order theories are needed.
In view of this, the present work presents a geometrically exact
beam finite element based on the composite thin-walled beam
theory.

A geometrically exact beam theory must provide the exact
relations between the configuration and the strains in a fully
consistent manner with the virtual work principle regardless of
the magnitude of the kinematic variables chosen to parametrize
the configuration. Unfortunately, this task is not trivial and the
consideration of 3D finite rotations introduces a great complexity
to the kinematic description of a beam.

Several authors have studied geometrically exact beam finite
element formulations. As a starting point, Reissner provided a
2D exact beam theory capable of describing arbitrary large
displacements and rotations and a 3D theory for second order
rotations [1].

Updated and Total Lagrangian formulations valid for large
displacements and based on a degenerate continuum concept
were presented by Bathe and Bolourchi [2].

Simo [3] and Simo and Vu-Quoc [4,5] developed the first 3D
geometrically exact formulation for isotropic hyperelastic beams.
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They used the Reissner relationships between the variation of the
rotation tensor and the infinitesimal rotations to derive the
strain-configuration relations, maintaining the geometric exact-
ness of the theory. Simo [3] parametrized the finite rotations with
the rotation tensor, aided by the quaternion algebra to enhance
the computational efficiency of the algorithm. He proposed a
multiplicative updating procedure for the rotational changes,
obtaining a non-symmetrical tangent stiffness.

Another important contribution to the subject was done by
Cardona and Geradin [6], who presented a different alternative of
parametrization, they used the incremental Cartesian rotation vector
to update the 3D rotations on the basis of the initial configuration.
This approach updates the configuration on the basis of the last
converged configuration. The additive treatment of the rotational
degrees of freedom gives rise to a symmetrical tangent stiffness. An
isotropic hyperelastic constitutive law was assumed.

Simo and Vu-Quoc [7] incorporated shear and torsion warping
deformation effects in his geometrically exact model. An exten-
sion of the formulation of Simo to curved beams was presented by
Ibrahimbegovic [8]. He extended the formulation to arbitrary
curved space beams maintaining some key aspects of Simo
formulation but using hierarchical interpolation. He also pro-
posed an incremental rotation vector formulation [9] to solve the
nonlinear dynamics of space beams.

The use of the Green–Lagrange strain measures in a geome-
trically exact finite element formulation for 3D beams seems to
have been introduced by Gruttmann [10,11]. He obtained a
formation parametrized in terms of directors at the integration
point, the formulation was greatly simplified by the elimination
of high order strains. In the same direction, Auricchio [12]
reviewed the Simo theory making equivalence between Green–
Lagrange strain measures and Reissner strain measures.

During the last years, great efforts were made to shed light to
the problem of loss of objectivity introduced by the interpolation
of rotations variables, a problem first noted by Crisfield and
Jelenic [13]. Jelenic and Crisfield [14] implemented the ideas
proposed in [13] to complete the development of a strain-
invariant and path independent geometrically exact 3D beam
element. Also Ibrahimbegovic and Taylor [15] re-examine the
geometrically exact models to clarify the frame invariance issues
concerning multiplicative and additive updates of rotations.
Betsch and Steinmann [16], Armero and Romero [17] and Romero
and Armero [18] further contributed to the subject presenting
frame-invariant formulations for geometrically exact beams using
the director field to parametrize the equations of motion. In these
works, the directors were obtained through parametrization with
spatial spins; thus, the obtained tangent stiffness matrices were
non-consistent. Additional treatment of frame invariance can be
found in Refs. [19,20]. Makinen [21] developed a Total Lagrangian
formulation for isotropic materials. Besides obtaining a consistent
stiffness matrix formulated in terms Reissner strains and total
rotations, he demonstrated that some conclusions presented in
[14] regarding the frame-invariance of Total Lagrangian formula-
tions were incorrect. This misconception was caused by the
wrong assumption that linear interpolation of total rotations is
preserved under rigid body rotations.

All the aforementioned formulations deal with isotropic beams
with solid cross section. As a consequence, its extension to
composite thin-walled beams is not trivial. The advantage of
thin-walled beam formulations is that the inclusion of material
anisotropy is greatly facilitated. The inclusion of anisotropic
materials to thin-walled and also solid beam finite element
formulations was extensively studied by Hodges [22]. His work
is based on the Variational Asymptotic Method (VAM) and
deserves special attention. Besides several interesting develop-
ments, he and his coworkers developed a geometrically exact,
fully intrinsic theory for the dynamics of curved and twisted
composite beams, having neither displacements nor rotations
appearing in the formulation. Using the VAM, a generalized
Vlasov theory for composite beams based on the variational
asymptotic beam sectional analysis was also presented by Yu et
al. [23]. These developments were helped by the Variational
Asymptotic Beam Sectional Analysis software (VABS) [24], a tool
for obtaining thin-walled composite beams sectional properties.
VABS is based on a 2D finite element analysis of the cross section
to obtain the stiffness matrix of the underlying 1D theory.

An extensive review on analytical methods for solving geome-
trically nonlinear problems of composite thin-walled beams was
done by Librescu [25]. He used different analytical approaches to
treat composite beams undergoing moderate rotations, treating
rotation variables in a vectorial fashion. Piovan and Cortı́nez [26]
and Machado [27] presented a formulation for composite beams
undergoing moderate rotations. Both formulations rely on an
assumed displacement field and treat rotations as vectors, which
confuses the actual meaning of these variables and also intro-
duces uncertainty to the formulation.

In the context of thin-walled composite beams, Saravia et al.
[28] presented a geometrically exact formulation for thin-walled
composite beams using a parametrization in terms of director
vectors. This formulation used spins as rotation variables, thus
obtaining an unsymmetrical tangent stiffness. The resulting finite
element implementation was path dependent and non-invariant.

This work presents a frame invariant and path independent
finite element formulation of the thin-walled anisotropic beam
theory. The obtention of the cross sectional stiffness matrices is
based on the classical lamination theory and thus can handle any
type of composite material. The cross section stiffness is thus
obtained analytically and without the necessity of performing a
2D finite element cross sectional analysis. This opens the possi-
bility of addressing optimization problems where it is desired to
include the cross sectional shape in the target functions.

The parametrization of the finite rotation is done with the total
rotation vector. In the present formulation we use interpolation to
obtain the derivatives of the director field, thus avoiding the need of the
derivatives of the rotation variables. This greatly simplifies the derivation
of the linearization of the Green–Lagrange strains. Since the variational
formulation is expressed in terms of director field there is no need of
reparametrization, this is in contrast to the works in [11,16–18] where
the Reissner strain measures must be reparametrized.

Regarding the objectivity and path independence of geome-
trically exact formulations, it has been shown that in the presence
of finite three dimensional rotations the concept of objectivity of
strain measures does not extend naturally from the theory to the
finite element formulation [13]. Hence, despite being some
formulations frame indifferent, they suffer from interpolation
induced non-objectivity. We demonstrate that in the present
formulation the discrete generalized strains satisfy the frame
invariance property and that the implementation is path inde-
pendent. Also, it is shown that although other director parame-
trized formulations resulted to be frame invariant and path
independent [16–18], the obtained stiffness matrices were not
consistent. We also show that it is not possible to obtain a
consistent geometrical stiffness matrix completely avoiding the
use of interpolation of the rotation. Finally, several examples
show the present implementation has a very good correlation
against 3D anisotropic shell theory.
2. Kinematics

The kinematic description of the beam is extracted from the
relations between two states of a beam, an undeformed reference



Fig. 1. 3D beam kinematics.
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state (denoted as B0) and a deformed state (denoted as B), as it is
shown in Fig. 1. Being ai a spatial frame of reference, we define two
orthonormal frames: a reference frame Ei and a current frame ei.

The displacement of a point in the deformed beam measured
with respect to the undeformed reference state can be expressed
in the global coordinate system ai in terms of a vector u¼
(u1,u2,u3).

The current frame ei is a function of a running length
coordinate along the reference line of the beam, denoted as x,
and is fixed to the beam cross-section. For convenience, we
choose the reference curve C to be the locus of cross-sectional
inertia centroids. The origin of ei is located on the reference line of
the beam and is called pole. The cross-section of the beam is
arbitrary and initially normal to the reference line.

The relations between the orthonormal frames are given by
the linear transformations:

Ei ¼K0ðxÞai, ei ¼KðxÞEi, ð1Þ

whereK0ðxÞ and K(x) are two-point tensor fields ASO(3); the
special orthogonal (Lie) group. Thus, it is satisfied that KT

0K0 ¼ I,
KTK¼ I. We will consider that the beam element is straight, so
we set K0¼ I.

Recalling the relations (1), we can express the position vectors
of a point in the beam in the undeformed and deformed config-
uration, respectively, as

Xðx,x2,x3Þ ¼ X0ðxÞþ
X3

i ¼ 2

xiEi, xðx,x2,x3,tÞ ¼ x0ðx,tÞþ
X3

i ¼ 2

xiei: ð2Þ

Where in both equations the first term stands for the position of
the pole and the second term stands for the position of a point in
the cross section relative to the pole. Note that x is the running
length coordinate and x2 and x3 are cross section coordinates. At
this point we note that since the present formulation is thought to
be used for modeling high aspect ratio composite beams, the
warping displacement is not included. As it is widely known, for
such type of beams the warping effect is negligible [29].

Also, it is possible to express the displacement field as

Uðx,x2,x3,tÞ ¼ x�X ¼ uðx,tÞþðK�IÞ
X3

2

xiEi, ð3Þ

where u represents the displacement of the kinematic center of
reduction, i.e. the pole. The nonlinear manifold of 3D rotation
transformations K(h) (belonging to the special orthogonal Lie
Group SO(3)) is described mathematically via the exponential
map as

KðhÞ ¼ cosyIþ
siny
y

Hþ
1�cosy

y2
h� h, ð4Þ
where h¼[y1 y2 y3]T is the rotation vector, y its modulus and H is
its skew symmetric matrix (often called spinor). Euler’s theorem
states that when a rigid body rotates from one orientation to
another, which may be the result of a series of rotations (with one
rotation superposed onto the previous), the total rotation can be
seen as single (compound) rotation about some spatial fixed axis
h (see e.g. [30]). Therefore, the rotation vector can be understood
as a compound rotation that globally or totally parametrizes the
compound rotation tensor via Eq. (4).

The set of kinematic variables is formed by three displace-
ments and three rotations as

V :¼ ff¼ ½u,h�T : ½0,‘�-R3
g, ½u,h�T ¼ ½u1,u2,u3,y1,y2,y3�

T : ð5Þ

Considering the effects of transverse shear strains gives, in
general, e1Ux,140.
3. Beam mechanics

3.1. Strain field

In this section we present the strain field obtained when
feeding the Green–Lagrange (GL) strain tensor with the kine-
matics. So, we need to express the GL strain tensor in terms of
reference and current position derivatives. First, we obtain the
derivatives of the position vectors of the undeformed and
deformed configurations as

X,1 ¼ X00þx2E02þx3E03, x,1 ¼ x00þx2e02þx3e03,

X,2 ¼ E2, x,2 ¼ e2,

X,3 ¼ E3, x,3 ¼ e3: ð6Þ

Note that we have implicitly made the classical assumption of
beam theories of plane cross-sections remaining plane. Proceed-
ing with the derivation, we operate in a conventional way by
injecting the tangent vectors X,i and x,i into the GL strain
expression EGL¼(1/2)(x,iUx,j�X,iUX,j) [31].

According to the kinematic hypotheses, the non-vanishing
components of the GL strain vector are only three. In vector
notation, it gives: EGL¼[E11 2E12 2E13]T, where

E11 ¼
1

2
ðx020 �X020 Þþx2ðx

0
0Ue03�X00UE03Þþx3ðx

0
0Ue02�X00UE02Þ

þ
1

2
x2

2ðe
02
2 �E022 Þþ

1

2
x2

3ðe
02
3 �E023 Þþx2x3ðe

0
2Ue03�E02UE03Þ,

E12 ¼
1

2
½x00Ue2�X00UE2�x3ðe

0
3Ue2�E03UE2Þ�,

E13 ¼
1

2
½x00Ue3�X00UE3þx2ðe

0
2Ue3�E02UE3Þ�: ð7Þ

To simplify the derivation of the thin-walled beam strains we
introduce now the generalized strain vector e, a vector that
properly transformed gives the GL strain vector. This transforma-
tion actually ‘‘extracts’’ from the GL strain vector the variables
related to the location of a point in the cross section (i.e. xi).
Therefore, the mentioned transformation is written as

EGL ¼De, ð8Þ

where the transformation matrix is

D¼

1 x3 x2 0 0 0 1
2x

2
2

1
2x

2
3 x2x3

0 0 0 1 0 �x3 0 0 0

0 0 0 0 1 x2 0 0 0

2664
3775: ð9Þ
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And the generalized strain vector is

e¼

E
k2

k3

g2

g3

k1

w2

w3

w23

266666666666666664

377777777777777775
¼

1
2ðx
0
0Ux00�X00UX00Þ

x00Ue03�X00UE03
x00Ue02�X00UE02
x00Ue2�X00UE2

x00Ue3�X00UE3

e02Ue3�E02UE3

e02Ue02�E02UE02
e03Ue03�E03UE03
e02Ue03�E02UE03

2666666666666666664

3777777777777777775

: ð10Þ

As it can be observed, the generalized strain vector e contains
nine generalized beam strains which belong to a material descrip-
tion and are expressed in a rectangular coordinate system. The
physical meaning of the generalized strain is: E measures the axial
strain of the reference line of the beam, k2 and k3 are the flexural
curvatures, g2 and g3 are the shear strains and k1 is the rate of
twist or torsional curvature. The meaning of the higher order
strains is a little more involved: w2, w3, measure both torsional and
flexural strains and also torsional–flexural coupling and flexural–
flexural coupling strains. The last term w23 is a flexural–flexural
and torsional–flexural coupling strain.

The derivation of strain and stress measures is helped by the
introduction of an orthogonal curvilinear coordinate system
(x,n,s), see Fig. 2. The cross-section shape will be defined in this
coordinate system by functions xi(n,s). The coordinate s is mea-
sured along the tangent to the middle line of the cross section, in
clockwise direction and with origin conveniently chosen. Besides,
the thickness coordinate n(�e/2re/2) is perpendicular to s and
with origin in the middle line contour.

In order to represent the GL strains in this curvilinear coordi-
nate system we make use of the transformation tensor

P ¼

1 0 0

0 dx2
ds

dx3
ds

0 �
dx3

ds
dx2

ds

2664
3775, ð11Þ

where the functions xi describe the mid-contour of the cross
section.

Hence, the GL strain vector in the curvilinear coordinate
system is obtained by transforming the rectangular GL strains as

ÊGL ¼ ½Exx 2Exs 2Exn�
T ¼ PEGL, ð12Þ

The curvilinear GL strain vector can then be expressed as

ÊGL ¼ PDe ð13Þ
Fig. 2. Curvilinear transformation schematic.
Recalling Eqs. (9) and (10), it is found that the GL strain vector in
curvilinear coordinates has a remarkably simple closed expression

ÊGL ¼

Eþx2k3þx3k2þ
1
2 x

2
2w2þ

1
2x

2
3w3þx2x3w23

x
0

2g2þx
0

3g3þðx2x
0

3�x3x
0

2Þk1

�x
0

3g2þx
0

2g3þðx2x
0

2þx3x
0

3Þk1

26664
37775, ð14Þ

where the prime symbol has been used to denote derivation with
respect to the s coordinate.

Now we can refer to Fig. 2 (see also [27]) to easily verify that
the location of a point anywhere in the cross-section can be
expressed as

x2ðn,sÞ ¼ x2ðsÞ�n
dx3

ds
, x3ðn,sÞ ¼ x3ðsÞþn

dx2

ds
, ð15Þ

where xi locates the points lying in the middle-line contour.
As it will be further clarified in the next section, we will use

five independent curvilinear strain measures (collected in the
vector e s) to describe the strain state of the thin-walled beam
laminate (see [32]) as

e s ¼ exx gxs gxn Kxx Kxs

h iT
: ð16Þ

Pursuing the mentioned objective of describing the strain state
of the beam in terms of the generalized strain vector, we first
move to an intermediate step and introduce Eq. (15) into Eq. (14)
to express the GL strains as a function of the mid-surface
coordinates xi and its derivatives. After doing that we found that
a matrix T establishes the relationship between the GL curvi-
linear strains and the generalized strains as

e s ¼ T e: ð17Þ

Substituting Eq. (15) into Eq. (14) and neglecting higher order
terms in the thickness (terms in n2) we obtain

T sð Þ ¼

1 x3 x2 0 0 0 1
2x

2

2
1
2x

2

3 x2x3

0 0 0 x
0

2 x
0

3 x2x
0

3�x3x
0

2 0 0 0

0 0 0 �x
0

3 x
2

3 x2x
0

2þx3x
0

3 0 0 0

0 x
0

2 �x
0

3 0 0 0 �x2x
0

3 x3x
0

2 ðx2x
0

2�x3x
0

3Þ

0 0 0 0 0 �ðx
02

2 þx
02

3 Þ 0 0 0

26666666664

37777777775
:

ð18Þ

It is interesting to note that the matrix T plays the role of a
double transformation matrix that directly maps the generalized
strains e into the curvilinear GL strain e s without the necessity of
an intermediate transformation.

Now, it is straightforward to obtain the curvilinear strains as a
function of mid-contour quantities and the generalized strains as

Es ¼

Eþk3x2þþk2x3þ0:5w2x
2

2þw23x2x3þ0:5w3x
2

3

g2x
0

2þg3x
0

3þk1ðx
0

3x2�x
0

2x3Þ

g3x
0

2�g2x
0

3þk1ðx
0

2x2þx
0

3x3Þ

k2x
0

2�k3x
0

3�w2x
0

3x2þw3x
0

2x3þw23ðx
0

2x2�x
0

3x3Þ

k1ð�x
02

2 �x
02

3 Þ

26666666664

37777777775
ð19Þ

3.2. Constitutive relations

The most interesting capability of the present formulation is to
handle composite materials in a geometrically exact framework
without modifying the classical thin-walled beam approach. In
this section we present the equations that describe the mechanics
of the composite material. The reduction to the isotropic case is
straightforward.

For an orthotropic lamina, the relationship between the
second Piola–Kirchhoff stress tensor and its energetic conjugate;
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the GL strain tensor, can be expressed in curvilinear coordinates
as a matrix of stiffness coefficients Qij [32–33]

sxx

sss

snn

ssn

sxn

sxs

26666666664

37777777775
¼

Q11 Q12 Q13 0 0 Q16

Q12 Q22 Q23 0 0 Q26

Q13 Q23 Q33 0 0 Q36

0 0 0 Q44 Q45 0

0 0 0 Q45 Q55 0

Q16 Q26 Q36 0 0 Q66

26666666664

37777777775

Exx

Ess

Enn

gsn

gxn

gxs

26666666664

37777777775
: ð20Þ

In matrix form

r¼Qe s: ð21Þ

In the above equation Qij are components of the transformed

constitutive (or stiffness) matrix defined in terms of the elastic
properties (elasticity moduli and Poisson coefficients) and fiber
orientation of the ply [32].

The shell stress resultants in a lamina result from the integra-
tion of 3D stresses in the thickness, and are thus defined as

Nij ¼

Z e=2

�e=2
sijdn, Mij ¼

Z e=2

�e=2
sijndn: ð22Þ

Employing Eqs. (20) and (22) and neglecting the normal stress
in the thickness (i.e. snn¼0) it is possible to obtain a constitutive
relation between the shell forces and strains as

Nxx

Nss

Nxs

Nsn

Nxn

Mxx

Mss

Mxs

2666666666666664

3777777777777775
¼

A11 A12 A13 0 0 B11 B12 B16

A12 A22 A23 0 0 B12 B22 B26

A13 A23 A33 0 0 B16 B26 B66

0 0 0 AH
44 AH

45 0 0 0

0 0 0 AH
45 AH

55 0 0 0

B11 B12 B16 0 0 D11 D12 D16

B12 B22 B26 0 0 D12 D22 D26

B16 B26 B66 0 0 D16 D26 D66

2666666666666664

3777777777777775

Exx

Ess

gxs

gsn

gxn

kxx

kss

kxs

2666666666666664

3777777777777775
,

ð23Þ

where Nxx, Nss, and Nxs are axial, hoop and shear-membrane shell
forces, respectively, and Nxn and Nsn are transverse shear shell
forces. Also Mxx, Mss and Mxs are axial bending, hoop bending and
twisting shell moments, respectively. The same nomenclature is
extended to the shell strain resultants, thus exx and ess are axial
and hoop normal strains, respectively, gxs, gsn and gxn are shear
shell strains and Kxx, Kss and Kxs are axial, hoop and twisting
curvatures, respectively. The coefficients Aij, AH

ij , Bij and Dij in the
constitutive matrix are shell stiffness-coefficients that result from
the integration of Qij in the thickness [32].

Although the last relationships were derived for a single
lamina, we can obtain the constitutive relations for a laminate
by spanning the integrals in the thickness of the lamina over the
different layers of the laminate (each layer being a single lamina).
Therefore, using the hypotheses of plane stress in the laminate
and rigid cross section the relations 0 simplify to

Nxx

Nxs

Nxn

Mxx

Mxs

26666664

37777775¼
A11 A16 0 B11 B16

A16 A66 0 B16 B66

0 0 A
H

55 0 0

B11 B16 0 D11 D16

B16 B66 0 D16 D66

266666664

377777775

exx

gxs

gxn

Kxx

Kxs

26666664

37777775, ð24Þ

where Aij are components of the laminate reduced in-plane
stiffness matrix, Bij are components of the reduced bending-
extension coupling matrix, Dij are components of the reduced
bending stiffness matrix and A

H

55 is the component of the reduced
transverse shear stiffness matrix.

It must be noted that according to the plane stress hypothesis
ess¼gns¼0, but in order to avoid overstiffening effects we set
Nss¼gns¼0 [32]. This generates a mild inconsistency typical of
thin-walled beam formulations

We can express the above relation in matrix form as

Ns ¼ Ce s, ð25Þ

where C is the composite shell constitutive matrix and e s is the
curvilinear shell strain vector defined in Eq. (17).

3.3. Beam forces

The objective of this subsection is to reduce the 2D formula-
tion to a 1D formulation. In order to do that, it is first necessary to
express the shell forces as a function of the generalized strains.
Replacing Eq. (17) into Eq. (25) we obtain

Ns ¼ CT e: ð26Þ

Since we are pursuing to formulate the theory in terms of
generalized quantities, we need to find a one dimensional stress
(or force) entity such as to be work conjugate with the general-
ized strains. To that purpose, we first transform the shell forces in
Eq. (26) back to the ‘‘generalized space’’ using the double
transformation matrix T . Hence, we obtain the transformed back
shell strain as

NG
s ¼ T T Ns ¼ T T CT e: ð27Þ

We see that NG
s is a vector of generalized shell stresses defined in

the global coordinate system. It is a function of the cross section
mid-contour and thus integration over the contour gives the
vector of generalized beam forces (work conjugate with the
generalized strains) as

SðxÞ ¼
Z

S
NG

s ds¼

Z
S
T T CT ds

� �
eðxÞ, ð28Þ

SðxÞ ¼DeðxÞ: ð29Þ

Note that since the generalized strain vector e is not a function
of the curvilinear coordinate s, (see Eq. (10)) it was taken out of
the integral over the contour. So, the new matrix D was defined
such that

D¼

Z
S
T T CT ds: ð30Þ

It is good to note that D contains functions xi that define the
cross section mid-contour and also all the anisotropic material
constants. Besides, it contains not only all geometrical couplings
but also all material couplings. Commonly, the functions xi are
defined as piecewise functions, and so the integral to evaluate D

needs to be performed in a piecewise manner (see e.g. [25]).
The evaluation of beam constitutive matrix D does not involve

a 2D finite element analysis of the cross section (as, for example,
in the VABS approach [24]). Although the constitutive constants
are not as accurate as that the ones obtained with the mentioned
method, the present approach is simpler, faster and it also opens
the possibility of addressing optimization problems of large
deformation of thin-walled composite beams. A detailed study
of the performance of both methods can be found in [29].
4. Variational formulation

The weak form of equilibrium of a three dimensional body B is
given by [34,35]

Gð/,d/Þ ¼
Z
B0

rUdedV�

Z
B0

q0bUd/dV�

Z
‘
ðpUduþmUdhÞdx, ð31Þ

where b, p and m are body forces, prescribed external forces and
prescribed external moments respectively. e is the 3D GL strain
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tensor, work conjugate to the second Piola–Kirchhoff stress tensor
r. We note that r could be defined in either a rectangular or a
curvilinear coordinate system (such a distinction is, at least at this
point, unnecessary).

To maintain the variational formulation parametrized in terms
of the director field, its admissible variation must be found. Then
the generalized virtual strains can be obtained; so the virtual
work of the internal and external forces can be derived. Therefore,
we aim to express the virtual work principle as a function of the
generalized virtual strain vector and its work conjugate beam
forces vector.

4.1. Finite rotations and director variations

There are various ways to parametrize finite rotations: Euler
angles, a four parameter quaternion intrinsic representation [3,8],
a three parameter rotational vector [6], etc. These parametriza-
tions can be total or incremental, as well as their combinations,
and they lead to multiplicative or additive updating procedures.

It is known that the parametrization of finite rotations with
spins leads to a non-symmetric tangent matrix [4], although
symmetry is recovered at equilibrium. This kind of parametriza-
tion has the advantage of giving very simple expressions for the
tangent matrix but, as a consequence of the interpolation of spins,
it has the drawback of being path dependent and non frame
invariant [14]. On the other hand, using the rotational vector to
parametrize finite rotations leads to a symmetric tangent matrix
but its derivation can be more complicated due to the complexity
of the linearization of the virtual strains.

In this work we choose to describe the finite rotation with the
rotation vector. It will be shown that the properties of frame
indifference and path independency are satisfied and some com-
mon difficulties arising from the linearization are easily overcome.

To obtain the generalized strains variations, the admissible
variation of the director field is required. Remembering that we
set K0¼I and recalling Eq. (1), we can write

dei ¼ dðKEiÞ ¼ dKEi: ð32Þ

The admissible variation of the rotation tensor (Lie variation)
can be obtained introducing an infinitesimal virtual rotation
superposed onto the existing finite rotation, see e.g. [36, 37]. This
virtual rotation lies in the tangent space at K (spatial virtual
rotation), or in the tangent space at I (material virtual rotation),
and is represented by a skew symmetric matrix dW, or dW,
respectively (see Fig. 3). These variables are called ‘‘spins’’ [38].

To find the variation of the rotation tensor we first construct the
perturbed rotation tensor by exponentiating the spatial spin as

KE ¼ expðEdWÞK: ð33Þ

At this point we note that K is a two point tensor, it takes
vectors from the tangent space in the initial configuration to the
tangent space in the current configuration. Thus, we can use it to
relate spatial and material spins as

dW¼KTdWK, dW ¼KdWKT : ð34Þ
From which we can write the material version of the kinema-

tically admissible perturbed finite rotation tensor as

KE ¼KexpðEdWÞ: ð35Þ

Enforcing the additive property to hold, it can be devised yet
another way of constructing the perturbed finite rotation tensor.
Making use of the rotation vector, it is proposed

KE ¼ expðHþEdHÞ: ð36Þ

Recalling Eq. (33) and remembering that K¼exp(H) we find
that

expðHþEdHÞ ¼ expðEdWÞexpðHÞ, ð37Þ
where we are trying to find an incremental rotation tensor, i.e. the
virtual rotation tensor dH, such that it belongs to the same
tangent space as the rotation tensor H, i.e. TISO(3). The vector h

whose skew matrix is H is the total rotation vector.

Taking derivatives with respect to the parameter E we obtain
(see e.g. [21,39])

dw¼ Tdh, ð38Þ

where T is the spatial tangential transformation

TðhÞ ¼
siny
y

Iþ
1�cosy

y2
Hþ

y�siny
y3

h� h: ð39Þ

These different choices for the construction of a kinematically
admissible representation of the perturbed rotation tensor,
together with the type of algorithm chosen to perform the config-
uration update, lead to different finite element formulations: Total
Lagrangian, Updated Lagrangian and Eulerian formulations [6].
Since we chose the total rotation vector to parametrize the finite
rotation, the present formulation is Total Lagrangian.

The weak form of the equations of motion was parametrized
in terms of the current frame and its derivatives, to ease the
derivation of the virtual work we use rotation variables that
belong to the tangent space at K. Considering the latter, we will
use the spatial virtual rotation tensor (i.e. dW) to obtain the
kinematically admissible variation of the rotation tensor. Recal-
ling Eq. (33) we can express the variation of the rotation tensor
in terms of the spatial spin as

dK¼
d

dE
½expðEdWÞK�9E ¼ 0 ¼ dWK: ð40Þ

Again, dW is a skew symmetric matrix such that dWa¼dw�a.
Therefore, we can rewrite Eq. (32) as

dei ¼ dw� ei: ð41Þ

Now, recalling Eq. (38), we can write the last equation as a
function of the total rotation vector like

dei ¼ ðTdhÞ � ei: ð42Þ

The set of kinematically admissible variations can now be
defined as

dV :¼ fd/¼ ½du,dh�T : ½0,‘�-R39d/¼ 0 on Sg, ð43Þ

where S describes the boundaries with prescribed displacements
and rotations.

To obtain the virtual generalized strains we will also need
to find the variation of the derivative of the director field.
Noting that e0 ¼Th0 we can find the variation of the director’s
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derivative as

de0i ¼ ðdTh0 þTdh0Þ � eiþðTh0Þ � ½ðTdhÞ � ei�: ð44Þ

4.2. Virtual generalized strains

The variations of the directors and its derivatives are now
used to obtain the virtual generalized strains. Considering
dEi¼0 and dX00 ¼ 0 and performing the variation to Eq. (10)
we obtain

de¼

x00Udu0

e03Udu0 þx00Ude03
e02Udu0 þx00Ude02
e2Udu0 þx00Ude2

e3Udu0 þx00Ude3

de02Ue3þe02Ude3

2ðde02Ue02Þ

2ðde03Ue03Þ

de02Ue03þe02Ude03

2666666666666666664

3777777777777777775

: ð45Þ

In order to maintain the compactness of the formulation, it
will be useful to write the last expression as a function of a new
set of kinematic variables du as

de¼Hdu: ð46Þ

where

H¼

x0T0 0 0 0 0 0

e0T3 0 0 0 0 x0T0
e0T2 0 0 0 x0T0 0

eT
2 0 x0T0 0 0 0

eT
3 0 0 x0T0 0 0

0 0 0 e0T2 eT
3 0

0 0 0 0 2e0T2 0

0 0 0 0 0 2e0T3
0 0 0 0 e0T3 e0T2

2666666666666666664

3777777777777777775

, du¼

du0

dw

de2

de3

de02
de03

26666666664

37777777775
: ð47Þ

4.3. Internal virtual work

Having derived the expressions for the admissible varia-
tions of the current basis vectors and the generalized strains
we develop in this section the expressions for the internal
virtual work of the beam. Recalling Eq. (31), the internal
virtual work of a three dimensional body can be written in
vector form as

Gintð/,d/Þ ¼
Z
B0

deTrdV , ð48Þ

which in the curvilinear coordinate system is written as

Gintð/,d/Þ ¼
Z
‘

Z
S

Z
e
deTrdndsdx: ð49Þ

We can now use the definition of the shell resultant forces in
Eq. (22) to reduce the 3D formulation to a 2D formulation.
Therefore, integration of Eq. (49) in the n direction we can write
the internal virtual work in terms of shell quantities as

Gintð/,d/Þ ¼
Z
‘

Z
S
deT

s Nsds dx: ð50Þ

The reduction to a one dimensional formulation is now aided
by the deduction of 1D beam forces presented in Eq. (28).
Transforming the virtual curvilinear shell strains into virtual
generalized strains we can rewrite the last expression as

Gintð/,d/Þ ¼
Z
‘
deT

Z
S
T T Ns ds

� �
dx ð51Þ

In which the term in parentheses is the generalized beam
forces vector (see Eq. (28)). Recalling Eq. (27) the beam forces
vector can be found as a function of the shell stresses as

SðxÞ ¼

Z
S
T T Ns ds: ð52Þ

The explicit expression of the beam forces can be found in
Appendix A.1.

Finally, we write the one dimensional version of the virtual
work principle in terms of the generalized strains and the
generalized beam forces

Gintð/,d/Þ ¼
Z
‘
deT S dx: ð53Þ

4.4. External virtual work

The virtual work of external forces can be written as

Gextð/,d/Þ ¼
Z
‘
ðnUduþmUdhÞdx, ð54Þ

where n is the external forces vector and m the external moments
vector. These vectors are defined according to

n¼
Z

S

Z
e

bdndsþ

Z
S

tds,

m¼

Z
S

Z
e

X � bdndsþ

Z
S

X � tds, ð55Þ

where b is the distributed body force vector and t is external
stress vector.

4.5. Weak form of equilibrium

The variational equilibrium statement can now be written in
terms of generalized components of 1D forces and strains. Recal-
ling Eqs. (53) and (54) the virtual work of a composite beam is
presented in its one dimensional form as

Gð/,d/Þ ¼
Z
‘
deT S dx�

Z
‘
ðnUduþmUdhÞdx: ð56Þ

Using Eq. (46) it is possible to re-write the last expression as

Gð/,d/Þ ¼
Z
‘
½Hdu�T Sdx�

Z
‘

nUduþmUdhdx: ð57Þ

5. Linearization of the weak form

The solution of the nonlinear system of equations requires
the linearization of these equations with respect to an incre-
ment in the configurations variables. The linearization of the
variational equilibrium equations is obtained through the direc-
tional derivative and, assuming conservative loading, its applica-
tion gives two tangent terms; the material and the geometric
stiffness matrices.

Being L[G(/,d/)] the linear part of the functional G(/,d/), we
have

L½Gð/̂,d/Þ� ¼ Gð/̂,d/ÞþDGð/̂,dfÞUD/, ð58Þ

where the first term Gð/̂,dfÞ is the unbalanced force at the
configuration /̂ (for simplicity, the hat operator c will be
omitted hereafter). The Frechet differential in the second term is
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obtained in a standard way as

DGð/,d/ÞUD/¼
d

dEGð/þED/Þ9E ¼ 0, ð59Þ

where D/ fulfills the geometric boundary conditions. For simpli-
city, we have dropped c. Applying the definition in Eq. (59) and
recalling Eqs. (53) and (45), we obtain the tangent stiffness as

DGintð/,dfÞUD/¼

Z
‘
ðdeTDDeþDdeT SÞdx, ð60Þ

where ‘ is the length of the undeformed beam. The integral of the
first term gives raise to the material stiffness matrix and from the
integral of the second term evolves the geometric stiffness matrix.

Using Eq. (46) the first term of the above equation takes the
form

D1Gintð/,d/ÞUD/¼

Z
‘
duTHTDHDudx: ð61Þ

On the other hand, from Eq. (59); the general expression of the
geometric stiffness operator gives

D2Gintð/,d/ÞUD/¼

Z
‘
DdeT S dx: ð62Þ

The linearization of the virtual generalized strains gives

Dde¼

du0UDu0

du0UDe03þde03UDu0 þx00UDde03
du0UDe02þde02UDu0 þx00UDde02
du0UDe2þde2UDu0 þx00UDde2

du0UDe3þde3UDu0 þx00UDde3

de02UDe3þde3UDe02þe3UDde02þe02UDde3

2ðe02UDde02þde02UDe02Þ

2ðe03UDde03þde03UDe03Þ

de02UDe03þde03UDe02þe03UDde02þe02UDde03

2666666666666666664

3777777777777777775

ð63Þ

To complete the development of the geometric stiffness matrix
we need to find the linearization of the virtual generalized strains
DdeT, but we first need to obtain the linearized virtual directors.
Using Eq. (42), the linearization of the virtual directors can be
obtained as

Ddei ¼ ðDTdhÞ � eiþðTdhÞ � ½ðTDhÞ � ei�: ð64Þ

The linearization of the virtual director derivatives is more
involved, it has a complicated expression that requires the
linearization of both the tangential map (DT) and its variation
(DdT). By recalling Eq. (44) we obtain

Dde0i ¼DðdTh0 þTdh0Þ � eiþðdTh0 þTdh0Þ � DeiþDðTh0Þ

�½ðTdhÞ � ei�þðTh0Þ �D½ðTdhÞ � ei�

¼ ½ðDdTh0 þdTDh0ÞþðDTdh0 þTDdh0Þ� � eiþðdTh0 þTdh0Þ
�DeiþðDTh0 þTDh0Þ � ½ðTdhÞ � ei�þðTh0Þ

�½ðDTdhÞ � eiþðTdhÞ � Dei� ð65Þ

To find Dde in terms of the kinematic variables we would need
to inject the expressions in Eqs. (64) and (65) into Eq. (63). As it
will be clarified in the next section; in order to avoid the use of
such complicated expression for Dde0i, we will use interpolation of
Ddei to obtain the discrete form of Eq. (63). So, the geometric
stiffness matrix will be directly formulated in its discrete form.
6. Finite element formulation

The implementation of the proposed finite element is based on
linear interpolation and one point reduced integration (thus
avoiding shear locking). The most relevant procedure of the finite
element implementation is the use of interpolation to obtain the
derivatives of the director field, this greatly simplifies the expres-
sion of the tangent matrix.

6.1. Interpolations and directors update

We interpolate the position vectors in the undeformed and
deformed configuration as

X ¼
Xnn

j ¼ 1

NjX̂j, x¼
Xnn

j ¼ 1

NjðX̂jþ ûjÞ, ð66Þ

where c will hereon indicate nodal values, Nj is the shape
function value at node j and nn is the number of nodes per
element (which in the present case is 2). Using Eq. (1) the director
field at the iteration nþ1 is found as

nþ1ei ¼Kðnþ1hÞEi, ð67Þ

where K is the total rotation tensor.
According to Eq. (67), we could find the derivative of the

directors as

e0i ¼K0Ei ð68Þ

as done in most Total Lagrangian formulations [6,21]; but this
greatly complicates the expression for the variation of the derivative
of the directors and also requires the calculation of the derivative of
the rotation tensor. As a consequence, the linearization process is
cumbersome and the resulting expressions of the tangent stiffness
matrices are much more complicated. In order to simplify the
derivation we use interpolation to obtain the directors derivatives.
So, it will be accepted that

e0iffi
Xnn

j ¼ 1

N0jê
j
i ð69Þ

where ê
j
i stands for the director i at the node j. Although this

approximation is expected to be accurate enough to be used in
almost every practical situation, we will analyze in the numerical
investigations section the impact of this approximation in the
accuracy of the solution. As it will be shown later, the use of
interpolation to obtain the derivative of the director field leads to a
path independent solution.

6.2. Objectivity of the generalized strain measures

Several works have been devoted to demonstrate the preser-
vation of the objectivity of the discrete strain measures [13–20].
The works of Crisfield and Jelenic [13,14] shown that geometri-
cally exact beam finite element formulations parametrized with
iterative spins, incremental rotation vectors and total rotation
vector fail to satisfy the objectivity of its discrete strain measures.
Recently, Mäkinen [21] showed that their conclusions regarding
the objectivity of the discrete strain measures of formulations
parametrized with the total and the incremental rotation vector
are incorrect. The misleading conclusions in [13,14] about the
Total and Updated Lagrangian formulations arise from the fact
that linear interpolation does not preserve an observer transfor-
mation, which in the cited work was assumed.

In virtue of the desire of obtaining a formulation where the
discrete strain measures are objective, interesting works presented
formulations that gained that property by avoiding the interpola-
tion of rotation variables [16–18]. This was aided by parametrizing
the equation of motion in terms of nodal triads, obtaining the
discrete forms via interpolation of directors. Although the discrete
strain measures derived in this works preserve the objectivity
property, the linearization of the spins was not consistent and the
tangent stiffness matrix results to be non-symmetrical (implying
the loss of the quadratic convergence property).
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In the present formulation we have chosen a mixed approach,
parametrizing the finite rotations with the total rotation vector
and the strain measures with the directors and its derivatives. It is
interesting note that the parametrization of the variational for-
mulation with the directors greatly simplifies the expressions of
the tangent stiffness matrix (as it is showed in next Section 6.3).
However, the linearization of the director variation cannot be
written exclusively in terms of directors and it is not possible to
fully eliminate interpolated rotations from the formulation. The
‘‘propagation’’ of interpolated rotations shall clearly be seen from
the expression of the matrix B:

To check the objectivity of the generalized discrete strain
measures we superpose a rigid body motion to the configuration
and then test the invariance of the strains. The rigid body motion
modifies the current configuration as

xn

0 ¼ cþQx0 en

i ¼Qei ð70Þ

where cAR3 and QASO(3). If, for simplicity, we assume zero
initial strain and we apply the above transformations to Eq. (10)
and consider, for example, its effect over k2 we have

k2 ¼
Xnn

j ¼ 1

N0jx
j
0

0@ 1AU

Xnn

j ¼ 1

N0jê
j
3

0@ 1A
kn

2 ¼ cþQ
Xnn

j ¼ 1

Njx
j
0

0@ 1A24 350U Q
Xnn

j ¼ 1

Njê
j
3

0@ 1A24 350

¼ c0 þQ 0
Xnn

j ¼ 1

Njx
j
0

0@ 1AþQ
Xnn

j ¼ 1

N0jx
j
0

0@ 1A24 35U Q 0
Xnn

j ¼ 1

Njê
j
3þQ

Xnn

j ¼ 1

N0jê
j
3

0@ 1A
ð71Þ

Noting that since the rigid body motion is fixed c0 ¼Q0 ¼0, we
have

kn

2 ¼Q
Xnn

j ¼ 1

N0jx
j
0

0@ 1AU Q
Xnn

j ¼ 1

N0jê
j
3

0@ 1A¼ Xnn

j ¼ 1

N0jx
j
0

0@ 1AU Q T Q
Xnn

j ¼ 1

N0jê
j
3

0@ 1A
ð72Þ

Now, the orthogonality property of the superimposed rotation
gives QTQ¼ I, and thus

kn

2 ¼ k2 ¼
Xnn

j ¼ 1

N0jx
j
0

0@ 1AU

Xnn

j ¼ 1

N0jê
j
3

0@ 1A ð73Þ

From which we observe that the generalized strain measure is
not affected by the superimposed rigid body motion. It is interesting
to note that since linear interpolation of vector fields is invariant
under rigid body motion (i.e. Q

Pnn
j ¼ 1 N0jê

j
i ¼

Pnn
j ¼ 1 N0jðQê

j
iÞ) and the

scalar product is invariant under orthogonal transformations,
the above conclusion clearly makes sense. The frame invariance of
the remaining generalized strains can be proven in a similar manner.
We note that the generalized strains can be obtained by interpola-
tion of nodal strains as k2 ¼

Pnn
j ¼ 1 N0jðx0jUê

j
iÞ, But although the

frame invariance property is maintained, this form of calculating the
discrete strains is less accurate.

6.3. Discrete virtual directors

The objective of this section is to obtain the discrete version of
the virtual generalized strains and its linearization; first we need to
obtain the discrete version of the director variation and its
derivatives. Regarding the director variations, although the expres-
sion in Eq. (44) does not complicate substantially the formulation,
expression (65) actually does. A simpler way to obtain the director
variations would help to simplify the expression of the tangent
stiffness very much.
Assuming holonomic constraints we may interchange varia-
tions and derivatives, i.e. d(e0)¼(de)0. Using this property, we can
use Eq. (69) to obtain the variation of the directors and its
derivatives as

deiffi
Xnn

j ¼ 1

Njdê
j
i , de0iffi

Xnn

j ¼ 1

N0jdê
j
i, ð74Þ

The obtention of the linearization of the directors and its
derivatives is more involved and requires the linearization of
the tangential transformation defined in Eq. (39). Observing the
linearization of the variation of the directors appears in the virtual
strains (and also in its linearization) always pre multiplied by
some constant vector a, it is preferable to obtain the expression
for this product and not only for the second variation. Thus,
recalling Eq. (64) we find that

aUDdei ¼ aUfðDTdhÞ � eiþðTdhÞ � ½ðTDhÞ � ei�g ð75Þ

Switching to matrix notation, using spinors in place of cross
products and reordering some terms we can re-write the above
equation as

aUDdei ¼ dhTDTT
ð ~eiaÞþdwT ð ~a ~e iÞDw, ð76Þ

where ~e i is the spinor of the director i and

DTT
ð ~eiaÞ ¼D½TT

ð ~e iaÞ�UDh: ð77Þ

The linearization of the term TT
ð ~e iaÞ gives

D½TT
ð ~e iaÞ�UDh¼ fc1a� h�c2ð

~haÞ � hþc3ðhUaÞh� h�c4 ~a

þc5½ðhUaÞIþh� a�gUDh: ð78Þ

where

c1 ¼
ycosy�siny

y3
, c2 ¼

ysinyþ2cosy�2

y4
,

c3 ¼
3siny�2y�ycosy

y5
, c4 ¼

cosy�1

y2
, c3 ¼

y�siny
y3

ð79Þ

Now, introducing Eq. (78) into Eq. (76) and recalling Eq. (38) it is
possible to rewrite the discrete form of Eq. (76) as

aUDdeiffidŵ
T
Xnn

j ¼ 1

Nj½Xða,ê
j
iÞþ ~a

~̂e
j

i�

24 35Dŵ, ð80Þ

where ~̂e
j

i is the spinor of the director i at node j and

Xða,ê
j
iÞ ¼ T�1T

ðD½TT
ð ~e iaÞ�UDhÞT�1: ð81Þ

In the same form, the expression for the second variation of
the director’s derivatives can be found in its discrete form by
making use of Eq. (74)

aUDde0i ¼ dŵ
T
Xnn

j ¼ 1

N0j½Xða,ê
j
iÞþ ~a

~̂e
j

i�

24 35Dŵ ð82Þ

The last expressions show that consistent linearization of
virtual directors necessarily leads to terms that are conjugate to
rotations. This precludes the possibility of obtaining a consistent
tangent stiffness free of interpolated rotations.
6.4. Discrete virtual strains

Having derived the expressions for the discrete virtual direc-
tors, its derivatives and its corresponding linearization, it is now
possible to find a discrete expression for the discrete virtual
generalized strain and its linearization.
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We can relate the two kinematic vectors du and d/ by means
of a matrix B as

duffi
Xnn

j ¼ 1

Bjd/̂j, ð83Þ

where

Bj ¼

N 0j 0

0 NjT j

0 Nj ~e
jT
2 T j

0 Nj ~e
jT
3 T j

0 N0j ~e
jT
2 T j

0 N0j ~e
jT
3 T j

2666666666664

3777777777775
, d/̂j ¼

dûj

dĥj

" #
:

du0

dw

de2

de3

de02
de03

26666666664

37777777775
ð84Þ

where ~ indicates the skew symmetric matrix of a vector,c indicates a nodal variable. Thus ~ej
i is a skew director in the

direction i of the node j and T j is a tangential transformation at this
node. Henceforth summation over index j will be implicitly defined,
so we will omit the summation symbol and the node index i.

Finally, recalling Eq. (46) we can write the virtual generalized
strains as

deffiHBd/̂: ð85Þ

The discrete form of the incremental virtual strains, i.e. Dde, is
more difficult to obtain. Using the structure of the geometric
stiffness operator of Eq. (62) we can obtain a matrix G as to
satisfy the equality DdeT S ¼ duTGDu, a lengthy manipulation
gives

G¼

S1 0 Q2 Q3 M3 M2

A 0 0 0 0

0 0 0 0

0 M1 0

Sym 2P2 P23

2P3

26666666664

37777777775
: ð86Þ

where

A¼
X2

j ¼ 1

fðM2N0jþQ3NjÞ½Xðx00,ê
j
3Þþ ~x

0

0
~̂e

j

3�

þðM3N0jþQ2NjÞ½Xðx00,ê
j
2Þþ ~x

0

0
~̂e

j

2�

þT½N0j½Xðe3,ê
j
2Þþ ~e3
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j
2Þþ ~e

0

3
~̂e

j

2�þN0j½Xðe
0
2,ê
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We note that A result to be symmetric and as a consequence G

is also symmetric. Although it is strictly not a necessary condition,
the fact that the matrix G is symmetric, guarantees the symmetry
of the tangent stiffness matrix.

6.5. Tangent stiffness matrix

Introducing Eq. (83) into Eq. (61) we can obtain the discrete
form of the material virtual work as

D1Gintð/̂,d/̂ÞUDf̂¼
Z
‘
ðBd/̂ÞTHTDHðBD/̂Þdx: ð88Þ

Then, the element material stiffness matrix is

kM ¼

Z
‘
BTHTDHBdx: ð89Þ
Proceeding in a similar way, we use Eqs. (86) and (62) to
obtain the discrete geometric stiffness terms as

D2Gintð/̂,d/̂ÞUD/̂¼

Z
‘
ðBd/̂ÞTGðBD/̂Þdx: ð90Þ

Therefore, the element geometric stiffness matrix becomes

kG ¼

Z
‘
BTGBdx: ð91Þ

Following the standard steps of the finite element method, the
element and global tangent stiffness matrices are

kT ¼

Z
‘
BT
ðHTDHþGÞBdx,

KT ¼
Xels

e ¼ 1

kT , ð92Þ

where the summation operator is used to represent the finite
element assembly process.
7. Numerical investigations

In this section we show the behavior of the proposed beam
element using different benchmark tests proposed in the literature.
Most of existing geometrically exact finite elements cannot deal
with composite materials, so in tests involving composite materials
the proposed finite element is compared against 3D shell models
and the formulation presented in [28]. The shell models were built
with Abaqus S4R elements and contain an average of 50,000 DOF.
In order to test the proposed finite elements against other reported
formulations [4,40], we set the material to be isotropic. The results
presented for the formulations [4,40] were obtained using the
research software FEAP [41]

7.1. Accuracy assessment 1—roll up of a cantilever beam

In the first test we choose a classical pure bending test; the roll
up of a cantilever beam, to test the behavior of the formulation
in extreme deformation cases. We use an isotropic material to
compare the formulation against other reported geometrically
exact beam finite element formulations.

The tested specimen is a thin-walled beam with a square cross
section (b¼0.5, h¼0.5 and t¼0.05) and a length of 50. The material
constants are: E¼144�109 and n¼0.3. With the Euler formula:
y¼Ml=EI we obtain the magnitude of the two moments that,
applied at the tip of the beam, produce a deformed shape of half a
circle and a full circle of a Bernoulli–Euler beam, respectively. These
moments are: M1¼3.80761�107 and M2¼7.615221�107. Fig. 4
shows the deformed shapes obtained after application of these
moments.

Tables 1 and 2 present the numerical results obtained for the
maximum tip displacements for both load cases (M1 and M2).

As it can be observed from Tables 1 and 2, the present finite
element has a relatively poor performance when the mesh is
coarse. This is an expected behavior since the obtention of the
derivatives of the director field using interpolation introduces and
additional interpolation error that the formulations based on the
derivative of the rotation tensor does not have. However, it is
clearly seen that increasing the number of elements the solution
converges to the solution presented in [28]. Thus, convergence of
the proposed finite element can simply be adjusted by increasing
the mesh density.

It should be noted that for the present example the Eulerian
formulation and a Total Lagrangian formulation that does not use
directors interpolation should give the same results, except for
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Table 1
Displacements components for M1.

Tip vertical

displacement

Tip horizontal

displacement

Max vertical

displacement

Elements

Simo and Vu-Quoc

(FEAP)

31.673 �50.448 31.673 10

31.546 �50.446 31.546 50

Ibrahimbegovic-Al

Mikad (FEAP)

31.673 �50.448 31.673 10

31.546 �50.446 31.546 50

Analytic 31.831 �50.000 31.831 –

Saravia et al. [28] 31.694 �50.405 31.694 10

31.567 �50.403 31.567 50

Present 31.108 �51.258 31.108 10

31.554 �50.422 31.553 50

Table 2
Displacements components for M2.

Tip vertical

displacement

Tip horizontal

displacement

Max vertical

displacement

Elements

Simo and Vu-Quoc

(FEAP)

0.013 �49.545 16.038 10

0.012 �49.554 15.781 50

Ibrahimbegovic-Al

Mikad (FEAP)

0.013 �49.545 16.038 10

0.012 �49.554 15.781 50

Analytic 0.000 �50.000 15.915 –

Saravia et al. [28] 0.016 �49.494 16.004 10

0.015 �49.50 15.752 50

Present 1.263 �45.863 14.495 10

0.024 �49.380 15.707 50

P

x

z

y

Fig. 5. Bending of a 451 arc.

Table 4
Maximum displacements in a 451 arc bending test (P¼400).

Tip y

displacement

Tip x

displacement

Tip z

displacement

Elements

Abaqus Shell �12.201 �21.546 50.997 –

Abaqus B31 �12.401 �21.311 �51.110 50

Abaqus B32 �12.416 �21.310 �51.111 50

Simo and Vu-Quoc

(FEAP)

�12.008 �20.692 50.067 50

Saravia et. al. [28] �12.205 �21.015 50.880 50

Present �12.206 �21.019 50.884 50

Table 3
Maximum displacements in a 451 arc bending test (P¼100).

Tip y

displacement

Tip x

displacement

Tip z

displacement

Elements

Abaqus Shell �2.090 �3.641 22.611 –

Abaqus B31 �2.574 �3.570 22.734 50

Simo and Vu-Quoc

(FEAP)

�1.986 �3.325 22.001 50

Saravia et. al. [28] �2.068 �3.495 22.366 50

Present �2.069 �3.449 22.367 50
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the small frame invariance and path independence errors arising
in the Eulerian formulation in [28].

It also important to point out that the present formulation
results to be slower than the non-consistent Eulerian formulation
[28], not only because it requires the computation of tangential
map at the nodes but also because it is necessary to compute the
linearization of the tangential map, which results to be very time
consuming.
7.2. Accuracy assessment 2—pure bending of a cantilever beam

We test in this example the behavior of the accuracy of the
present formulation in a full three dimensional problem where the
deformation is again large. The curved beam’s reference configura-
tion given is a 451 circular segment with radius R¼100 and lying in
the x–y plane (see. Fig. 5), the beam is loaded with a vertical load
(z direction). The properties of the isotropic material are: E¼1.0�107

and n¼0.3. The cross section is a box with b¼1, h¼1 and t¼0.1.
Table 3 shows the results of the bending test for P¼100. We

have used an Abaqus 3D shell model as the reference model. As it
can be seen, the present finite element formulation behaves
better than to the Simo and Vu-Quoc element [4] available in
FEAP and the Abaqus B31 beam element. The results obtained
with the present implementation and the path dependent imple-
mentation [28] are essentially the same.

The solution was reached in 5 load steps using an average of
8 iterations per step.

Increasing the load to P¼400 we obtain also very good results
(see Table 4). Note that we added to the comparison the Abaqus
parabolic beam element B32. The present finite element repre-
sents the kinematic behavior of the beam very well.
7.3. Anisotropic case—pure bending of a cantilever beam

In this example we present a comparison of the displacement
path of the beam using an anisotropic material, we analyze the
451 arc of Fig. 5 laminated with a {45,�45,�45,45} configuration.
The laminas are made of E-Glass fibers and an Epoxy matrix [32],



Table 6
Loading scheme.

Step Px Py Pz
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the material properties are given in Table 5. The cross section is a
box with b¼1, h¼1 and t¼0.1.

To increase the complexity of the stress state in the beam we
modify the applied load to have components Px¼4.0�105, Py¼

�4.0�105, Pz¼8.0�105. Fig. 6 presents the curves that describe
the evolution of the centroidal displacements along the load path
(LPF being the Load Proportional Factor) in the tip of the beam
and in the middle of the beam (t and m sub indexes, respectively).

It can be seen from Fig. 6 that the correlation of the present
formulation against the Abaqus shell model is excellent. As expected,
the present formulation gives the same results than [28]. This is a
very good result since in contrast to [28]; the present formulation is
frame invariant and path independent (as it will be shown in the next
examples).

7.4. Anisotropic beam path independence test

We test in this example the path independence property of the
proposed formulation. Using the same anisotropic curved beam of
the previous example we apply a load P¼(Px,Py,Pz) in six steps and
analyze the resulting displacements at the ending of the load cycle.
The loading scheme is shown in Table 6, it must be noted that the
load on each step is propagated to the following step. Since the
load at the end of the last step is zero in a path independent
formulation the resulting displacements must also be zero.

As Table 7 shows, the present finite element is path independent,
both the displacements and rotations come back to zero after retiring
the load. Also, it can be observed that this property is independent of
both the incremental scheme and the number of elements.

7.5. Anisotropic beam frame invariance test

This example is very similar to that proposed in Crisfield and
Jelenic [13], it is used to show the frame-invariance of the finite
element formulation. It consist on an L-shaped frame lying in the
-10-20-30-40-50

wt wm

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Vertical D

LP
F

Abaqus
Saravia et. al. [28]
Present

Fig. 6. Bending of an anisotropic cantilever beam

Table 5
Material properties of E-glass fiber-epoxy lamina.

E11 E22 G12 G23 n12

45.0�109 12.0�109 5.5�109 5.5�109 0.3
x–y plane that is first loaded with a tip force F and then rotated
around the x, y and z axes. The frame has a leg lying in the x axis
with a length of 10 and a leg parallel to the y axis with a length
of 5. The cross section is boxed with dimensions h¼1, b¼1 and a
thickness of 0.1; and is made of 4 layers of E-Glass Fiber-Epoxy,
laminated in a {45,�45,�45,45} configuration. The material
properties are given in Table 5.

The first load case consist on a tip force of 2�107, fixed in the
z direction; the second load is applied in three different ways:
(i) rotation around the z axis, (ii) rotation around the y axis and
(iii) rotation around the x axis. For both i, ii, and iii the rotation is
imposed in 4000 increments of p/20 rad each, which is equivalent
to 100 revolutions.

Fig. 7 shows the evolution of displacements after completing
each revolution; as expected from a frame-indifferent formula-
tion, the displacements remain constant along the revolutions.
Since the constant displacements are the result of the first load
case and we have maintained this load case unaltered, the picture
coincides exactly for both i, ii, and iii.

The following figures (Figs. 8–10) show the deformed shapes
of the frame in the full revolution path. It can be observed that for
the three loading schemes the deformed shapes for the 100
revolutions are identical. It may be noted that the displacements
in the beam are really large, this was induced on purpose to
emphasize the fact that there is no nontrivial work generated by
the fixed force, still if its magnitude is really large.

7.6. Anisotropic beam frame invariance test—follower load

Now, we consider the same elbow presented in the last
example and analyze the case where the tip load is a follower
0 10 20 30 40

vmum vtut

isplacement

—displacements vs. load proportional factor.

1 0 0 200,000

2 0 100,000 0

3 20,000 0 0

4 0 0 �200,000

5 �20,000 0 0

6 0 �100,000 0
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Table 7
Path dependency test results.

Remaining displacements

Inc. Elements u v w y1 y2 y3

5 50 �1.05�10�14
�1.80�10�14 0.0 0.0 0.0 �6.28�10�17

25 �9.11�10�15 9.65�10�15 0.0 0.0 0.0 8.29�10�17

10 50 �4.49�10�14
�1.25�10�15 0.0 0.0 0.0 1.01�10�16

25 �1.18�10�14
�4.04�10�15 0.0 0.0 0.0 4.91�10�17

20 50 �5.27�10�14
�1.16�10�15 0.0 0.0 0.0 2.23�10�16

25 �7.03�10�15 5.91�10�19 0.0 0.0 0.0 3.45�10�19
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force (initially oriented in the z direction) that rotates with the
frame around the y axis.

Fig. 11 shows the deformed shapes for the full rotation path of
100 revolutions, it can be observed that these deformed shapes
coincide for each revolution. From this experiment, we can con-
clude that the present formulation is also frame-invariant. We have
only presented the case where the elbow rotates about the y axis,
but the remaining cases give exactly the same conclusion.

Finally we show in Fig. 12 the evolution of displacements for
both the fixed force and the follower force.

As it can be seen from Fig. 12, the case with follower force exactly
coincides with the case of non-follower force. It is clear that both u, v

and w remain unchanged as the full revolution path evolves.
8. Conclusions

A consistent Total Lagrangian geometrically exact nonlinear
beam finite element for composite closed section thin-walled
beams has been presented. The proposed formulation relied on
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the parametrization of the equilibrium equations in terms of the
director field and its derivatives, parametrizing the finite rota-
tions with the total rotation vector. The weak form of equilibrium
was written in terms of generalized strains, which result from a
dual transformation of the rectangular Green–Lagrange strains.
The variables work conjugate to the generalized strains, i.e. the
generalized beam forces, were deduced from the curvilinear shell
stresses before the obtention of the weak form.

The main capability of the proposed formulation is the
possibility of handling composite materials. Since the cross
section properties can be obtained analytically, the proposed
approach is attractive to be used in optimization problems of
composite beams with finite deformation such as helicopter rotor
blades and wind turbine blades.

Representative numerical experiments showed that the pre-
sented thin-walled beam formulation has a very good correlation
against existing geometrically exact isotropic beam finite ele-
ments. For composite materials, the correlation against 3D shell
models was also very good.

It has been shown that the present implementation maintains
the path independence and frame invariance properties of the
finite element formulation and that interpolated rotations cannot
be fully avoided if it is desired to derive consistent tangential
tensors.
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Appendix A

A.1. Beam forces

The explicit expression of the beam forces vector gives

S ¼

N

M2

M3

Q2

Q3

T

P2

P3

P23

266666666666666664

377777777777777775
¼

Z
S

Nxx

Mxxx
0

2þNxxx3

�Mxxx
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2�Nxnx
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3

Nxnx
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Nxxx2x3þMxxðx
0

2x2�x
0

3x3Þ
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ds,

ðA1Þ

where N is the axial beam force, M2 and M3are the beam flexural
moments, Q2 and Q3 are beam shear forces, T is the beam torsion
moment and P2, P3 and P23 are high order flexural moments.
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