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The abundance of coprophilous (dung-inhabiting) fungal spores (CFS) in

sedimentary records is an increasingly popular proxy for past megaherbivore

abundance that is used to study megaherbivore-vegetation interactions,

timing of megaherbivore population declines and extinctions, and the

introduction of domesticated herbivores. This method often relies on

counting CFS alongside pollen and tracers of known concentration such

as exotic pollen or synthetic microspherules. Prior work has encouraged

reporting CFS abundances as accumulation rates (spores/unit2/year) or

concentration (spores/unit3) instead of percentages relative to the total

pollen abundance, because CFS percentages can be sensitive to fluctuations

in pollen influx. In this work, we quantify the uncertainty associated with

estimating concentration values at different total counts and find that

high uncertainty is associated with concentration estimates using low to

moderate total counts (n = 20 to 200) of individual fungal spore types and

tracers. We also demonstrate the effect of varying tracer proportions, and

find that larger tracer proportions result in narrower confidence intervals.

Finally, the probability of encountering a CFS spore from a specific taxon

occurring in moderate concentrations (1,000 spores/unit2) dramatically

decreases after a low tracer count (∼50). The uncertainties in concentration

estimates caused by calculating tracer proportion are a likely cause of the

high observed variance in many CFS time series, especially when CFS or

tracer concentrations are low. Thus, we recommend future CFS studies

increase counts and report the uncertainty surrounding concentration values.

For some records, reporting spore data as presence/absence rather than

concentrations or counts is preferable, such as when performing high counts

is not feasible.
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1 Introduction

Paleoecological studies incorporating spores of
coprophilous fungi (hereafter coprophilous fungal spores,
or CFS) in interpretations of herbivore abundance and
activity have drastically increased within the last decade (van
Asperen et al., 2021). Commonly used CFS prefer dung as
a substrate to varying degrees (Angelina G. Perrotti and
van Asperen, 2019), but the decline of CFS in Pleistocene
sediments are widely accepted to reflect megaherbivore
decline and extinction (e.g., Davis, 1987; Gill et al., 2009,
2012; Rozas-Davila et al., 2016; Raczka et al., 2019), while
CFS emergence in mid-to-late Holocene sediments implicates
pastoralism (e.g., Graf and Chmura, 2006; Mighall et al.,
2006; Gauthier et al., 2010; Currás et al., 2012). However,
uncertainties still surround the proxy, including CFS life
cycle and taphonomy (Raper and Bush, 2009; Parker and
Williams, 2012; Wood and Wilmshurst, 2012; Perrotti and
van Asperen, 2019; van Asperen et al., 2021), the relationship
between CFS and megaherbivore biomass (Gill et al., 2013;
Baker et al., 2016; van Asperen et al., 2020; Davies et al., 2022),
and laboratory extraction techniques (van Asperen et al.,
2016),

Recent attention has been given to a lack of standard
CFS quantification methods (e.g., Wood and Wilmshurst,
2013). Many early studies using CFS to indicate North
American Pleistocene megaherbivore abundance and decline
reported spores as a proportion of the pollen assemblage
(Davis, 1987; Robinson et al., 2005; Gill et al., 2009, 2012),
and supported by modern analog studies (Gill et al.,
2013), suggest that CFS taxon in the Sporormiella-Preussia
complex in abundances over 2% of the terrestrial pollen
assemblage indicates notable megaherbivory pressure. Though
sensitive to fluctuations in pollen accumulation rates, this
method can be useful when sedimentation is variable and
age-depth models are poorly constrained. Recent papers
encourage also reporting CFS concentration (spores/cm3)
or accumulation (spores/cm2/year), as these metrics are
independent of fluctuations in total pollen abundance
(Wood and Wilmshurst, 2013; Perrotti and van Asperen,
2019).

Currently, no single standard for counting CFS exists,
though CFS are often counted alongside a standard pollen count
which ranges from 200 to 500 terrestrial pollen grains (Jones and
Bryant, 1998; Comtois et al., 1999), which allows for expedient
calculation of CFS to pollen assemblage proportion, as well as
concentration and accumulation rates. However, this method is
sensitive to fluctuations in pollen accumulation, and high pollen
concentration may overwhelm the CFS signal, as CFS often
occur at much lower concentrations than pollen. Indexing CFS
independently from pollen protects against biases that could
arise from differential pollen concentration among samples,

such as CFS underrepresentation in samples with high pollen
concentration (Perrotti et al., 2022).

Because CFS are often found in lower concentrations
than pollen, this analysis is time intensive, and thus it is
appealing to establish a counting threshold to reliably estimate
spore concentration values. Etienne and Jouffroy-Bapicot (2014)
suggest counting a minimum of 300 to 350 tracers to achieve
a precise spore concentration estimate within each sample.
However, this threshold depends on several factors including
the total number of tracers added, as well as the ratio of tracers
to CFS within a sample. In this paper, we explore the random
nature of the counting process and the implications of varying
the total number of objects counted (tracers and spores from
individual CFS taxa, henceforth “total count”) in estimating CFS
concentration.

Rather than counting CFS and other fungal taxa, several
recent works have used presence-absence data. These studies
document all fossil fungal species present in a sample and
then use the trait-based approach and nearest living relative
methods to apply modern fungal species assemblages’ ecology
and habitat requirements to past assemblages. This approach
can facilitate the recording of rare but important fungal taxa that
would be missed using typical counting thresholds (Musotto
et al., 2017; Nuñez Otaño et al., 2021; Romero et al., 2021;
Pound et al., 2022). This approach can not only to capture
the diversity of fungal assemblages, but also accounts for
the uncertainty of how many fungal spores are produced
by a single fungal organism or reproductive structure. Biotic
and abiotic factors affect fungal spore production, release
of those spores, and continuance or non-continuance of
their life cycles. These include microhabitat differences within
the substrates, such as surface types and crevices in dung,
competitive hierarchies with other CFS species, deposition rate
in suitable habitats, and distance traveled by CFS, which in
turn depends upon how they are released from the fungus
(e.g., as single spores or a mass of spores) (Krug et al., 2004;
Newcombe et al., 2016; Calhim et al., 2018; Nuñez Otaño et al.,
2021).

Thus, in this paper, we examine how counting thresholds
affect concentration estimates and the probability of
encountering specific CFS taxa. We first explore how the
true ratio of tracers to CFS affects estimates of the tracer to CFS
ratio at different total counts. Second, we model the uncertainty
of CFS concentration estimates as a function of tracer to CFS
ratio and total count. Third, we apply our model to three
established North American CFS (belonging to the Preussia-
Sporormiella complex) records. Fourth, we use existing CFS
records to demonstrate concentration uncertainty for samples
with varying tracer and CFS abundances and total counts. Last,
we explore the probability of encountering a specific CFS taxon
at different counts to provide recommendations for counting
thresholds or performing presence/absence analysis.
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FIGURE 1

Hypergeometric distribution as a function of tracer frequency and total count. Panels show the probability (Y–axis) of obtaining a number of
tracers in the sample (X-axis) at (A) low, n = 20; (B) moderate, n = 100; and (C) high, n = 500, total counts in panels (A–C). The dashed vertical
line denotes the true proportion of spore in the sample. For each case, 10,000 tracers were added. Note the different Y axis scales.

FIGURE 2

Likelihood function of spore concentration if the proportion of tracers in the total sample are (A) rare 0.1, (B) equally frequent 0.5, and (C)
abundant 0.9 in panels (A–C). The vertical dashed line denotes the maximum-likelihood estimate of the concentration of spore in the sample.
Light gray, gray, and black represent total count of 20, 100, and 500. Ten thousand tracers were added in each case.

FIGURE 3

Maximum likelihood estimate (black) and 95% CI (gray shading) of spore concentration as a function of total count. Tracers are (A) rare 0.1, (B)
equally frequent 0.5, and (C) abundant 0.9. Note the different Y axis scales.

2 Materials and methods

To provide an estimate of CFS concentration (S), and
associated confidence interval (CI), we use three parameters:
the total number of tracers added (T), the number of objects
counted (n), and the number of tracers in that count (nT). The
total number of objects in the sample including the tracers is
denoted by N. The proportion of tracers in the sample is denoted
p = nT/n. S can represent the concentration of one taxon or the
total concentration of all CFS.

The probability of obtaining nT tracers in a total count of
n for N objects with T tracers is given by the hypergeometric
probability distribution HG (nT, n, T, N). We use this as our
underlying model because model it reflects the probability of
getting k success out of n draws without replacement. The
likelihood function for the estimate of CFS concentration is thus,

L (S | nT, n, T) = HG (nT, n, T, T + S)

We scale the likelihood function with a maximum value of
one. We then use Monte Carlo rejection sampling to obtain
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FIGURE 4

Probability of finding the first coprophilous (dung-inhabiting) fungal spore (CFS) as total count increases. Each line denotes an increasing ratio
of CFS to tracers. The horizontal red line shows a probability of 0.05.

the posterior distribution and to compute the CI. We use a
rectangle envelop where S is from 0 to T(1/p − 1)/[p

(
1− p

)
].

The latter is for computational efficiency that accounts for wider
parameter values when p is close to 0 or 1.

We investigate how the shape of the hypergeometric
distribution and the likelihood function change if we vary the
total count from n = 20, 100, 500 and the proportion of tracers
within the total count p = 0.1, 0.5, and 0.9. Next, we explore
how the 95% CI changes for a fixed proportion of spores but
ranging from 10 to 500.

As a concrete example, we applied our method to three
established CFS (specifically Sporormiella-Preussia complex)
records from Appleman Lake, IN Gill et al. (2009), Page-Ladson,
FL (Halligan et al., 2016), and Cupola Pond, MO (Perrotti et al.,
2022). All data was accessed from the Neotoma Paleoecological
Database (Williams et al., 2018), and sites were chosen based
on data availability and the confirmed presence of Sporormiella-
Preussia complex spores. Because the number of tracers added
is variable due to the manufacturing process, we assume that the
number of tracers T is random and follows a normal distribution
with a known mean and standard deviation. For simplicity,
the maximum likelihood estimate is based on T = mean of
the normal distribution. For Appleman Lake, Page-Ladson, and
Cupola Pond the mean number tracers added is 18,583, 18,584,
and 12,542, respectively, with variations in number of tracers
resulting from different batches from the manufacturer. For the
CI, we first drew M samples from the normal distribution, and
then computed the likelihood and the posterior distribution for
each T1, T2..., TM . Last, our 95% CI (i.e., uncertainty in T) is the
95% CI of the pooled M posterior distributions. We set M = 20
and the standard deviation of the normal distribution = 500.

To model the probability of encountering the first CFS of
interest, we use a special case of the negative hypergeometric
distribution where the number of success is set to one, i.e.,
finding the first CFS. Our main interest is to assess how the
probability changes as the ratio of tracers to CFS changes and as

more tracers are counted. We set T = 10,000, vary the number
of CFS from 1 to 1,000, and count objects from 1 to 2,000.

3 Results

3.1 Estimating spore concentration

Coprophilous (dung-inhabiting) fungal spores (CFS)
concentration estimates are calculated by extrapolating the
tracer proportion to the entire processed sample by using
the known quantity of added tracers. This process assumes
that the counted tracer proportion accurately reflects the true
tracer proportion throughout the entire sample (Maher, 1981).
However, because counting is a random process and is unlikely
to replicate the true tracer proportion, smaller total counts result
in wider distributions (Figure 1). This result holds regardless of
the true proportion (low, equal, or high).

A low total count (n = 20) results in a wide distribution of
estimated CFS, while the distribution narrows with moderate
(n = 100) and high (n = 500) counts. The most symmetrical
distributions occur when tracers comprise 50% of the total
sample (i.e., tracer proportion = 0.5). Higher proportions of
tracers (0.5 to 0.9) provide narrower distributions, especially
at low to moderate total counts (Figure 2). Regardless, the
likelihood narrows as the total count increases, resulting
in a more precise CFS concentration estimate (Figure 3).
Additionally, the asymmetrical confidence intervals at all tracer
proportions suggest that CFS concentration estimates may be
overestimated rather than than underestimated.

3.2 Probability of encountering specific
spore taxon

Given the large uncertainty surrounding CFS concentration
estimates at small to moderate total counts, it can be more
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FIGURE 5

Estimated spore concentration (black) and 95% confidence interval (gray shading) for a single coprophilous (dung-inhabiting) fungal spores
(CFS) taxon (Sporormiella-Preussia complex) data from (A) Appleman Lake, Indiana (Gill et al., 2009), (B) Page-Ladson, FL (Halligan et al., 2016),
and (C) Cupola Pond, MO (Perrotti et al., 2022).

efficient to produce a presence/absence record rather than
obtain counts (Nuñez Otaño et al., 2021; Romero et al., 2021).
Our model shows that the probability of finding the first CFS
increases as the total count increases (Figure 4), but peaks when
the total count is equal to the number of tracers divided by the
true number CFS in the sample. For instance, when there are
1,000 CFS and 10,000 tracers, one is most likely to encounter a
CFS after counting ten tracers. In that scenario, the probability
of finding the first CFS after counting a hundred objects is less
than 0.0006.

4 Discussion

4.1 CFS concentration estimates have
high uncertainty

Though Etienne and Jouffroy-Bapicot (2014) sought to
establish a minimum tracer count, our models suggest that
it is preferable to use an aggregate of CFS and tracers as
a total sum, due to the variable tracer proportion among
different samples. CFS concentration estimates rely on obtaining

a total count that reflects the true proportion of tracers
(Maher, 1981). The uncertainty surrounding the proportion of
tracers is large at small total counts (n = 20) and decreases
as counts increase (Figure 1). Despite the uncertainty, our
research indicates that 0.5 tracer proportion produces the
most symmetrical uncertainty estimate, and that uncertainty
narrows as tracer proportion increases. It is difficult to
estimate spore concentration prior to adding tracers, so we
recommend reducing uncertainty when possible, by adding
additional tracers (0.9 tracer proportion has less uncertainty
than 0.1) and increasing counts. Even at low tracer proportions
(0.1), a high total count (n = 500) considerably reduces the
uncertainty of concentration estimates as compared to a low
total count (n = 20) (Figure 2). Figure 3 further demonstrates
how uncertainty narrows at various tracer proportions with
increased total counts. Due to the asymmetrical uncertainty,
we suggest that it is more likely CFS are under-reported than
over-reported in studies with low total counts.

Given the high range of uncertainty when reporting
estimated CFS concentrations at low to moderate counts,
fluctuations within a CFS record should be interpreted with
caution and may not reflect a true change in CFS concentration.
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This is demonstrated in simulated linear and abrupt CFS
declines (Supplementary Figure 1) and by including 95% CIs
surrounding concentration estimates of three established CFS
records (Figure 5). Though the variation in CFS concentration
estimates may result from changes in sediment deposition rate
or preservation, the uncertainty in concentration estimates is an
artifact of the counting process. Our findings align with Maher’s
(1972) work on uncertainty in pollen abundance estimates, and
we similarly conclude that the counting threshold and 95% CI
should be included when reporting palynological data.

4.2 Presence/Absence analysis

Given the high levels of uncertainty we note at low
to moderate counts, a presence/absence approach may be
useful in some circumstances. This method involves scanning
microscope slides with a predetermined sample volume and
relies on analyzing enough material to have a high likelihood
of encountering a specific CSF taxon. We demonstrate that the
probability of encountering a CFS spore occurring at moderate
to high concentrations (1,000 CFS/sample) drops dramatically
at relatively low counts (50 tracers). However, the probability
encountering a specific CSF taxon at very low concentrations
(n = 1 or 10) in the sample continues to increase at high counts
(> 750 tracers). Thus, collecting a tally of tracers while scanning
can facilitate the assessment of the probability of encountering a
CFS and strengthen interpretations of fungal taxon absence.

5 Conclusion

In conclusion, accurate CFS concentration estimates
rely heavily on counts that reflect the true proportion of
tracers within a sample. Our models indicate that a higher
tracer proportion (0.9) results in the narrowest 95% CI on
concentration estimates, and that higher total counts further
narrow the 95% CI. For most samples, a threshold of 200 to 500
total counts produces a relatively narrow CI, which supports
Etienne and Jouffroy-Bapicot’s (2014) suggested threshold of
300 to 350 tracers. Future studies may plot the 95% CI on
alongside mean concentration estimate curves. Additionally, a
presence/absence approach is sometimes preferable.

Furthermore, we emphasize that variability in spore
concentration estimates at various counting thresholds
is one of many sources of uncertainty in CFS records
including reproduction, interspecific CFS competition, ecology
geographic distribution, and taphonomy (e.g., Nuñez Otaño
et al., 2021). Future work should incorporate other sources of
uncertainty into interpretations of CFS records. Though we
have illustrated that uncertainties in concentration estimates
caused by calculating tracer proportions may be responsible for
the observed variance in many CFS time series (especially when
CFS or tracer concentrations are low) we suggest that future

studies may mitigate this variance by increasing counts and
considering the 95% CI of their estimates.
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