
Computer Science and Information Systems 19(3):1199–1212 https://doi.org/10.2298/CSIS220228025M

A novel Approach for sEMG Gesture Recognition using
Resource-constrained Hardware Platforms

Matı́as J. Micheletto1, Carlos I. Chesñevar2, and Rodrigo M. Santos2
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Abstract. Classifying human gestures using surface electromyografic sensors
(sEMG) is a challenging task. Wearable sensors have proven to be extremely use-
ful in this context, but their performance is limited by several factors (signal noise,
computing resources, battery consumption, etc.). In particular, computing resources
impose a limitation in many application scenarios, in which lightweight classifi-
cation approaches are desirable. Recent research has shown that machine learning
techniques are useful for human gesture classification once their salient features
have been determined. This paper presents a novel approach for human gesture
classification in which two different strategies are combined: a) a technique based
on autoencoders is used to perform feature extraction; b) two alternative machine
learning algorithms (namely J48 and K*) are then used for the classification stage.
Empirical results are provided, showing that for limited computing power platforms
our approach outperforms other alternative methodologies.

Keywords: sEMG, gesture recognition, autoencoder, decision trees, nearest neigh-
boors.

1. Introduction

Wearable sensors and mobile devices have introduced a wide range of new applications to
support daily life. These applications involve from simple pulse and oxygen sensors that
measure the physical activity during training (e.g. [31, 28]) up to more complex e-health
applications (e.g. [15, 32]). Gesture recognition from electromyografic (EMG) sensors is
a relevant area in which wearable sensors play a major role, particularly surface EMG sen-
sors (sEMG for short). Gesture recognition is intended to be used in different application
settings to provide human-like communication through gestures in cases where speech
recognition is not possible or appropriate (e.g. because of having a noisy environment or
dealing with a user who is not able to type or interact with a touch screen).

In the last years there have been many different approaches for gesture recognition
using EMG and sEMG signals [3]. However, most of these approaches focus on obtaining
a high overall accuracy of the proposed model as the main goal to be attained. Even though
accuracy is a very relevant issue in classification, the assessment of computational costs
associated with the resulting models plays also a significant role in many situations (e.g.
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a neural network model can have a high accuracy for classifying gestures but only at the
expense of a high computational cost for building the model).

In this respect, our research is in line with the concept of frugal innovation, which
refers to the development of technology for solving modern problems by adapting the re-
quirements to the constrained accessibility of the local market [1, 11, 26, 12]. This aspect
is crucial for many developing and emerging countries, where the deployment of new
technologies (such as sEMG gesture recognition) is constrained by availability and prices
of hardware resources. In this context, lightweight classification techniques are particu-
larly relevant. To the best of our knowledge, the trade-off between accuracy vs. computa-
tional resources involved remains as an important issue to be discussed, particularly when
considering the real-time performance of gesture recognition algorithms implemented in
low cost platforms.

In this article we present a lightweight classification approach for gesture recognition
from sEMG signals based on a combined strategy: first, autoencoders –a particular sub-
class of artificial neural networks (ANN)– are used to perform feature extraction. On the
basis of the features that have been identified, two well-known classification algorithms
(namely J48 and K*) are then used for gesture recognition. From our experiments we can
conclude that the proposed approach enables to correctly identify nine different gestures
with a high accuracy (87% for a generic user, and up to 96% when training the algorithms
with data from a single user).

The rest of this article is structured as follows. Section 2 discusses related work for
gesture recognition with an emphasis on sEMG usage, summarizing some relevant ad-
vances in the state of the art on the topic. Section 3 presents our approach for gesture
recognition, integrating commercial low-cost sEMG sensors and a lightweight model
for gesture classification. This model is based on autoencoders for selecting salient fea-
tures along with the algorithms J48 and K* (corresponding to decision tree learning and
instance-based learning using an entropic distance measure, respectively). Sections 5
and 6 show how the lightweight model can be effectively built and how to assess the
resulting computer hardware cost. Section 7 discusses the obtained results, contrasting
them with other more expensive alternatives found in the literature. Finally, Section 8
concludes.

2. Related work

The process of gesture recognition from acquired signals using sEMG sensors involves
usually three stages, namely filtering, feature extraction and classification. First, in the
filtering step, signals must be conditioned to eliminate possible interference or noise and
to extract the time window that contains the dataset necessary to perform gesture classifi-
cation. In some cases, the signal envelope is extracted directly from the raw data acquired
through the sensors. Next, as a second stage, a feature extraction method is usually em-
ployed, providing the basis for performing the gesture recognition process by means of
an appropriate classification algorithm, which will take place in the third and final stage.

Next we summarize some of the most relevant papers related to gesture classification,
grouping them according to the proposed method for each processing stage, contrasting
as well the computing platforms used for validating their performance.



A novel Approach for sEMG Gesture Recognition... 1201

2.1. First stage – data acquisition and filtering

An in-depth analysis of this first stage is usually ignored in the literature. Some research
work makes use of public datasets and focuses almost exclusively on the resulting al-
gorithm performance [17, 5]. In other cases, commercial sEMG sensors are used with
embedded filtering and denoising capabilities [2, 30, 7, 14, 13]. Less frequently, some arti-
cles include a specific section to detail the underlying features for acquisition and filtering
[21].

2.2. Second stage – feature extraction

In the literature there are many alternatives for feature extraction for gesture recognition.
The most simple consists on using statistical descriptors of the raw signal (e.g. mean
average value (MAV), minimum and maximum values, standard deviation (STD), slope
sign changes (SSL), zero crossings (ZC), root mean square value (RMS), waveform length
(WL), autoregression coefficients (AR), among many others [2, 21, 30].

Another common technique consists on using the discrete wavelet transform (DWT)
[8, 6, 24], the Fourier transform (FFT) [19] or the short time Fourier transform (STFT)
[17]. These approaches imply higher computational cost, and for the case of embedded
devices they are usually implemented using dedicated processing units for computing the
transforms in real time.

Fractal dimension (FD) is a less explored method that takes advantage on the fact
that EMG signals may show self similarity traces (as proposed in [5]). Another widely
used technique applied to dimensionality reduction (detecting features which are deemed
as non-relevant for classifying EMG data) is principal component analysis (PCA) and
independent component analysis (ICA) [22]. The use of autoencoders (as proposed in
this article) as a method for feature extraction has also proven to be useful, being its
complexity as shallow neural networks relatively low [7, 18, 13, 22].

2.3. Third stage – gesture classification

For the third stage, the spectrum of possible approaches is wide, as each classifier may
have many particular variations. Artificial neural networks (ANN) in their many forms are
one of the most frequent methods, as they have gained relevance in the last years, growing
along with the increase of available computing power. Thus, we find ANNs ranging from
simple perceptron architectures up to deep and convolutional neural networks being used
in the classification stage for EMG gesture recognition [13, 5, 18, 29]. In general, the main
drawback of ANN approaches derives from the high computational cost required for both
the training and inference stages.

The linear discriminant analysis (LDA) method basically consists on finding a linear
combination of the features of the model in order to build a space where the projection
of the data points corresponding to each class are as distant as possible from each other,
allowing to define gesture classification rules. This technique was applied in [18]. The ma-
jor drawback of this method is the requirement that data should be normally distributed,
being thus prone to negative effects from outliers and requiring a carefully data cleaning
in the model building phase.
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Support vector machines (SVM) share some aspects with LDA and are also applied in
gesture classification scenarios [2, 7]. SVM consist on computing the set of hyperplanes
that best separates the different classes. However, this method allows to define a more
complex decision boundary than LDA, allowing to focus on the correct classification
of outliers. The computational cost and accuracy trade-off of this technique can also be
manageable.

As we will detail in the next section, our proposal is based on two lightweight classi-
fication algorithms (namely decision trees using J48 and K-nearest neighbors using K*).
These algorithms were used for gesture classification in previous research work (e.g. [8,
24, 21, 30, 18, 17] with two main differences: a) they were part of more complex ensemble
models such as gradient boosting (GBDT) and bagging ; b) the focus of their usage was
on accuracy rather than on finding a suitable approach for the trade-off between accuracy
and high computational cost, as proposed in this article.

3. Data acquisition and preprocessing stage

To perform the data acquisition, commercial EMG sensors were used (in our case My-
oWare Muscle Sensors, manufactured by Advancer Technologies3). These sensors are
characterized by being small sized, low cost and having a good market availability.

Fig. 1. Surface EMG sensors placement
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Fig. 2. Selected gestures: a) anu, b) may, c) men, d) adu, e) ext, f) fle, g) pel, h) pul, i) sup

3.1. Sensor placement

The sensor electrodes measure an electric potential difference generated by muscle ac-
tivity. The resulting signal is amplified, processed through a 400Hz low-pass filter and
rectified in order to obtain the signal envelope as a final output. The sensor has a third
reference electrode that must be located on an area with little muscle activity to be taken
as a comparison point for voltage reference. In general, skin areas close to joints or bones
have little electrical activity, so they are appropriate for the placement of the reference
electrode.

Figure 1 shows the adhesive electrode pads placement in the forearm of a sample
subject. Following the guidelines provided by [23], after contrasting several tests the three
sensor channels were located in the following positions:

Channel 1: Placed on the extensor carpi ulnaris and extensor digitorum muscles (in-
volved in the extension of the fingers, wrist and adduction of the hand).

Channel 2: Placed on the flexor carpi ulnaris muscle, which intervenes in the flexion
of the wrist.

Channel 3: Located on the brachioradial muscle, which is the main actuator of the
supination movement.

Once the three sensors were placed on the subject, their output data was measured and
recorded using a Hioki 8861-50 osciloscope (with 16 channels of 16-bit each). Sampling
frequency was set at 200 Hz.

3.2. Gestures selection

Different gestures were selected, made with the right or left hand, so that the signals
observed in the oscilloscope resulted in a good amplitude and differences observable to the

3 http://www.advancertechnologies.com



1204 Matı́as J. Micheletto, Carlos I. Chesñevar, and Rodrigo M. Santos

naked eye. The nine gestures shown in Figure 2 were selected and identified with different
acronyms: Ring finger (anu), middle finger (may), pinky finger (men), wrist adduction
(adu), wrist extension (ext), wrist flection (fle), ball squeeze (pel), thumb extension (pul)
and wrist supination (sup).

The executor was asked to perform the movements of the selected gestures repeatedly
every certain interval of time, spaced enough to identify the time window with the main
variations of the signals associated with the gesture execution. The acquired data was
exported in plain text format to be later analyzed.

4. Feature extraction stage

An autoencoder was used as feature extraction stage. Both the input and output layers
were configured using the sigmoid activation function. The three sEMG signals were
sampled using a window of 200 16-bit integer values each, so that the size of the input
layer of the autoencoder comprised 600 values.

Fig. 3. Mean square error of an autoencoder: prediction MSE vs. hidden layer size

The hidden layer size of an autoencoder is the main attribute that limits the perfor-
mance of the model as a lossy compression method and is also related to the classifier
performance (when used together with a classification algorithm). To avoid the tight cou-
pling between the feature extraction and classification stages, the hidden layer size of the
autoencoder was determined measuring its performance when reconstructing the com-
pressed signal and not when classifying the gestures. In order to do this, several tests
were performed between 5 to 30 parameters, calculating the mean square error (MSE)
in the reconstruction of the validation data (which consisted on random selected holdout
subsets with a proportion of 25% of the total dataset).

The learning process was limited to 500 epochs. Fig. 3 shows the MSE values when
predicting validation data as the number of neurons in the hidden layer increases. Fig.
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Fig. 4. Input (original) and output (predicted) signals of the trained autoencoder

4 shows the comparison between a signal from the validation data set and its respective
reconstruction obtained with the trained autoencoder. It can be observed that the generated
signal is not as noisy as the original one, preserving the overall associated shape.

For the classification stage, a hidden layer size of 15 neurons was chosen (as a trade-
off between error rate and number of features). Since the holdout subset was randomly
selected, three repetitions were performed when training the autoencoders, generating
three different classification datasets (one for each executor and a fourth one that com-
bines the gestures from all executors). This resulted in a total of 12 different datasets with
15 features and the labels for the corresponding gestures.

5. Classification stage

Two alternative classification models were built using the open-source software Weka [27,
10]. Two classification schemes were used: decision trees, implemented via the C.45 al-
gorithm (available in Weka as J48 [20]) and a particular variation of k nearest neighbors
(using entropy as a distance function via the so-called K* algorithm [4]). Two valida-
tion methods were used: a) holdout with 3/4 train/validation proportion, and b) 10 fold
cross-validation. In general, very similar results were obtained between both validation
techniques and between both classification methods.

The classification process was repeated for each of the three iterations in order to
verify that the results remained constant in different cases. The resulting sets were named
with the letter that identifies the executor and the index that indicates the repetition number
(e.g. M3 stands for the data set obtained from the 3rd iteration when measuring results
from executor M).

It must be noted that the generated decision trees do not use all the features at the
same time. This suggests that the number of features could still be reduced, which would
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Fig. 5. Decision Tree model for the gesture recognition of the M2 dataset

imply removing neurons from the trained autoencoder model. To give an example of the
decision tree model complexity, Fig. 5 shows the generated model by means of the C4.5
method for the gesture classification trained with the M2 data set.

6. Hardware requirements analysis

We analyzed the computational complexity and resource requirements of the proposed
techniques following similar criteria as those provided by [16, 9, 25]. As an upper bound,
we considered a 15-neuron fully connected encoder for 600 16-bit input values and a
decision tree of 185 nodes (the latter corresponds to the most complex decision tree from
the ones calculated in our experiments).

The data encoder stage requires memory space to store the weight values of 601 pa-
rameters (600 weights plus one bias) per neuron and to perform 1,201 floating point op-
erations (FLOPs). The activation function will be evaluated one time per hidden layer
neuron, which means the evaluation of a quantized sigmoid function, resulting in a total
of 4 FLOPs. Thus, for an encoder with 15 neurons in its hidden layer, the total number
of FLOPs required to extract the features of a 600 data values window sums up to 18,075
FLOPs.

The 185-node decision tree requires 185 FLOPs which may result negligible com-
pared to the feature extraction stage. Consequently, using a rough estimation, the total
number of FLOPs required is approx. 20,000.

To simplify the real-time analysis, we will assume that a window of 600 data values is
processed at the signal sampling frequency (i.e. 200Hz). This is because the classifier was
not trained with time-shift invariance considerations. Then, the processor speed should
allow to perform all the computations in less than 5 ms. For the case of 16 bit architectures
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where a floating point operation could be performed on each clock tick, a processor of
at least 4 MHz is required to perform 20,000 operations in 5 ms. For 8-bit processors,
the clock frequency needs to be doubled, being thus at least 8MHz. This approximation
does not take into account the time required to perform the program control, but still by
doubling the minimum frequency we would obtain 16Mhz (which is a nominal frequency
for low resource microcontrollers).

The memory usage on the other hand, takes into account the storage for all the model
parameters and the program itself, which includes all the control instructions. The set of
16-bit 9,015 weights of the encoder itself takes up 17.61Kb of flash memory usage. Most
embedded devices allow to expand their capacity by adding external memory, however
this implies a non-negligible reading time and should be taken into account on the overall
computing time.

The complexity of the classification stage of the instance based learner is harder to
analyze as it depends on the training stage results. In order to make an estimate of the
required computing resources, we will assume that an instance based classifier uses all
the 15 features and 1,000 instances, from the total of 1,142 rows. Assuming two bytes of
memory per feature plus a byte per class label, this represents a total memory usage of
31,000 bytes or 30.27Kb (only to store the database with examples).

Regarding the FLOPs number, we will assume that the classification stage of this
algorithm compares the test instance to all the given instances to determine the probability
that the test instance belong to the class of each compared example. We will also assume
that the computation of this probability requires two FLOPs per instance in the database.
Note that the entropy function is defined by equation 1,

H(x) =

N−1∑
i=0

−pi(x) · log (pi(x)) . (1)

Where N = 9 is the number of classes. The logarithm implementation for the range
(0.0, 1.0) using a four-degree Taylor series would involve up to eight FLOPs, and adding
another FLOP for the multiplication in equation 1 results in 9 FLOPs. Then, adding the
operations used for the computation of the probability pi(x), the entropy function H(x)
would require 2,009 FLOPs, and should be performed nine times (i.e., one time per class),
which results in a total of 18,081 FLOPs. This number falls inside the estimated range as
for the case of the decision tree model.

In summary, the requirements to storage the complete classification model and com-
pute real-time results would be 16MHz as operating frequency and around 32Kb of re-
quired memory storage (matching the specs of a low cost microcontroller, such as the
AVR ATMega 328p4).

7. Results and discussion

Table 1 shows the accuracy of each classification method using different validation tech-
niques. All values are expressed in percentages of classification efficiency and each cell

4 https://en.wikipedia.org/wiki/ATmega328
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corresponds to the average results between the three repetitions. The E, L and M sets in-
dicate the different gesture executors and the E+L+M set contains the data from all three
executors. Average values across columns and rows are shown in bold.

Table 1. Comparative average accuracy values by validation method

J48 K*
Set Holdout Crossvalidation Average Holdout Crossvalidation Average
E 96 94.2 95.1 93.9 95.6 94.7
M 88.4 88.4 88.4 91.8 94 92.6
L 97.2 95.6 96.4 98.3 98.4 98.4

Average 93.87 92.73 93.3 94.67 96 95.23
E+M+L 87.1 86.9 87 92 92.8 92.4

It can be observed that the K* method obtained slightly better accuracy percentages
than J48. However, the decision tree classification is computed about ten times faster
than K*. The Table 2 shows the sizes and number of characterization parameters used by
each decision tree (numbered columns correspond to each of the three repetitions). This
result shows that when the decision tree models are trained with data corresponding to a
single executor many parameters are left aside by the classifier. This allows to reduce the
computational cost of the model by removing neurons from the hidden layer of the already
trained encoder while maintaining the same classification accuracy level. However, when
using data from multiple executors, the decision tree model complexity grows notably,
and almost all 15 parameters are used.

Another experiment was performed in order to test to what extent the classification
accuracy is affected by reducing the number of characterization parameters, i.e. the au-
toencoder’s hidden layer size. In table 3, the accuracy values are shown when repeating
the training process for the classifiers and using only eight parameters to characterize the
signals of the three data sets combined. Here we can observe that when reducing the pa-
rameter number from 15 to 8, the accuracy of the classification stage is reduced around a
6% for the decision tree and 7.9% for the K* model. We can conclude that a substantial
improvement is achieved in terms of computational cost, considering that the autoencoder
size was reduced to almost the half.

Table 2. Number of used features and the resulting tree size for the classification decision tree using
J48

Number of used features Size of tree (node count)
Set Holdout Crossvalidation Holdout Crossvalidation

1 2 3 1 2 3 1 2 3 1 2 3
E 12 11 8 8 10 9 31 37 25 25 31 27
M 12 12 13 13 10 10 39 49 35 39 33 35
L 6 8 7 8 10 11 19 21 25 25 23 27

E+M+L 15 15 15 15 14 15 149 165 137 185 133 165
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Table 3. Classification results using eight characterization parameters

Set J48 K*
Holdout Crossvalidation Holdout Crossvalidation

E+M+L 87.9 86.6 86.9 87.7

Table 4. Confusion matrix for the decision tree trained with ELM3 set

Class anu may men adu ext fle pel pul sup
anu 40 0 0 0 0 4 0 1 0
may 0 46 1 0 0 1 1 1 0
men 0 1 43 1 3 1 0 0 0
adu 0 0 0 27 4 1 0 5 0
ext 0 1 1 4 34 0 0 0 0
fle 2 0 0 0 0 32 1 0 0
pel 0 0 1 0 0 1 43 1 1
pul 0 1 2 3 0 2 0 34 1
sup 0 0 0 0 0 0 2 1 32

Table 4 shows the resulting confusion matrix for the decision tree generated with
Weka’s J48 algorithm applied to the complete data set of 1142 instances and validated
via the holdout method. The rows correspond to the classes of the set and the columns
correspond to the classification results for each instance. From 381 instances evaluated,
335 were correctly classified (87.93% ).

8. Conclusion

We have presented a lightweigth classification approach to sEMG gesture recognition.
The approach includes a feature extraction stage that uses autoencoders of 15-neuron
hidden layer and a classification stage involving two alternatives: a decision tree (via the
J48 algorithm) and an instance based learner (via the K* algorithm).

Based on previous work and by a rough estimate of minimal resource requirements,
we have shown that the proposed prediction models can be implemented on low resource
architectures. An example of a hardware platform that matches with the minimum require-
ments is the AVR ATMega328p microcontroller (a widely off-the-shelf used platform
with a low price and good market availability, used for the Arduino UNO prototyping
platform). The resulting decision tree based classifier was able to correctly identify nine
gestures with an accuracy of 87% (for a generic user) and up to 93.3% when calibrating
the algorithms using data from a single user. The instance based learning classifier reaches
92.4% accuracy when trained with multiple user data and 95.23% when calibrated by a
single user data.

The results presented on this work opens the possibility of implementing sEMG based
gesture classification systems on low-resource platforms with high market availability,
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paving the way for developing several low cost and accessible products, from commercial
small wearable devices to educational prototyping tools.
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