
ORIGINAL RESEARCH
published: 27 May 2022

doi: 10.3389/fnsys.2022.882315

Frontiers in Systems Neuroscience | www.frontiersin.org 1 May 2022 | Volume 16 | Article 882315

Edited by:

Adrian G. Palacios,

Universidad de Valparaiso, Chile

Reviewed by:

Thierry Viéville,

Institut National de Recherche en

Informatique et en Automatique

(INRIA), France

Tom Foulsham,

University of Essex, United Kingdom

Emmanuel Dauce,

Centrale Marseille, France

*Correspondence:

Juan Esteban Kamienkowski

juank@dc.uba.ar

†Present address:

Melanie Sclar,

Paul G. Allen School of Computer

Science & Engineering, University of

Washington, Seattle, WA,

United States

‡These authors have contributed

equally to this work

Received: 23 February 2022

Accepted: 26 April 2022

Published: 27 May 2022

Citation:

Bujia G, Sclar M, Vita S, Solovey G

and Kamienkowski JE (2022)

Modeling Human Visual Search in

Natural Scenes: A Combined

Bayesian Searcher and Saliency Map

Approach.

Front. Syst. Neurosci. 16:882315.

doi: 10.3389/fnsys.2022.882315

Modeling Human Visual Search in
Natural Scenes: A Combined
Bayesian Searcher and Saliency Map
Approach
Gaston Bujia 1,2‡, Melanie Sclar 1†‡, Sebastian Vita 1, Guillermo Solovey 2 and

Juan Esteban Kamienkowski 1,3*

1 Laboratorio de Inteligencia Artificial Aplicada, Instituto de Ciencias de la Computación, Universidad de Buenos Aires –

CONICET, Ciudad Autónoma de Buenos Aires, Argentina, 2 Instituto de Cálculo, Universidad de Buenos Aires – CONICET,

Ciudad Autónoma de Buenos Aires, Argentina, 3Maestría de Explotación de Datos y Descubrimiento del Conocimiento,

Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina

Finding objects is essential for almost any daily-life visual task. Saliency models have

been useful to predict fixation locations in natural images during a free-exploring task.

However, it is still challenging to predict the sequence of fixations during visual search.

Bayesian observer models are particularly suited for this task because they represent

visual search as an active sampling process. Nevertheless, how they adapt to natural

images remains largely unexplored. Here, we propose a unified Bayesian model for visual

search guided by saliency maps as prior information. We validated our model with a

visual search experiment in natural scenes. We showed that, although state-of-the-art

saliency models performed well in predicting the first two fixations in a visual search task

( 90% of the performance achieved by humans), their performance degraded to chance

afterward. Therefore, saliency maps alone could model bottom-up first impressions but

they were not enough to explain scanpaths when top-down task information was critical.

In contrast, our model led to human-like performance and scanpaths as revealed by: first,

the agreement between targets found by the model and the humans on a trial-by-trial

basis; and second, the scanpath similarity between the model and the humans, that

makes the behavior of the model indistinguishable from that of humans. Altogether, the

combination of deep neural networks based saliency models for image processing and

a Bayesian framework for scanpath integration probes to be a powerful and flexible

approach to model human behavior in natural scenarios.

Keywords: visual search, eye movements, ideal observer, saliency maps, human behavior

1. INTRODUCTION

Visual search is a natural task that humans perform in everyday life, from looking for someone in
a photograph to searching your favorite mug in the kitchen. The ability to find a target relies on
our capability to gather visual information through a sequence of eye movements; that perform a
discrete sampling of the scene. This sampling of information is not carried out on random points.
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Decades of research have shown that the gaze follows different
strategies, and tries to minimize the number of steps needed
to find the target (Yarbus, 1967; Tatler et al., 2010; Borji and
Itti, 2014; Rolfs, 2015). Indeed, visual search is a quintessential
example of the active sensing or sampling paradigm (Yang et al.,
2016b; Gottlieb and Oudeyer, 2018).

Humans must perform a goal-directed exploration that
follows different perceptual cues (Wolfe and Horowitz, 2017)
to find their target or to decide their absence. These sequential
decisions are a trade-off between exploration and exploitation
actions. The exploration actions attempt to reduce uncertainty
about the environment, and the exploitation actions are
conducted by knowledge-based decisions (Najemnik and Geisler,
2005; Yang et al., 2016a; Schwartenbeck et al., 2019). In natural
stimuli, the exploitation phase is highly relevant given the
importance of the context for finding an object (Eckstein
et al., 2006). For instance, when looking for a plate in a
kitchen, regions where related objects are present, like a table
or a kitchen cabinet, would be more likely to contain the
target object. Predicting eye movements required to locate
a target is a computationally-complex task because it must
combine the bottom-up information capturing processes, top-
down integration of information, and updating of expectations
on each fixation.

A computationally easier task is to predict where people will
fixate when freely exploring a scene. This problem is usually
addressed with computational models that build saliency maps
which identify regions of an image that draw our attention.
The first saliency models were built based on computer vision
strategies, that combined different filters over the image (Itti
and Koch, 2001). Some of these filters were very general, such
as a low-pass filter that gave the idea of the horizon (Itti
et al., 1998; Torralba and Sinha, 2001), or more specific, such
as the detection of high-level features like faces (Cerf et al.,
2008). In recent years, deep neural networks (DNNs) have
advanced the development of saliency maps. Many saliency
models have incorporated pre-trained convolutional DNNs
successfully to extract low-level and high-level features of the
images (Cornia et al., 2016, 2018; Kummerer et al., 2017). These
novel approaches were summarized on the MIT/Tuebingen’s
collaboration website (Kummerer et al., 2018). Saliency maps
have been successful at predicting fixations locations. However,
saliency alone cannot account for the sequential nature of gaze
movements. For example, the predictive power of saliency maps
decays after the first few fixations (Torralba et al., 2006). More
recently, Boccignone et al. (2019) proposed a time-aware model
for scanpath prediction, where they sampled fixations from a
dynamic saliency map and found that this approach led to more
human-like behavior.

In recent years, there have been attempts to predict visual
search scanpaths in natural scenes. For instance, Zhang et al.
(2018) used a greedy algorithm based on DNNs, that mimicked
the behavior of the visual system by elaborating an attention
map related to the search goal. Using a greedy algorithm
implied forcing some known behaviors of human visual search,
like inhibition-of-return, that arise naturally with longer-
sighted objective functions. More recently, Gupta et al. (2021)

incorporated a model for the fovea and showed how human
behavior biases emerged from DNN models mainly due to the
biases present in the training data. Based on a different approach,
Yang et al. (2020) used inverse reinforcement learning to model a
slightly different task, known as categorical visual search, where
instead of showing a specific target, a category was mentioned.

Nowadays, there is growing interest in Bayesian models
because of their success in decision-making or perceptual tasks
(Knill and Pouget, 2004; Tenenbaum et al., 2006; O’Reilly et al.,
2012; Meyniel et al., 2015; Rohe and Noppeney, 2015; Samad
et al., 2015; Wiecki et al., 2015; Turgeon et al., 2016). In the
case of visual search, Najemnik and Geisler (2005) proposed a
model that predicted the location of the next fixation based on
its prior knowledge, a visibility map, and the current state of a
posterior probability that was updated after every fixation. In this
model, inhibition-of-return, moderate saccade length, among
other human characteristics of visual search arose naturally
(Najemnik and Geisler, 2005). The results of this Ideal Bayesian
Searcher (IBS) have had a wide impact, but the images they
used in their experiments were all artificial. Recently, Hoppe
and Rothkopf (2019) proposed a visual search model that
incorporated planning. He used the uncertainty of the current
observation to select the upcoming gaze locations to maximize
the probability of detecting the location of the target after the
sequence of two saccades. For Najemnik and Geisler (2005),
their task was designed specifically for maximize the difference
between models (i.e., finding the target in very few fixations on
artificial stimuli). To extend these results to natural images, it is
necessary to incorporate the information available in the scene.

Here, we aimed to extend the IBS to natural images. To do
that, we proposed to use state-of-the-art saliency maps as priors,
and continuous similarity maps between the target template and
different regions of the image. The motivation for using the
saliency as prior in a visual search task lies in the results of the
flash-preview moving-window paradigm. This paradigm showed
that even a glimpse of less than a few hundreds of milliseconds
of a scene guided search as long as sufficient time was available
subsequently to combine prior knowledge with the current visual
input (Oliva and Torralba, 2006; Torralba et al., 2006; Castelhano
and Henderson, 2007). These modifications incorporated the
first gist of the image and the notion of distractors. Finally, to
validate our model we collected eye movement data from a visual
search experiment in natural images and compared the overall
performance between humans and the models, as most previous
work has done, but also the entire scanpaths produced by the
model with the ones recorded by human observers.

2. MATERIALS AND METHODS

2.1. Participants
Fifty-seven subjects (34 male, 23 female; age 25.1 ± 5.9 years
old) participated in the Visual Search task. All were students or
teachers from the University of Buenos Aires. All subjects were
naïve to the experiment’s objectives, had normal or corrected-to-
normal vision, and provided written informed consent according
to the recommendations of the declaration of Helsinki to
participate in the study. All the experiments described here were
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reviewed and approved by the ethics committee: “Comite de
Ética del Centro de Educación Médica e Investigaciones Clínicas
‘Norberto Quirno’ (CEMIC)” [qualified by the Department of
Health and Human Services (HHS, USA): IRb00001745—IORG
0001315; Protocol number 435].

2.2. Paradigm and Procedure
Participants had to search for an object in a crowded indoor
scene. Each trial started when the target was presented in the
center of the screen, which subtended 144 · 144 pixels of visual
angle (Figure 2A). After 3 s, the target was replaced by a fixation
dot at a pseudo-random position at least 300 pixels away from the
actual target position in the image (Figure 2A). This was done
to avoid starting the search too close to the target. The initial
position was the same for a given image and all participants.
The search image appeared after the participant fixated the
dot. Thus, all observers initiated the search in the same place
for each image (Figure 2A). The image was presented at a
768 × 1, 024 resolution (subtending 28.3 · 28.8 degrees of visual
angle; Figure 2A).

Saccades and fixations were parsed online. The search period
finished when the participant fixated the target or after N
saccades, with an extra 200 ms to allow observers to process
information of this last fixation (Kotowicz et al., 2010). The
maximum number of saccades allowed (N) were 2 (13.4% of the
trials), 4 (14.9%), 8 (29.9%), or 12 (41.8%). These values were
randomized for each participant, which was independent of the
image. The experiment was programmed using PsychToolbox
and EyeLink libraries in MATLAB (Brainard, 1997; Kleiner et al.,
2007).

After each trial, participants were forced to guess the position
of the target, even if they had already found it. They were
instructed to cover the target position with a Gaussian blur, first
by clicking on the center and then by choosing its radius. This
was done by showing a screen with only the frame of the image
and a mouse pointer—a small black dot—to select the desired
center of the blur (Figure 2A). After the participant selected a
position with themouse, a Gaussian blur centered at that position
was shown, and the participants were required to indicate the
uncertainty of their decision by increasing or decreasing the size
of the blur using the keyboard. The position and the uncertainty
reports were not analyzed in the present study.

A training block of five trials was performed at the beginning
of each session with the experimenter present in the room. After
the training block, the experiment started and the experimenter
moved to a contiguous room. The images were shown in random
order. Each participant observed the 134 images in three blocks.
Before each block, a 9-point calibration was performed, and the
participants were encouraged to get a small break to allow them
to rest between blocks. Moreover, each trial started with the
built-in drift correction procedure from the EyeLink Toolbox, in
which the participant had to fixate in a central dot and hit the
spacebar to continue. If the gaze was detected far from the dot,
a beep signaled the necessity of a re-calibration. The experiment
was programmed using PsychToolbox and EyeLink libraries in
MATLAB (Brainard, 1997; Kleiner et al., 2007).

2.3. Stimuli
The images corresponded to 134 indoor pictures fromWikimedia
Commons, indoor design blogs, and LabelMe database (Russell
et al., 2008), which have several objects and no human figures or
text. The selection criterion was that scenes had several objects,
and no human figures or text was presented. Moreover, the
images were in black and white to make the task take more
saccades, because color is a very strong bottom-up cue. Also, a
pilot experiment with five participants was performed to select
images that usually required several fixations to find the target.
The size of the original images were all of at least 1, 024 × 768
pixels (subtending 28.3 × 28.8 degrees of visual angle), and all
were cropped and/or scaled to 1, 024×768 pixels. For each image,
a single target was selectedmanually among the objects of the size
of at most 72 × 72 pixels—because we were not evaluating the
accuracy of memory retrieval—. For all targets, we considered
a surrounding region of 72 × 72 pixels. Finally, we checked
that there were no consistent spatial biases across the images
(Supplementary Figure 2).

2.4. Data Acquisition
Participants were seated in a dark room, 55cm away from a 19-
inch Samsung SyncMaster 997 MB monitor (refresh rate = 60
Hz), with a resolution of 1, 280 × 960. A chin and forehead rest
was used to stabilize the head. Eyemovements were acquired with
an Eye Link 1000 (SR Research, Ontario, Canada) monocular
at 1,000 Hz.

2.5. Data Preprocessing
The saccade detection was performed online with the native
EyeLink algorithm with the default parameters for cognitive
tasks. Fixations were collapsed into a grid with cells of 32 × 32
pixels, which resulted in a grid size of 32× 24 cells. We explored
the size of the grid in terms of model performance. Consecutive
fixations within a cell were collapsed into one fixation to be
consistent with the model behavior. Also, fixations outside the
image region were displaced to the closest cell. Because we
considered fixations, blinks periods were excluded.

The trial was considered correct (i.e., target found) if the
participant fixated into the target region (72 × 72 pixels). Only
correct trials were analyzed in terms of eye movements.

Participants completed (71 ± 17) trials (or images), which
corresponds to (30 ± 13) trials (or participants) per image. This
results in a total of 4,054 out of 7,455 (54.3%) successful trials
considered in the scanpath similarity analysis. The unsuccessful
trials corresponded mainly to the low saccade threshold trials as
can be observed in Figure 4A (which were randomly distributed
along the images).

2.6. Models
2.6.1. Saliency Maps
In the last few years, several saliency models appeared in
the literature and made their code available. Many of those
were summarized nicely and compared in the https://saliency.
tuebingen.ai/ repository (Judd et al., 2012; Bylinskii et al., 2018;
Kummerer et al., 2018). With the purpose of understanding
which features guided the search, we chose and compared five
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different state-of-the-art saliency maps for our task: DeepGazeII
(Kummerer et al., 2017), MLNet (Cornia et al., 2016), SAM-
VGG and SAM-ResNet (Cornia et al., 2018), and ICF (Intensity
Contrast Feature) (Kummerer et al., 2017).

All the saliencymodels considered (except for ICF) were based
on neural network architectures that used different convolutional
networks (CNN) pretrained on object recognition tasks. These
CNNs played the role of calculating a fixed feature space
representation (feature extractor) for the image that was then be
fed to a predictor function (in the models we considered, also a
neural network). DeepGaze II used a VGG-19 (Simonyan and
Zisserman, 2014) as feature extractor, and the predictor was a
simpler four-layer CNN (Kummerer et al., 2017). The MLNet
model used a modified VGG-16 (Simonyan and Zisserman,
2014) that returned several feature maps, and a simpler CNN
is used as a predictor that incorporated a learnable center prior
(Cornia et al., 2016). Finally, SAM used both VGG-16 and
ResNet50 (He et al., 2016) as two different feature extractors,
and the predictor was a neural network with attentive and
convolutional mechanisms (Cornia et al., 2018). ICF had a similar
architecture to DeepGaze II, but it used Gaussian filters instead of
a neural network. This way, ICF extracted purely low-level image
information (intensity and intensity contrast). We also included
a saliency model with just the center bias that was modeled by a
2D Gaussian distribution.

As the control model, we built a human-based saliency map
using the accumulated fixation position of all observers for a
given image, which was smoothed with a Gaussian kernel (st. dev.
= 25 pxs). Given that observers were forced to begin each trial in
the same position, we did not use the first fixations but the third.
This way we captured the regions that attracted human attention.

2.6.2. Bayesian Searcher
To predict human visual search scanpaths, Najemnik and Geisler
(2005) proposed the Ideal Bayesian Searcher (IBS). The IBS
considered each possible next fixation sequentially and picked the
one that maximized the probability of identifying the location of
the target correctly after the fixation. The decision of the optimal
fixation location at step T + 1, kopt(T + 1), was computed as
(Equation 1):

kopt(T + 1) = argmax
k(T+1)

{

p(C|k(T + 1))
}

(1)

This rule was rewritten by conditioning on the location i as:

kopt(T + 1) = argmax
k(T+1)

{

n
∑

i=1

pi(T)p(C|i, k(T + 1))
}

(2)

where pi(T) was the posterior probability that the target was
at the i-th location within the grid after T fixations and
p[C|i, k(T + 1)] was the probability of being correct given that
the true target location was i, and the location of the next
fixation was k(T + 1). To compute Equation (2), Najemnik
and Geisler (2005) derived a formulation that allowed us to
estimate p[C|i, k(T + 1)] (see Supplementary Material). Then,

we computed for each possible next location what we called
the detectability map:

∑n
i=1 pi(T)p[C|i, k(T + 1)] (as an example

see Supplementary Figure 1). The posteriors, pi(T), involved the
prior, the visibility map [d′

ik(t)] and a notion of the target location
[Wik(t)]:

pi(T) =

prior(i) ·
T

∏

t=1

exp
(

d′2ik(t)Wik(t)

)

n
∑

j=1

prior(j) ·
T

∏

t=1

exp
(

d′2jk(t)Wjk(t)

)

(3)

The template response, Wik(t), quantified the evidence gathered
from a given position i about the target image when the observer
is fixated at position k(t) (t was any previous fixation). It was
defined asWik(t) ∼ N (µik(t), σ

2
ik(t)) where:

µik(t) = 1(i = target location) − 0.5 , σik(t) =
1

d′
ik(t)

(4)

Abusing notation, in Equation (3) Wik(t) referred to a value
drawn from this distribution. IBS has only been tested in artificial
images, where subjects needed to find a Gabor patch among 1/f
noise in one out of 25 possible locations. This work is, to our
knowledge, the first one to test this approach in natural scenes.
Below, we discuss the modifications needed to apply IBS to eye
movements in natural images.

2.6.3. Modifications to the IBS to Handle Natural

Scenes
Because it would be both computationally intractable to compute
the probability of fixating in every pixel of a 1, 024 × 768 image,
and ineffective to do so—as useful information spans over regions
larger than a pixel—, we restricted the possible fixation locations
to be analyzed to the center points of a grid of δ × δ pixels each.
We collapsed the eye movements to these points accordingly:
consecutive fixations within a cell were merged into one fixation
to be consistent with the model behavior.

The original IBS model had a uniform prior distribution.
Because we were trying to model fixation locations in a natural
scene, we introduced a saliency model as the prior. The prior(i)
was the average of the saliency in the i-th grid cell.

Importantly, the presence of the target in a certain position
in natural images was not as straightforward as in artificial
stimuli, where all the incorrect locations were equally dissimilar.
In natural images there are often distractors (i.e., positions in
the image that are visually similar to the target, especially if seen
with low visibility). Therefore, we proposed a redefined template
response W̃ik(t) as Equation (5), and µ̃ik(t) ∈ [−1, 1] was defined
as Equation (6).

W̃ik(t) ∼ N (µ̃ik(t), σ̃
2
ik(t)) (5)

µ̃ik(t) = µik(t) ·

(

d′ik(t) +
1

2

)

+ φi ·

(3

2
− d′ik(t)

)

(6)
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where φi quantified how similar is each location i to the target,
i.e., the similarity map. Here, we proposed two alternatives: (1)
to use the cross-correlation between the target template and the
location that we called the correlation IBS or cIBS model, or (2) to
use the structural-similarity (Wang et al., 2004), the sIBS model.

Also, we included a model of the visibility map. The
parameters of the 2D Gaussian model were chosen a priori and
estimated from values reported in Najemnik and Geisler (2005)
and Bradley et al. (2014), and they were the same for every
participant. The bivariate Gaussian N (µ,6) was centered on
each fixation point (µ is the 2D-coordinate in pixels), and its
covariance was 6 =

(

2600 0
0 4000

)

pxs2. Moreover, we modified
σik(t) to keep the variance depending on the visibility, but we
incorporated two parameters (Equation 7):

σ̃ik(t) =
1

a · d′
ik(t) + b

(7)

The parameters a and b jointly modulated the inverse of the
visibility and prevented 1/d′ from diverging. These parameters
were not included in the original model probably because
d′ was estimated empirically (from thousands of trials and
independently for each subject) and the d′ was never exactly
equal to zero. Bradley et al. (2014) simplified the task by fitting
a visibility map built from a first-principle model that proposed
an analytic function with several parameters, which should still be
fitted for each participant. Here, we further simplified it by using
a two-dimensional Gaussian with the same parameters for every
participant, which avoided a potential leak of information about
the viewing patterns to the model. The parameters were taken a
priori (estimated from parameters in Najemnik and Geisler, 2005;
Bradley et al., 2014). We chose the parameters of the model using
a classical grid search procedure in a previous experiment with a
smaller dataset and the same best parameters (δ = 32, a = 3, and
b = 4) were used for all the models.

2.7. Metrics
2.7.1. Mean Agreement
To compare the performance of models against humans,
we calculated the mean proportion of trials where both the
participant and themodel had the same behavior [i.e., both found
(or not) the target under the same saccades thresholds]. We call
this measure Mean Agreement, and it quantifies the compromise
between our model and the participants in their performance.
The higher the value of MA was, the better.

2.7.2. MultiMatch
MultiMatch (Dewhurst et al., 2012) is a multi-dimensional
similarity measure between scanpaths that is composed of
five different similarity metrics: shape(vector), direction, length,
position, and duration. Each of them compares a specific
characteristic of the scanpaths producing a values between 0
(worst similarity) and 1 (best similarity, identical characteristic).
The shape metric is the difference between aligned saccade
pairs and the position is the Euclidean distance between aligned
fixations. The length similarity measures the difference in length
of each saccade and the direction compares the angular distance

between the saccades’ directions. Each of these metrics is
normalized and transformed into a similarity when needed.
We use the original implementation in MATLAB with its
default parameters.

The duration similarity was not taken into account because
our model was not designed to predict it. For MM, the duration
of the fixations is used in only for two purposes: simplifying
the scanpaths (group fixations together) and, for calculating
the duration similarity (Jarodzka et al., 2010; Dewhurst et al.,
2012). In our case, we first simplify our scanpaths, and then we
map them to a grid previously to calculate MM. This way, not
considering the fixation’s duration does not affect the other four
MultiMatch metrics. For the comparison, each metric could be
considered separately or as a composite variable (AvMM), in
which case, we do not considered the fixation duration.

All MM values presented in Table 1 represent the mean value
of the pairwise MultiMatch similarity between the scanpaths.
When comparing humans’ results, the mean was taken over all
subjects’ scanpaths when the target was found: within-humans
MultiMatch (whMM). For each model, we took the mean over all
pairwise MultiMatch scores between subjects and models where
the target was found: human-modelMultiMatch (hmMM).

2.7.3. Correlation and Linear Model
To summarize and to visualize the comparison of scanpaths, we
calculated the Pearson correlation between the whMM pairwise
values and the hmMM values. We also reported the slope of a
linear regression whMM∼ hmMMwithout intercept.

3. RESULTS

3.1. Searcher Modeling Approach
According to the IBS proposed by Najemnik and Geisler (2005),
an observer will make a saccade to a location that maximizes the
probability of detecting the target at each location, taking into
account a visibility map and previous fixations (further details
in Section 2.6). Our approach expanded this model to a visual
search task in natural domains (Figure 1). It involved two main
aspects: (1) A prior distribution (saliency map) estimation step
as a first, glimpse-like, information extraction, and then, (2)
successive search steps were performed to build the full scanpath.
Briefly, in each step, the model selected the next fixation over a
grid and decided if the target was positively there using structural
similarity (Wang et al., 2004) between the target and the location
(sIBS) or using cross-correlation (cIBS).

3.2. Paradigm and Human Behavior Results
To test our model, we ran a visual search experiment in which
the participants had to search for a cropped target object within
a natural indoor scene. The trial stopped when the participant
found the target or afterN saccades (N = 2, 4, 8, 12). As expected,
the proportion of targets found increased as a function of the
saccades allowed (Figure 2A), which reached a plateau from 8 to
12 saccades (Figure 2A and data from a preliminary experiment
with up to 64 saccades not shown).

Overall, eye movements that we have recorded behave as
expected. First, the amplitude decreased with fixation rank, which
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TABLE 1 | Models results.

Searcher Prior MA (SD) Corr Slope AvMM MMvec MMdir MMlen MMpos

Humans 0.65 ± 0.08 – – 0.83 0.88 0.73 0.89 0.83

sIBS DGII 0.65 ± 0.09 0.48 1.00 0.83 0.88 0.71 0.83 0.90

sIBS Center 0.60 ± 0.09 0.34 1.00 0.82 0.88 0.65 0.82 0.91

sIBS Flat 0.62 ± 0.09 0.06* 1.02 0.81 0.86 0.71 0.80 0.87

sIBS Noisy 0.63 ± 0.07 −0.14* 1.03 0.78 0.84 0.65 0.77 0.87

cIBS DGII 0.65 ± 0.08 0.40 1.00 0.83 0.88 0.70 0.83 0.90

cIBS Center 0.59 ± 0.90 0.28 1.00 0.82 0.88 0.66 0.83 0.91

cIBS Flat 0.60 ± 0.09 0.27 1.04 0.80 0.85 0.70 0.80 0.85

cIBS Noisy 0.59 ± 0.09 0.18* 1.04 0.78 0.85 0.66 0.76 0.87

IBS DGII 0.64 ± 0.10 0.18 0.99 0.83 0.88 0.71 0.83 0.90

IBS Center 0.62 ± 0.08 0.20* 1.01 0.82 0.88 0.65 0.82 0.91

IBS Flat 0.63 ± 0.11 0.25 1.02 0.81 0.86 0.71 0.81 0.87

IBS Noisy 0.63 ± 0.09 0.03* 1.04 0.78 0.84 0.65 0.77 0.87

greedy DGII 0.62 ± 0.08 0.09* 0.99 0.83 0.88 0.71 0.83 0.90

SS DGII 0.55 ± 0.09 0.38 1.04 0.78 0.84 0.59 0.78 0.89

Mean Agreement measures the coincidence of humans and model’s correct target detection. slope corresponds to the slope of a linear regression y ∼ x model between the similarity

of human scanpaths (whMM in Figures 4C, 5C) and the similarity of model’s scanpaths (hmMM). corr is the Pearson’s correlation coefficient between humans and model’s scanpath,

which are whMM and hmMM, respectively. Only correct trials were considered and averaged for each image (N = 134). Also, average MultiMatch dimensions are reported: vector

(MMvec), direction (MMdir), length (MMlen), position (MMpos), and also global average MultiMatch (AvMM). All correlation values were significantly different from 0 (pval < 0.05), except

those marked as (*). All slopes were significantly different from 0 (pval < 10−8). The bold numbers indicate the best performing model in each metric.

FIGURE 1 | Bayesian model scheme. Simplified outline of the main framework. To compute each saccade (cyan box), in the first instance, the target response (first

white box) is precalculated for each possible location (W) using the selected similarity: presence/absence of the target IBS, cross-correlation cIBS, or structural

similarity sIBS. Then, the computation of next saccade has two main steps: 1. estimate the probability of finding the target on current fixation after T saccades

(second white box) and 2. estimate the probability of correctly finding the target on next fixation T + 1 (third white box) given the current knowledge of the image and

the current fixation. Those estimations as 2D maps with a red cross that represents the current fixation (left panels). Next, the model picks the location that maximizes

the probability of finding correctly the target (fourth white box). Finally, the saccade is executed and if the target is present on the new fixation location the search stops

but if it is not present, the next saccade is calculated. More details can be found on Supplementary Material.
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FIGURE 2 | Paradigm and general behavior. (A) Experimental schema. (B) Proportion of targets found as a function of the number of saccades allowed. Distributions

of (C) saccade length, (D) saccade direction (measured in degrees from the positive horizontal axis), and (E) location of fixations for different fixation ranks.

presented the so-called coarse-to-fine effect (Figure 2B), and the
saccades tended to be more horizontal than vertical (Figure 2C).
Finally, the initial spatial distribution of fixations had a central
bias, and then they extended first over the horizon until it
covered the entire image, because the targets were distributed
uniformly throughout the scene (Figure 2D). This effect could
be due partially to the organization of the task (i.e., the central
drift correction and presentation of the target), the setup (i.e., the
central position of the monitor with respect of the eyes/head),
and the images (i.e., the photographer typically centered the
image); it also could be due to processing benefits because it
was the optimal position to acquire low-level information of the
entire scene or to start the exploration.

3.3. Exploring Saliency Maps
As a first approach, we evaluated how saliency models performed
by themselves to predict fixations along the search. This
evaluation served as a baseline performance for our model. We
considered each saliency map S as a binary classifier on every
pixel and used Receiver Operator Curves (ROC) and Area Under
the Curve (AUC) to measure their performance. There was not
a unique way of defining the false positive rate (fpr). In dealing
with this problem, previous work on this task usedmany different
definitions of ROC and its corresponding AUC (Borji et al.,
2013; Riche et al., 2013; Bylinskii et al., 2018; Kummerer et al.,
2018). Briefly, to build our ROC we considered the true positive
rate (tpr) as the proportion of saliency map values above each
threshold at fixation locations and the fpr as the proportion of

saliency map values above each threshold at non-fixated pixels
(Figure 3A).

As expected, the saliency map built from the distribution
of third fixations performed by humans (human-based saliency
map) was superior to all other saliency maps, and the center bias
map was clearly worse than the rest of them (Figure 3B). This
was consistent with the idea that the first steps in visual search
were mostly guided by image saliency. The rest of the models had
similar performances on AUC, although DeepGazeII performed
slightly better than the others (Figures 3B,C).

All models reached a maximum in AUC values at the second
fixation except the human-based model that peaked at the third
fixation, as expected (Figure 3D). Interestingly, the center bias
began at a similar level as the other saliency maps, but decayed
more rapidly; it reached 0.5 in the fourth fixation. Thus, other
saliency maps must have captured some other relevant visual
information. Nevertheless, the AUC values from all saliency
maps decayed smoothly (Figure 3D), which suggested that the
gist the observers were able to collect in the first fixations was
modified largely by the search. Top-down mechanisms might
have taken control and played a major role in the guidance of eye
movements as the number of fixations increased (Itti and Koch,
2000).Moreover, we observed that the fixations spread away from
the center as the trial progress (Figure 2E), therefore it seems not
to be just the center bias attracting fixations that could explained
the AUC decay as in other studies (Tatler et al., 2005) which could
be an alternative explanation. The DeepGazeII model performed
better over all fixation ranks, and it became indistinguishable
from human performance in the second fixation (Figure 3D).
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FIGURE 3 | Saliency maps. We compare the results of five state-of-the-art models: DeepGazeII, ICF (Kummerer et al., 2017), SAM(ResNet-50 and VGG-16 versions)

(Cornia et al., 2018), and MLNet (Cornia et al., 2016), and two controls: a center bias (2D centered Gaussian) and an empirical third-fixation subjects saliency map

(humans). (A) Example of how to estimate the TPR for the ROC curve, (B) ROC curves, (C) AUC-Borji values for the third fixation, and (D) AUC for each model as a

function of the current Fixation Rank. Color mapping for models is consistent for (B–D).

3.4. Evaluating Searcher Models on Human
Data
As expected, saliency maps alone were not able to follow the
fixations after the first few. Therefore, we moved forward with
the proposed IBS model. We first evaluated the updating of
probabilities and the decision rule for the next fixation position
of the two proposed variants of the model, the sIBS and cIBS
models. For comparison, we used the previous IBS model, in
which the template response accounted only for the presence
or absence of the target and not for the similarity of the given
region with the target (Figure 4). Also, we implemented two
other control models: a Greedy searcher and a Saliency-based
searcher. The Greedy searcher based its decision to maximize
the probability of finding the target in the next fixation. It only
considered the present posterior probabilities and the visibility
map, and it did not take into account how the probability map
was going to be updated after that. The Saliency-based searcher
simply went through the most salient regions of the image, and
it added an inhibition-of-return effect to each visited region.
In these models, we used the DeepGazeII as a prior because it
was the best performing saliency map of the previous section.
We also evaluated the usage of different priors with the sIBS

model; we compared this with the center bias alone, which had a
centered two-dimensional Gaussian distribution, a uniform (flat)
distribution, and a white noise distribution (Figure 5).

The overall performance in the task was calculated as the
proportion of targets found for different saccade thresholds
(Figure 4A), and the difference between models was measured
as the proportion of trials where subject and model had the
same performance [i.e., both found (or not) the target (Mean
Agreement)]. When comparing different searchers with the
same prior (DeepGazeII), sIBS had the best agreement (0.65 ±

0.09) with the humans’ performance (Table 1). Nevertheless,
the curves of the cIBS, IBS, and Greedy models were also
very close to humans (Figure 4A), and each of them reached a
similar performance on Mean Agreement, 0.65, 0.64, and 0.62,
respectively (Table 1). The IBS model had the best performance
curve, and it found the target in fewer saccades than all the other
models, while the inclusion of the template matching variants
(sIBS and cIBS) resulted in a more human-like performance.
Only the control Saliency-based model had a markedly poorer
agreement with the human performance (0.55 ± 0.09), which
showed that template matching weighted by visibility was a
plausible mechanism for searching potential targets in the scene.
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FIGURE 4 | Searcher strategy. (A) Proportion of targets found for each threshold that we considered. Human behavior is presented as a boxplot. The performance

achieved by the models using different search strategies and DeepGazeII (DGII) as a prior is presented as curves. (B) Distribution of average MultiMatch similarity

scores (vector, direction, position and length) for each strategy (higher is better). Blue horizontal lines represent the mean and standard deviation scores for humans

(0.83± 0.02). (C) Mean within-human MultiMatch scores against the mean between human and the model’s MultiMatch scores. Linear regression with intercept = 0

was performed (red lines; see Table 1). Each dot represents an image of the dataset. Only trials where the target was found are considered in (B,C) for computing

MultiMatch score.

Furthermore, we compared the entire scanpaths between
subjects and models using the MultiMatch (MM) score
(Dewhurst et al., 2012). As mentioned in 2.7.2, this metric
measures the similarity between two scanpaths with five different
scores that compared different characteristics of the scanpaths:
vector, direction, length, position, and duration. The duration
similarity was not included because we were not predicting
duration of fixations. The distribution of the average MM
between humans and models for each image (hmMM), except
for the Saliency-based model showed a similar value (Figure 4B
and Table 1). Moreover, these four models fell within the mean
± standard deviation of average MM within-humans for each
image (whMM) (Figure 4B, blue lines). The variability in the
MM scores was explained partially by the image, thus, we also
compared the correlation between hmMM and whMM for the

different images (Figure 4C), and obtained a larger correlation
with the sIBS model (r = 0.48, Table 1).

Then, we explored the importance of the prior by comparing
the best searcher model, sIBS, with different basic priors. The
sIBS+DeepGazeII had better Mean Agreement with human
behavior (0.65 ± 0.09; Figure 5A and Table 1). Interestingly,
using DGII as prior was the only model that presented a step-
like function characteristic of humans (Figure 5A). The center
prior had the worst performance and also the lowest Mean
Agreement with humans (0.60 ± 0.09). The flat prior achieved
the best performance but the Mean Agreement with humans
was lower than that achieved by DGII (0.62 ± 0.09). This
suggested that the model using a flat prior behaved more like an
optimal searcher, but this seemed not to be the case for humans
(Zhou and Yu, 2021).
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FIGURE 5 | Saliency maps as priors. (A) Proportion of targets found for each threshold considered. Human behavior is presented as a boxplot. The performance

achieved by the models using sIBS with different prior distributions. (B) Distribution of average MultiMatch similarity score (vector, direction, position, and length) for

each strategy (higher is better). Blue horizontal lines represent the mean and standard deviation scores for humans (0.83± 0.02). (C) Mean within-human MultiMatch

scores against the mean between human and models MultiMatch scores. Linear regression with intercept = 0 was performed (red lines; see Table 1). Each dot

represents an image of the dataset. Only trials where the target was found are considered in (B,C) for computing MultiMatch score.

When comparing similarity of scanpaths, we observed that
the models with DeepGazeII and Center priors were closer to
humans’ values than others, but the flat and noisy priors had
lower scanpath similarities (average hmMM = 0.81 and 0.78,
respectively; Figure 5B). The noisy prior hmMM distribution
showed a drift in comparison with whMM, which resulted in
a higher slope (1.03). This suggested that humans were, on
average, more consistent than the model. Also, the flat and
noisy prior achieved a lower correlation, and both the models
with DeepGazeII and Center priors had the best correlation and
slopes closer to 1 (Figure 5C and Table 1) which suggested that
the initial center bias was a fair approximation of the human
priors. Nonetheless, although scanpaths from both models were
almost indistinguishable from humans, saliency added some

information that made the model with DeepGazeII produce a
behavior more similar to humans in both performance and MM.

3.5. Scanpath Examples
When looking deeper into the images that had the lower
similarity between model and participants, we observed that
participants performed two or more different, but consistent,
patterns. Because the present implementation of the model was
deterministic, it chose only one of those patterns (Figure 6).
In Figure 6, we illustrate this by showing some of the human
scanpaths and the model (cIBS+DGII) scanpath for one image.
In this case, the cup was the search target and there were two
surfaces where, a priori, we were equally likely to find it. We
selected six human scanpaths, the best three scanpaths in terms
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FIGURE 6 | Comparison of scanpath predictions. The figure is meshed by a fixed grid of δ = 32px. Each curve represents a scanpath, in red the cIBS+DGII model’s

scanpath, and in green and yellow six scanpaths of participants colored according to their similarity to the model scanpath. The (left) panel shows the first four

fixations of each scanpath, and the (right) panel shows the entire scanpaths. The search target is represented with the blue square and the approximated first fixation

with the red square. Above the image, the whMM and hmMM for this trial are reported. Image taken from Wikipedia Commons.

of hmMM, and from the worst six, we presented the three that
fixated onto the other surface where they might find the target
(not the one chosen by other subjects and the model. Note that
dark green traces were scanpaths that were very similar to the
model, and yellow traces are scanpaths that differed from the
model. This behavior is not present in every image, and we aim
to explore which aspects of the image or the previous scanpath
trigger this behavior in future research.

4. DISCUSSION

We introduced the sIBS and the cIBS models as expansions
of the IBS model to face natural scenes. In summary, we used
saliency maps as priors to model the information collected in the
first glimpse that guided the first saccades, and we modified the
computation of the template response to be able to, first, use a
simpler model of visibility and, second, give graded responses
to regions similar to the target to incorporate the notion of
distractors. To evaluate the model, we created a dataset of 57
subjects that searched 134 images, where we compared both
models to IBS and other strong baselines. We observed that
saliency models performed well in predicting initial fixations, in
particular the third fixation. Humans seemed to start from the
initial forced fixation position, move to the center, and then to the
most (bottom-up) salient location. After that, the performance
of all the saliency models decayed to almost chance, as was
expected from their conception. They mainly encoded bottom-
up information of the image (Itti and Koch, 2000) and not the
aim of the task, and they were not able to change or to update as
it progressed. This was also consistent with previous results from
Torralba et al. (2006) who implement a saliencymodel for a visual
search task.

Because saliency models are good in predicting first bottom-
up impressions, they are ideal candidates to be included as

priors in the proposed Bayesian framework. The central bias
performed well in the first two fixations, and it was included
in all the saliency models (Cornia et al., 2016, 2018; Kummerer
et al., 2017). The central bias by itself resulted in a good prior
in terms of scanpath similarity, but not in the performance
of finding the target. However, DeepGazeII had the better
compromise of both measures. This suggested that bottom-up
cues provided by saliency maps were relevant to the search. The
Ideal Bayesian Observer, originally proposed by Najemnik and
Geisler (2005), was an approximation to an optimal searcher that
tries to minimize the number of steps taken to find the target.
Nevertheless, the discussion on whether humans follow optimal
or sub-optimal behavior when it comes to visual search is still
present today (Zhou and Yu, 2021). It is likely that this behavior is
strongly influenced by what kind of search is carried out, whether
the stimuli are natural or artificial, or how the target is shown
to subjects. The results obtained with sIBS, cIBS, and IBS using
flat priors were more consistent with optimal behavior, but their
results were not as similar to humans when compared with more
sophisticated priors like DeepGazeII. The information encoded
by saliency models had a substantial influence on the scanpaths
that were predicted by these models and ensued a behavior more
compatible with a sub-optimal strategy.

Regarding the update and decision rule, it was clear that
the simple saliency-based searcher was not a good model of
visual search. Humans use not only information about the
scene but also information about the target and previous
fixations. Thus, a rule of comparing peripheral information of
the scene and the target should be implemented, along with
a mechanism for combining that information. In the present
study, those mechanisms were implemented in the Greedy, IBS,
cIBS, and sIBS models, with the difference that the Greedy
model maximized the probability of finding the target in the
next fixation, and the rest maximized the probability of finding
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the target after the next fixation. The three Bayesian models
using DGII as prior achieved the best metrics among all. No
major differences were found between the two alternatives cIBS
and sIBS, but the latter that had the best overall performance.
The inclusion of different strategies for template matching was
relevant to account for possible distractors present in the scene.
Nevertheless, the Greedy achieved similar metrics to those
achieved by the planning models.

Previous efforts that included contextual information aimed
mainly to predict image regions that were likely to be fixated. For
instance, they combined statically a spatial filter-based saliency
map with previous knowledge of target object positions on the
scene (Torralba et al., 2006). Some other research aimed to
predict the sequence of fixations, but efforts on non-Bayesian
modeling mainly used greedy algorithms (Rasouli and Tsotsos,
2014; Zhang et al., 2018). Here, we compared an example of a
greedy algorithm with others with a more long-sighted objective
function, which had the additional benefit of having some known
behaviors of human visual search arise naturally. For example,
Zhang et al. (2018) forced Inhibition-of-Return, but our model
incorporated it implicitly. Briefly, this behavior on the location
i was achieved in the proposed model because the visibility was
maximum when the display location was the same as the one
currently being observed (i), so it followed that Wi,k(t)=i =

Wii had little variance around its expected value of −0.5 [in

N

(

− 0.5,
1

d′2ii

)

]. This implied that exp
(

d′2ii Wii

)

> 0 was a

small quantity, which resulted in pi(T) being negligible. A similar
intuition was applied to display locations close to i, because
they still had a high degree of visibility. Future experiments
with longer scanpaths and more room for potential re-fixations
must serve to challenge these predictions. Crucially, Bayesian
frameworks were highly interpretable and connected our work
to other efforts in modeling top-down influences in perception
and decision-making.

It is also important to note that, although the (Najemnik and
Geisler, 2005) model was an insightful and influential proposal,
to our knowledge, our work is the first to implement it to predict
eye movements during visual search in natural images. It is a
leap in terms of applications because prior work on Bayesian
models was done in very constrained artificial environments
(e.g., looking for a tiny Gabor patch embedded in background
1/f noise; Najemnik and Geisler, 2005). Moreover, we addressed
possible modifications when considering the complexities of
natural images, such as the addition of a saliency map as prior,
the introduction of two plausible modifications of the template
response’s mean, and shift in visibility. We also simplified
assumptions from Najemnik and Geisler (2005) by not having
to measure each person’s visibility map beforehand. We used the
same visibilitymap across subjects, which also avoided a potential
leak of information about the viewing patterns to the model.
Finally, we also shared both an optimized code for the models,
which would be useful for others who wanted to replicate the
results shown here, and the human dataset of visual search.

Our model aligns with the work of many researchers who
proposed probabilistic solutions to model human behavior from
first principles. For instance, the authors of Bruce and Tsotsos

(2006) and Bruce and Tsotsos (2009), proposed a saliency
model based on the information maximization principle, which
demonstrated great efficacy in predicting fixation patterns across
both pictures and movies. Rasouli and Tsotsos (2014) proposed
a probabilistic model that extracted visual features in the form
of a saliency map and target characteristics to predict potential
target locations in an autonomous 3D vehicle. They showed that
the incorporation of attention mechanisms (like saliency maps)
improved vehicle performance by reducing the time it took to
find the target. Also, Ma et al. (2011) implemented a near-optimal
visual searchmodel for a fixed-gaze search task (i.e., exploring the
allocation of covert attention). This extended previous models
to deal with the reliability of visual information across items
and displays, and this model proposed an implementation
of how information should be combined across objects and
spatial location through marginalization. Interestingly, in both
attempts to explain overt and covert allocation of attention, they
proposed an implementation through physiologically plausible
neural networks.

More generally, the present work expands the general growing
notion of the brain as an organ capable of generalizing and
performing inferences in noisy and cluttered scenarios through
Bayesian inference by building complete and abstract models of
its environment. Currently, those models cover a broad spectrum
of perceptual and cognitive functions, such as decision making
and confidence, learning, multisensorial perception, and others
(Knill and Pouget, 2004; Tenenbaum et al., 2006; Meyniel et al.,
2015).
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