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Prediction of Homogeneous Azeotropes with Interval Analysis
Techniques Exploiting Topological Considerations

Enrique Salomone and José Espinosa*
INGAR-CONICET, Avellaneda 3657, 3000 Santa Fe, Argentina

In this paper, we present an efficient method for the prediction of homogeneous azeotropes.
The method is an adaptation of a former method based on interval analysis techniques. An
interval Newton with generalized bisection (IN/GB) technique is used to find all the roots of a
set of equations representing the azeotropy condition. The novel contribution is to combine this
robust technique with the Zharov—Serafimov topological index theory. By checking the topological
consistency, it is possible to avoid the numerical verification of the nonexistence and therefore
to reduce significantly the total computation time. In addition, a simplified model is selectively
used at the first stage of the algorithm for providing good starting points for the second stage,
where the full model is used for solution refining. In this way, more computation time is saved
without compromising the reliability of the method. As a result, the performance of the method
is comparable to the one of the fastest local methods.

Introduction

The prediction of azeotropes based on thermodynamic
models of vapor—liquid equilibrium is very important
in the synthesis and design of chemical processes.
Solvent mixtures used in the reaction and purification
steps of these processes normally present a highly
nonideal phase behavior and the formation of azeotropes
has a strong effect on the operations design.

The problem of finding all the azeotropes of a multi-
component mixture proved to be difficult to solve and
has attracted the attention of many researchers. Several
solution approaches have been presented, namely, ho-
motopy-continuation methods,'? global optimization
techniques,®4 and more recently, interval Newton with
generalized bisection (IN/GB).> Although homotopy-
continuation methods have been successfully applied to
solve a wide variety of cases, they cannot completely
guarantee that all azeotropes have been detected. On
the other hand, global optimization and interval analy-
sis provide a mathematical certainty at the expense of
a longer computational time, rapidly increasing with the
number of components. Additionally, global optimization
methods require the development of specific underes-
timating functions for each thermodynamic model.

In their interval analysis approach, Maier and co-
workers® present two basic mathematical formulations.
In the simultaneous formulation, the homogeneous
azeotropy condition is written for all components in the
mixture, and therefore the IN/GB method is used to find
simultaneously all azeotropic compositions and temper-
atures. The sequential formulation decomposes the
problem into an unordered sequence of simpler problems
of reduced dimension and at each step in the sequence
it only obtains the azeotropes whose order corresponds
to the dimension of the subsystem under consideration.
The authors report a significant reduction in the com-
putation time when using the sequential formulation
as compared to the simultaneous approach.
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Despite the increase in computational efficiency, in
the sequential formulation the algorithm still spends a
substantial amount of time in verifying that an azeo-
trope does not exist in a subsystem.

In this paper, we present an adaptation of the method
presented by Maier et al.,> which combines the sequen-
tial formulation processed in a given order with the
Zharov—Serafimov topological index theory.® By check-
ing the topological consistency of each subsystem, it is
possible to avoid the numerical verification of the
nonexistence and therefore to reduce significantly the
total computation time.

Harding et al.* have also explored the use of a
simplified model assuming that the temperature de-
pendence of the vapor pressure is much stronger than
the temperature dependence of the activity coefficient
and therefore a constant reference temperature is used
to evaluate the activity coefficient. This simplification
leads to a drastic reduction in computation time, but
as reported by Maier et al.> the obtained azeotropic
compositions can be very different or even some azeo-
tropes may be missed depending on the selection of the
reference temperature.

In the method we present here, the assumption of the
reference temperature is selectively used at the first
stage of the algorithm for providing good starting points
for the second stage where the full model is used for
solution refining. In this way, more computation time
is saved without compromising the reliability of the
method.

As a result, the very robust algorithm proposed by
Maier and co-workers® was engineered by the selective
use of model assumptions and domain-specific knowl-
edge (the topological constraints) to obtain an improved
algorithm to find all the homogeneous azeotropes with
a performance that is similar to that of the fastest local
methods.

Although the technique can be used for different
thermodynamic models, the Wilson equation was se-
lected to represent the nonideal behavior of the liquid
phase because this equation enables the systematic
modeling of fairly complex nonideal homogeneous mix-
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tures. Ideal behavior of the vapor phase is considered.
The extended Antoine equation is used to model the
temperature dependence of the vapor pressure of the
pure components. Special care must be taken when
using models that can predict phase splitting like the
NRTL and UNIQUAC models for predicting azeotropy
of homogeneous mixtures. Any calculated solution should
be then checked for phase stability to guarantee that
only one liquid phase is present at the azeotropy
condition.

The performance of the novel algorithm will be
explained by considering a number of examples in the
main body of the paper. However, results for other
highly nonideal mixtures are presented in the Appendix
together with the values of data and parameters used
in the Wilson equation for all the species and mixtures
considered in this work. Coefficients used in the ex-
tended Antoine equation were taken from HYSYS
coefficients library.”

Problem Formulation

The method applied in this work is an interval
Newton/generalized bisection (IN/GB) technique based
on interval mathematics.® The main characteristic of
this technique is that enclosures of all solutions of a
system of nonlinear equations are guaranteed with
mathematical and computational certainty, provided
only that initial upper and lower bounds are given for
all variables. The existence and uniqueness test offered
by the interval Newton method is used to guarantee that
all the roots are located.

The technique determines verified enclosures of each
root. Each of such enclosures is a very narrow interval
known to contain a unique root, based on the interval
Newton uniqueness test. The technique also performs
a point Newton method as a last step that will converge
to the unique solution.

Different mathematical formulations can be used to
represent the condition of azeotropy as demonstrated
by Maier et al.5 In the simultaneous formulation, the
homogeneous azeotropy condition is written for all
components in the mixture, and therefore the IN/GB
method is used to find all azeotropic compositions and
temperatures simultaneously including the trivial roots
representing the pure species. The sequential formula-
tion decomposes the problem into an unordered se-
qguence of simpler problems of reduced dimensions and
at each step in the sequence it only obtains the azeo-
tropes whose order corresponds to the dimensions of the
subsystem under consideration. The authors report a
significant reduction in the computation time when
using the sequential formulation as compared to the
simultaneous approach.

Assuming that there is a set of k components Cy; for
which x; = 0, the azeotropy condition for the sequential
formulation can be written as®

INP—InPXT)—Iny(x,T)=0 OieC,,
in -1=0 (1)

Each root of this (k + 1) x (k + 1) system is a k-ary
azeotrope. To find all the azeotropes of a system with
NC components, eq 1 must be solved for each combina-
tion of k components, k = 2, ..., NC. Each subsystem
may have multiple roots or no roots at all. In their
solution approach, the aforementioned authors rely on
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the IN/GB algorithm for both enclosing all the roots
when they exist and for verifying nonexistence.

To improve the computational efficiency of the algo-
rithm, an effort has been made through the development
of interval extensions tailored to frequently occurring
expressions, such as mole fraction weighted averages,
which are found in many activity coefficient models. By
exploiting the constraint that the summation of the mole
fraction is equal to 1, it is possible to implement
enclosures for these expressions that are tighter than
the natural interval extension.

Further reduction of the computation time can be
obtained by introducing a model simplification. This is
based on the assumption that the temperature depen-
dence of the vapor pressure of the pure components is
stronger than the temperature dependence of the activ-
ity coefficients. Hence, the activity coefficients are
evaluated at a given reference temperature, Ty, and
depend only on the compositions. As shown by the
authors, the selection of this reference temperature may
be critical for the accuracy of the method.

Besides these efforts, a substantial part of the com-
putation time is still devoted to the verification of
nonexistence. This becomes particularly important as
the number of components of the mixture does increase.
For an original system with NC components, the total
number of different subsystems can be computed as 2N¢
— 1 (including the unary systems), so the amount of
subsystems of an order higher than 1 to be considered
is 2NC— 1 — NC.

We propose a modification of the solution approach
of Maier and co-workers® that is intended to increase
the overall efficiency of the method and is based on two
ideas. The first one is to resort to thermodynamic
topological considerations to reduce the number of
subsystems that must be processed by the IN/GB
algorithm. The second one is to apply the simplified
model assuming a reference temperature for the com-
putation of the activity coefficient during the first phase
of the algorithm where the solutions are enclosed. These
solutions are used to initialize the last phase consisting
of the point Newton method where the full model is
solved to get the final solution.

Performance of the Sequential Formulation

To measure the gained efficiency of the proposed
modifications, we implemented the sequential formula-
tion described by eq 1 supported by a Wilson model for
the activity coefficients with the choice of full temper-
ature dependence or a constant reference.

The technique requires the point value functions of
the logarithms of the vapor pressure and activity
coefficients and also their interval extensions. Also, both
the point value derivatives of the logarithms of the
activity coefficients with respect to all the mole fractions
(a matrix) and the derivative of the logarithms of the
vapor pressure with respect to the temperature (a
vector) together with their interval extensions are
needed. The analytical equations of the derivatives for
the Wilson equation were taken from Poellmann and
Blass.?

In addition, the model with full temperature depen-
dence also requires both the point value derivatives of
the logarithms of the activity coefficients with respect
to the temperature (a vector) and their interval exten-
sions.
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Table 1. Performance Comparison between the Full Model and the Model Considering Temperature -Independent

Activity Coefficients

CPU time in seconds

temperature-
subsystem Trer (K) azeotrope composition Tref model dependent model
1-propanol—water 360.5 [0.4467, 0.5533] 0.2 0.41
at 1 bar pressure
benzene—hexafluorobenzene 310.0 [0.9546,0.0454] 0.26 0.98
at 0.2 bar pressure [0.0151,0.9849]
acetone—chloroform—methanol 330.5 [0.3314, 0.2290, 0.4396] 0.6 5.25
at 1 bar pressure
acetone—chloroform—methanol—benzene 330.4 [0.2406, 0.1661, 0.4713, 0.1220] 10.4 >1200
at 1 bar pressure
acetone—chloroform—benzene—toluene 350.0 no quaternary azeotrope 0.7 14.75

at 1 bar pressure

As a base line, the performance of the sequential
formulation was tested with several examples. Table 1
shows a comparison of the results obtained for five
different mixtures by using both the full temperature-
dependent model and the model at some reference
temperature T For all the examples of Table 1, the
search domain was restricted to find azeotropes of the
same order to that of the subsystem in question. Thus,
ternary azeotropes are sought in ternary systems only
and binary azeotropes in binary systems only.

For each one of the examples being considered, the
azeotropic composition and temperature were previously
known, and hence, the reference temperature was
selected to be the azeotropic temperature to compare
the performance of both methods. The reference tem-
perature for the system benzene—hexafluorobenzene
was set to 310 K because the mixture presents a
benzene-rich azeotrope at 308.63 K and a benzene-poor
azeotrope at 310.80 K. In all the cases, the compositions
were initialized in the range [0,1]. The temperature was
constrained to values in the range [300, 400 K]. As
stated by Maier and co-workers,® Table 1 clearly shows
that the model is time-saving when using a reference
temperature. The CPU times are given in seconds on a
Window NT workstation equipped with an Intel Pen-
tium 11 333 MHz Processor.

Later on, we tested a mixed strategy setting the
problem formulation so that the simplified model is used
only during the first phase of the IN/GB method. This
is the phase where the method encloses all possible
solutions. The second phase of the method consists of a
normal point Newton method, where the solution rep-
resented by an interval is reduced to a single value. In
this phase, we use the model with full temperature
dependence. Table 2 presents the results obtained with
this strategy for the quaternary subsystem acetone—
chloroform—methanol—benzene at different values of
Tref-

Depending on the value of the reference temperature,
different enclosures for the azeotropic compositions and
temperature are obtained. Moreover, for values of Tes
above 380 K the quaternary azeotrope is not found
anymore. Again, these results match the results re-
ported in Table 12 of the cited work.>

However, in our strategy, every time an enclosure for
the root is found in the first phase, the final solution
converges to the same temperature and compositions,
and these values are solutions of the full model.

Note that while the enclosures for the compositions
vary significantly with the reference temperature, tem-
perature is much less sensitive. This is an indication
that the simplified model performs better for enclosing

Table 2. Results of the Search on the
Acetone—Chloroform—Methanol—-Benzene Subsystem at
Different Values of T (1 bar Pressure)

enclosures for
temperature and
compositions

330.2188 330.2189

Tref azeotrope composition +
(K) temperature (calculated)

310.0 [0.2406, 0.1661, 0.4713,
0.1220], 330.39 K

0.192236 0.192245
0.147905 0.147910
0.488309 0.488311
0.171542 0.171544

330.4 [0.2406, 0.1661, 0.4713, 330.3893 330.3897

0.1220], 330.39 K
0.240618 0.240651
0.166097 0.166122
0.471257 0.471269
0.121983 0.122002

350.0 [0.2406, 0.1661, 0.4713, 330.5280 330.5348

0.1220], 330.39 K
0.290258 0.291176
0.187970 0.188622
0.451874 0.452242
0.068653 0.069301

370.0 [0.2406, 0.1661, 0.4713, 330.6457 330.6462

0.1220], 330.39 K
0.346220 0.346281
0.216733 0.216768
0.428928 0.428944
0.008052 0.008074

380.0 no quaternary azeotrope
390.0 no quaternary azeotrope

the azeotropic temperature than for the azeotropic
compositions.

These results suggest that it is possible to partially
exploit the benefits that the simplified model offers in
terms of computation time, without sacrificing the
quality of the final solution. There is still the possibility
of missing a solution, depending on the selected refer-
ence temperature. Later in this paper, we will come
back to this issue and comment on how this simplifica-
tion can be safely exploited with the help of topology
analysis.

A parametric change of T, was also done for the
mixtures acetone—chloroform—methanol and 1-propanol/
water, but enclosures were obtained for all of the
temperature range [300, 400 K] and these were almost
coincident with that calculated using the point Newton
method. Tables 3 and 4 present the result for these
mixtures.

Table 5 shows the results for all the subsystems of
the quaternary mixture acetone—chloroform—methanol—
benzene at 1 bar pressure. The system presents four



Table 3. Results of the Search on the
Acetone—Chloroform—Methanol Subsystem at Different
Values of Trer (1 bar Pressure)

enclosures for
Tref azeotrope composition + temperature and
(K) temperature (calculated) compositions

310 [0.3315, 0.2290, 0.4395], 330.47 K 330.3682 330.4406
0.317032 0.318960
0.234942 0.236220
0.446265 0.446759

330.47 [0.3315, 0.2290, 0.4395], 330.47 K 330.4281 330.5226
0.329936 0.332590
0.228033 0.230168
0.438854 0.440159

350 [0.3315, 0.2290, 0.4395], 330.47 K 330.5555 330.5581
0.342557 0.342635
0.224303 0.224347
0.433070 0.433089

370 [0.3315, 0.2290, 0.4395], 330.47 K 330.5217 330.7883
0.347107 0.357488
0.217129 0.224889
0.424818 0.428526

380 [0.3315, 0.2290, 0.4395], 330.47 K 330.6709 330.7167
0.356026 0.357235
0.219514 0.220261
0.423272 0.423572

390 [0.3315, 0.2290, 0.4395], 330.47 K 330.73945 330.73938
0.3606553 0.3606560
0.2190648 0.2190653
0.4202792 0.4202794

Table 4. Results for the Mixture 1-Propanol/Water at
Different Values of Ter (1 bar Pressure)

enclosures for
temperature and
compositions

359.0041 359.1272
0.457303 0.458677
0.541669 0.542441

359.5217 359.8010
0.451349 0.454938
0.546014 0.548181

358.8042 361.6784
0.414831 0.471398
0.526161 0.577818

358.6660 362.4048
0.403954 0.486848
0.518628 0.589508

360.9312 361.1899
0.438890 0.444566
0.5561356 0.559882

361.3194 361.3286
0.440345 0.440429
0.559597 0.559631

azeotrope composition +
Trer (K) temperature (calculated)

310 [0.4461, 0.5539], 360.54 K

330 [0.4461, 0.5539], 360.54 K

350 [0.4461, 0.5539], 360.54 K

360.54 [0.4461, 0.5539], 360.54 K

380 [0.4461, 0.5539], 360.54 K

390 [0.4461, 0.5539], 360.54 K

binaries, one ternary, and one quaternary azeotrope. In
this case, Tref Was selected as the average of the boiling
points of the pure species and the initial box of temper-
atures was set between [Tiower—50, Tuppert50]. Six
binary subsystems, four ternary subsystems, and one
guaternary subsystem were solved. The search into the
guaternary system took about 76% of the total time.
The results for the mixture acetone—chloroform—
methanol—ethanol—benzene are shown in Table 6. In
this case, the equation system modeling the azeotropy
condition was solved for ten combinations of binary
subsystems, ten combinations of ternary systems, five
combinations of quaternary mixtures, and one system
containing all the components of the initial mixture. For
this example, six binary azeotropes, two ternary azeo-
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tropes, and one quaternary azeotrope were calculated
at Trer 0f 351.61 K. As in the previous example, the same
criterion for the initial box of temperatures was adopted.
The total CPU time was 58.12 s and 48.27 s was used
for the algorithm to verify the nonexistence of azeo-
tropes in 17 of the subsystems.

This example illustrates a rather typical situation. In
multicomponent systems, there will be a significant
amount of subsystems having no azeotropes. The veri-
fication of such subsystems with the IN/GB method is
quite expensive in terms of computation. In the next
section, we show how the Zharov—Serafimov topological
index theory can be used to do the same verification but
with much less computational burden.

Topology Analysis

The vapor—liquid equilibrium can be represented as
a vector field D, defined over the state space of composi-
tions. Any liquid composition x within this space is
associated to a unique vector that points to its vapor
composition.

D(x) = y(x) — X 2

Azeotropes and pure components are the stationary
points, that is, the zeroes, of this vector field.

Several authors in the Russian literature have de-
veloped a topological relation stating that the summa-
tion of the indices of the vector field at the stationary
points is a topological invariant. This relation was
generalized to multicomponent systems by Zharov and
Serafimov.® Here, we use the general topological equa-
tions given by Poellmann et al.1°

The index of a stationary point s is equal to the sign
of the determinant of the Jacobian matrix of the vector
field D, at the zero. The determinant of a matrix is the
product of its eigenvalues. Therefore, the index of a
stationary point can be computed as

NC-1
ind(D,s) = sgn A4 —1) 3)

where the eigenvalues A; are obtained solving the
following eigenvalue problem:

% B ay,; ay,; B ay,;
X, e

Xnc-1 Kne
Jev = ‘v (4)
Ync-1 _ Ync-1

Xnc-1 Kne s

Ync-1 . Ync-1
X4 Xne

The subtractions occurring in the elements of the
Jacobian matrix arise from the condition that the sum
of mole fractions must yield unity and that the partial
derivatives with respect to mole fractions are analyti-
cally calculated as if all mole fractions were indepen-
dent.

Thus, each stationary point will have NC—1 associ-
ated eigenvalues, which are related to its stability. If
all the eigenvalues of a stationary point are <1, then
the point is an unstable node. If all the eigenvalues are
>1, then the point is a stable node, and if some are >1
and others <1, the point is a saddle. Therefore, and
according to eq 3, the index of an unstable node will be
—1, if the node is stable, the index will be +1, and for
saddles it may be either —1 or +1.
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Table 5. Results for the Quaternary Mixture Acetone(A)—Chloroform(C)—Methanol(M)—Benzene(B) (1 bar Pressure)

time (s),
components mole fraction T (K) Tref = 338 K enclosures

AC [0.3385, 0.6615] 337.61 0.2 337.1704 338.0389
0.326576 0.353114
0.651448 0.672069

AM [0.7909, 0.2091] 328.49 0.2 328.4494 328.7076
0.794121 0.806910
0.195356 0.203856

AB no azeotrope 0.1

CM [0.6552, 0.3448] 326.96 0.2 327.0076 327.0622
0.651393 0.652019
0.348201 0.348348

CcB no azeotrope 0.1

MB [0.6130, 0.3870] 331.05 0.2 331.0310 331.2710
0.613563 0.617296
0.383518 0.385734

ACM [0.3314, 0.2290, 0.4396] 330.48 0.6 330.5060 330.5070
0.335930 0.335954
0.226998 0.227010
0.437050 0.437058

ACB no azeotrope 0.4

AMB no azeotrope 0.9

CMB no azeotrope 0.4

ACMB [0.2406, 0.1661, 0.4713, 0.1220] 330.39 10.4 330.4461 330.4491

Table 6. Results for the Mixture Acetone(A)—
Chloroform(C)—Methanol(M)—Ethanol(E)—Benzene(B)
(1 bar Pressure)

CPU time (s),
components mole fraction T (K) Tref = 351.61 K

EB [0.4492, 0.5508] 340.71 0.06
MB [0.6130, 0.3870] 331.05 0.03
ME no azeotrope 0.03
CcB no azeotrope 0.03
CE [0.8590, 0.1410] 332.76 0.02
CM [0.6552, 0.3448] 326.96 0.03
AB no azeotrope 0.02
AE no azeotrope 0.02
AM [0.7909, 0.2091] 328.49 0.04
AC [0.3385, 0.6615] 337.61 0.03
MEB no azeotrope 0.30
CEB no azeotrope 0.33
CMB no azeotrope 0.37
CME no azeotrope 0.28
AEB no azeotrope 0.42
AMB no azeotrope 0.77
AME no azeotrope 0.19
ACB no azeotrope 0.32
ACE [0.3405, 0.4806, 336.65 0.44

0.1789]
ACM [0.3315, 0.2290, 330.48 0.36

0.4396]
CMEB no azeotrope 3.11
AMEB no azeotrope 2.36
ACEB no azeotrope 5.61
ACMB [0.2407, 0.1661, 330.39 8.84

0.4713, 0.1220]
ACME no azeotrope 2.41
ACMEB no azeotrope 31.7

The topological relation that every system must

satisfy is

NC

2° x ind(D,s) =(-1)"“t+1 (5
c= s:(;,... )

0.259446 0.259771
0.174025 0.174214
0.464126 0.464220
0.102047 0.102155

To illustrate how the consistency test can be used in
the context of azeotrope prediction, let us consider the
ternary subsystem formed by acetone (A), chloroform
(C), and methanol (M) and assume that the three binary
azeotropes, namely, AC, AM, and CM, have been
already identified. Thus, for this ternary system we have
six stationary points: [A, C, M, AC, AM, CM]. Solving
the eigenvalue problem at each of these points and
computing their corresponding indices, we obtain [—1,
—1,1, 1, 1, 1]. Computing the right-hand side of eq 5
gives

(1) t+1=2
while the left-hand side is
2M(-1-1+1)+2°1+1+1)=10

Because the topological constraint is not satisfied, we
should conclude that there is a missing stationary point;
that is, there is a missing azeotrope and hence a search
into the ternary subsystem by means of the IN/GB
method must be done. In fact, the system under
consideration does have a ternary azeotrope, ACM,
whose index is —1. If we add this stationary point to
the summation of indices, we obtain

2 -1-1+1)+2°A+1+1)+2%-1)=2

Now, the topological constraint is satisfied and therefore
the system is topologically consistent with the identified
azeotropes.

Consider now the ternary system formed by acetone
(A), chloroform (C), and benzene (B) and assume that
one binary azeotrope, namely, AC, has been already
identified. We have four stationary points, [A, C, M, AC],
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Table 7. Topology Test for Each One of the Subsystems Corresponding to the Mixture
Acetone(A)—Chloroform(C)—Methanol(M)—Benzene(B) [A Value of the Matrix Represents the Index of a Node (File)
Belonging to a Subsystem (Column); T (True) Means That the Subsystem Is Topologically Consistent]

subsystems
node MB CB CM AB AM AC CMB AMB ACB ACM ACMB
C—M -1 1 1 -1
A—M -1 1 1 -1
A -1 1 -1 -1 1 -1 1
A-C—M-B 1
A-C—M -1 -1
M-B -1 -1 -1 -1
Cc -1 1 -1 -1 1 -1 1
A-C 1 -1 1 -1
M 1 1 1 1 1 1 1
B 1 1 1 1 1 1 1
test T T T T T T T T T T T

whose indices are [1, 1, 1, —1]. The right-hand side of
eq 5 is again

1)t +1=2
and the left-hand side is
21+ 1+ 1) +2%(-1) =2

The topological constraint is hold and therefore we can
safely conclude that there are no more azeotropes in this
system. The search for ternary azeotropes by means of
the IN/GB method can be avoided.

Table 7 shows the results of applying the topology
consistency test to each of the 11 subsystems found for
the quaternary mixture acetone—chloroform—methanol—
benzene. The last row indicates that all subsystems are
topologically consistent and hence the computed azeo-
tropes are validated.

The topology analysis described above can also be
used to selectively apply the simplified model for activity
coefficients at a reference temperature in a safe way. It
has already been discussed that depending on the
selected temperature of reference, the algorithm may
fail in enclosing a solution corresponding to a given
subsystem. But the topology analysis is performed just
before eventually applying the IN/GB method and it
already tells us if a solution has to be found. In case a
solution does exist, it is possible to devise a strategy
that attempts first to enclose a solution with the
simplified model. If it succeeds, then the point Newton
method working with the full model will produce the
exact solution. If the first phase does not enclose a
solution, another reference temperature can be selected
until it does, or we can always resort back to the full
method to find it.

Outline of the Proposed Algorithm

To combine the IN/GB method of solution with the
topological analysis, the solution strategy has to be
sequential and this sequence must go from the lower
order subsystems to the higher ones. Just with the
information of the pure components, all binary sub-
systems can be tested for consistency, and therefore,
those that have to be searched for binary azeotropes can
be identified. Having identified all binary azeotropes,
now all ternary subsystems can be tested for consistency
and so forth.

The proposed algorithm can be summarized through
the following steps:

Step 1. Generate All Subsystems
Decompose the original system of NC components into
all subsystems of reduced order

(NC, NC—1, NC—2...2)

For example, a quaternary system is decomposed in
one quaternary, four ternaries, and six binaries
The amount of subsystems of reduced order R in a
system of NC components is the given by the combi-
nation

(NC) _ NC!
R R!'(NC — R)!

The total number of different subsystems can be
computed as 2N¢ — 1 (including the unary systems),
so the amount of subsystems of order higher than 1
to be considered is 2N¢ — 1 — NC

The sequence of numbers {1, 2, ..., 2N¢—1} contains
in its binary representation a description of the
content of each subsystem:

For example, for NC = 4, the total number of
subsystems is 15, and the sequence {1, 2, ..., 15} in
its binary representation is {0001, 0010, 0011, 0100,
0101, 0110, 0111, 1000, 1001, 1010, 1011, 1100, 1101,
1110, 1111}

Interpreting that a “1” in the ith position means the
component i belongs to the subsystem, the sequence
constitutes a very easy way to obtain a compact
representation of the subsystems. Because we are not
interested in considering the unary subsystems, they
are taken off the list. Unary subsystems are repre-
sented by the sequence generated by {2% k: 0, 1, ...,
NC—1}

For example, the final list of subsystems to be
analyzed is {0011, 0101, 0110, 0111, 1001, 1010, 1011,
1100, 1101, 1110, 1111} containing one quaternary,
four ternaries, and six binaries.

Step 2. Initialize
Set Order O = 2 (analyze binaries first)
Populate initial list of singular points PL (pure
components or azeotropes) with the pure species

Step 3. Process Subsystems of Order O
Create a working list WL with all subsystems of order
O
For each subsystem S in WL do:
Create a thermodynamic system with the compo-
nents of S
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Select from the current list of singular points PL,
those belonging to system S

For each selected singular points P:
Compute the Jacobian of the equilibrium function

Obtain its corresponding eigenvalues by solving

the eigenvector problem in eq 4

Compute its topological index, eq 3
Verify the topological consistency constraint, eq 5
If the system is not consistent, then compute
azeotropes until consistency, by doing:

Formulate the azeotropy condition for system S

Apply the IN/GB method to find the azeotropes
Update the current list of singular points with the
azeotropes just found.

Step 4. Increment Order

If O < NC then O =0 + 1 and go to Step 3

else STOP.

Returning to the example comprising the acetone—
chloroform—benzene—toluene system at 1 bar pressure,
the algorithm decomposes the original system in six
binary subsystems, four ternary subsystems, and one
quaternary subsystem. At the initialization step, the
order of the subsystems to be analyzed is set to 2 and
the list of singular points is populated with only the pure
species because no azeotrope calculation was performed
until this time.

Step 3 performs the topological consistency test for
each binary subsystem by calculating the topological
index of the corresponding singular points. In the
example under consideration only the subsystem made
up of acetone and chloroform does not verify the
topological consistency test given by eq 5, and hence,
the IN/GB method is applied to find the missing
azeotrope. Equation 5 is recalculated but now taking
the topological index of the calculated azeotrope into
account. The list of singular points is updated to include
the azeotrope just found before the subsystem order is
incremented in Step 4.

When analysis of the four ternary subsystems is
performed, the algorithm includes the previously cal-
culated azeotrope A—C in the subsystems A—C—B and
A—C—T, and hence, the topological index of the azeo-
trope is considered in eq 5 for both subsystems. The
topological constraint is satisfied for all the ternary
mixtures, and hence, no azeotrope calculation is needed
at this step.

In a similar way, the binary azeotrope is included by
the algorithm in the quaternary subsystem and no
azeotrope calculation is performed because eq 5 is
satisfied.

On the whole, the IN/GB method was executed only
one time (subsystem acetone—chloroform) and the other
time-consuming searches were avoided by simply cal-
culating eq 5 for each subsystem.

It is noteworthy that the stability and therefore the
topological index of a singular point depends on the
subsystem in consideration. For this reason, the eigen-
value problem must be solved for all the singular points
belonging to a given subsystem. In this example, the
eigenvalue problem was solved 12 times because eq 5
for the subsystem acetone—chloroform was solved twice.
The total CPU time consumed in this case to solve all
the eigenvalue problems was about 0.02 s while the IN/
GB method needs about 0.7 s to verify the nonexistence
of a quaternary azeotrope as shown in Table 1. Applying
the algorithm to the mixture formed by acetone, chlo-

roform, methanol, ethanol, and benzene reduces the
time taken by the nonexistence verification from 48.27
t0 0.12 s. The results of applying the algorithm to other
highly nonideal mixtures are presented in the Appendix.

Conclusions

In this paper, we present an adaptation of the method
proposed by Maier et al.® that combines the sequential
formulation processed in a given order with the Zharov—
Serafimov topological index theory.® By checking the
topological consistency of each subsystem, it is possible
to avoid the numerical verification of the nonexistence
and therefore to reduce significantly the total computa-
tion time. It is noteworthy that the topological index
theory can be safely applied in combination with the
IN/GB technique provided that at most one azeotrope
of the same order to that of the subsystem in question
is present for each one of the subsystems comprising
the multicomponent mixture. Thus, binary subsystems
with one binary azeotrope at most, ternary subsystems
with one ternary azeotrope at most, and so forth can be
appropriately handled for the algorithm. This is a
typical situation because n-component mixtures having
more than one n-component azeotrope are very scarce.!
On the other hand, the topological index theory could
theoretically predict nonexistence for subsystems pre-
senting multiplicity. In this case, the topological relation
could be only used to check any calculated azeotrope.

In the method we present here, the assumption of the
reference temperature is selectively used at the first
stage of the algorithm for providing good starting points
for the second stage, where the full point Newton model
is used for solution refining. Moreover, a method to
update the reference temperature can be thought with
the aid of the topological consistency test. In fact, if the
consistency test indicates the existence of an azeotrope
and it was impossible to find a solution at the given
reference temperature, the reference temperature must
be changed until the consistency test is positive. Alter-
natively, we can always resort to the full model to find
it.

A theoretical disadvantage, however, of using the full
model at the last step of the algorithm must be
considered. Since the model used to enclose the first
solution estimation is different from the one used in the
last step, there is no mathematical guarantee that the
point Newton method will converge to the solution of
the full model. However, in all the cases we explored,
the right solution was always found.

With the guidance of the topology consistency test,
the mathematical guarantee can be safely sacrificed in
exchange for computational performance. And also, we
preserve the certainty that when we obtain a solution,
it is a solution for the full model. Therefore, the obtained
azeotrope will be consistent with the thermodynamic
model that is more likely to be used in subsequent
analysis.

Several problems involving highly nonideal mixtures
were tested using the modified algorithm. The perfor-
mance was similar to the fastest local methods. As an
example, only 10.54 s was needed to find the nine
azeotropes of the system in Table 6 in comparison with
the 58.12 s used by the base algorithm. In addition, the
topological consistency of all the systems is calculated.

As a result, the very robust algorithm proposed by
Maier and co-workers® was engineered by the selective
use of model assumptions and domain-specific knowl-



edge (the topological constraints) to obtain an improved
algorithm to find all the homogeneous azeotropes with
a performance that is similar to that of the fastest local
methods.
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Nomenclature

D = vector field

NC = number of components of a given subsystem

P = pressure, bar

P? = vapor pressure of component i, bar

s = composition of a stationary state

T = temperature, K

Tiower = boiling temperature for the lightest component
Tupper = boiling temperature for the heaviest component
xi, Yi= liquid (vapor) mole fraction of the component i
A = eigenvalue

y = activity coefficient

Appendix

Other Examples. Table 8 shows the results for three
azeotropic mixtures. The mixture formed by methanol,
benzene, 2-propanol. and 1-propanol presents three
binary azeotropes at 1 bar pressure. Three binary and
one ternary azeotropes were calculated for the ethanol—
methyl ethyl ketone—water mixture at 1 bar pressure.
The last example comprises the acetone—chloroform—
methanol mixture at 15.8 bar pressure. While this
system has a ternary azeotrope at normal pressure, no
more ternary azeotrope is present at the selected
pressure. Because of the pressure change, also a change
in the compositions of the three binary azeotropes is
predicted.

Table 8. Results for Three Highly Nonideal Mixtures

temperature CPU

node ID mole fraction (K) time (s)

Methanol—Benzene—2-Propanol—1-Propanol at 1 bar Pressure

M-B [0.6130, 0.3870, 331.05 0.03
0.0000, 0.0000]

B—2P [0.0000, 0.6287, 344.55 0.04
0.3713, 0.0000]

B—1P [0.0000, 0.7850, 348.81 0.06
0.0000, 0.2150]

total CPU time 0.13

Ethanol—Methyl Ethyl Ketone—Water at 1 bar Pressure

E—MEK-W [0.2005, 0.5696, 345.78 0.621
0.2299]

MEK-W [0.0000, 0.6915, 346.68 0.050
0.3085]

E—MEK [0.4588, 0.5412, 347.52 0.040
0.0000]

E-W [0.8975, 0.0000, 351.04 0.030
0.1205]

total CPU time 0.741

Acetone—Chloroform—Methanol at 15.8 bar Pressure

C—M [0.0000, 0.3545, 424.47 0.04
0.6455]

A—M [0.2486, 0.0000, 427.60 0.04
0.7514]

A-C [0.2663, 0.7337, 455.57 0.05
0.0000]

total CPU time 0.13
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Table 9. Wilson Molar Volume

Wilson Wilson
component molar volume component molar volume
acetone 74.477 MEketone 90.166
benzene 89.555 2-propanol 76.916
chloroform 80.731 1-propanol 75.138
ethanol 58.68 water 18.069
hfbenzene 115.8 toluene 106.83
methanol 40.729

Table 10. Wilson Equation Parameters

component 1 component 2 A1z (cal/mol) Az (cal/mol)

1-propanol water 1128.1870 1338.7600
benzene hexafluorobenzene  —414.2492 939.6611
acetone chloroform 116.1171 —506.8518
acetone methanol —124.9328 551.4545
acetone ethanol 180.4364 252.2864
acetone benzene 682.4061 —243.9651
chloroform methanol —361.7944 1694.0240
chloroform ethanol —268.7676 1270.3890
chloroform benzene —71.8109 —11.8231
methanol ethanol 135.8112 —132.0576
methanol benzene 1621.2340 202.0307
ethanol benzene 1237.3850 243.6513
methanol 2-propanol 140.1672 —132.7052
methanol 1-propanol 272.4309 —207.7118
benzene 2-propanol 165.0292 1032.6750
benzene 1-propanol 306.4609 1025.6860
2-propanol 1-propanol 818.3291 —481.0590
ethanol methyl ethyl 939.1442 —348.5653
ketone
ethanol water 276.7557 975.4859
methyl ethyl water 892.6557 2013.7170
ketone
acetone toluene 809.0955 —345.0733
chloroform toluene —365.8309 552.1458
benzene toluene 323.1221 —310.3073

Vapor Pressure Coefficients. In this work, the
vapor pressure of a pure component is calculated by
means of an extended Antoine equation of the form

B.
In P?=Ai+T'Ci+ D,InT+ET> (A1)

where A, B, C, D, and E are fitted coefficients. Data were
taken from HYSYS' coefficients library.” The tempera-
ture is given in K and vapor pressure in kPa.

Wilson Molar Volume. These data were taken from
Gmehling et al.’2 and they are listed in Table 9.

Wilson Parameters. These parameters were taken
from Gmehling et al.l2 The values for the mixture
benzene—hexafluorobenzene were estimated from azeo-
tropic experimental data. Table 10 shows the reported
parameters.
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