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Abstract: The Central Andes in northwestern Argentina are characterized by steep topographic
and climatic gradients. The humid foreland areas at 1 km asl elevation rapidly rise to over 5 km in
the eastern Cordillera, and they form an orographic rainfall barrier on the eastern windward side.
This topographic setting combined with seasonal moisture transport through the South American
monsoon system leads to intense rainstorms with cascading effects such as landsliding and flooding.
In order to better quantify the dynamics of water vapour transport, we use high-temporal-resolution
global navigation satellite system (GNSS) remote sensing techniques. We are particularly interested in
better understanding the dynamics of high-magnitude storms with high water vapour amounts that
have destructive effects on human infrastructure. We used an existing GNSS station network with
12 years of time series data, and we installed two new ground stations along the climatic gradient and
collected GNSS time series data for three years. For several stations we calculated the GNSS signal
delay gradient to determine water vapour transport direction. Our statistical analysis combines in
situ rainfall measurements and ERA5 reanalysis data to reveal the water vapour transport mechanism
for the study area. The results show a strong relationship between altitude and the water vapour
content, as well as between the transportation pathways and the topography.

Keywords: GNSS meteorology; GNSS remote sensing; intense rain events; water vapour; Central
Andes; orographic barrier; South American monsoon system

1. Introduction

Strong rainfall events repeatedly lead to natural disasters in steep mountain regions,
e.g., [1–5]. Especially along the eastern Andes, intense hydro-meteorological events cause
landsliding and flooding that impact population and infrastructures [6–8]. Previous studies
indicate that hydro-meteorological extreme events are often a consequence of several
additive climatic and topographic factors [9]. For example, the availability of high water
vapour transported through the South American low-level jet (SALLJ) from the north
along the eastern Andes, the advancement of cold fronts from the south, and the steep
topography lead to unstable atmospheric conditions and heavy cloudbursts in the eastern
Central Andes [4,6].

A core component for understanding these hydrometeorologic processes are highly dy-
namic observations. While satellite-based observations have advanced our understanding
of large-scale orographic effects at windward sides of mountain ranges, e.g., [10,11], these
data often do not provide the temporal resolution to decipher dynamic processes, including
the vertical and horizontal components of water vapour transport within storms. Similarly,
reanalysis and numerical weather prediction data are very useful for understanding the
dynamics of large-scale processes, but they often do not allow for the reliable measurement
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of spatially small (<2 km) and temporally short (<1 h) processes, e.g., [9,12]. With the
recent advancement of global navigation satellite system (GNSS)-based observation and
the increase in availability of these data, an alternative meteorological observation method
is readily available, e.g., [13–15].

The study area in northwestern Argentina is on the eastern side of the second largest
orogenic plateau—the Altiplano–Puna plateau. The plateau is rich in mineral and geore-
sources, especially lithium. Maintaining infrastructural networks in this area is important,
but the seasonal South American monsoon system (SAMS) heavily impacts the road net-
work connecting the high-elevation and resource-rich areas with the low-elevation foreland
areas. In addition, global warming leads to changing rainfall and discharge patterns,
shifting the distributions of low frequency and high magnitude hydrometeorological
events [4,9,16,17].

In this study, we explore the potential of GNSS-based observations to track water
vapour transport along and across the south-central Andes. For this purpose, we used
available station data since 2010, but also installed additional monitoring sites in medium
and high elevation areas for the duration of three years (cf. Figure 1). We use GNSS
time series data to group stations into clusters and use their high temporal resolution
to analyse water vapour distributions. Furthermore, we implement an analysis of water
vapour gradients using GNSS delays to determine direction of water vapour transport.
Our investigation is complemented by in situ weather stations and ERA5 reanalysis data to
validate results and provide a hydrometeorological context.

Figure 1. Topographic setting of the south-central Andes with GNSS station network location. We
have selected a subset of these stations for an analysis of water vapour transport: across the Andes in
east–west (E-W) direction (UNSA, GOLG, SRSA, and SALC) and along the Andes in north–south (N-S)
direction (UNSA, TUCU, JBAL, and CATA). UNSA, GOLG/TUCU, SRSA/JBAL, and SALC/CATA

are represented with blue, yellow, pink, and orange colours, respectively. The white line outlines
the internally drained Altiplano–Puna plateau, also called the Central Andean plateau. Black lines
are international borders (A). (B) shows enhanced vegetation index (EVI) information for the area
of interest between 2001 and 2017. The blue line points out 500 mm annual rainfall (Topographic
data obtained from ETOPO1 [18], EVI data obtained from MODIS/Terra [19], rainfall information
retrieved from the Tropical Rainfall Measuring Mission (TRMM) [20], as cited in Bookhagen and
Strecker [10]).
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2. Climatic Setting of the Study Region in Northwestern Argentina

The climatic setting of the study area in the Central Andes in northwestern Argentina is
controlled by several interfering factors. In short, these are: (1) the moisture transport from
tropical regions; (2) unstable atmospheric conditions at the boundary between tropical and
subtropical air masses; (3) the steep topographic gradient leading to orographic processes;
and (4) cold temperature excursion from the southern polar region. This leads to strong
climatic gradients in the east–west (E-W) and north–south (N-S) directions.

The conveyor belt transporting water vapour from north to south east of the Andes is
the South American low-level jet (SALLJ). The authors in Montini et al. [21] showed that
moisture transport associated with the jet is greater during summer, when the SALLJ is
influenced by warm, moisture-rich air masses from tropical South America. During the
austral summer (DJF), it mainly transports moist air from the latitudes of the Amazon
southward [22,23]. Reanalysis data show that the inter-annual variability of the jet’s
strength and frequency is significantly modulated by the El Niño southern oscillation,
especially during spring [24].

Moreover, the SALLJ is controlled by the dynamics of the SAMS. From a synoptic and
seasonal perspective, the SAMS is highly dependent on the surface temperature difference
between the ocean and surrounding land masses [23,25,26]. During the SAMS activity in
the DJF, more than 50% of annual rainfall occurs along the Andes. The same region receives
less than 10% of the annual rainfall in JJA season, which leads to distinct warm-wet and
cold-dry seasons, e.g., [17,23].

The Central Andes in northwestern Argentina are located near the end of the SALLJ
and also receive moisture from mesoscale convective systems [27–29]. To the east of the
study area exists one of the global hotspots for mesoscale convective systems. The complex
topography and interaction of unstable air masses leads to some of the heaviest rainfall and
largest cloudbursts on the South American continent, e.g., [4,6,16,30]. An additional impor-
tant component influencing heavy cloudbursts in this area is the interplay of high moisture
availability through the SALLJ and cold surges and frontal systems propagating from the
south [4,29]. This is an important process, especially in the generation of areal-extensive
heavy rainfall leading to major flooding in the eastern Central Andes and downstream
areas. Previous studies have shown that 80% of the 40 largest discharge events of the past
40 years are associated with propagating cold fronts [4]. The interplay of these factors lead
to complex rainfall patterns on the South American continent and in the study area [31].

In addition to the atmospheric conditions, the topographic setting of the study
area with deeply incised valleys funneling moisture to the higher-elevation area lead
to pronounced orographic barriers on the eastern, windward sides of the mountain
ranges [10,15,32]. The authors of Castino et al. [17] suggest three climate zones that
follow the topographic and rainfall gradient from east to west: a low-elevation and low-
slope sector, a medium-elevation sector dissected by rivers with steep hill slopes, and a
high-elevation sector with moderate to steep slopes. The climatic contrast between these
areas is large: the foreland zone receives more than 1.5 m/yr rainfall, whereas the high-
elevation areas receive less than 0.2 m/yr [10]. The intermediate elevations show high
topographic relief and force orographic lifting and convection resulting in pronounced
rainfall on the windward slopes [6,9,33]. The convective cells have lifetimes of several
hours and observations with high temporal resolution are required [23,34,35]. In addition
to the spatial and inter-annual rainfall distribution patterns, there is also an inter-diurnal
variation. According to meteorological data from Salta [36], we observe a nocturnal rainfall
peak during DJF between 21:00 and 4:00 local time [37].

3. Data

We processed GNSS and reanalysis data from ERA5 [38], and our analysis focuses
on the years between 2010 and 2021 [39]. This time frame is mainly constrained by the
availability of the GNSS data.
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3.1. GNSS Network Description

We analysed data from 23 GNSS stations listed in Table 1. A total of 16 stations are
located in northwestern Argentina, four stations in Chile, and three stations in Bolivia.
The elevation range of the station spans more than 5 km, and the network extends 450 km
in the E-W and 700 km in the N-S direction. This area is impacted by the moisture transport
associated with the SALLJ from north to south, but also the westward moisture transport
across the orographic barrier.

Table 1. Geographic coordinates of the stations that were used for water vapour analysis. The in-
stitutions that were responsible for the installation of the facilities are listed in the column Source
and are the National Geographic Institute of Argentina (Instituto Geográfico Nacional—IGN), UN-
AVCO, the University of Potsdam (UP), and the German Research Centre for Geosciences (Deutsches
GeoForschungsZentrum—GFZ). The column Analysis Centre shows where the data processing was
carried out: either at the GFZ or the Nevada Geodetic Laboratory (NGL).

Station Name Latitude Longitude Height (m) Source Analysis Centre

ABRA 22°43′19.32′′S 65°41′50.31′′W 3530.10 IGN NGL
ALUM 27°19′24.33′′S 66°35′47.86′′W 2736.94 IGN NGL
CAFJ 26°10′51.22′′S 65°52′49.17′′W 1702.36 UP/GFZ GFZ
CATA 28°28′15.54′′S 65°46′26.83′′W 547.15 IGN NGL
CBAA 22°44′46.92′′S 68°26′53.33′′W 3514.84 UNAVCO NGL
CJNT 23°01′38.96′′S 67°45′38.06′′W 5074.05 UNAVCO NGL
COLO 22°10′02.57′′S 67°48′14.32′′W 4376.93 UNAVCO NGL
GOLG 24°41′26.11′′S 65°45′38.80′′W 2381.15 UNAVCO NGL
JBAL 27°35′03.86′′S 65°37′21.89′′W 409.16 IGN NGL
LCEN 25°19′33.81′′S 68°36′09.36′′W 4270.94 UNAVCO NGL
PUNJ 24°42′46.96′′S 66°47′37.27′′W 3802.58 UP/GFZ GFZ
SALC 24°12′47.11′′S 66°19′20.83′′W 3841.62 UNAVCO NGL
SOCM 24°27′16.60′′S 68°17′42.59′′W 3969.45 UNAVCO NGL
SRSA 24°26′59.24′′S 65°57′11.85′′W 3153.80 UNAVCO NGL
TAVA 26°51′10.72′′S 65°42′36.02′′W 2036.74 IGN NGL
TERO 27°41′57.30′′S 64°10′42.17′′W 222.63 IGN NGL
TIL2 23°34′37.70′′S 65°23′42.26′′W 2517.78 IGN NGL

TRNC 26°13′48.77′′S 65°16′55.82′′W 816.08 IGN NGL
TUCU 26°50′35.71′′S 65°13′49.26′′W 485.02 IGN NGL
TUZG 24°01′53.82′′S 66°30′59.56′′W 4338.67 UNAVCO NGL
UNSA 24°43′38.84′′S 65°24′27.51′′W 1257.79 IGN NGL
UTUR 22°14′31.21′′S 67°12′19.94′′W 5184.09 UNAVCO NGL
YCBA 22°01′01.56′′S 63°40′47.94′′W 659.66 IGN NGL

The station data are maintained by different data providers, and they have been
compiled and prepared for this study. The stations CAFJ and PUNJ were installed by the
University of Potsdam (UP) and the German Research Centre for Geosciences (Deutsches
GeoForschungsZentrum—GFZ), while their observations were processed by the GFZ. All
other stations were installed by UNAVCO [40–52] and by the National Geographic Institute
of Argentina (Instituto Geográfico Nacional—IGN) [53]. The Nevada Geodetic Laboratory
(NGL) provides access to these data [54].

Due to the heterogeneous development of the GNSS network, observations do not
always overlap. Generally, the network spans the years from 2010 to 2021, but only six time
series extend through the entire range. Furthermore, all stations have undergone data loss
for limited periods of time due to technical reasons.

For the analysis of the topographic impact, we selected four stations across the central
Andes in an E-W direction (UNSA, GOLG, SRSA, and SALC, cf. Figure 1). Moreover,
four stations were chosen (UNSA, TUCU, JBAL, and CATA) perpendicular to this and
along a N-S direction. Those two subsets have one station in common, they cover multiple
years with simultaneous observations, and they reflect the diverse climate conditions of
the region. The largest elevation difference exists between the stations UNSA at 1224



Remote Sens. 2022, 14, 5427 5 of 26

m and SALC at 3799 m asl. In this research, we use these two stations to assess data
measurements from different climatic conditions. In addition, we rely on the stations
UNSA, CAFJ, and PUNJ for in situ comparisons because these are accompanied by rain
gauge sensors in short distance. The water vapour readings in those locations is directly
related to high-precision rainfall information.

3.2. ERA5 Data

We rely on ERA5 hourly data on pressure levels from 2010 to 2021 [38], and we use the
native temporal and spatial resolution (0.25°). ERA5 data span several decades, and they
are continually updated with a minimal latency of a few days. Furthermore, ERA5 analyses
37 pressure levels, reaching a height of 80 km. This way we can calculate refraction and
wind speed information, which is vital for the methodology that we follow. Finally, we
linearly resample ERA5 data (with a temporal resolution of one hour) to the 5 min temporal
resolution of the GNSS data.

4. GNSS Meteorology

GNSS meteorology is a methodology for acquiring neutral atmosphere information by
employing GNSS measurements. The primary output of this technique is the slant total
delay between the receiver and the satellite. In this section, we discuss the translation of
this product into the zenith total delay and its gradients along the E-W and N-S directions,
and subsequently, the calculation of the zenith hydrostatic delay, the zenith wet delay,
and the water vapour amount. We also describe the approach to derive the gradients of the
zenith hydrostatic and wet delay.

4.1. Slant Delay Decomposition

The atmospheric delays of the GNSS signals, both in the slant and the zenith direc-
tions, are composed of the hydrostatic (or dry) and the wet counterparts [55]. In order
to decompose the slant total delay, we project these to the vertical using mapping func-
tions. The simplest versions of the mapping functions assumes a uniform atmosphere
and mainly depends on the elevation (ε), whereas the more advanced versions take into
account azimuthal asymmetry [56,57]. The latter approximations yield significantly better
results because they better reflect the reality by introducing gradients along the E-W and
N-S directions. According to Kačmařík et al. [58], a complete expression of the observation
equation of the slant total delay can be written as follows:

Stotal = mdryZdry + mwetZwet + mgrad(GNS cos(a) + GEW sin(a)) (1)

where:
a azimuth
Zdry,Zwet zenith hydrostatic and wet delay
mdry,mwet mapping functions for the dry and wet component
mgrad mapping function of the gradient parts
GNS,GEW gradients in the N-S and E-W directions

In a later step, the water vapour is directly calculated by the slant total delay. The for-
mula for this conversion is implemented by Bevis et al. [59], and it can be written as
follows:

WV = ZwetΠ (2)

Π =
106

$Ru[(k3/Tm) + k′2]
(3)

k
′
2 = k2 −mK1 (4)
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where:
$ density of liquid water
Ru specific gas constant of water
m ratio of molar masses of water vapour and air
k1, k2, k3 physical constants

4.2. Data Processing

Because the GNSS data were not obtained from a homogenized network (cf. Section 3.1),
various software packages are used for the calculation of the zenith total delay and its
gradients. More specifically, Receiver Independent Exchange Format files are processed
with Earth Parameter and Orbit System (EPOS) [60] and GipsyX [61] software packages.
Although both programs are very robust and they rely on the same fundamentals, each
application follows its own strategy, and it is important to know the detailed differences
for a proper assessment of the analysis results.

4.2.1. EPOS

EPOS is a GNSS analysis software that was developed in the 1990s by the scientific
team of the GFZ [60]. Even though it was initially designed for space applications (e.g.,
precise orbit determination), it can be also used for terrestrial applications. More specifically,
EPOS estimates the slant total delay in near real-time mode using precise point positioning
algorithms [62,63]. For each set of epochs, the zenith hydrostatic and wet delay, and the
gradients of the zenith total delay are estimated in a least squares adjustment where the
functional model is Equation (1). Additionally, the utilized mapping function for the zenith
components is the global mapping function [64], while for the azimuthal component it is a
mapping function described by Bar-Sever et al. [57].

4.2.2. GipsyX

Gipsy is a multi-purpose navigation software that was developed in the 1980s by the Jet
Propulsion Laboratory [61]. Its last version is GipsyX and it does not only allow for GNSS
data processing, but for other space geodetic techniques, such as satellite laser ranging and
Doppler orbitography and radiopositioning integrated by satellite. The processing strategy
of the GNSS data is similar to EPOS. The only difference is that GipsyX employs the Vienna
Mapping Function 1 [65,66] instead of a global mapping function [54,61].

4.3. Ray Tracing

To obtain a signal delay while propagating through the atmosphere, we adopted the
geometrical optics approximation. First, we calculated the index of refraction based on
hourly ERA5 data on equiangular 0.25° grids up to the maximum height of 80 km; we rely
on pressure, geopotential height, temperature, and specific humidity of all ERA5 levels.

To perform ray tracing, we adopt a variational approach (Euler–Lagrange equations)
employing an implicit finite difference scheme [67–69]. The atmospheric delays are calcu-
lated by integrating refractivity along the ray path. The ray-traced delays describe how
atmospheric delay varies with elevation and azimuth. Because it is not practical to employ
geodetic observations, delay is often described as a continuous function of elevation and
azimuth as shown in Equation (1). The weather model-derived zenith delays and gradients
are comparable to those from space geodetic data analysis.

While zenith delays are not affected by the choice of the parametric model describ-
ing directional delay variations, the gradient components that describe azimuthal delay
variations do. In particular, the choice of the scheme describing the elevational decay
of the asymmetric delay with increasing elevation is crucial. Although the latest Inter-
national Earth Rotation Service [70] recommends a first-order continued fraction form
for sin(ε) cot(ε) ((sin(ε) tan(ε) + 0.0032)−1) [56], it is popular to use a gradient mapping
function that involves the wet mapping function (mwet cot(ε)) [57]. As demonstrated in Bal-
idakis [71] and Kačmařík et al. [58], these two sets of gradients are incompatible, and they
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cannot be accurately transformed to be used with other gradient mapping functions. Be-
cause the latter gradient mapping function has been adopted during the estimation of
first-degree gradient components employing GipsyX [54] and EPOS [60], we adopt consis-
tent elevation-decay modelling to estimate gradients from our ray-traced delays. That is,
in the station- and epoch-wise least squares adjustment of ray-traced delays, we constrained
the estimates of the dry and wet symmetric mapping function to the values given by the
gridded version of Vienna Mapping Function 1 so that we may directly compare ray-traced
gradients with GNSS-derived gradients.

5. Analysis Methods

We performed spatio-temporal analyses by applying several methods: First, we identi-
fied temporal correlations between GNSS time series through k-means clustering. Second,
we used spectral analysis to identify recurrence of specific event magnitudes. Third, we
related GNSS-based water vapour observations with rainfall measurements for several
in situ meteorologic stations, and we analysed the frequency–magnitude distributions of
water vapour and rainfall. Furthermore, fourth, we determined latitude moisture transport
through zenith delay gradient measurements.

5.1. K-Means Clustering of GNSS Time Series

We used k-Means clustering of monthly averaged water vapour measurements to
group similar station data. More specifically, we employed the TimeSeriesKMeans algo-
rithm within the Tslearn library [72], which is especially implemented for time series. Using
this algorithm, we relied on Euclidean distances, because the seasonal meteorological of
various locations data differ in amplitude and not in frequency, and they are not subject
to time shifts. We set the number of clustering classes to three, because the topographic
and climatic setting creates three zones in low-, medium-, and high-elevation areas [17] (cf.
Figure 1 and Section 2).

Due to the lack of simultaneous and overlapping observations (cf. Figure 2), the clus-
tering for all years cannot be realized. Instead, we selected only the measurements from
20 stations during 2014, when there were no major data interruptions. Even though this
is a fraction of the available data, it is adequate for the classification because it covers an
entire annual cycle, and the selected stations are distributed over various altitudes along
the E-W and N-S cross-sections.

5.2. Spectral Analysis

The GNSS water vapour signal was generated by overlapping periodic oscillations
and we decomposed the signals by analysing their spectral behaviour. The annual time
series depict the water vapour observations in a low- (UNSA) and a high-altitude (SALC)
station during 2012 with a daily temporal resolution (Figure 3). In this characteristic
overview, one can clearly identify the annual oscillation in both stations. Moreover, there
are shorter oscillations with frequencies of about one week, which correspond to the
synoptic-scale water vapour cycles in the atmosphere. We also show the 5 min water
vapour time series illustrating the sub-daily cycles for two periods in summer and winter.
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Figure 2. Temporal coverage of the stations used in this study. Blue areas indicate times with
data availability.

Figure 3. Top: Water vapour observations with 1 day sampling rate for the UNSA and SALC stations
during 2012. Bottom: Detailed view with 1 h sampling rate during two incidents in February (A) and
July (B) 2012. The panels have a different scales in their y-axes because of the contrasting water
vapour levels during the wet and dry season and their different temporal resolutions.

The frequency domain analysis is accomplished by generating 3D graphs of the signal
responses at various frequencies over time (or spectrograms) with a series of Fourier
transforms [73,74]. Considering the non-simultaneous observations at all stations, we
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selected data between 2010 and 2014, when the stations along the E-W and N-S cross-
sections were functional. We set the sampling window to seven days because it is aligned
with the period of the synoptic events, and we forecast data discontinuities smaller than
two weeks using the Prophet algorithm. This approximation employs an additive model
that is sensitive to periodic fluctuations. It decomposes the signal into a trend, seasonality,
and irregular occurrences, and it does not require regularlyspaced data as input [75].

For the next step, we quantified the spectral signals. Transient water vapour variations
y were approximated as the sum of four different signal groups:

y = yp + yh + ya + yn (5)

where yp, yh, ya, and yn indicate the polynomial term, the harmonic variations, the synoptic
term, and the noise, respectively.

The polynomial counterpart (yp = ∑i xiti) is time (t) dependent, and it yields largely
non-significant estimates for coefficient terms i > 1. It will not be discussed herein given
the relatively short data duration. The harmonic variations that are of main interest are
described as follows:

yh(t) = ∑
j

Aj cos
(
χj(t)− φj

)
(6)

where j is a certain wave with a particular frequency, Aj denotes the amplitude, φj denotes
the phase, and χj denotes the astronomical argument. To build the latter, we adopt Doo-
dson multipliers from Hartmann and Wenzel [76]. We estimate in-phase and quadrature
components for all waves whose speed spans from the Nyquist frequency to one cycle per
half-time series length, making sure that the Rayleigh criterion is fulfilled for all possible
pairs, while water vapour features marked modulation in certain spectral lines (e.g., S1
and S2) it is not explicitly considered, because the purpose of the this step is the estimation
of the power spectral density (PSD) of the post-fit residual time series, and eventually to
perform a scaling analysis using power-law fitting [77]. We refer the interested reader to
Balidakis et al.[78] and the accompanying supplementary material for further details on
the estimation of harmonic amplitudes from meteorological time series. We prefer this
approach to adopting a bandstop filter (as in [79]) because the gap filling strategy may
introduce artificial spectral signatures. A power-law distribution is suitable for describing
natural phenomena because we assume that the probability of an event is inversely propor-
tional to the power of its magnitude as it has been documented in several other natural
science datasets, e.g., [80].

To estimate the PSD given the water vapour post-fit residuals, we utilize the multitaper
method, e.g., [81]. Two sets of data are employed: raw post-tidal-fit residuals with their
uncertainty estimates and a normalized version of the former by its standard deviation
to facilitate the direct comparison of the PSD estimates from several data types stemming
either from the weather model (ERA5) or the GNSS observations themselves. The moti-
vation behind employing post-fit residuals instead of the raw water vapour time series
is that the sharp spectral lines at frequencies associated with radiative forcing (Sa and S1,
as well as overtones thereof) bias the estimation of the spectral indices in the power-law
approximation of the PSD.

5.3. Water Vapour and Rainfall Relation

We analysed the relation between liquid precipitation and water vapour to better
understand their relation. The magnitude of water vapour varies throughout the season
and during rainstorm events, but water vapour is always present in the atmosphere. On the
other hand, rainfall occurs during events or in the form of episodes, when water vapour
reaches the peak relative humidity level (100%), and it forms water particles in various
forms [82]. In an initial analysis, we selected all daily averaged water vapour values that
exceed the 90th percentile and the corresponding daily summed rainfall, and we analysed
their relationship in a power-law framework. This data subset also includes zero-rainfall
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days and we exclude those epochs from the power-law relation analysis. We repeated the
analysis by selecting daily rainfall exceeding the 75th percentile and the associated daily
averaged water vapour, and we examined the relationship of their linearly binned readings
in a quantile–quantile (Q-Q) plot. For this comparison analysis, we selected the UNSA,
CAFJ, and PUNJ stations for the period between August 2019 and July 2021. UNSA is a
long-term station, and the other two sites were specifically installed for this study. All three
stations are accompanied by in situ rain-gauges.

5.4. Latitudinal Moisture Gradient Transport

In order to better understand the dynamics of the moisture transported by the SALLJ
and the impact of the strong orographic effect in our study area, we examined the zenith
wet delay gradients (or wet gradients). In order to detect correlation between wind vectors
and wet gradients, we firstly plotted their azimuthal distributions. We removed potential
wind shear effects with the surface by only considering pressure levels exceeding the
altitude by 1 km above the surface. Subsequently, we focused on the variation of the wet
gradients per epoch. We analysed the seasonal distributions and, apart from the number
of events per azimuthal segment, we also showed the 90th to 50th percentile ratio for
the corresponding segment. This assessment assists us in the detection of the directions
towards which the strongest—compared to the median average—events take place. Those
occurrences indicate large increases in the zenith wet delay gradient that points in the
direction of incoming moisture. Finally, we selected zenith wet delay gradient readings
for the corresponding epochs, when the greater 75th percentile rainfall amount occurs.
According to those epochs, we plotted the azimuthal distributions of the wet gradients to
detect key directions. Similarly to the previous step, we used the stations UNSA, CAFJ,
and PUNJ because they are complimented by precise rainfall data.

6. Results

In this section, we present the results for each analysis method following the same
order as in Section 5.

6.1. K-Means Clustering of GNSS Time Series

Our k-means clustering analysis shows that the separation of the water vapour time
series into three classes divides them according to their geographic position and seasonality
(cf. Figure 4). The clustering is based on mean monthly time series and their seasonal
gradients determine the cluster generation. The time series of the highest seasonal ampli-
tude (cluster 3) shows an oscillating signal with a central value 27.5 mm and an amplitude
of 12.5 mm. The baseline of cluster 2 is shifted by 10 to 15 mm. Cluster 1 represents the
stations with the lowest seasonal amplitude.

Figure 4. Results of clustering the water vapour readings showing all time series within a cluster
with daily temporal resolution (A), but station clustering was performed on mean monthly values
shown in (B). (B) shows individual mean monthly values along the topographic gradient exemplified
for UNSA at 1224 m, GOLG at 2343 m, and SALC at 3799 m asl station elevation.
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We observe the highest values in the austral summer during the SAMS seasons
(January and February), whereas the lowest values take place in June. Moreover, October
yields high magnitudes—in both the daily and mean monthly water vapour time series—
followed by a slightly lower magnitude in November for 2014.

The map view of the station clusters show their expected geographic separation
(cf. Figure 5). We emphasize that the clustering did not take into account the spatial
location, but only the time series data. We separate stations by elevation and climatic
conditions and use the 500 mm annual rainfall contour.

Figure 5. Map view of the clustered stations using the monthly mean values during 2014. Circle
colours are similar to Figure 4. The stations with elevations up to 1225 m asl are located in the foothill
zone (blue points), the sites with elevation between 2000 m and 2700 m asl are located in the transition
zone (yellow points), and almost all stations above 3115 m asl are situated on the Altiplano–Puna
plateau (red points). (Topographic data obtained from ETOPO1 [18], rainfall information retrieved
from Tropical Rainfall Measuring Mission (TRMM) [20], as cited in Bookhagen and Strecker [10]).
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6.2. Spectral Analysis

We analysed the spectrograms for all stations along the E-W and N-S directions
(Figure 6). In our analysis, we only evaluated periods up to seven days, because this is the
maximum range of the analysis window. The comparison between the UNSA, GOLG, SRSA,
and SALC stations shows that the response strength is inversely proportional to the altitude.
On the other hand, the stations along the N-S direction show a relatively homogeneous
signal. Moreover, there is a notable difference in magnitude between the weaker winter and
stronger summer signals. We also observe a diurnal signal independently of the station.

Figure 6. Spectral analysis of the stations along the E-W and N-S directions (Altitude asl:
UNSA—1224 m, GOLG—2343 m, SRSA—3113 m, SALC—3799 m, TUCU—456 m, JBAL—381 m,
and CATA—518 m; cf. Figure 1 and Table 1 for station location). A seven-day sampling window
was used.

In Figure 7, we observe the PSDs of the UNSA and SALC stations. In addition,
we highlight the power responses of the annual (An), semi-annual (S-An), monthly (M),
weekly (W), and diurnal (D) periods. The strongest power signals at both stations are
the annual, semi-annual, and diurnal periods. In a next step, we compare power signal
strength between the stations: the higher elevations show significantly lower power for
lower frequencies, in some cases, by one order of magnitude. The only exception is the
half-year period, which is relatively higher in the SALC station.
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Figure 7. Power spectral densities (PSDs) of the low-elevation UNSA (upper panel) and the high-
elevation SALC stations (lower panel). The thick and light-coloured lines represent the raw PSDs,
while the thinner lines show the filtered values.

We note that the stations along the N-S cross-section are relatively homogeneous, while
the stations along the topographic gradient alter significantly (Table 2). The decrease in the
amplitude is at the level of 70–80%, which is in accordance with the observations made in
Figure 6. In terms of the lower power signals, it appears that there is no physical relationship
between those periods and the data series. Moreover, the normalized amplitudes show
homogeneous behaviour for the daily and semi-annual signals, but we observe a decrease
in the annual cycle at higher altitudes.

Table 2. Amplitude estimation of various harmonics for the stations along the E-W and N-S profiles.

Period
Absolute and Std.-Normalized Amplitude (mm/−)

UNSA GOLG SRSA SALC JBAL TUCU CATA

1 day 1.85/0.19 1.82/0.25 1.44/0.26 0.54/0.14 1.63/0.14 1.90/0.16 0.83/0.18
1 week 0.30/0.03 0.08/0.01 0.05/0.01 0.11/0.03 0.37/0.03 0.54/0.05 0.53/0.05

1 month 0.51/0.05 0.43/0,06 0.32/0.06 0.24/0.06 0.94/0.08 1.27/0.11 0.68/0.06
6 months 10.13/1.01 7.22/1.00 5.39/0.97 3.12/0.80 11.77/0.99 11.73/0.98 10.16/0.96

1 year 21.86/2.19 12.60/1.74 7.99/1.44 4.89/1.25 27.55/2.31 28.22/2.37 23.37/2.22

The power-law fitting of the binned filtered PSDs signals show a general agreement
between the behaviours of the two stations (cf. Figure 8). The power-law exponents are
comparable, but their roll-over magnitudes differ. With the exception of the low-magnitude
spectrum, the log-binned datasets match well with this distribution. The estimated alpha
values for UNSA and SALC stations are 1.50 and 1.46, respectively. Taking into account
the power-law exponents, their standard deviations, and the degrees of freedom (18),
the t-score equals 2.898. This value is lower than the threshold point of a t-distribution
with a confidence interval of 99.9%, and we can assume that the two lines have comparable
power-law slopes. Because of the different seasonal magnitudes of these two stations, we
expect different roll-over magnitudes.
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Figure 8. Power-law fitting of the filtered PSDs of the UNSA and SALC stations. The dots indicate
the input data that are logarithmically binned using 20 classes. The power-law exponent is described
by α, and both exponents are comparable within their standard deviations. The fitting is constrained
by the minimum value (xmin) that corresponds to the point/bin, where the frequency magnitude
starts to decrease.

6.3. Water Vapour and Rainfall Relation

We analysed the differences between power-law fits and water vapour and rainfall
amount (Figure 9). For our analysis, we filtered the greater than 90th percentile daily mean
water vapour values, and we selected the cumulative rainfall readings for the corresponding
days. The water vapour series suggest that a power-law distribution is appropriate for
modelling the log-binned observations. The exponent (α), which describes the slope of the
line, is similar for the low- and medium-elevation stations, but it changes significantly for
the high-elevation stations on the Altiplano–Puna plateau. On the contrary, the maximum
value (xmax), which is related to the shift of the slope on the x-axis, is negatively correlated
with the altitude. With respect to the rainfall values, we observe that the differences
between the slopes are less pronounced, and the PUNJ station shows a slightly steeper
relation. This indicates a lower variation between the rainfall events in the UNSA station.
Even though there is a trend of heavier events in lower altitudes, the CAFJ time series
yields lower peak values than the higher-elevation PUNJ station. We observe that the
standard deviations of power-law exponents for the water vapour and rainfall relation
varies: exponent uncertainties are large for water vapour relation and uncertainties are
reduced to 8–22% for the rainfall relation (Table 3).
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Figure 9. Power-law fitting of greater than the 90th percentile daily mean water vapour values (left)
and the cumulative rainfall for the corresponding epochs (right) of the UNSA, CAFJ, and PUNJ
stations. In both cases, the inputs (white dots) are grouped into 20 bins using a logarithmic scale.
The minimum value (xmin) for the water vapour modelling was set to the lowest-magnitude bin,
whereas the daily sums lower than 0.01 mm were omitted for the rainfall fitting.

Table 3. Statistical attributes for α and its standard deviation and xmax of the power-law fitted lines
in Figure 9.

Station Name Water Vapour Rainfall
α xmax α xmax

UNSA 12.05 ± 5.68 45.0 1.23 ± 0.10 72.40
CAFJ 10.56 ± 4.89 36.0 1.26 ± 0.17 15.90
PUNJ 5.94 ± 2.64 14.0 1.41 ± 0.31 46.40

In the next step, we reverse the reference dataset, and we examine the relation between
rainfall and their corresponding water vapour values. We exemplify this by selecting the
75th percentile cumulative rainfall events on daily basis and their corresponding mean
water vapour values during those epochs. Taking into account the non-continuous presence
of this scalar, we set a lower percentile threshold in order to retrieve sufficient data from
all stations.

While we do not observe a relation between all rainfall events and water vapour
amounts, we detect certain location-related tendencies when comparing stronger rainfall
events and water vapour (cf. Figure 10). The scattering in the y-axis is broader in the
lower-elevation stations. On the other hand, the spreading in the x-axis follows the same
trend but at a lower rate. However, the relations are very dynamic, and they cannot be
described by a linear function.
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Figure 10. Quantile–quantile (Q-Q) plots of the greater than the 75th percentile daily-summed rainfall
against the corresponding daily mean water vapour values of UNSA, CAFJ, and PUNJ stations.
The lower number of measurements (epochs) in the higher-altitude stations is explained by the lower
frequency of rainfall occurrences.

6.4. Zonal Moisture Gradient Transport

We compared the calculated zonal moisture gradient with ERA5-derived wind vectors
(Figure 11). We observe annual wet gradients pointing in the general moisture directions
to the north-west for UNSA and to the east for the high-elevation PUNJ station. This
corresponds to the main wind direction for UNSA, which is toward the south-west. The ob-
served eastward wind speeds in PUNJ are much higher, and they reflect the generally
higher wind velocities following a high-to-low elevation gradient.

Figure 11. Azimuthal and magnitude distributions of the wet gradients and wind vectors of the
UNSA and PUNJ stations. Wet gradients show the direction of moisture from the station location and
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wind vectors show direction of wind transport. The azimuths are separated into 12 angular bins of
30°, and the magnitudes are arranged into five non-equal-width classes, in order to better illustrate
distinct features for each station. The radius of the major influence is approximately 20 km. The wind
directions are calculated from ERA5 hourly data on pressure levels [38] by extracting the median
wind components between the station and the pressure level of 200 hPa. Because of the wind surface
friction, the first km above the station is ignored. In both datasets we utilize a temporal resolution of
5 min, and the temporal coverage is adjusted to the shorter extent of the GNSS measurements.

We performed a seasonal analysis of wet gradient directions to highlight their strong
seasonal dependence (Figure 12). For the low-elevation UNSA station located in the SALLJ
we observe two peaks, and the majority of the azimuths point either to the east (90°) or to
the west (270°) during austral spring/summer and fall/winter, respectively. During the
fall season, there are higher values pointing to the west, which is reversed in the spring.
The high-elevation PUNJ station shows different patterns: there is a peak azimuth direction
from the north-east (45°) to the south-east (135°) throughout the year.

Figure 12. Azimuthal distribution of monthly-based wet gradients for the UNSA and PUNJ stations.
Seasons are given as austral seasons (i.e., Summer is DJF), and the angular bins are defined as in
Figure 11. The events indicate the number of hourly-sampled wet gradients that occur for each
angular bin during each month.

Subsequently, we examined the ratios between the 90th to 50th percentile for all
directions and seasons (Figure 13). In other words, we normalized the 90th percentile
values by their medians and show the relation to the higher percentile: if the ratio is
high, the 90th is much higher than the median. This analysis focuses on the wet gradient
hotspots that are significantly larger than the mean, both in the spatial and temporal
domain. Those occurrences are particularly interesting, because they indicate changing
boundary conditions fluctuations. The ratios are high for the UNSA station and suggest a
wide directional range. The PUNJ station shows a more homogeneous signal. There are no
significant intra-seasonal variations of the distribution of the wet gradients in both cases.
We also observe that moisture–gradient ratios vary by their directions. At the low-elevation
UNSA station, the largest ratios occur during the summer and are directed towards the
east-north-east (15° to 75° azimuth).

In the last step, we analysed the wet gradient direction during rainfall events exceeding
the 75th percentile rainfall amount (Figure 14) in order to focus on those episodes. We
observe that moisture gradients during rainfall events are spread out with a dominant
direction from the south-east. In contrast, the high-elevation PUNJ station only shows
five main direction that reflect local topographic shielding patterns and main moisture
directions. We note that the majority of the events point towards the east in an azimuth
range between 105–165◦ and 15–135◦ for UNSA and PUNJ, respectively.
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Figure 13. 90th to 50th percentile ratio of the wet gradients for the UNSA and PUNJ stations.
The temporal and azimuthal separation is done similarly to Figures 11 and 12. The percentiles are
extracted from the hourly averaged observations that occur in each directional and seasonal segment.

Figure 14. Summer season wet gradients for the larger than the 75th percentile rainfall events for the
UNSA and PUNJ stations. The seasonal and azimuthal segmentation coincides with Figures 11–13,
and the rainfall events are identified by the cumulative rainfall on 1 h basis that is measured with in
situ rain gauges.

7. Discussion

The discussion follows the same organization of the Results sections.

7.1. K-Means Clustering of GNSS Time Series

We analysed the time series of the monthly water vapour during 2014 (Figure 4).
The results of the clustering and the spatial water vapour distribution show the impact
of topography and climate: the higher-elevation stations with low seasonal amplitudes
are located on the arid Altiplano–Puna plateau, and the low-elevation densely vegetated
areas are characterized by high seasonality. The transitional zone between these two end
members shows an intermediate behaviour. This finding confirms our initial hypothesis and
previous observations that orography plays a significant role on the local climate [10,32].
We further calculated the water vapour readings of UNSA at various altitudes, and we
directly compare them with other stations (Figure 15). According to [83,84], the water
vapour of a site can be projected to a higher altitude with the following equation:

wv = wv0 exp
C2∆h
1000

(7)
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where C2 is a constant equal to 0.439, and ∆h is the height difference in meters.

Figure 15. Projection of the mean monthly water vapour values of UNSA station (1224 m asl) at
higher altitudes for the direct comparison of the readings with actual measurements at those points.
UNSA’ is the water vapour content at the corresponding height of the GOLG station at 2343 m asl,
and UNSA” corresponds to the SALC station at 3799 m asl. In most cases, the water vapour contents
at UNSA at the corresponding heights are higher than at the measured station.

Additionally, all stations show a seasonal signal, independent of altitude, and we
observe a near-continuous signal from austral winter to spring (September to Novembckr).
In order to examine this signal, we plot the monthly means over a longer period (Figure 16).
The transitional seasons are characterized by larger 1 sigma standard deviations and show
a larger variability in atmospheric water vapour.

Figure 16. Mean monthly water vapour values for the stations along the topographic gradient from
low to high elevations (cf. Figure 4). We analysed water vapour readings from 2010 to 2021 derived
from ray tracing that only utilizes ERA5 meteorological data on pressure levels [38]. The semi-
transparent colouring indicates the per-month standard deviation.

7.2. Spectral Analysis

We compare the signal responses at various frequencies of the GNSS-derived water
vapour estimates against the ERA5 reanalysis data (Figure 17). We observe similar be-
haviour between the two spectrograms, which indicates high coincidence in the seasonal
signals. In addition, the majority of the relative differences are less than 1%, showing that
the GNSS observations are equally reliable. One advantage of GNSS data is that they can
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achieve a significantly higher temporal resolution of five minutes, and detect features in
this region on short time scales. In contrast, the reanalysis or mesoscale models have a
temporal resolution of one hour and capture synoptic-scale processes.

Figure 17. Left: Spectral analysis of the station along the E-W and N-S directions using a seven-day
sampling window. This figure can be directly compared to Figure 6. In this case, we employed the
ray-tracing derived water vapour using only meteorological information from ERA5 hourly data
on pressure levels [38], instead of the GNSS-derived water vapour. Right: Difference in relative
response power between the spectrograms of the GNSS- and the ERA5 ray-tracing derived water
vapour series.

The spectral behaviour of the water vapour shows that all signals are primarily tuned
at the annual, semi-annual, and diurnal periods, which correspond to the seasonal cycles
of the moist air masses. The shape of the signal affects the ratio between period responses.
In the case of the higher-elevation stations, the semi-annual periods are pronounced. This
is due to the flattening of the water vapour series, which leads to a time series that can
be better characterized by a harmonic equation with two oscillations. The water vapour
values of the lower-elevation stations are reflected both in the spectrograms and the PSDs,
showing the influence of the topography on the regional climate. Lastly, the frequency–
magnitude relation of the filtered PSDs reveals relatively analogous responses to the
seasonal fluctuations, regardless of location (cf. Figure 8).

7.3. Water Vapour and Rainfall Relation

The power-law fitting of the water vapour observations reveals higher values in lower
altitudes on the one hand and a lower decay ratio for the PUNJ station. The prior is ex-
pected, and it has been noted in the previous sections (e.g., Figures 3 and 4). The latter is
interesting, and we note that the high-percentile readings are more equally distributed in
this station. Additionally, the fitting of the rainfall readings demonstrates that strong events
will also take place at high elevations, but less frequently. However, this interpretation is
not well applicable to the CAFJ station, because this station is part of an inter-mountain
valley; thus the lower cloud coverage results in different temperature conditions. The high
standard deviations of the exponents indicate skewed datasets that diverge significantly
from a normal distribution. Despite the high uncertainty of the water vapour fitting, we
observe clear trends. The Q-Q plots also show that extreme rainfall events are observed
at high elevations, but they occur in a narrower water vapour peak range. This demon-
strates the direct relationship between the required amount of water vapour to produce
atmospheric saturation and the elevation. Additionally, the saturation is also dependent on
the tropospheric temperature above the examined locations. In this case, there is a notable
difference because of the within-the-layer temperature decrease along the altitude and the
complex terrain that impacts cloud coverage.
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7.4. Zonal Moisture Gradient Transport

We observe that the wind directions in the low-elevation stations are associated with
the SALLJ and show moisture transport from the north-east and east towards the southerly
directions (cf. Figure 11). Wind directions on the Altiplano–Puna plateau show only a
minimal correlation with the SALLJ. There is a large difference in the wind speed between
the low- and high-elevation stations, because the measurements do not take place at the
same height. When considering a fixed pressure level (e.g., 500 hPa), the wind speed is
homogeneous over the area. The distribution of the per-season-separated wet gradients
shows dominant patterns for every station that slightly change through the year. This
suggests a major influence of the topography and the altitude.

The higher 90th to 50th percentile ratios of the wet gradients in the low-elevation
station are associated with the SALLJ that transports moist masses over the foothill zone of
the south-central Andes. Moreover, the direction of the strongest occurrences (in terms of
ratio) in this station (east-north-east) reveal important information. This is the direction
of the topographic barrier which intersects with the SALLJ. The analogy between the
wet gradients and the most intense rainfall occurrences suggests that most rainfall events
reaching Salta are transported across the orographic barriers to the east and south-east of the
city. In conjunction with our prior findings, this indicates good correlation between the wet
gradients and the location of the wet air masses. Moreover, some rainfall events occur in the
opposite direction, pointing to the orographic barrier west of Salta (cf. Figures 12 and 18).
For the arid PUNJ station, we observe weaker wet gradients, but a strong correlation with
topography. The correlation is pronounced because gradient generation is only triggered
by the moisture transport on topographic barriers.

Figure 18. Topography setting of the low-elevation UNSA (1224 m asl) and high-elevation PUNJ
(3760 m asl) stations. The dark- and light-blue circles show the area of influence of the 50th and
90th percentile of the water vapour above each site, respectively. The black vectors indicate the
main moisture directions associated with high rainfall, as calculated in Figure 14. Topographic data
obtained from ETOPO1 [18].

8. Conclusions

In this study, we have used GNSS time series data to better understand the climatic
dynamics of the central Andes in northwestern Argentina. We have compiled 23 GNSS
observations from 2001 to 2021 and have installed two GNSS stations that collected data
between 2019 and 2021. The GNSS signal is used to measure water vapour content in the
atmosphere at high temporal resolutions of 5 min. We use these data to make the following
key observations:

(1) The GNSS time series data show distinctive climatic behaviour for the Central
Andes that was analysed using a clustering analysis: GNSS stations from the low-elevation
area in the pathway of the SALLJ show similar behaviour and cluster into the same group.
Stations from intermediate elevations at the transition from low- to high-elevation areas
show a distinctive signal and cluster into the same group. Stations from the high elevations
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located on the Altiplano–Puna plateau behave similarly and have the lowest absolute (not
relative) seasonal component.

(2) A frequency analysis depicts the seasonal signals, and it illustrates the impact of the
orographic uplift. The annual, semi-annual, and diurnal periods can be clearly identified,
but there are also spectral differences across the time series. The most prominent variations
between the stations are found in the magnitude of the water vapour levels, where the
readings are inversely proportional to the station elevations.

(3) The association between water vapour and rainfall reveals a general correlation
of stronger water vapour amounts. We observe that high water vapour episodes are less
frequent at higher altitudes, but strong events still occur. We note that the rainfall–water
vapour relation varies along the topographic gradient. At lower altitudes, rainfall occurs
across a wide water vapour peak range. In contrast, at high elevations only a narrow band
of water vapour amounts can be associated with rainfall events.

(4) We have used wet gradients to identify moisture transport for two sites: the
low-elevation UNSA station at 1224 m and the high-elevation PUNJ station at 3760 m.
The wet gradients allow us to document that local topographic effects strongly impact
the characteristics of the GNSS and hydrologic stations. Even though the moisture fluxes’
magnitude is subject to the circulation of the SALLJ and the mesoscale convective systems,
nearby topography controls the circulation of atmospheric water vapour and controls the
moisture pathways.

In comparison to reanalysis data, there are several advantages of GNSS meteorology
techniques: a good accuracy of water vapour measurements, the ability to measure water
vapour in three dimensions, and the high sampling rate of seconds to minutes. A network
of homogenized and reliable GNSS stations will allow for an improved weather prediction.
The National Geographic Institute of Argentina continuously operates a GNSS network
that is very dense in urban zones, but lacks facilities in remote areas. Considering the
ability of GNSS to measure the atmospheric moisture gradient, the aggregation of more
stations and the integration of those data into meteorological applications would allow for
short-term predictions of heavy rainfall, and would improve the weather prediction. This
knowledge may help in reducing the damage from natural hazards, and it would benefit
the agriculture sector, which is crucial for the local economy.
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EPOS Earth Parameter and Orbit System
EVI enhanced vegetation index
E-W east–west
GFZ Deutsches GeoForschungsZentrum (German Research Centre for Geosciences—ger)
GNSS global navigation satellite system
GPS global positioning system
IGN Instituto Geográfico Nacional (National Geographic Institute of Argentina—sp)
NGL Nevada Geodetic Laboratory
N-S north–south
PDF probability density function
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Q-Q quantile–quantile
SALLJ South American low-level jet
SAMS South American monsoon system
UP University of Potsdam
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