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mappings and also give bounds for the associated Lipschitz moduli. The situation for the
dual shows much more involved than the case of the primal problem.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

This paper deals with the following linear optimization problem

P : Sup ⟨c∗, x⟩

s.t. ⟨a∗

t , x⟩ ≤ bt , t ∈ T ,
x ∈ Q ,

(1)

where T is an arbitrary index set, possibly infinite, Q is a convex cone in a real Banach space X, c∗ and a∗
t , t ∈ T , belong to

the topological dual of X , denoted by X∗, and bt , t ∈ T , are real numbers. P is an infinite-dimensional optimization problem
with possibly infinitely many linear inequality constraints (depending on the cardinality of T ).
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Problems of this type have relevant applications in science and technology. A number of them are reported in [1,2], where
the reader can find comprehensive overviews of infinite-dimensional and semi-infinite optimization, respectively. See also [3],
which is confined to the so-called continuous problem (when the index set T is a compact Hausdorff space and the functions
t → a∗

t and t → bt are continuous).
We assume that Q is closed and that the set {a∗

t , t ∈ T } ⊂ X∗ is fixed, arbitrary, and bounded for the dual norm in X∗

defined by

‖x∗
‖ := sup


⟨x∗, x⟩ : ‖x‖ ≤ 1


.

(If no confusion arises, we use the same notation ‖ · ‖ for the given norm in X and the corresponding dual norm in X∗.)
As a consequence of the boundedness assumption and the generalized Cauchy–Schwarz inequality, we have that, for

every x ∈ X ,

⟨a∗

(.), x⟩ ∈ ℓ∞(T ),

where ℓ∞(T ) is the real Banach space of all bounded functions on T with the supremum norm

p ∈ ℓ∞(T ) → ‖p‖∞ := sup
t∈T

|pt |.

The subscript∞ in the norm symbolwill be omitted if no confusion arises.When the index set T is compact and the functions
a∗

(.) are continuous on T , we may substitute ℓ∞(T ) by the space C(T ) of continuous functions over a compact set.
By means of the linear mapping A : X → ℓ∞(T ) defined as Ax := ⟨a∗

(.), x⟩, the problem P can be reformulated as

P : Sup ⟨c∗, x⟩

s.t. Ax ≤ b,
x ∈ Q .

(2)

Here b =

bt

t∈T . Thanks to the boundedness of {a∗

t , t ∈ T }, the linear operator A is bounded, and so continuous, as

‖A‖ = sup
‖x‖≤1

‖Ax‖ = sup
‖x‖≤1

sup
t∈T

|⟨a∗

t , x⟩| ≤ sup
‖x‖≤1

sup
t∈T

a∗

t

 ‖x‖ = sup
t∈T

a∗

t

 .

If X is reflexive, associated with each t ∈ T , there exists some xt ∈ X such that ‖xt‖ = 1 and satisfying ⟨a∗
t , xt⟩ =

a∗
t

; this
fact leads to ‖A‖ = supt∈T

a∗
t

.
The problem P is called primal as it has an associated dual problem D defined as follows:

D : Inf ⟨µ, b⟩

s.t. A∗µ ∈ c∗
− Q ◦,

µ ≥ 0,

where µ ∈ ℓ∞(T )∗, A∗
: ℓ∞(T )∗ → X∗ is the adjoint operator of A, i.e.

A∗µ, x

= ⟨µ, Ax⟩ , for every µ ∈ ℓ∞(T )∗ and every x ∈ X,

and Q ◦ is the dual cone of Q

Q ◦
:= {q∗

∈ X∗
: ⟨q∗, q⟩ ≤ 0 for all q ∈ Q }.

This dual problem falls in the duality model introduced by Kretschmer in [4] and it is developed here at an intermediate
level of generality between the approaches in [5,6]. Anderson and Nash have given a detailed account of this theory in
[1, Chapter 3]. In fact, our pair of dual problems P and D are particular instances of problems IP and IP∗ in [1, pp. 38 and 39],
respectively. Here, A is a continuous linear mapping between X and ℓ∞(T ) with respect to the norm topologies, but
Proposition 5 in [1, p. 37] applies to guarantee that our dual pair falls in the model studied in the book [1, Section 3.3].
Actually, the theory in [1, Section 3.3] is built on a reflexive context (dual pairs of vector spaces), but the reflexivity is required
only to guarantee that the dual of the dual problem IP∗, i.e. IP∗∗, is identical to IP . Therefore, the reflexivity assumption has
no influence in the arguments used in the proofs when this second dual IP∗∗ is not involved.

The dual objects we study in the paper are the associated feasible sets

FP :=

x ∈ X : Ax ≤ b and x ∈ Q


,

and

FD :=

µ ∈ ℓ∞(T )∗ : A∗µ ∈ c∗

− Q ◦ and µ ≥ 0

,

the optimal values

vP := sup
x∈FP


c∗, x


and vD := inf

µ∈FD


µ, b


,
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and the optimal sets

{x ∈ FP : ⟨c∗, x⟩ = vP} and {µ ∈ FD : ⟨µ, b⟩ = vD},

respectively.
P (D) is said to be consistent if its feasible set is nonempty; similarly, it is said to be solvable if its optimal set is nonempty.
The aim of this paper is to provide characterizations of the Lipschitzian stability of feasible solutions for both the primal

and the dual problem in this infinite-dimensional setting. We do not require X to be reflexive. For the primal problem, we
describe a formula for the associated Lipschitz modulus (Theorems 7 and 8) and for the dual problem, we give bounds for its
Lipschitz exact bound (Theorems 18 and 19); the situation for the dual is much more involved than the case of the primal
problem. In doing this, we use the standard tools from variational analysis as the notion of coderivative and its norm, and
their relationship with the exact bound of the Lipschitzian moduli (see definitions in Sections 2 and 3).

Stability is a paradigmatic issue in optimization, and many users prefer to handle a good-stable solution instead of
an optimal-unstable one. We refer the reader to [7] for the study of qualitative stability (formalized through certain
semicontinuity properties of the feasible and the optimal set mappings) in semi-infinite optimization (i.e. X is the Euclidean
space and T an infinite set), and to [8,9] for this type of analysis in infinite-dimensional programming. In relation to the
quantitative perspective (via Lipschitzian properties), some relevant references are [10–14], etc. In some of these papers,
special attention is paid to the case in which only continuous perturbations of certain particular coefficients are considered.
The recent survey [15] provides a panorama of what has been done in the last fifteen years from both qualitative and
quantitative perspectives. The closest references, from which this paper receives inspiration, are Cánovas et al. [14], and
Ioffe and Sekiguchi [16], as well as the very recent preprint [17].

The paper is organized as follows. After Section 2, which is devoted to notation and basic definitions, Section 3 provides
some duality results concerning our dual pair. Section 4 describes briefly the primal and dual feasible setmappings, whereas
in the second part of the paper (Sections 5 and 6), we study the stability of the feasible set mappings associated with P and D
whenperturbations of the objective function


c∗, x


and of the terms on the right-hand side of the constraints, i.e. of bt , t ∈ T ,

are considered. The stability analysis is done via the Lipschitz-like property of the involved mappings.

2. Notation and basic definitions

For a given subset Ω ⊂ Z of a Banach space Z , we denote by convΩ and coneΩ the convex hull of Ω and the conical
convex hull of Ω , respectively. From the topological side, we use the symbols w and w∗ to indicate the weak and the weak∗

topology, respectively, and w- lim and w∗- lim represent the weak and the weak∗ topological limits, respectively. intΩ and
clΩ are the interior and the closure of Ω with respect to the norm topology, respectively; cl wΩ stands for the closure in
the weak topology; and cl ∗Φ is the closure in the weak∗ topology of a given subset Φ ⊂ Z∗ in the dual space. We also make
use of the property that for convex sets, the norm and the weak closures coincide.

Furthermore, for anyz ∈ Ω ⊂ Z , with Ω convex, we denote by N(z; Ω) the normal cone to Ω atz which is given by

N(z; Ω) =

z∗

∈ Z∗
:

z∗, z −z ≤ 0 for all z ∈ Ω


. (3)

In this paper, we shall consider different dual pairs {Z, Z∗
}, where Z is endowed with the original topology of the norm,

while Z∗ is endowedwith theweak∗ topology. In particular, it is well known (see, for instance, [18]) that there is an isometric
isomorphism between ℓ∞(T )∗ and the space

ba(T ) =

µ: 2T

→ R:µ is bounded and additive

,

satisfying the relationship

⟨µ, p⟩ =

∫
T
ptµ(dt) with p = (pt)t∈T .

The dual norm on ℓ∞(T )∗ is the total variation

µ ∈ ℓ∞(T )∗ → ‖µ‖ := sup
A⊂T

µ(A) − inf
B⊂T

µ(B).

It is obvious that if µ ≥ 0, we have ‖µ‖ = µ(T ), since µ(∅) = 0.
Given an arbitrary set S, we denote by R(S)

+ the set of all λ = (λs)s∈S , with 0 ≤ λs ∈ R, for all s ∈ S, and such that λs ≠ 0
for at most finitely many s ∈ S.

On the multivalued mapping side, given a set-valued mapping M : Z ⇒ Y , we denote its domain, graph and inverse
mapping by

domM := {z ∈ Z : M(z) ≠ ∅} ,

gphM := {(z, y) ∈ Z × Y : y ∈ M(z)} ,

M−1(y) := {z ∈ Z : (z, y) ∈ gphM} ,

respectively.
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If Z and Y are normed spaces, M is said to be Lipschitz-like around (z,y) ∈ gphM (locally Lipschitz-like in [19]) with
modulus ℓ ≥ 0 if there exist neighborhoods U ofz and V ofy such that

M(z) ∩ V ⊂ M(u) + ℓ ‖z − u‖ BY , for all z, u ∈ U, (4)

where BY is the closed unit ball in the space Y . The infimum of such moduli ℓ′s over all possible combinations {ℓ,U, V }

satisfying (4) is called the exact Lipschitzian bound of M around (z,y) and is denoted by lipM (z,y); it admits the following
representation:

lipM (z,y) = lim sup
(z,y)→(z,y)

dist (y, M(z))
dist (z, M−1(y))

,

where inf ∅ = ∞ (and so, dist (x, ∅) = ∞), and we adopt the convention 0/0 := 0 and ∞/∞ := ∞. We put
lipM (z,y) = ∞ if M is not Lipschitz-like around (z,y). Observe from (4) that if M is Lipschitz-like around (z,y), thenz ∈ int (domM).

This Lipschitz-like property of a mapping M : Z ⇒ Y between Banach spaces is equivalent to the metric regularity
property and also to the linear openness of the inverse mapping M−1

: Y ⇒ Z . (See [19] and references therein.)
The exact Lipschitzian bound of M around (z,y) satisfies the following relation

lipM (z,y) = {surM−1(y,z)}−1,

where surM−1(y,z) is the so-called rate of surjection (openness) of M−1 around (y,z), defined as follows (see, for
instance, [16, p. 256])

surM−1(y,z) = lim inf
(y,z,λ)→(y,z,0+)

1
λ
sup


r ≥ 0 : z + rBZ ⊂ M−1(y + λBY )


,

where BZ and BY are the closed unit balls in Z and Y , respectively. When surM−1(y,z) = 0, one gets lipM (z,y) = +∞,
and M is not Lipschitz-like around (z,y).

Finally, given M : Z ⇒ Y and (z,y) ∈ gphM, the coderivative of M at (z,y) (normal coderivative in [19]) is the positive
homogeneous mapping D∗M (z,y) : Y ∗ ⇒ Z∗ defined by:

D∗M (z,y) y∗


:=

z∗

∈ Z∗
:

z∗, −y∗


∈ N((z,y); gphM)


, y∗

∈ Y ∗, (5)

where N((z,y); gphM) is the limiting normal cone to gphM at (z,y) defined in [19, p. 4], and that is given by (3) when
gphM is convex. The norm of this coderivative is defined asD∗M (z,y) := sup

z∗
 : z∗

∈ D∗M (z,y) y∗

,
y∗

 ≤ 1

. (6)

The notion of coderivative is recognized as a powerful tool of variational analysis when applied to problems of optimization
and control (see [20,19,21], and the references therein). In [14] they were applied for the first time to analyze the stability
of primal inequality systems in semi-infinite programming.

According to [16, Theorem 3], the convex set-valued mapping M−1 is perfectly regular at (y,z) ∈ gphM−1 if and only if

surM−1(y,z) = inf
y∗

 : y∗
∈ D∗M−1 (y,z) z∗


,
z∗

 = 1

.

If M−1 is perfectly regular at (y,z) ∈ gphM−1, the following equality holds:

lipM (z,y) =
D∗M (z,y) .

In fact, we have (see [16] for more details)

lipM (z,y) =

surM−1(y,z)−1

=

inf
y∗

 : (z∗, y∗) ∈ gphD∗M−1 (y,z) ,
z∗

 = 1
−1

= sup
y∗

−1
: (z∗, y∗) ∈ gphD∗M−1 (y,z) ,

z∗
 = 1


= sup

z∗
 : (y∗, z∗) ∈ −gphD∗M (z,y) ,

y∗
 ≤ 1


= sup

z∗
 : z∗

∈ D∗M (z,y) (y∗),
y∗

 ≤ 1

.
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3. The feasible set mappings

If we allow for perturbations c∗
∈ X∗ and b ∈ ℓ∞(T ) of the fixed c∗ and b, wemay consider the perturbed primal and dual

problems

P(b, c∗) : Sup ⟨c∗
+ c∗, x⟩

s.t. ⟨a∗

t , x⟩ ≤ bt + bt , t ∈ T ,
x ∈ Q ,

(7)

and

D(b, c∗) : Inf ⟨µ, b + b⟩

s.t. A∗µ ∈ c∗
+ c∗

− Q ◦,
µ ≥ 0.

(8)

In order to study the stability of this dual pair, we will consider the feasible set mappings FP : ℓ∞(T ) ⇒ X and
FD : X∗ ⇒ ℓ∞(T )∗ defined as follows:

FP(b) := {x ∈ X : Ax ≤ b + b and x ∈ Q },

and

FD(c∗) :=

µ ∈ ℓ∞(T )∗ : A∗µ ∈ c∗

+ c∗
− Q ◦ and µ ≥ 0


.

The corresponding inverse mappings are

F −1
P (x) :=


Ax − b + ℓ∞(T )+, if x ∈ Q ,
∅, if x ∉ Q ,

and

F −1
D (µ) :=


A∗µ − c∗

+ Q ◦, if µ ≥ 0,
∅, otherwise.

Ourmain objective in this part of the paper is to characterize the Lipschitz-like property ofFP andFD, which is equivalent
to studying the metric regularity of F −1

P and F −1
D at the respective points (0, x) ∈ gphFP and (0, µ) ∈ gphFD, and to

determine both exact Lipschitzian bounds (or regularity modulus). Throughout the paper, the nominal parameters are the
zero function b = 0 ∈ ℓ∞(T ) for the primal problem, and the zero functional c∗

= 0 ∈ X∗ for the dual problem.
It is well known that this property has important consequences in the overall stability of any constraint system, as

well as in its sensitivity analysis, and it affects even the numerical complexity of the algorithms conceived for finding
a solution of the system. In mathematical programming, many authors explored the relationship of this property with
standard constraint qualifications as Mangasarian–Fromovitz, Slater, Robinson, etc. A deep study of this important property
and of its consequences can be found in [22,23,16,24,25], etc.

The following reformulations of the perturbed primal and dual problems will allow us to apply known results in order
to study their stability properties:

P(b, c∗) : Sup ⟨c∗, x⟩ +

c∗, x


s.t. ⟨a∗

t , x⟩ ≤ bt + bt , t ∈ T ,
q∗, x


≤ 1, q∗

∈ Q ◦,

(9)

and

D(b, c∗) : Inf

µ, b


+ ⟨µ, b⟩

s.t. ⟨µ, Aq⟩ ≥ ⟨c∗, q⟩ + ⟨c∗, q⟩, q ∈ Q ,
⟨µ, p⟩ ≥ −1, p ∈ ℓ∞(T )+,

(10)

where Q is a convenient closed bounded set not containing the null vector and spanning the cone Q , which will be the
general assumption onQ from now on.

As usual in convex optimization, the Slater condition is also very important in the study of the stability of the feasibility
of these perturbed problems.

Definition 1. FP satisfies the strong Slater condition at b ∈ ℓ∞(T ) if there is somex ∈ Q such that

sup
t∈T


a∗

t ,x− bt − bt


< 0. (11)

Any point satisfying condition (11) is a strong Slater point of FP at b.
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Definition 2. FD satisfies the strong Slater condition at c∗
∈ X∗ if there is someµ ∈ ℓ∞(T )∗,µ ≥ 0, such that

inf
q∈Q


⟨µ, Aq⟩ −


c∗

+ c∗, q


> 0. (12)

Such aµ is called a strong Slater point of FD at c∗.

It is worth mentioning that this second definition is independent of the choice of any particular closed bounded set Q
not containing the null vector and spanning the cone Q .

We also say that P(b, c∗) satisfies the strong Slater condition at b if there exists some strong Slater point of FP at b;
similarly for D(b, c∗).

Notice that 0 ∉ cl convQ whenever FD satisfies the strong Slater condition at a point c∗
∈ X∗, and this condition entails

that the cone Q is pointed. Moreover, if Q is a compact base of Q , this condition is also implied by (15). In this case, also
observe that ifµ is a Slater point of FD at c∗ we have that, the infimum

inf
q∈Q


⟨µ, Aq⟩ −


c∗

+ c∗, q


= inf
q∈Q


A∗µ − c∗

− c∗, q


is attained at some point ofQ and so, it is positive. This is a consequence of the weak compactness ofQ , and shows that in
this case the typical Slater condition and the strong Slater condition are equivalent.

4. Some duality theory

In this section, we provide some specific duality results concerning the nominal problems P ≡ P(0, 0) and D ≡ D(0, 0).
Before that we introduce two convex cones:

(a) The first one is

H := {(Ax, ⟨c∗, x⟩) : x ∈ Q } + ℓ∞(T )+ × (−R+), (13)

where ℓ∞(T )+ is the positive cone in ℓ∞(T ). It can be easily seen that P is equivalent to the problem

Sup r
s.t. (b, r) ∈ H.

(b) The second one is

K := (R+conv {(a∗

t , bt) : t ∈ T }) + Q ◦
× R+. (14)

In the paper, we use some convenient setsQ spanning the cone Q , i.e. sets such that 0 ∉ Q and Q = R+
Q . In particular,

we say that Q has a compact baseQ if there is some x∗
∈ X∗,

x∗
 = 1, such that the set

Q = {q ∈ Q : ⟨x∗, q⟩ = 1}, (15)

is weakly compact and spans Q . According to the observation in the last paragraph of p. 85 in [26], Q is bounded as a
consequence of the Banach–Steinhaus theorem [26, Th. 3.15]. Moreover, when X is reflexive, the fact of assuming that Q
has a compact base, entails that Q ◦ has a nonempty interior for the topology associated with the dual norm (Theorem 3.16
in [1], see also [26, Prop 4.36]).

Lemma 1. Suppose that the closed convex cone Q has a compact baseQ . Then the following statements are equivalent:

(i) There is no z ∈ Q such that Az ≤ 0 and

c∗, z


≥ 0.

(ii) There exists a strong Slater point of FD at 0.

Proof. (ii) ⇒ (i) Reasoning by contradiction, suppose that there existsµ ∈ ℓ∞(T )∗,µ ≥ 0, such that

inf
q∈Q


⟨µ, Aq⟩ −


c∗, q


> 0, (16)

for a certain closed bounded set Q not containing the null vector and spanning the cone Q , and suppose that, at the same
time, there is z0 ∈ Q satisfying Az0 ≤ 0 and


c∗, z0


≥ 0. From that andµ ≥ 0, we get

⟨µ, Az0⟩ −

c∗, z0


≤ 0,

contradicting (16).
(i) ⇒ (ii) Take t0 ∉ T and defineT := T ∪ {t0}. Consider then the linear mappingA : X → ℓ∞(T ) such thatA(x) = (Ax, ⟨−c∗, x⟩),
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i.e. A(x)

(t) :=


a∗

t , x


if t ∈ T , and
A(x)


(t0) :=


−c∗, x


.

The linear mappingA is bounded and then, continuous. Applying the statement Section 20.4(5) in [27] (see also Proposition
5 of Ch. 3 of [1]), we know thatA is also continuous with respect to the weak topologies in X and ℓ∞(T ), and therefore the
image setA(Q ) is convex and weakly compact. Since (i) can be formulated asA(Q ) ∩


−ℓ∞(T )+


= ∅,

we can apply the strong separation theorem (see, for instance, Theorem3.17 in [26]) to establish the existence ofµ ∈ ℓ∞(T )∗

together with two scalars α and β such thatµ,Aq ≥ β > α ≥ ⟨µ,p⟩ , for all q ∈ Q and allp ∈ −ℓ∞(T )+. (17)

Becauseµ is finitely additive on 2T , we decomposeµ = (µ, µ),

withµ : 2T
→ R bounded and finitely additive and µ := µ({t0}). In this way, if S ⊂ T ,µ(S ∪ {t0}) = µ(S) + µ.

Moreover, ifp ∈ ℓ∞(T ), i.e. ifp = (p, ρ) ∈ ℓ∞(T ) × R, we have

⟨µ,p⟩ =

∫
Tptµ(dt) =

∫
T
ptµ(dt) + ρµ = ⟨µ, p⟩ + ρµ. (18)

Now (17) is written as follows

⟨µ, Aq⟩ − µ

c∗, q


≥ β > α ≥ ⟨µ, p⟩ + ρµ, ∀q ∈ Q and ∀(p, ρ) ∈ (−ℓ∞(T )+) × (−R+). (19)

We proceed with the following discussion:

(a) Taking into account that (−ℓ∞(T )+) × (−R+) is a cone, we can take α = 0.
(b) If µ < 0, we can take p = 0 and ρ > 0, and the last inequality in (19) would fail; so µ ≥ 0.

(b1) If µ = 0, (19) gives rise to

⟨µ, Aq⟩ ≥ β > 0 ≥ ⟨µ, p⟩ , ∀q ∈ Q and ∀p ∈ −ℓ∞(T )+.

Thenµ ≥ 0. SinceQ is weakly compact, it will be bounded, which entails the existence of a constantM such thatc∗, q
 ≤ M, ∀q ∈ Q .

By defining

µ0 :=
2M
β
µ,

we get

⟨µ0, Aq⟩ −

c∗, q


=

2M
β

⟨µ, Aq⟩ −

c∗, q


≥

2M
β

β − M = M > 0, ∀q ∈ Q .

(b2) If µ > 0, we divide (19) by µ and definingµ1 :=
1
µ
µ, one has

⟨µ1, Aq⟩ −

c∗, q


≥ β/µ > 0, ∀q ∈ Q . �

To exclude the existence of the duality gap (i.e. that vP ≠ vD) under certain assumptions we need the following lemma,
which is an adaptation of Theorem 3.17 in [1] and concerns the notion of compact base of a cone.

Lemma 2. If Q has a compact baseQ and there exists a strong Slater µ point of FD at 0, then the set H is closed.

Now we establish our duality theorem.

Theorem 3. If P is consistent, then the following statements hold:
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(i) vP ≤ vD and, if D is also consistent, both values are finite.
(ii) If vP is finite, Q has a compact base, and there exists a strong Slater point of FD at 0, then there is no duality gap (i.e. vP = vD)

and P is solvable.
(iii) If vP is finite, and the cone K defined in (14) is w∗-closed, then there is no duality gap and D is solvable.

Proof. (i) If P is consistent and D is inconsistent, then vP ≤ +∞ = vD. If both problems are consistent, take x ∈ FP and
µ ∈ FD. Since µ ∈ FD then µ ≥ 0, and there must exist q∗

∈ Q ◦ such that c∗
= A∗µ + q∗. The result is a trivial

consequence of the following observation
c∗, x


=

A∗µ, x


+

q∗, x


≤

A∗µ, x


= ⟨µ, Ax⟩ ≤


µ, b


.

(ii) By Lemma 2, H is closed, and the proof is a mere adaptation of the proofs of Theorems 3.9 and 3.22 in [1].
(iii) Obviously, the inequality


c∗, x


≤ vP is a consequence of the consistent system

{⟨a∗

t , x⟩ ≤ bt , t ∈ T ; ⟨q∗, x⟩ ≤ 0, q∗
∈ Q ◦

},

since Q = Q ◦◦ (see, for instance, Theorem 4.32 in [26]). Applying the asymptotic Farkas Lemma (Theorem 4.1 in [28]),
we get

(c∗, vP) ∈ cl ∗K = K ,

and there exist λ0
∈ R(T )

+ , q0 ∈ Q ◦, and ρ0 ≥ 0 such that

(c∗, vP) =

−
t∈T

λ0
t


a∗

t , bt

+ (q0, ρ0). (20)

If we consider

µ0 :=

−
t∈T

λ0
t δt ∈ ℓ∞(T )∗,

where δt ∈ ℓ∞(T )∗ denotes the Dirac measure defined by ⟨δt , p⟩ = pt , for any p ∈ ℓ∞(T ), it is easy to see that
A∗µ0 =

∑
t∈T λ0

t a
∗
t , and therefore (20) yields

c∗
= A∗µ0 + q0 and vP =


µ0, b


+ ρ0.

The first equality above shows that µ0 is a feasible solution of D, and consequently

vD ≤

µ0, b


≤

µ0, b


+ ρ0 = vP .

This inequality, together with the weak dual inequality established in (i), gives vD = vP and shows that µ0 is optimal
for D. �

5. Lipschitzian stability of the primal feasible set mapping

In Cánovas et al. [14] the Lipschitz-like property and the calculus of the exact Lipschitzian bound for a certain primal
feasible set mapping are related to some characteristic set. In the present setting, we need to take into account the conic
constraint x ∈ Q as well. Therefore, we define, as in [14], the characteristic set of FP(b) as the convex subset of X∗

× R
spanned by the set of coefficients of the constraint system:

CP(b) := conv


a∗

t , bt + bt


: t ∈ T


∪ (Q ◦
× {1})


. (21)

We observe that

cone CP(0) ≡ R+CP(0) = K ,

where K is the cone defined in (14), and a closedness condition for the absence of the duality gap is related to this set
according to Theorem 3(iii).

We will obtain characterizations of the consistency of the primal problem, and also of the Lipschitz-like property, the
normal cone, the coderivative, and the exact Lipschitzian bound; all of these properties being expressed in terms of the given
data, mainly through this characteristic set CP(b). Indeed, these properties follow by taking into account the expression
(9) of the primal problem and by an almost straightforward application of the results established in the aforementioned
paper [14], with the difference that now we need to pay special attention to the unboundedness of the coefficients of the
constraints ⟨q∗, x⟩ ≤ 1, and observe that any x ∈ Q satisfies ⟨q∗, x⟩ ≤ 0, for all q∗

∈ Q ◦, since Q = Q ◦◦. In this way we can
easily adapt the proof of Lemma 2.3 in [14] to prove that the consistency of P (b, c∗) is equivalent to (0, −1) ∉ cl ∗cone CP(b),
and that a consistent problem P(b, c∗) satisfies the strong Slater condition if and only if (0, 0) ∉ cl ∗CP(b), if and only if
b ∈ int (domFP), if and only if FP is Lipschitz-like around (b, x) for all x ∈ FP(b). In the following proposition, we show
that if intQ ≠ ∅, we can add a new condition to the previous list. If X is reflexive, intQ ≠ ∅ if and only if Q ◦ has a compact
base [1, Theorem 3.16].
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Proposition 4. Let FP(b) ≠ ∅. If intQ ≠ ∅, then FP is Lipschitz-like around (b, x) for all x ∈ FP(b) if and only if there exists
some x ∈ X such that (b, x) ∈ int (gphFP).

Proof. (⇐) If (b, x) ∈ int (gphFP), then b ∈ int (domFP) which is equivalent to FP being Lipschitz-like around (b, x), for
all x ∈ FP(b).

(⇒) Letq ∈ intQ be fixed. Now FP(b) ≠ ∅ and FP being Lipschitz-like around (b, x) for all x ∈ FP(b) gives that FP
satisfies the strong Slater condition at b. Ifx ∈ Q is any strong Slater point for FP at b, let

sup
t∈T


a∗

t ,x− bt − bt


≤ −ϑ < 0,

for some ϑ > 0. Put

M := sup
t∈T

a∗

t

 < +∞

and
λ :=

ϑ

6 (1 + M) (‖q‖ + 1)
> 0,

and observe thatx + λq ∈ intQ . Finally, let r > 0 be such thatx + λq + u ∈ Q for ‖u‖ < r . Hence, if u ∈ X and b′
∈ ℓ∞(T )

are such that ‖u‖ < min{r, ϑ
6(1+M)

} and
b′


∞
< ϑ

6 , then
a∗

t ,x + λq + u

− bt − bt − b′

t ≤

a∗

t ,x+ a∗

t

 (λ‖q‖ + ‖u‖) − bt − bt − b′

t

≤ −ϑ + M


ϑ‖q‖
6 (1 + M) (‖q‖ + 1)

+
ϑ

6 (1 + M)


+

ϑ

6

≤ −
ϑ

2
< 0,

for all t ∈ T . Therefore (b, x) ∈ int (gphFP) for x =x + λq. �

Next, we state themost remarkable results about the coderivative and the Lipschitz-like property. The proofs are omitted
for the sake of brevity. The reader can also find an alternative approach in the recent preprint [17]. With the aid of Dirac
measures, we can characterize the coderivative D∗FP (0,x) (x∗) as the following result shows.

Proposition 5. Letx ∈ FP(0), µ ∈ ℓ∞(T )∗, and x∗
∈ X∗. Then µ ∈ D∗FP (0,x) (x∗) if and only if

µ, −x∗, −

x∗,x ∈ cl ∗


cone


−δt , a∗

t , bt

, t ∈ T


+ {0} × Q ◦

× {0}

.

Theorem 6. Letx ∈ FP(0). Then FP is Lipschitz-like around (0,x) if and only if

D∗FP(0,x)(0) = {0}.

Theorem 7. Letx ∈ FP(0). Then,

(i) If x is a strong Slater point of FP at b = 0, then ‖D∗FP(0,x)‖ = 0.
(ii) If x is not a strong Slater point of FP at b = 0, then ‖D∗FP(0,x)‖ > 0 and it can be calculated asD∗FP(0,x) = sup

x∗
−1

:

x∗,

x∗,x ∈ cl ∗CP(0)


. (22)

Remark 1. In case (ii), if the strong Slater condition is not satisfied at b = 0, then (0, 0) ∈ cl ∗CP (0) and according to (6),
we get ‖D∗FP(0,x)‖ = ∞.

Theorem 8. Letx ∈ FP(0). Then

lipFP(0,x) =
D∗FP(0,x) . (23)

Remark 2. This result is also a consequence of the perfect regularity of F −1
P at (x, 0) which can be proved following an

argument similar to the one used in [17, Proposition 5]. If the strong Slater condition is not satisfied, then both terms in (23)
are +∞.
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6. Lipschitzian stability of the dual feasible set mapping

From the dual point of view, we will show similar properties as in the previous section in relation to the Lipschitzian
stability of the dual feasible set mapping FD. Here, special care is required since the perturbations ⟨c∗, q⟩ on the right-hand
side of the dual constraints have some special structure and the theory developed in [14] does not apply in general.

In this section, we will consider a bounded closed setQ , not containing the null vector and spanning the cone Q .
Now the characteristic set of FD(c∗), relative toQ , is defined as the following convex subset of ℓ∞(T ) × R:

CD

c∗


:= conv


Aq,

c∗

+ c∗, q


: q ∈ Q ∪ {(p, −1) : p ∈ ℓ∞(T )+}

. (24)

Observe that
cone CD(0) ≡ R+CD(0) = H,

where H is the cone defined in (13), and a closedness condition for the absence of the duality gap is related to this set
according to Theorem 3(ii) and Lemma 2. (H does not depend on the choice ofQ .)

6.1. Characterization of stably consistent dual problems

The stability with respect to the consistency of the dual problems will be analyzed through the mapping FD by noting
that a dual problem D(b, c∗) is stably consistent if and only if c∗

∈ int (domFD). Observe that an application of the classical
Robinson–Ursescu theorem [23,19] implies that this condition is equivalent to FD being Lipschitz-like around (c∗, µ) for all
µ ∈ FD (c∗), because the graph of F −1

D : ℓ∞(T )∗ ⇒ X∗ is closed and convex, and ℓ∞(T )∗ and X∗ are Banach spaces.

Lemma 9. Given c∗
∈ X∗ and the following linear system posed in ℓ∞(T )∗

σD(c∗) :=


⟨µ, Aq⟩ ≥


c∗

+ c∗, q

, q ∈ Q ,

⟨µ, p⟩ ≥ −1, p ∈ ℓ∞(T )+


, (25)

then

σD(c∗) is consistent (i.e. c∗
∈ domFD) ⇐⇒ (0, 1) ∉ clH(c∗),

where

H(c∗) = {(Ax, ⟨c∗
+ c∗, x⟩) : x ∈ Q } + ℓ∞(T )+ × (−R+).

(Observe that H(0) = H.)

Proof. It follows directly from Theorem 3.1 in [28]. �

Proposition 10. Let c∗
∈ domFD. If we suppose that 0 ∉ cl convQ , then the following statements are equivalent:

(i) There is someµ ≥ 0 that is a strong Slater point for FD at c∗.
(ii) (0, 0) ∉ cl ∗CD (c∗).
(iii) c∗

∈ int (domFD).

Proof. (i) ⇔ (ii) and (i) ⇒ (iii) are proved following the same arguments of the proof of Lemma 2.3 in [14] to the system
(25) posed in ℓ∞(T )∗.

(iii) ⇒ (i) If c∗
∈ int (domFD) then c∗

+ c ′∗
∈ domFD whenever

c ′∗
 ≤ ε for ε > 0 small enough. On the other hand,

0 ∉ cl convQ and the strong separation property gives the existence of x∗
∈ X∗, ‖x∗‖ = 1, and β ∈ R such that

x∗, q

≥ β > 0 for all q ∈ Q .

Now, for c ′∗
= εx∗, there existsµ ≥ 0 such that

⟨µ, Aq⟩ −

c∗

+ c∗
+ c ′∗, q


≥ 0 for all q ∈ Q .

Take any such q ∈ Q . From
c ′∗, q


= ε


x∗, q


≥ εβ > 0

it follows that

⟨µ, Aq⟩ −

c∗

+ c∗, q

≥

c ′∗, q


≥ εβ > 0.

Henceµ ≥ 0 is a strong Slater point of FD at c∗. �

Remark 3. Observe that the hypothesis 0 ∉ cl convQ is only needed for the implication (iii) ⇒ (i). Also recall that the
existence of a strong Slater point implies the condition 0 ∉ cl convQ . Another important observation is that indeed condition
(ii) (0, 0) ∉ cl ∗CD (c∗) is equivalent to (ii)′ (0, 0) ∉ cl CD (c∗), but we prefer to keep the cl ∗ notation because wewill always
be considering the w∗-topology on ℓ∞(T )∗∗.
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6.2. Characterization of coderivatives

Let us note that when x∗∗
∈ X and b∗∗

∈ ℓ∞(T ) in Proposition 11 and Theorem 13, we may replace the weak∗-closure
by the norm closure because we are considering the closures of convex sets.

Now we will give a characterization of the normal cone to gphFD at (c∗,µ).

Proposition 11. Let (c∗,µ) ∈ gphFD and let (x∗∗, b∗∗) ∈ X∗∗
× ℓ∞(T )∗∗. Then

x∗∗, b∗∗


∈ N
c∗,µ ; gphFD


if and only if − (x∗∗, b∗∗, ⟨c∗, x∗∗⟩ + ⟨µ, b∗∗⟩) belongs to

cl ∗
{{(−q, Aq, ⟨c∗, q⟩) : q ∈ Q } + {0} × ℓ∞(T )+ × (−R+)}. (26)

Proof. The proof follows from the definition of N ((c∗,µ) ; gphFD), by taking into account that the set gphFD can be
expressed as

gphFD =


c∗, µ


∈ X∗

× ℓ∞(T )∗ :


c∗, µ


, (−q, Aq)


≥

c∗, q


, q ∈ Q

c∗, µ

, (0, p)


≥ −1, p ∈ ℓ∞(T )+


,

and applying the asymptotic Farkas Lemma (Theorem 4.1 in [28]). �

The following lemmawill be used in the proof of the next theoremwhich provides a characterization of the coderivative
of FD at any given (0,µ) ∈ gphFD.

Lemma 12. Let µ ∈ FD(0), x ∈ X∗∗ and b∗∗
∈ ℓ∞(T )∗∗. If x∗∗

∈ D∗FD(0,µ)(b∗∗) then there exists a net

{(qν, pν)}ν∈N ⊂ Q × ℓ∞(T )+

such that

x∗∗
= w∗- lim

ν∈N
qν,

b∗∗
= w∗- lim

ν∈N
(Aqν + pν) ,µ, b∗∗


= lim

ν∈N


c∗, qν


.

Moreover, if µ is a strong Slater point for FD at 0, then x∗∗
= 0.

Proof. Let µ ∈ FD(0), x ∈ X∗∗, and b∗∗
∈ ℓ∞(T )∗∗ be such that x∗∗

∈ D∗FD(0,µ)(b∗∗). From the definition of
the coderivative given in (5), x∗∗

∈ D∗FD(0,µ)(b∗∗) if and only if (x∗∗, −b∗∗) ∈ N ((0,µ) ; gphFD), if and only if (by
Proposition 11) (−x∗∗, b∗∗, ⟨µ, b∗∗⟩) belongs to the set in (26).

Then there exists a net (qν, pν, −γν)ν∈N ⊂ Q × ℓ∞(T )+ × (−R+) such that

(−x∗∗, b∗∗, ⟨µ, b∗∗
⟩) = w∗- lim

ν∈N
{(−qν, Aqν, ⟨c∗, qν⟩) + (0, pν, −γν)}. (27)

Clearly

x∗∗
= w∗- lim

ν∈N
qν,

b∗∗
= w∗- lim

ν∈N
(Aqν + pν) , (28)

and

⟨µ, b∗∗
⟩ = lim

ν∈N
(⟨c∗, qν⟩ − γν). (29)

Applying expression (27) to (0,µ, −1), and from ⟨µ, pν⟩ ≥ 0 andµ ∈ FD(0), one gets

0 = lim
ν∈N


⟨µ, Aqν + pν⟩ −


c∗, qν


+ γν


≥ lim sup

ν∈N


A∗µ, qν


−

c∗, qν


+ γν


≥ lim sup

ν∈N
γν ≥ 0.

Hence

lim
ν∈N

γν = 0.
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Finally, assume thatµ is a strong Slater point for FD at 0 and let ϑ > 0 be such that

inf
q∈Q


⟨µ, Aq⟩ −


c∗, q


≥ ϑ > 0.

Then, from (28) and (29),

lim
ν∈N

⟨µ, Aqν + pν⟩ =
µ, b∗∗


= lim

ν∈N


c∗, qν


. (30)

Moreover, we can express qν = ρνqν withqν ∈ Q and ρν > 0, for all ν ∈ N , and from (30)

0 = lim
ν∈N


⟨µ, ρνAqν + pν⟩ −


c∗, ρνqν


≥ lim sup

ν∈N
ρν


A∗µ,qν


−

c∗,qν


≥ ϑ lim sup

ν∈N
ρν .

The fact that ϑ > 0 yields limν∈N ρν = 0. Since x∗∗
= w∗- limν∈N qν we obtain, as a consequence of the w∗-lower

semicontinuity of the norm, and the boundedness ofQ ,

x∗∗
 ≤ lim inf

ν∈N
‖ρνqν‖ ≤


sup
q∈Q ‖q‖


lim
ν∈N

ρν


= 0,

which gives x∗∗
= 0. �

Theorem 13. Let µ ∈ FD(0). If x∗∗
∈ X∗∗ and b∗∗

∈ ℓ∞(T )∗∗, then x∗∗
∈ D∗FD(0,µ)(b∗∗) if and only if (x∗∗, b∗∗, ⟨µ, b∗∗⟩)

belongs to

cl ∗
{{(q, Aq, ⟨c∗, q⟩) : q ∈ Q } + {0} × ℓ∞(T )+ × {0}}.

Proof. (⇒) It follows readily from the previous lemma.
(⇐) The definition of D∗FD(0,µ)(b∗∗) and Proposition 11 applied to (x∗∗, −b∗∗) give the result. �

Lemma 14. Givenµ ∈ FD(0), the following statements hold:

(i) If Q is bounded andµ is not a strong Slater point of FD at 0, then the set

SD := {b∗∗
∈ ℓ∞(T )∗∗

|(b∗∗, ⟨µ, b∗∗
⟩) ∈ cl ∗CD(0)} (31)

is nonempty and w∗-closed. Moreover, if Q is a compact base of Q , then

{b ∈ ℓ∞(T )|(b, ⟨µ, b⟩) ∈ CD(0)} ≠ ∅.

(ii) If µ is a strong Slater point of FD at 0, then SD = ∅.

Proof. (i) Ifµ is not a Slater point of FD at 0, there exists a sequence (qk)∞k=1 ⊂ Q such that

lim
k→∞


− ⟨µ, Aqk⟩ +


c∗, qk


= 0. (32)

First, suppose that ‖q‖ ≤ R for any q ∈ Q . Since Aq ∈ ℓ∞(T ), one has

‖Aq‖∗∗ = sup

|⟨µ, Aq⟩| : µ ∈ ℓ∞(T )∗, ‖µ‖ ≤ 1


= ‖Aq‖∞

= sup
a∗

t , q
 : t ∈ T


≤ R sup

a∗

t

 : t ∈ T

,

for any q ∈ Q . Thus, the set {Aq, q ∈ Q } is bounded in ℓ∞(T )∗∗, and then cl ∗
{Aq, q ∈ Q } is w∗-compact by the Alaoglu

theorem. Thus there are a subnet (qkν )ν∈N from the sequence (qk)k∈N, and some b∗∗
∈ cl ∗

{Aq, q ∈ Q } such that

lim
ν∈N


µ, Aqkν


=

µ, b∗∗


for all µ ∈ ℓ∞(T )∗. Henceµ, b∗∗


= lim

ν∈N

µ, Aqkν

= lim

ν∈N


c∗, qkν


,
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which implies
b∗∗,

µ, b∗∗


= w∗- lim
ν∈N


Aqkν ,


c∗, qkν


∈ cl ∗


Aq,


c∗, q


, q ∈ Q

⊂ cl ∗CD(0).

Hence SD is not empty. Furthermore, SD is the preimage of cl ∗CD(0) under the w∗-continuous application b∗∗
→

(b∗∗, ⟨µ, b∗∗⟩) on ℓ∞(T )∗∗, so SD is w∗-closed in ℓ∞(T )∗∗.
Now, assume thatQ is a compact base and put S ′

:= {b ∈ ℓ∞(T )|(b, ⟨µ, b⟩) ∈ CD(0)}. There exists a subnet (qkν )ν∈N that
weakly converges to some element q ∈ Q . Then, (32) gives

⟨µ, Aq⟩ = lim
ν∈N


A∗µ, qkν


= lim

ν∈N


c∗, qkν


=

c∗, q


,

and therefore

(Aq, ⟨µ, Aq⟩) = (Aq, ⟨c∗, q⟩) ∈ CD(0).

Hence,

Aq ∈ S ′

and this set is nonempty.
(ii) Ifµ is a strong Slater point of FD at 0, take ϑ > 0 such that

inf
q∈Q


⟨µ, Aq⟩ −


c∗, q


≥ ϑ > 0.

For any (b∗∗, α) ∈ cl ∗CD(0) consider nets (λν)ν∈N ⊂ R(Q)
+ , (γ ν)ν∈N ⊂ R(ℓ∞(T )+)

+ such that
∑

q∈Q λν
q +

∑
p∈ℓ∞(T )+

γ ν
p = 1

and


b∗∗, α


= lim

ν∈N

−
q∈Q λν

q


Aq,


c∗, q


+

−
p∈ℓ∞(T )+

γ ν
p (p, −1)

 . (33)

Without loss of generality, suppose that both nets
∑

q∈Q λν
q


ν∈N

and
∑

p∈ℓ∞(T )+
γ ν
p


ν∈N

are convergent. By applying (33)
to (µ, −1) we obtain

µ, b∗∗

− α = lim

ν∈N

−
q∈Q λν

q


⟨µ, Aq⟩ −


c∗, q


+

−
p∈ℓ∞(T )+

γ ν
p (⟨µ, p⟩ + 1)


≥ ϑ lim

ν∈N

−
q∈Q λν

q + lim
ν∈N

−
p∈ℓ∞(T )+

γ ν
p

> 0,

which gives that (b∗∗, ⟨µ, b∗∗⟩) ∉ cl ∗CD(0). �

Now we will make use of the following condition on the cone Q :
(A):Q is a closed spanning subset of Q such that there are two positive real numbers r and R, and some x∗

∈ X∗,
x∗
 = 1,

satisfying

r ≤

x∗, q


≤ ‖q‖ ≤ R (34)

for all q ∈ Q .
Notice that, in this case, the cone Q is pointed. As an example, wemay take any compact baseQ of Q , sinceQ is bounded.
The next theorem gives an estimate of the norm ‖D∗FD(0,µ)‖, which will be useful for providing an estimate of the

exact Lipschitzian bound of the dual feasible set mapping.

Theorem 15. Suppose that Q satisfies condition (A) and that µ ∈ FD(0). Then,
(i) If µ is a strong Slater point of FD at 0, then ‖D∗FD(0,µ)‖ = 0.
(ii) If µ is not a strong Slater point of FD at 0, then ‖D∗FD(0,µ)‖ > 0 and

r∆ ≤
D∗FD(0,µ)

 ≤ R∆,

where

∆ := sup
b∗∗

−1
:

b∗∗,

µ, b∗∗


∈ cl ∗CD(0)


. (35)
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Proof. (i) Assume thatµ is a strong Slater point of FD at 0. By Lemma 12, x∗∗
= 0 when x∗∗

∈ D∗FP(0,µ)(b∗∗), thusD∗FD(0,µ)
 = sup

x∗∗
 : x∗∗

∈ D∗FD(0,µ)(b∗∗),
b∗∗

 ≤ 1


= 0.

(ii) Ifµ is not a strong Slater point for FD at 0, SD is not empty and we can take some b∗∗
∈ SD (31). Then, from (24) and (31),

since (b∗∗, ⟨µ, b∗∗⟩) ∈ cl ∗CD(0) there exist nets {λν}ν∈N ⊂ R(Q)
+ , {γ ν}ν∈N ⊂ R(ℓ∞(T )+)

+ such that−
q∈Q λν

q +

−
p∈ℓ∞(T )+

γ ν
p = 1, for all ν ∈ N ,

and


b∗∗,

µ, b∗∗


= w∗- lim
ν∈N

−
q∈Q λν

q


Aq,


c∗, q


+

−
p∈ℓ∞(T )+

γ ν
p (p, −1)

 .

As in the proof of Lemma 12, it follows that

0 = lim
ν∈N

−
p∈ℓ∞(T )+

γ ν
p ,

b∗∗
= w∗- lim

ν∈N

−
q∈Q λν

qAq +

−
p∈ℓ∞(T )+

γ ν
p p

 ,

and µ, b∗∗

= lim

ν∈N

−
q∈Q λν

q


c∗, q


.

Now, take any fixed q1 ∈ Q , and for each ν ∈ N , define

zν :=

−
q∈Q λν

qq +

1 −

−
q∈Q λν

q

 q1 ∈ convQ ,

then

‖zν‖ ≤

−
q∈Q λν

q‖q‖ +

1 −

−
q∈Q λν

q

 ‖q1‖ ≤ R.

By the Alaoglu theorem, we may consider, without loss of generality, that the net {zν}ν∈N is w∗-convergent to some
z∗∗

∈ X∗∗. Observe that z∗∗
= w∗- limν∈N

∑
q∈Q λν

qq because limν∈N

∑
q∈Q λν

q = 1, and so z∗∗
∈ cl ∗(convQ ). Then, by

(34), ‖z∗∗‖ ≥ r and so, z∗∗
≠ 0.

Now we have


z∗∗, b∗∗,

µ, b∗∗


= w∗- lim
ν∈N

−
q∈Q λν

q


q, Aq,


c∗, q


+

−
p∈ℓ∞(T )+

γ ν
p (0, p, 0)

 ,

and so (z∗∗, b∗∗, ⟨µ, b∗∗⟩) belongs to

cl ∗


q, Aq,

c∗, q


: q ∈ Q


∪ {(0, p, 0) , p ∈ ℓ∞(T )+}


.

Hence Theorem 13 gives

z∗∗
∈ D∗FD(0,µ)(b∗∗).

Next we consider two cases:

(a) FD does not satisfy the strong Slater condition at 0. In this case, (0, 0) ∈ cl ∗CD(0) and we may take b∗∗
= 0; since

0 ≠ λz∗∗
∈ D∗FD(0,µ)(0) for all λ > 0, it follows thatD∗FD(0,µ)

 = +∞ = sup
b∗∗

−1
:

b∗∗,

µ, b∗∗


∈ cl ∗CD(0)


.
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(b) FD satisfies the strong Slater condition at 0. If b∗∗
= 0 then (0, 0) ∈ cl ∗CD(0) which contradicts Proposition 10. Hence

b∗∗
≠ 0 andb∗∗

−1 z∗∗
∈ D∗FD(0,µ)(‖b∗∗

‖
−1b∗∗),

so D∗FD(0,µ)
 = sup

x∗∗
 : x∗∗

∈ D∗FD(0,µ)(b∗∗

1 ), ‖b∗∗

1 ‖ ≤ 1


≥ ‖‖b∗∗
‖

−1 z∗∗
‖. (36)

Moreover, from condition (A),
x∗, zν


≥ r > 0 for all ν ∈ N ,

which gives that
x∗, z∗∗


≥ r > 0,

and hencez∗∗
 = sup

‖x∗‖≤1

x∗, z∗∗
 ≥


x∗, z∗∗


≥ r > 0.

From (36) we obtainD∗FD(0,µ)
 ≥ r

b∗∗
−1

> 0,

which holds for every b∗∗
∈ SD, thusD∗FD(0,µ)

 ≥ r max
b∗∗

−1
:

b∗∗,

µ, b∗∗


∈ cl ∗CD(0)


.

We can put ‘‘max’’ above because 0 ∉ SD and SD is w∗-closed, so the w∗-upper semicontinuous function b∗∗
→ ‖b∗∗‖

−1,
restricted to SD, attains a maximum on it, taking into account that, for any b∗∗

0 ∈ SD, the set
b∗∗

∈ SD :
b∗∗

−1
≥
b∗∗

0

−1


is obviously bounded in ℓ∞(T )∗∗.
To get the other estimate, observe that from the definitions of the coderivative and the normal cone, we have

x∗∗
∈ D∗FD(0,µ)(0) ⇔


x∗∗, 0


∈ N ((0,µ) ; gphFD)

⇔

x∗∗, 0


,

c∗, µ


− (0,µ)


≤ 0 for all


c∗, µ


∈ gphFD

⇔

x∗∗, c∗


≤ 0 for all c∗

∈ domFD.

Now, sincewe are assuming thatFD satisfies the strong Slater condition at 0, Proposition 10(iii) gives that 0 ∈ int (domFD),
hence x∗∗

= 0. Thus, we have

x∗∗
∈ D∗FD(0,µ)(0) ⇔ x∗∗

= 0.

Therefore ‖D∗FD(0,µ)‖ is equal to

max

0; sup

x∗∗
 : x∗∗

≠ 0, x∗∗
∈ D∗FD(0,µ)(b∗∗), 0 <

b∗∗
 ≤ 1


. (37)

For any x∗∗
∈ D∗FD(0,µ)(b∗∗), x∗∗

≠ 0, with 0 < ‖b∗∗‖ ≤ 1, b∗∗
∈ ℓ∞(T )∗∗, we can apply Lemma 12 to get the existence

of a net

{(qν, pν, λν)}ν∈N ⊂ Q × ℓ∞(T )+ × (R+�{0})

such that

x∗∗
= w∗- lim

ν∈N
(λνqν),

b∗∗
= w∗- lim

ν∈N
(λνAqν + pν) ,µ, b∗∗


= lim

ν∈N


c∗, λνqν


.

(38)

Observe that

0 <
x∗∗

 ≤ lim inf
ν∈N

‖λνqν‖ ≤ R lim inf
ν∈N

λν . (39)
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If limν∈N λν = +∞, (38) gives rise to (0, 0) ∈ cl ∗CD(0), which contradicts the current assumption that FD satisfies the
strong Slater condition at 0. So,

α := lim inf
ν∈N

λν < +∞,

it follows from (39) that α > 0 and, if we suppose that the own net {λν}ν∈N converges to α, and from (38), we conclude that

(α−1b∗∗, ⟨µ, α−1b∗∗
⟩) ∈ cl ∗CD(0),

because for each ε > 0 we have
(α + ε)−1b∗∗,

µ, (α + ε)−1b∗∗


= w∗- lim
ν∈N


λν

λν + ε


Aqν,


c∗,qν


+

ε

λν + ε
(ε−1pν, 0)


,

and so

cl ∗CD(0) ∋ lim
ε→0+

[
w∗- lim

ν∈N


λν

λν + ε


Aqν,


c∗,qν


+

ε

λν + ε
(ε−1pν, −1)

]
= (α−1b∗∗, ⟨µ, α−1b∗∗

⟩) + lim
ε→0+

[
w∗- lim

ν∈N


0,

ε

λν + ε

]
= (α−1b∗∗, ⟨µ, α−1b∗∗

⟩).

From 0 < ‖b∗∗‖ ≤ 1, and ‖x∗∗‖ ≤ Rα it follows thatx∗∗
 ≤ Rα

b∗∗
−1

= R
α−1b∗∗

−1

≤ Rmax
b∗∗

1

−1
:

b∗∗

1 ,
µ, b∗∗

1


∈ cl ∗CD(0)


.

Finally, we conclude from (37) thatD∗FD(0,µ)
 ≤ Rmax

b∗∗
−1

:

b∗∗,

µ, b∗∗


∈ cl ∗CD(0)


. �

Remark 4. Notice that, from this proof, ifQ = {q ∈ Q : ‖q‖ = 1} (the normalized cone) the constant r in this theorem can
be obtained from the strong separation property: since 0 ∉ cl convQ2, take any x∗

∈ X∗,
x∗
 = 1, and r ∈ R such that

x∗, q


≥ r > 0 for all q ∈ Q . If we could choose r = R = 1 then, in case (b) of the previous proof, we would have the
equalityD∗FD(0,µ)

 = max
b∗∗

−1
:

b∗∗,

µ, b∗∗


∈ cl ∗CD(0)


. (40)

We do not know if any equality holds in (35) in general cases with r ≠ R.

Example 1 (Constants r = R = 1). Consider T = N, X = ℓ1 and the closed convex cone

Q = {(xn) ∈ ℓ1 : xn ≥ 0 for all n ∈ N} .

Let 1∗ be the sequence in ℓ∞ = X∗ whose terms are all equal to 1, and let e∗
n, n = 1, 2, . . . , be the standard canonical vectors

in ℓ∞. Then ⟨1∗, x⟩ = 1 for all x ∈ Q := {q ∈ Q : ‖q‖1 = 1}, and since ‖1∗‖∞ = 1, it follows that condition (A) holds forQ
with r = R = 1. If a∗

n := −e∗
n ∈ ℓ∞, and c∗

:= −1∗
∈ ℓ∞ be given, then µ = 0 is a strong Slater point of FD at 0, while the

Dirac measureµ = δ1 ∈ FD(0) is not, hence the equality (40) takes place at (0,µ) = (0, δ1).

Example 2. Let X = R2 be endowed with the Euclidean norm, T = N, c∗
= (0, 1) , an := (1, 2) for all n,µ = δ1. Consider

Q =

(x, y) ∈ R2

: y ≥ |x|

,

and takeQ1 = {(x, y) ∈ Q : |x| + |y| = 1} .

Then ⟨(0, 1) , (x, y)⟩ = y ≥
1
2 and ‖(x, y)‖ ≤ 1 for all (x, y) ∈ Q1, so we can take r1 =

1
2 and R1 = 1. (These are the largest

r and smallest R we can choose forQ1.)
Another possibility is to takeQ2 = {(x, y) ∈ Q : y = 2} .

Now r2 = 2 (⟨(0, 1) , (x, y)⟩ = y ≥ 2) and R2 = 2
√
2.
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We have, for i = 1, 2,

C i
D(0, 0) := conv


(x + 2y)n∈N , y


: (x, y) ∈ Qi


∪

(p, −1) : p ∈ ℓ∞ (N)+


.

In particular,

C2
D(0, 0) = conv


(x + 4)n∈N , 2


: |x| ≤ 2


∪

(p, −1) : p ∈ ℓ∞ (N)+


.

Then:

(i) max

‖b∗∗‖

−1
: (b∗∗, ⟨µ, b∗∗⟩) ∈ cl ∗C1

D(0, 0)


= 2,
(ii) max


‖b∗∗‖

−1
: (b∗∗, ⟨µ, b∗∗⟩) ∈ cl ∗C2

D(0, 0)


=
1
2 and

R2 max

‖b∗∗‖

−1
: (b∗∗, ⟨µ, b∗∗⟩) ∈ cl ∗C2

D(0, 0)


=
√
2,

(iii) ‖D∗FD (0,µ)‖ =
√
2,

so D∗FD (0,µ)
 = R2 max

b∗∗
−1

:

b∗∗,

µ, b∗∗


∈ cl ∗C2
D(0, 0)


< R1 max

b∗∗
−1

: (b∗∗,
µ, b∗∗


) ∈ cl ∗C1

D(0, 0)


,

which implies that sometimes we can have the equalityD∗FD (0,µ)
 = R

b∗∗
−1

:

b∗∗,

µ, b∗∗


∈ cl ∗CD(0)


,

but not always.

6.3. Lipschitzian bound for the dual feasible set mapping

Theorem 16. Let µ ∈ FD(0) and suppose that 0 ∉ cl convQ . Then, FD is Lipschitz-like around (0,µ) if and only if

D∗FD(0,µ)(0) = {0}.

Proof. (⇒) It follows directly from Theorem 1.44 in [19] by taking into account that gphFD is convex.
(⇐) Let D∗FD(0,µ)(0) = {0} and suppose that FD is not Lipschitz-like around (0,µ). Then, by the Robinson–Ursescu

theorem and Proposition 10, (0, 0) ∈ cl ∗CD(0) and so there are nets {λν}ν∈N ⊂ R(Q)
+ , {γ ν}ν∈N ⊂ R(ℓ∞(T )+)

+ such that−
q∈Q λν

q +

−
p∈ℓ∞(T )+

γ ν
p = 1, for all ν ∈ N ,

and

(0, 0) = w∗- lim
ν

−
q∈Q λν

q


Aq,


c∗, q


+

−
p∈ℓ∞(T )+

γ ν
p (p, −1)

 .

By setting b∗∗
= 0 and by following the same steps as in the proof of (ii) in the previous Theorem 15, one can obtain

z∗∗
∈ X∗∗ such that 0 ≠ z∗∗

∈ D∗FD(0,µ)(0) = {0}, which constitutes a contradiction. Therefore FD is Lipschitz-like
around (0,µ). �

Remark 5. We may have D∗FD(0,µ)(0) = {0} and FD not Lipschitz-like around (0,µ), if the condition 0 ∉ cl convQ
does not hold. For instance, consider the case of T = {t0} and X = c0 which is the Banach space of bounded real
sequences converging to 0, with the supremum norm. Then X∗

= ℓ1 = ℓ1 (N) and X∗∗
= ℓ∞ = ℓ∞ (N). Let

Q = {q ∈ c0 : qn ≥ 0, n ∈ N} and Q = {q ∈ Q : ‖q‖∞ = 1}. If a∗
t0 = c∗

=
 1
n!

∞
n=1 ∈ ℓ1, and by observing that each

ek = (0, . . . , 0, 1, 0, . . .), with ekk = 1 and all other ekn = 0, is in Q , it is easy to see that 0 ∈ cl convQ ,µ = 1 ∈ FD(0),
and c∗

= 0 ∉ int (domFD), which implies that FD is not Lipschitz-like around (0, 1). Nonetheless, we can show that
D∗FD(0,µ)(0) = {0}. Indeed, if x∗∗

∈ D∗FD(0,µ)(0), then by Lemma 12 there exists a net {(qν, pν)}ν∈N ⊂ Q × ℓ∞(T )+
such that

x∗∗
= w∗- lim

ν∈N
qν, (41)

0 = w∗- lim
ν∈N

(Aqν + pν) ,

0 = lim
ν∈N


c∗, qν


.
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From 0 = limν∈N


c∗, qν


= limν∈N

∑
∞

m=1
qν,m
m!

, it follows that limν∈N qν,k = 0 for any positive integer k. Now, if
x∗∗

= (x∗∗

k )∞k=1, then (41) gives that x∗∗

k =

ek, x∗∗


= limν∈N


ek, qν


= limν∈N qν,k = 0. Therefore x∗∗

= 0, and hence
D∗FD(0,µ)(0) = {0}.

In order to get an estimate of the exact Lipschitzian bound for FD around (0,µ), lipFD(0,µ), recall that

lipFD(0,µ) = lim sup
(c∗,µ)→(0,µ)

dist (µ, FD(c∗))

dist

c∗, F −1

D (µ)
 .

The extended Ascoli distance formula

dist

µ, FD(c∗)


= sup

(b∗∗,α)∈cl ∗CD(c∗)

[α − ⟨µ, b∗∗⟩]+
‖b∗∗‖

(42)

holds true when FD satisfies the strong Slater condition at c∗, by a straightforward application of Lemma 4.3 in [14]. On the
other hand we can show a lower bound for dist


c∗, F −1

D (µ)

.

Lemma 17. Suppose that ‖q‖ ≤ R for all q ∈ Q . Let c∗
∈ X∗ andµ ∈ ℓ∞(T )∗ be such that (c∗, µ) ∉ gphFD andF −1

D (µ) ≠ ∅.
Then

dist

c∗, F −1

D (µ)


≥ R−1 sup
q∈Q


− ⟨µ, Aq⟩ +


c∗

+ c∗, q


+
> 0. (43)

Proof. Since F −1
D (µ) ≠ ∅, we have that ⟨−p, µ⟩ ≤ 1, for all p ∈ ℓ∞(T )+ and

F −1
D (µ) =


d∗

∈ X∗
| ⟨µ, Aq⟩ −


c∗, q


−

d∗, q


≥ 0, for all q ∈ Q .

Take any d∗
∈ F −1

D (µ), then (remember that 0 < ‖q‖ ≤ R for all q ∈ Q )c∗
− d∗

 = sup
‖x‖≤1

c∗, x

−

d∗, x


≥ sup

q∈Q

c∗, R−1q


−

d∗, R−1q


≥ R−1 sup

q∈Q

c∗, q


− ⟨µ, Aq⟩ +


c∗, q


.

Furthermore, since c∗
∉ FD(µ), there exists q0 ∈ Q such that

− ⟨µ, Aq0⟩ +

c∗

+ c∗, q0

> 0.

Therefore

dist

c∗, F −1

D (µ)


= inf
d∗∈F −1

D (µ)

c∗
− d∗


≥ R−1 sup

q∈Q

− ⟨µ, Aq⟩ +


c∗

+ c∗, q


> 0,

which implies (43). �

The next result shows that indeed the situation of the exact Lipschitzian bound for FD around (0,µ) is similar to that of
‖D∗FD(0,µ)‖ in Theorem 15.

Theorem 18. Assume condition (A) and let µ ∈ FD(0). Then:

(i) If µ is a strong Slater point of FD at 0, then lipFD(0,µ) = 0.
(ii) If µ is not a strong Slater point of FD at 0, then

r∆ ≤ lipFD(0,µ) ≤ R∆,

where

∆ := sup
b∗∗

−1
:

b∗∗,

µ, b∗∗


∈ cl ∗CD(0)


.
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Proof. We will split the proof in two cases:
• FD does not satisfy the strong Slater condition at c∗

= 0. Then, (i) cannot occur, and with respect to (ii), observe that
condition (A) and Proposition 10 implies that FD is not Lipschitz-like around (0,µ) and (0, 0) ∈ cl ∗CD(0). Hence

lipFD(0,µ) = ∞ = sup
b∗∗

−1
:

b∗∗,

µ, b∗∗


∈ cl ∗CD(0)


.

• FD satisfies the strong Slater condition at c∗
= 0. In this case, another application of Proposition 10 gives that

0 ∈ int (domFD) and hence FD is Lipschitz-like around (0,µ), so lipFD(0,µ) < ∞. Now choose any sequence


c∗

j , µj


that converges to (0,µ), such that c∗

j ∈ int (domFD) for all j (thus FD satisfies the strong Slater condition at c∗

j as well), and

lipFD(0,µ) = lim
j→∞

dist

µj, FD(c∗

j )


dist

c∗

j , F −1
D (µj)

 .
(i) Suppose thatµ is a strong Slater point of FD at 0, and let ϑ > 0 be such that

inf
q∈Q


⟨µ, Aq⟩ −


c∗, q


≥ ϑ > 0.

Let j be large enough such that
c∗

j

 < ϑ
4R , and

µ − µj
 < ϑ

4(1+M)R , whereM = supt∈T

a∗
t

 < ∞.

If µj does not satisfy the condition µj ≥ 0, then F −1
D (µj) = ∅ and so

dist

µj, FD(c∗

j )


dist

c∗

j , F −1
D (µj)

 = 0.

In the case when µj ≥ 0, then for any q ∈ Q
µj, Aq


−

c∗

+ c∗

j , q

= ⟨µ, Aq⟩ −


c∗, q


−
µ − µj, Aq


−

c∗

j , q


≥ ϑ − MR
µ − µj

−
c∗

j

 R
>

ϑ

2
,

implying that µj ∈ FD(c∗

j ) and so dist

µj, FD(c∗

j )


= 0. Thus lipFD(0,µ) = 0.
(ii) Suppose that µ is not a strong Slater point for FD at 0. Since gphFD is convex, we may apply Proposition 1.37 and

Theorem 1.44 in [19] to get thatD∗FD(0,µ)
 ≤ lipFD(0,µ). (44)

Hence from Theorem 15, we obtain

0 < r max
b∗∗

−1
:

b∗∗,

µ, b∗∗


∈ cl ∗CD(0)


≤ lipFD(0,µ), (45)

where r is the constant in (34).
Consider a sequence


c∗

j , µj


as above with µj ∉ FD(c∗

j ) and F −1
D (µj) ≠ ∅ (which gives µj ≥ 0). From now on, the

proof follows as the proof of Theorem 4.6 in [14]; actually we need to consider any (b∗∗, α) ∈ cl ∗CD

c∗

j


and choose any

net in CD

c∗

j


that w∗-converges to (b∗∗, α) to show, after some algebra together with (43), that

α −

µj, b∗∗


dist


c∗

j , F −1
D (µj)

 ≤ R.

Then use this inequality and the Ascoli distance formula (42), to get

dist

µj, FD(c∗

j )


dist

c∗

j , F −1
D (µj)

 ≤ R sup
b∗∗

−1
:

b∗∗, α


∈ cl ∗C+

D (c∗

j , µj)


,

where

C+

D (c∗

j , µj) :=


b∗∗, α


∈ cl ∗CD

c∗

j


: α −


µj, b∗∗


> 0


,

and, by letting j → ∞, we obtain

lipFD(0,µ) ≤ lim sup
j→∞

R sup
b∗∗

−1
:

b∗∗, α


∈ cl ∗C+

D (c∗

j , µj)


.
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Finally, we follow exactly the steps in the cited Theorem 4.6 in [14] to get the desired estimate

lipFD(0,µ) ≤ R max
b∗∗

−1
:

b∗∗,

µ, b∗∗


∈ cl ∗CD(0)


,

which completes the proof in view of (45). �

Example 3. An application of this theorem and (44) to the data in Example 2 by taking Q = Q 2, gives lipFD(0,µ) =
√
2

because
√
2 = ‖D∗FD (0,µ)‖ ≤ lipFD(0,µ) ≤ R2 max


‖b∗∗‖

−1
∞

: (b∗∗, ⟨µ, b∗∗⟩) ∈ cl C2
D


=

√
2.

The last theorem in the paper provides an estimate of the difference between lipFD(0,µ) and ‖D∗FD(0,µ)‖ which is an
immediate consequence of the results above, as well as a technical assumption guaranteeing the equality between both. So,
the situation for the dual is much more involved than in the case of the primal problem where the equality between both
constants always holds (Theorem 8) as a consequence of the fact that F −1

P is a perfectly regular mapping (see Proposition
5 in [17]). The upper bound for lipFD(0,µ) − ‖D∗FD(0,µ)‖ given next depends on the cone constraint provided by Q , and
the characteristic set CD(0) corresponding to some special spanning closed setQ . This estimate is described in the following
corollary.

Theorem 19. In relation to the dual feasible set mapping FD the following two statements hold:

(i) Assume condition (A) and suppose that FD satisfies the strong Slater condition at c∗
= 0. Let µ ∈ FD(0), then there are

constants r and R, 0 < r ≤ R, which only depends on the cone Q , such that

0 ≤ lipFD(0,µ) −
D∗FD(0,µ)


≤ (R − r)max

b∗∗
−1

:

b∗∗,

µ, b∗∗


∈ cl ∗CD(0)


.

(ii) If F −1
D (ℓ∞(T )∗

+
) has nonempty interior for the norm topology in X∗ and

{q ∈ Q : ‖q‖ = 1} (46)

is w∗-closed in X∗∗, then

lipFD(0,µ) =
D∗FD(0,µ)

 . (47)

Proof. (i) It is a straightforward consequence of Theorems 15 and 18, and the fact that ‖D∗FD(0,µ)‖ ≤ lipFD(0,µ) by (44).
(ii) Remember that F −1

D : ℓ∞(T )∗ ⇒ X∗ is defined through

F −1
D (µ) :=


A∗µ − c∗

+ Q ◦, if µ ≥ 0,
∅, otherwise.

Since gphF −1
D is convex and we are assuming that F −1

D (ℓ∞(T )∗
+
) has nonempty interior for the norm topology in X∗, we

may apply Proposition 5 in [16] to see that this mapping is perfectly regular and so, (47) holds.
Observe that the set {q ∈ Q : ‖q‖ = 1} = Q ∩ {x∗∗

∈ X∗∗
: ‖x∗∗‖ = 1} is w∗-compact in X∗∗ by the Alaoglu theorem.

Suppose thatµ ∈ FD(0), and take (b∗∗, x∗∗) ∈ ℓ∞(T )∗∗
× X∗∗ such that

S
(gphF −1

D )−(µ,0)(b
∗∗, x∗∗) =: M < +∞ and

x∗∗
 = 1, (48)

where S
(gphF −1

D )−(µ,0) is the support function of the convex set (gphF −1
D ) − (µ, 0).

Since 0 ∈ F −1
D (µ) there must existq∗

∈ Q ◦ such that

0 = A∗µ − c∗
+q∗,

and the first condition in (48) reads
µ −µ, b∗∗


+

A∗(µ −µ) + q∗

−q∗, x∗∗

≤ M for all µ ≥ 0 and all q∗

∈ Q ◦.

Taking µ = µ yields
q∗, x∗∗


≤
q∗, x∗∗


for all q∗

∈ Q ◦,

i.e.,

x∗∗
∈ Q ◦◦

∩ {x∗∗
∈ X∗∗

:
x∗∗

 = 1} = Q ∩ {x∗∗
∈ X∗∗

:
x∗∗

 = 1},

and Proposition 5 in [16] applies. �
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Remark 6. Condition (46) is automatically satisfied if X is the Euclidean space. In the infinite-dimensional setting, (46) also
holds, for instance, when X is reflexive and Q is finite dimensional (for instance, finitely generated). Also in this case,
F −1

D (ℓ∞(T )∗
+
) has nonempty interior for the norm topology in X∗ when intQ ◦ is nonempty, and this is implied by the

existence of a compact base for Q .

Example 4. Revisiting Example 1 where r = R = 1, we can conclude from part (i) of this last theorem that lipFD(0,µ) =

‖D∗FD(0,µ)‖.

Example 5. This example shows that the equality (47) may hold even when r ≠ R and the set (46) is not w∗-closed
in X∗∗. Consider X = c0, the Banach space of bounded real sequences converging to 0, with the supremum norm. Then
X∗

= ℓ1 = ℓ1 (N) and X∗∗
= ℓ∞ = ℓ∞ (N). Let

Q = {q ∈ c0 : 2q1 ≥ qn ≥ 0, n ∈ N} and Q = {q ∈ Q : ‖q‖∞ = 1} ;

1∗
=(1)∞n=1 ∈ cl ∗Q , so this setQ is not w∗-closed in ℓ∞. Furthermore, whenever q ∈ Q , then qn = 1 for at least one n ∈ N,

and 1
2 ≤ q1 ≤ 1. If x∗

= e1 := (1, 0, . . . , 0, . . .) ∈ ℓ1, then ⟨x∗, q⟩ = q1 ≥
1
2 for any q ∈ Q . Indeed, r =

1
2 is the largest r we

can choose to satisfy ⟨z∗, q⟩ ≥ r for some z∗
∈ ℓ1, ‖z∗‖1 = 1, and for all q ∈ Q , because, for qk ∈ Q , k ∈ N, k ≠ 1, defined

by qk1 =
1
2 , q

k
k = 1, and qkn = 0 otherwise, it holds that


z∗, qk


= z∗

1
1
2 + z∗

k → z∗

1
1
2 ≤

1
2 . Now consider T = {t0} and put

a∗
t0 := a∗

=


−1
2n−1

∞

n=1
∈ ℓ1, also fix c∗

= a∗. Observe that ℓ∞(T ) = ℓ∞(T )∗ = ℓ∞(T )∗∗
= R. Then µ = 0 is a strong Slater

point for FD at c∗
= 0, whileµ = 1 ∈ FD(0) is not a strong Slater point. The characteristic set is given by

CD(0) = conv


(⟨a∗, q⟩, ⟨a∗, q⟩) : q ∈ Q ∪ {(p, −1) : p ∈ R, p ≥ 0}


⊂ R2
;

and by taking into account that −2 ≤ −q1 − 1 ≤ ⟨a∗, q⟩ ≤ −q1 ≤ −
1
2 for any q ∈ Q , an application of Theorem 15 givesD∗FD(0,µ)

 ≤ sup
b∗∗

−1
:

b∗∗,

µ, b∗∗


=

b∗∗, b∗∗


∈ cl ∗CD(0)


= 2. (49)

(Here R = 1.) Also lipFD(0,µ) ≤ 2 because of Theorem 18. On the other hand, from Theorem 13, we can see that for each
k ∈ N, k ≠ 1, qk defined by

qk1 = 1 −
1

2k−1
, qkk+1 = 2qk1, and qkn = 0 otherwise,

belongs to D∗FD(0,µ)

bk

, where bk :=


a∗, qk


. Since

bk =
a∗, qk

 = 1 −
1

2k(k−2) < 1, we obtain thatD∗FD(0,µ)
 = sup

z∗
 : z∗

∈ D∗FD(0,µ)

b∗∗

,
b∗∗

 ≤ 1


≥
qk =

qk
∞

= 2

1 −

1
2k−1


.

By letting k → ∞ and in view of (49), it follows that ‖D∗FD(0,µ)‖ = 2. Finally, by (44) ‖D∗FD(0,µ)‖ ≤ lipFD(0,µ) ≤ 2,
therefore we obtain the equalities ‖D∗FD(0,µ)‖ = lipFD(0,µ) = 2.
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