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Archetypal motors produce work when two slowly varying degrees of freedom (DOF) move around
a closed loop of finite area in the parameter space. Here, instead, we propose a simple autonomous
monoparametric optomechanical engine that utilizes nonlinearities to turn a constant energy current
into a nonconservative mechanical force. The latter self-sustains the periodic motion of a mechanical
DOF whose frequency is orders of magnitude smaller than the photonic DOF. We have identified
conditions under which the maximum extracted mechanical power is invariant and show a new type
of self-induced robustness of the power production against imperfections and driving noise.

I. INTRODUCTION

The vital role of nano/micro-engines in the ad-
vancement of nanotechnology has been placing their
development at the forefront of the recent research
activity1–17. Many of the reported achievements have
been benefiting areas ranging from nanorobotics to
molecular electronics,1–5,7–9 and from spintronics to
quantum measurements18–22. Along these lines, the
concept of current-induced forces for the realization
of nano/microscopic adiabatic quantum motors has
emerged within the framework of modern condensed mat-
ter physics10,23–26. At the most fundamental level, adi-
abatic quantum motors utilize the interference effects of
the electron current going through them to produce use-
ful work extracted from a mechanical degree of freedom
(motor). The motor degrees of freedom (DOF) are as-
sumed to be slow compared to the electronic DOF al-
lowing for a mixed quantum-classical description of the
resulting dynamics. The quantum-coherent nature of the
fast electronic degrees of freedom and the associated in-
terference effects induce an adiabatic reaction force to
the slow mechanical DOF (MDOF)10,26. The work per
cycle associated with such forces has geometric features,
characterized by the area encircled by the MDOFs in
their parameters’ space27–30. Consequently, when there
is just a single (non-rotational) classical DOF, these re-
action forces are necessarily conservative, producing zero
useful work at the end of an adiabatic cyclic variation of
the MDOF.

The implementation of nanomotors in the condensed
matter framework requires that the nanomechanical de-
vice is connected to electron reservoirs with a tempera-

ture or a voltage gradient among them that provide the
transport current10,23–26,31. Alternative driving schemes
(e.g. ac driving32–34) and energy sources include chemi-
cal energy1,2 or light3,7,9,35. In fact, the recent advance-
ments in nanophotonics provide tantalizing opportunities
for the realization of autonomous nanomotors that might
surpass fundamental operational limitations. Specifi-
cally, new features and tools that are intrinsic to the
photonics framework, like the presence of (self-induced)
nonlinearities due to light-matter interactions or the pos-
sibility to engineer losses (or gain), etc., might turn out to
be useful design elements for bypassing such constraints,
like, the multiparametric nature of the MDOFs.

Here, we propose an autonomous monoparametric
optomechanical motor consisting of a single harmonic
MDOF coupled to a nonlinear photonic circuit driven by
a monochromatic source. In the example shown in Fig. 1,
the photonic circuit consists of a Fabry-Pérrot resonator,
while the MDOF is described by an oscillating mirror at-
tached to a spring. The position of the mirror controls
the resonant frequency of the photonic DOF (PDOF)
and subsequently the energy flux via the detuning from
the monochromatic source. For incident power above a
critical value, the intrinsic nonlinearity of the cavity pro-
duces bistability in the PDOF and the access to one state
or the other is determined by the characteristics of the
MDOF’s motion. Consequently, the optical force is self-
regulated by the position and direction of the MDOF and
can become non-conservative, thus compensating for the
mechanical friction and enforcing an oscillatory steady
state of the mirror. We show that the optical force under-
goes a self-induced hysteresis loop when the position of
the mirror changes. The associated area of the loop gives
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FIG. 1. (a) Schematics of a single-cavity monoparamet-
ric motor. The radiation pressure in a nonlinear photonic
cavity induces self-oscillations of the mirror. (Inset) The
magnitude of the photonic force FPh. ∝ |a|2 depends on the
mirror’s direction of motion (see arrows) due to the bistabil-
ity of the modal energy |a|2. (b, c) The bistable dependence
of the modal energy |a|2 (blue lines) with the mirror’s posi-
tion x [see Eq. (4)] shows a hysteresis loop within the range
x ∈ (x−, x+). The red lines are real roots that do not corre-
spond to physical solutions. The grey shaded area indicates
the range of oscillation of the MDOF. In (b), the motion of
the MDOF is wide enough to cover the whole loop and the
modal energy |a|2 explores both branches (see arrows). The
work done on the MDOF is proportional to the area of the
loop. In (c), the amplitude of the MDOF cannot cover the
loop and |a|2 explores one branch of the bistability. [Insets
(b,c)] Temporal dynamics of the MDOF that (b) reaches the
steady state; (c) relaxes toward the equilibrium position.

the work done per cycle. Devices based on our mecha-
nism are resilient against stochastic noise associated with
the lasing source. We identify optimal designs and derive
conditions under which the maximum extracted power
is invariant under various design parameters. Our the-
ory utilizes an adiabatic coupled mode framework, but
its predictions are applicable for as long as there is a
large time-scale separation between the mechanical and
the PDOF. The theoretical results have been scrutinized
against time-domain simulations with temporal coupled
mode theory (CMT) models and realistic electromechan-
ical platforms.

Importantly, nonlinearities may also arise in the con-
text of quantum transport via the mean-field treatment
of electron-electron interactions36, which are essential in
all density-functional-theory-based methods37. There-
fore, it is reasonable to envision the extrapolation of our
results to the design of novel quantum devices.

II. BASIC PRINCIPLE USING A SINGLE
CAVITY SETUP

We consider a nonlinear single-mode cavity driven by
a monochromatic source. The dynamics of the electro-
magnetic field inside the cavity is described by a time-

dependent CMT

ȧ = i
[
ωa(X) + χ|a|2

]
a− γa+ i

√
2γespe

iωt, (1)

where the field amplitude a(t) is normalized such that
|a|2 is the energy inside the cavity and |sp|2 and ω
represent the power of the incident wave and its fre-
quency. Here, γe is the decay rate toward the input-
output channel, and γ ≥ γe is the total loss. Finally,
the term χ|a|2 describes a nonlinear frequency correction
due to, for instance, a Kerr effect. The modal resonant
frequency ωa(X) depends parametrically on the (slow)
MDOF X. For concreteness, we adopt below a lan-
guage associated with the Fabry-Pérot example of Fig.
1. In this framework, X is the position of the mirror,
ωa(X) = ω0L/(X + L) ≈ ω0(1 − X/L) where ω0 is the
resonant frequency of the cavity in the equilibrium posi-
tion of the mirror X = 0. Below, we assume that X � L.
Nonlinearity could be provided by a filling medium that
does not limit the MDOF dynamics, like a gas38 or a thin
film39.

The MDOF is described by a dumped harmonic os-
cillator driven by a photonic force proportional to the
energy inside the cavity, Fph = ε|a|240,

MẌ = −2ΓMẊ −KX + ε|a|2 (2)

where M , K, and Γ are the mirror mass, the spring
constant, and the friction coefficient. The coupling is
ε = ζL−1, where the model dependent coefficient ζ takes
the value ζ = 1 in case of Fabry-Pérot resonators. It is
convenient to rewrite Eqs. (1,2) in terms of x = X/L,

Ω =
√
K/M , and α = ε/M ,

ȧ = i
[
ω0(1− x) + χ|a|2

]
a− γa+ i

√
2γespe

iωt,

ẍ = −2Γẋ− Ω2x+ α|a|2.
(3a)

(3b)

III. SELF-INDUCED NONCONSERVATIVE
FORCE

We consider the situation where the MDOF is much
slower than the PDOFs, i.e., Ω� γ � ω0. In this adia-
batic limit, x in Eq. (3a) can be treated as a parameter
rather than a time- dependent variable.It is then pos-
sible to find an analytical solution to Eqs. (3a,3b), by
introducing the ansatz a(t) = ãeiωt41. Then, Eq. (3a)
reads

z
[
(z −A)2 +B

]
− J = 0 (4)

where z = χ|a|2/γ, A(x) = (ω0x + δω)/γ, B = 1, J =
2χ|sp|2/γ2, and the frequency detuning of the emitting
source is δω = ω − ω0. Specifically, when the injected
power |sp|2 exceeds a critical value |scrp |2

|sp|2 > |scrp |2 = (4/3)3/2γ3/(2γeχ), (5)

Eq. (4) admits three solutions for z ∝ |a|2 in some dis-
placement range x ∈ (x−, x+). This bistable behavior
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is associated with the formation of a self-induced “hys-
teresis loop” in the parameter space defined by the op-
tical force and the displacement, see Fig. 1(b, c). We
stress that both displacement bounds x± are byproducts
of Eq. (4) and they do not depend on the parameters
of the MDOF. Instead, they only depend on the param-
eters associated with the PDOF, the detuning δω, and
the incident field amplitudes sp.

41

Let us analyze in more detail the motion of the mirror.
First, consider the case where the mirror is at x < x−
and it moves expanding the cavity. The modal energy
of the PDOF |a|2 will change along the upper branch
of the hysteresis loop until the critical position x+ is
reached, see Fig. 1b. At this point, the energy |a|2
sharply decreases. In contrast, when the mirror starts
at a position x > x+ and moves to contract the cav-
ity, |a|2 changes following the lower branch of the hys-
teresis loop until it reaches the position x−, where the
modal energy |a|2 sharply increases, see Fig. 1b. In

consequence, the optical force FFF ph ∝ |a|2X̂ has a mag-
nitude that depends on the mirror’s direction. The
associated work performed by the radiation pressure,
Wph =

∮
FphdX =

∫∫
D

(
−∂F/∂|a|2

)
dXd|a|2, results

proportional to the area of the hysteresis loop. Notice
that the nonlinearity introduces an additional effective
DOF, |a|2, that enables a nonzero area. Since such an
area is insensitive to the details of the parametric tra-
jectory, providing a self-induced robustness of the work
production.

Energy conservation implies that, in the steady state,
the work of the optical force Wph should balance the
dissipated energy Wfr in each cycle. Assuming x(t) =
xeq + x0 sin Ωt and |xeq| � x0, we can estimate the
mirror’s amplitude x0 from Wph = Wfr, where Wfr =

2πΓΩMx2
0L

2. Therefore x0 ≈
√
αw/(2πΓΩ), where w

is the area encircled by the hysteresis loop. This ex-
pression for x0, however, becomes inconsistent whenever
x0 < |x±|, because the extraction of useful work from
the MDOF requires that the optical force Fph explores
both branches of the bistability. If the mirror reaches its
rightmost position at xeq + x0 < x+ and turns back, the
driving force remains on the same branch, as shown by
the arrows in Fig. 1c; therefore w = 0 and consequently
Fph becomes conservative. Importantly, this is true even
if the initial displacement exceeds x+. In such a case,
the motion of the mirror simply relaxes to the equilib-
rium position, xeq (inset of Fig. 1c). Thus, to guarantee
the existence of the MDOF’s stationary regime, one has
to supplement the necessary condition Eq. (5) with a suf-
ficient condition

x0 > max(|x−|, |x+|), (6)

that ensures the exploration of the whole bistability re-
gion.

The optomechanical nanostructure of Fig. 1a consti-
tutes an autonomous monoparametric motor that con-
verts energy from a constant energy current, generated

FIG. 2. (a) Schematics of the double-cavity monoparametric
motor. (b) Output power versus emitter detuning δω = ω−ω0

and coupling κ, see Eq. (8). The cutoffs are determined
by Eq. (6), and the solid red line indicates the maximum
(iso)power line Eq. (9) with κ0 = κ∗. Vertical black dashed
line indicates κ/κ∗ = 2 (see Fig. 3). Inset: Maximum power
production of the single-cavity (red dotted line) and double
cavity (blue solid line) motors vs. the loss γ̄. The addition of
a second cavity allows us to optimize the coupling κ to obtain
a stable performance against losses. (Parameters in Ref. 55)

by coherent radiation, into mechanical work. The perfor-
mance of such a motor can be quantified by the output
power Pout and the efficiency η which are

Pout = Wph ·
Ω

2π
, η =

Pout

Pin
=
Wph · Ω

2π

|sp|2
∝ Ω

ω0
, (7)

where the input power Pin = |sp|2. The efficiency, al-
though small (Ω/ω0 � 1), is comparable to that of other
systems in the adiabatic limit35.

The output power of the optomechanical nanomotor is
affected dramatically by variations of the loss parameter
γ. Our CMT analysis indicates that the performance of
the motor deteriorates rapidly for moderate γ-values or
even drops to zero due to the violation of Eq. (6), see
inset of Fig. 2(b). Obviously, in any realistic scenario,
such rapid performance deterioration is undesirable. It
turns out that we can eliminate this deficiency by incor-
porating in our design an additional PDOF. The idea is
to separate the PDOF that couples to the source from
the PDOF that implements the non-conservative optical
force. In this way, the first PDOF will act as a buffer, pro-
tecting the second PDOF (and consequently the induced
Fph) from any variations occurring in γ. We proceed with
the analysis of such a structure.
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IV. DOUBLE CAVITY SETUP

We consider two coupled optical modes, a and b, where
b is driven by the monochromatic source, while a is non-
linear and its resonant frequency depends on the position
of the MDOF (see Fig. 2a). The associated equations of
motion read

ḃ = iω0b− γbb+ iκa+ i
√

2γespe
iωt

ȧ = i
[
ω0(1− x) + χ|a|2

]
a− γaa+ iκb (8)

ẍ = −2Γẋ− Ω2x+ α|a|2,

where κ is the coupling parameter between the modes
and γa, γb(≥ γe) are the decay rates of the modes.

By applying the adiabatic approximation in Eqs. (8),
we arrive at a similar equation as Eq. (4) for the field
intensity of the second PDOF. Now, z = χ|a|2/γ̄ where
γ̄ = (γa + γb)/2 and only A depends on x41. Following
the same steps as previously, we find the critical power
|scrp |2 that ensures self-oscillations and analyze the hys-
teresis loop in the force-displacement plane to extract the
equivalent mechanical criterion Eq. (6) for work produc-
tion.

In this configuration, the coupling κ (together with
the emitter detuning δω) controls the flow of energy to
the second PDOF that forms the non-conservative force
due to light-matter interactions. In Fig. 2b, we report
the extracted power Eq. (7) for different values of κ
and δω keeping fixed the rest of the parameters. The
red line indicates an “isopower” line where the output
power remains the same. This curve is described by the
equation

(ω − ω0)2 = (γb/κ0)2(κ2 − κ2
0) (9)

for any particular values of ω0, κ0, and γb
41 and provides

a desirable flexibility in designing the motor.
To compare the performance of this setup with the one

in Eq. 3, we require three conditions: (a) The coupling
to the source γe in both setups is the same; (b) The av-
erage loss in each setup is the same, γ = γ̄; and (c) the
source power |sp|2, characteristic frequency ω0, nonlin-
earity coefficient χ, and all the mechanical parameters
are the same. Under these conditions, we calculate the
maximum value of Pout of the double cavity by exploring
the (κ, δω)-plane as a function of γ̄ = (γa + γb)/2, with
γa = cons. and γe = γ̄. For the single cavity, we adjust
γe = γ = γ̄. We find that the performance of the single-
cavity setup (red dashed line) is better at high-quality
factors (∼ 1/γ̄) while the double-cavity demonstrates a
degree of robustness against variations in γ̄ (see inset of
Fig. 2b). Importantly, it does not vanish as γ̄ increases.

V. DYNAMICAL SIMULATIONS AND NOISE

For practical implementations, it is necessary to assess
the robustness of our proposal using realistic conditions,

FIG. 3. Output power of the double-cavity motor with
coupling κ/κ∗ = 2 vs. δω for different noise strengths NS.
Our time-domain simulations (with Ω/ω0 = 10−5) in the ab-
sence of noise (violet dashed line) deviate slightly from the
adiabatic prediction (black solid line) because of dynamical
effects. Strong noise strength NS = 5% and NS = 10% pro-
duce small deviations for δω < 0. Symbols indicate values
of different noise realizations. (Left inset) The field inten-
sity dynamics |a(t)|2 vs x(t) for Ω/ω0 = 10−4 (green line),
Ω/ω0 = 10−5 (blue line), and Ω/ω0 = 10−6 (red line) agree
nicely with the analytical prediction (black line) (Right inset)
Strong noise NS = 10% does not destroy the hysteresis loop.
Here Ω/ω0 = 10−5.

like the presence of noise or non-adiabatic (dynamical)
effects. To this end, we consider time-domain simulations
using the CMT modeling where the driven mode b is
affected by noise.

In Fig. 3, we show the extracted power evaluated from
dynamical simulations for a vertical cut of Fig. 2(b) with
κ/κ∗ = 2 versus the detuning δω/ω0. First, we discuss
the case of a finite value of Ω/ω0 = 10−5 in the absence
of noise (NS = 0%). We observe that the power from dy-
namical simulations is slightly higher than the analytical
prediction. We attribute this small deviation to dynam-
ical effects. In the left inset of Fig. 3, we show the field
intensity |a(t)|2 vs. x(t) for different values of Ω/ω0. The
agreement with the adiabatic solution is satisfactory for
Ω/ω0 . 10−5 while a reasonable agreement persists for
even higher ratios Ω/ω0 = 10−4.

Next, we consider white noise associated with the driv-
ing source41. The noise strength NS is quantified by
comparing the fluctuations of the optical field intensity,
in terms of its variance σ2

b = Var(|b(t)|2), relative to the
mean modal energy Eb = 〈|b(t)|2〉, NS := σb/Eb. In
Fig. 3, we report the extracted power in case of rela-
tively strong noise (NS = 5% and NS = 10%). It turns
out that even in the extreme case of NS = 10%, the
performance of the motor remains relatively unaffected.
Such stability originates in that the hysteresis loop per-
sists even when noise affects the photonic field (see right
inset of Fig. 3).
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VI. ELECTROMECHANICAL MOTOR

Here, we propose two designs of monoparametric elec-
tromechanical motors based on electronic circuit setups
that display a steady-state motion of a MDOF. We val-
idate our predictions via realistic time-domain simula-
tions.

As shown schematically in Fig. 4(a, b), we consider the
electric circuit analogue of the single- and double- cavity
setups consisting in one LC resonator and two coupled
LC resonators, respectively. In both setups, the nonlin-
earity is introduced by a nonlinear capacitor Ca whose
inverse capacitance depends nonlinearly on the charge
q as C−1

a (q) = C−1
a0 + βq2 with Ca0, β = cons.42. The

circuit element Cx is a parallel plate capacitor with one
movable massive plate attached to a spring. Its associ-
ated capacitance depends on the plate displacement δ as
C−1
x = (d0 + δ)/(ε0A) = C−1

x0 (1 + x), where A is plate
area, d0 is the capacitor width in absence of bias and
x = δ/d0 is a dimensionless displacement, considered
as the MDOF. Therefore, the voltage on the node va
is va(q) = q

C0
(1 + ξx) + βq3, where C−1

0 = C−1
x0 + C−1

a0 ,

ξ = C0/Cx0. Each LC resonator supports a resonant
mode that, in absence of nonlinearity and displacement
of the mechanical plate, has a resonance frequency ω0 =
1/
√
LC0 = 2π × 109rad/s and impedance at resonance

z0 =
√
L/C0 = 70 Ω.43

The signal vs(t) = v0 sin(ω̃t) is generated by a voltage
source connected to the circuit via a transmission line
(TL) with characteristic impedance R = 50 Ω ended in
a coupling capacitance Ceα = εαC0, α = a, b. In con-
trast to the single cavity setup, where the TL is coupled
to the nonlinear mechanical LC resonator, in the double
cavity setup the TL is coupled to a linear LC resonator
via a capacitance Ceb and, in turn, such resonator is cou-
pled to the nonlinear mechanical LC resonator via a mu-
tual inductance coupling with coefficient µ. The later is
also coupled to a TL that introduces an energy leakage
controlled by the coupling capacitor Cea. The capaci-
tive coupling to the TLs introduces a frequency shift. To
avoid impedance mismatch between the resonators in the
double cavity setup, we keep their resonant frequencies
approximately the same by introducing the conditions
Cb = (1− λ)C0 and εb − λ ' εa.

The back action to the MDOF is determined by the
force induced by the electric field E inside the capac-
itor Cx on the movable plate’s charge, F = −Eq =
−[q/(ε0A)]q = −q2ξ/(d0C0). Such a force displaces the
capacitor plate according to the dimensionless equation

d2x

dτ2
= −2Γ

dx

dτ
− Ω2x− αq2

a, (10)

where τ = t/ω0, Ω = ω−1
0

√
K/M ' 10−5, α =

ξv2
0/(Md2

0ω
3
0), and qa = q/(C0v0).

The coupling of the resonators with TLs produces an
electric energy leakage with decay rates γb and γa when
µ = 0. Such rates can be determined, e.g. by estimat-
ing transient decay times, or alternatively finding the

FIG. 4. Schematics of (a) single-circuit and (b) double-circuit
setups. The transmission line impedance is R = 50 Ω; the in-
ductance L and linear components of conductances Ca, Cb, Cx

satisfy
√
L/C0 = z0 = 70 Ω. vs(t) = v0 sinωt. (c) Normalized

work production as a function of normalized electric field en-
ergy loss for single-circuit (red circles), double-circuit (blue di-
amonds) and corresponding CMT approximations (blue solid
and red dot-dashed lines respectively). The reference loss
value chosen is γ∗ = 5.7 · 10−3, while the work w(γ) is com-
puted independently for each setup. Here, w∗ = w(γ∗). One
can see the single-circuit (single-cavity) setup performance is
very sensitive to changes in γ while double-circuit (double-
cavity) setup is stable. (d, e) Charge squared |qa|2 vs. dis-
placement x during a whole cycle of the MDOF that evidences
the hysteresis loop associated to the single resonator (d) and
double resonator (e) circuit.

linewidths in a scattering analysis. In addition, those
decay rates can be approximated via a CMT description
of the circuit setups, as described in Ref. 43. There, the
CMT predicts decay rates γa,b ∝ ε2

a,b(z0/R) and there-
fore they can be controlled by varying the capacitive cou-
pling to the TL.

In Fig. 4(c) we plot the (dimensionless) work pro-
duction w =

∫
|qa|2dx versus the decay rate γ, which

is γ = γa for the single resonator and γ = γb for the
double resonator setup. Variations of these parame-
ters are achieved by sweeping εa and εb in the interval
[0.085, 0.11], respectively. We have normalized both the
work production and the loss parameter γ by a specific
–but arbitrary– set of parameters. Specifically, for the
double-resonator circuit we set εa = 0.03, ε = 0.1, which
corresponds to losses γa = 0.5 ·10−3, γb = γ∗ = 5.7 ·10−3.
We have found the maximum work w by varying the cou-
pling, µ, and the driving frequency, ω̃. For the single-
resonator circuit we choose resonant driving. This ap-
proach allows us to compare w/w∗ vs. γ/γ∗, where
w∗ = w(γ∗), for both circuit setups and their associated
CMT. One can see that the CMT accurately predicts the
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outcome of the time domain simulations of the electrome-
chanical equations also evidencing the robustness of the
double-cavity performance while the single-cavity setup
is sensitive to the parameters.

For completeness, in Figs. 4(d, e) we show the hys-
teresis loops associated to the charge square |qa|2 when
x changes for the single-resonator 4(d) and double-
resonator 4(e) circuits. Qualitative similarities with the
photonic counterparts can be found for the single cir-
cuit setup, Fig. 4(d), although it is not the case for the
double circuit setup, 4(e). Despite this, in both cases,
the loops enclose nonzero areas and the results of circuit
simulations shows an excellent matching with the CMT.

VII. COMPARISON WITH EXISTING
SELF-OSCILLATIONS IN OPTOMECHANICAL

SYSTEMS

Self-sustained oscillations of the MDOF in single-
cavity optomechanical systems have been known for some
time and reported in a variety of theoretical and ex-
perimental platforms (see Ref.40 and references therein).
Here, we compare our proposal with the standard self-
oscillations in optomechanical systems. In principle, such
setups can be described by the same equations of motion
Eqs. (3) utilized here, with the crucial difference that
these setups do not involve a Kerr nonlinear correction
to the frequency, i.e., χ ≡ 0. We discuss next how self
oscillations can develop.

We stress again that the optical force provides the
energy required to sustain the motion of the MDOF,
and such energy can be interpreted as the area below
the (x, |a|2)-trajectory, i.e., Wph ∝

∮
|a|2dX. It turns

out that in the adiabatic limit, Ω � γ � ω0, and for
Ω → 0, the field reacts instantaneously to the motion of
the MDOF, and so does the force. Under this condition,
the energy of the cavity only depends on the position of
the MDOF, |a|2 ≡ |a (x)|2, which implies that no net
work can be produced when considering a closed trajec-
tory, i.e. Wph = 0.

One possibility to overcome this limitation corre-
sponds to operating the device under non-adiabatic ef-
fects, which has been extensively studied both experi-
mentally and theoretically40,44–49. This is indeed a mech-
anism exploited in optomechanical platforms to create
self-oscillations, which are enabled by the (extremely)
high experimental quality factors , i.e., γ,Γ � Ω. In
these scenarios, the time that photons spend inside the
cavity is enough to undergo the effect of the motion of
the MDOF. As a result, the associated energy inside the
cavity |a|2 ≡ |a (x, t)|2 will draw a finite area in the
(x, |a|2) plane, and, for appropriate input frequencies, a
self-oscillation can be achieved. This mechanism can also
lead to more complex scenarios, such as dynamical mul-
tistability (caused by the nonlinear optomechanical cou-
pling and the high quality factor), which, in the case of
high input power, results in chaotic MDOF dynamics.48

Of course, many realistic platforms cannot benefit from
the high quality factors that are required to exploit the
non-adiabatic effects, which limits the range of applica-
tions to a few experimental setups.

An alternative that can induce the MDOF motion con-
sists of the introduction of another degree of freedom
which can cause retardation effects between the photonic
force Fph ∝ |a(X, t)|2 and the MODF X. One of such
cases corresponds to the retardation produced by ther-
mal effects where the heat has to propagate through a
cantilever before it bends50.

In the present work, our approach is different from the
ones discussed above. While our mechanism focuses on
the adiabatic limit, useful for a variety of platforms with
moderate or even low quality factors, it does not con-
sider retardation effects, which makes analytical calcula-
tions straightforward. The idea is that, due to the ad-
ditional (Kerr-type) nonlinear effects, the photonic force
Fph ∝ |a|2 can distinguish the direction of motion of the
MDOF, and can be treated as a function of position x
and direction of motion ẋ/|ẋ| rather than a function of
position only. Such a dependence originates in the non-
linearity affecting the energy of the cavity that, under
certain conditions, can show bistabilities leading to the
formation of a hysteresis loop, as shown in Fig. 1. A cru-
cial feature of our proposal corresponds to the magnitude
of the output power that can be delivered to the MDOF
that goes as Ω, as opposed to non-adiabatic optomechan-
ical self-oscillations that can deliver a power that is pro-
portional to higher orders in Ω (larger than linear) (see
the Supplementary material41).

Our proposal also differs from existing examples of self-
oscillators in the framework of mechanics, which are typ-
ically describing scenarios where the adiabatic approxi-
mation is not applicable51,52.

VIII. CONCLUSIONS

We have introduced a novel class of adiabatic au-
tonomous nonlinear motors that produce useful work
based on the motion of a single MDOF with a clear sepa-
ration of time scales from the PDOF. The monoparamet-
ric nature of these motors challenges the common belief
that the extraction of a useful work requires the control of
(at least) two independent parameters; instead, the non-
linearity enables an effective extra DOF. The proposed
motor offers: (a) A novel type of self-induced robust-
ness that guarantees a work production that is resilient
against driving noise and imperfections; (b) An opportu-
nity to invoke MDOF and PDOF, which do not have com-
parable frequencies. Mechanical modes with much lower
frequency can now be utilized with our mechanism; and
(c) The implied adiabaticity offers additional robustness
against noise due to a self-averaging process of the trajec-
tory of the MDOF. We also validated our proposal via re-
alistic time-domain simulations with an electromechani-
cal version of the proposed motor. It will be interesting to
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extend the concept of adiabatic autonomous monopara-
metric motors to solid-state systems53. A promising plat-
form is ferromagnetic films, where nonlinearities due to
the coupling of a macroscopic magnetic moment with lat-
tice phonons can naturally emerge54.
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35 L. J. Fernández-Alcázar, R. Kononchuk, T. Kottos, En-
hanced energy harvesting near exceptional points in systems
with (pseudo-)PT-symmetry, Communications Physics 4,
79 (2021).

36 C. F. A. Negre, P. A. Gallay, C. G. Sánchez, Model non-
linear nano-electronic device, Chem. Phys. Lett. 460, 220
(2008)

37 P. Hohenberg, W. Kohn, Inhomogeneous electron gas,
Phys. Rev. 136, B864 (1964).

38 V. Loriot, E. Hertz, O. Faucher, and B. Lavorel, Mea-
surement of high order Kerr refractive index of major air
components, Opt. Express 17, 13429 (2009).

39 N. Moll, S. Jochim, S. Gulde,R. F. Mahrt,B. J. Offrein,
Organic nonlinear Kerr materials in Fabry-Perot cavities
for all optical switching, Photonic Crystal Materials and
Devices IV 6128, 202 (2006)

40 M. Aspelmeyer, T. J. Kippenberg, F. Marquardt Cavity
optomechanics, Rev. Mod. Phys. 86, 1391 (2014).

41 See the Supplementary Material for discussions about ana-
lytical solutions of the Eqs. 3, 8, 6, 9, and the noise strength
quantification.

42 E. Gluskin, A nonlinear resistor and nonlinear inductor
using a nonlinear capacitor, J. Franklin Inst. 336, 1035
(1999).
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Supplementary Material

I. REDUCTION OF THE EQUATIONS OF MOTION TO THE ALGEBRAIC CUBIC EQUATION

In this section, we discuss the steady state solutions of the photonic degrees of freedom (PDOF) when the mechanical
degree of freedom (MDOF) is considered as a parameter. We show that the photonic equations of motion reduce to
a cubic equation whose solutions indicate the presence of bistability.

A. Single-cavity

We start by considering the time-dependent equations of motion

ȧ = i
[
ω0(1− x) + χ|a|2

]
a− γa+ isp

√
2γee

iωt

ẍ = −2Γẋ− Ω2x+ α|a|2.
(S1a)

(S1b)

Here, the nonlinear optical cavity mode a has a natural frequency ω0, is driven by a monochromatic source with
frequency ω and source power |sp|2, and is coupled to a MDOF x, which is dimensionless. The field amplitude a(t) is
normalized such that |a(t)|2 is the energy stored in cavity “a”, γ ≥ γe is the loss, while χ|a|2 is a nonlinear frequency
correction (we consider only the case of χ). Here, Ω� γ � ω ∼ ω0 and Γ are MDOF frequency and loss, while α is
the reduced nonlinear coupling between the PDOF and the MDOF.

The condition Ω� γ implies that the MDOF is very slow as compared with the electromagnetic field dynamics and
justifies an adiabatic approximation, namely, treating Eq. (S1a) as if x were a constant parameter. To reformulate this
condition, one can split slow and fast dynamics by the ansatz a(t) = ψ(t)eiωt (|ψ|2 = |a|2), where the slow component
ψ(t) parametrically reflects the dynamics of x(t). In the equation

ψ̇ + i(δω + ω0x− χ|ψ|2)ψ + γψ = isp
√

2γe,

where we introduce the laser detuning δω = ω0−ω, one can omit the small term ψ̇ ∝ Ω. By introducing z = χ|a|2/γ,
we obtain a cubic equation

[
(z −A)

2
+B

]
z − J = 0, (S2)

with parameters

A(x) = (ω0x+ δω)/γ,

B ≡ 1,

J = 2γeχ|sp|2/γ3.

(S3)

The time dependence in the latter equation becomes implicit. From its analysis in Section I C, we will explore the
parametric dependence of the modal energy |a|2 stored in the cavity as a function of x.

B. Double-cavity

Next, we consider the system depicted in Fig. S1. There, a monochromatic laser with frequency ω is directed toward
the photonic cavity b, with natural frequency ωb = ω0, that is coupled to the nonlinear photonic mode a. The latter
is coupled to a movable mirror attached to a spring. The natural frequency of the cavity mode ωa is ω0 at low field
intensities and when the position of the left mirror is fixed at x = 0. Using coupled modes theory (CMT) for the
PDOF, we describe the system via the equations





ḃ = iω0b− γbb+ iκa+ i
√

2γespe
iωt

ȧ = iωa(x)a− γaa+ iκb+ iχ|a|2a
ẍ = −2Γẋ− Ω2x+ α|a|2,

(S4a)

(S4b)

(S4c)
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FIG. S1. Schematic representation of the double cavity setup.

were γa and γb − γe are the losses due to radiation in modes a and b, γe is the loss due to the coupling of mode b to
the continuum, and Γ is the mechanical friction. The emitter amplitude sp is such that |sp|2 is the incident source
power, while |a|2, |b|2 is the energy stored in the respective mode.

The frequency of the mode a is inversely proportional to the length of the cavity and then, it is modulated by
the mechanical degree of freedom (MDOF) x, which represents a small displacement of the mirror normalized by the
cavity length. Such a frequency reads

ωa(x) =
ω0

(1 + x)
≈ ω0(1− x), x� 1. (S5)

This linear frequency approximation is also useful to describe frequency modulations by MDOFs in other platforms
of interest, like the electronic circuits discussed later on.

Using the condition Ω/ω0 � 1, we use the adiabatic approximation, as in Section I A, treating x in Eqs. (S4a)
and (S4b) as a parameter. Then, we solve the first two equations in Eq. (S4)

{
ḃ = iω0b− γbb+ iκa+ isee

iωt

ȧ = i
[
ω0(1− x) + χ|a|2

]
a− γaa+ iκb,

(S6a)

(S6b)

considering a parametric modulation via x. Here, se =
√

2γesp.
We look for stationary solutions of Eq. (S6) of the form (a, b) = (a0, b0) exp {iωt}. The equation could be written

in matrix form as
[
iδω + γb −iκ
−iκ i(ω0x− χ|a0|2 + δω) + γa

] [
b0
a0

]
=

[
ise
0

]
, (S7)

where the emitter detuning δω = ω − ω0. It follows that

|a0|2 =
κ2|se|2

Γ2
b [ω0x− χ|a0|2 − ξω]

2
+ η2

ω

, (S8)

where we introduced auxiliary notations

Γ2
b = δω2 + γ2

b ,

ξω = −δω
[
1− κ2

δω2 + γ2
b

]
,

η2
ω =

(
κ2 + γaγb

)2
+

[
γ2
a −

κ4

Γ2
b

]
δω2,

γ̄ =
γa + γb

2
.

(S9)

By introducing the variable z = χ|a0|2/γ̄, we may rewrite Eq. (S8) in the cubic form

G(z) = z
[
(z −A)2 +B

]
− J = 0, (S10)
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where now the coefficients

A(x) =
ω0x− ξω

γ̄
,

B =
η2
ω

γ̄2Γ2
b

,

J =
κ2|se|2χ
γ̄3Γ2

b

.

(S11)

Because of formal equivalence between Eq. (S2) and Eq. (S10), the analysis of the next section where we discuss their
solutions, is applicable to both cases.

C. Algebraic cubic equation

In addition to a pathological case of no real roots in the domain of z > 0, there might be one or three real zeros for
the cubic equation Eq. (S10), as shown in Fig. S2. The latter situation might occur only when G(z) has one maximum
(on the left) and one minimum (on the right), as shown by the green dashed line in Fig. S2. The condition G′(z) = 0
leads to a quadratic equation with solutions

z± =
2A

3
± 1

3

√
A2 − 3B. (S12)

Now, we notice that in Eq. (S10) all the parameters are fixed by the setup parameters except for the variables z and
x, which change their value during the system evolution in such a way that we may consider z as a function of x or
vice versa. Indeed, the photonic energy is a function of the mirror position, while the mechanical driving force and,
therefore, the mirror position is a function of photonic energy. In Eq. (S10), only the parameter A depends on x.
Here, we introduce A± as the values of A that are solutions of the equations

G[z±(A±)] = 0. (S13)

Explicitly,

(
2A±

3
± 1

3

√
A2
± − 3B

)[(
−A±

3
± 1

3

√
A2
± − 3B

)2

+B

]
= J. (S14)

Thus, x± ∝ A± are the values of the mirror position for which G[z(x)] crosses the horizontal axes only twice, i.e.,
two of the three roots are degenerate (see Fig. S2). Whenever x < x− or x > x+, only one solution of Eq. (S10) is
possible. Therefore, x± indicate whether bistability is possible and they define the boundaries of the hysteresis loop.

By solving Eq. (S14), we may deduce if there is a hysteresis loop for the given set of parameters. In such a case,
the width of the hysteresis loop, which is proportional to the work of the motor after one cycle, is entirely controlled
by the parameter J in Eq. (S10). There, we can identify a critical value of zc = z+ = z− that causes the collapse of
the bi-stability region, which is defined from Eq. (S12) as

zc =
2A

3
, A2 = 3B.

This leads to a critical value of J (see Fig. S3)

Jc =

[
4B

3

]3/2

(S15)

above which bistability is possible. In turn, this implies that there is a critical value for the source power |scrp |2 to be
overcome in order to have bistability. Using Eq. (S3), this condition can be formulated as

|sp|2 > |scrp |2 =

(
4

3

)3/2
γ3

2χγe
, (S16)

for the single-cavity motor, while for the double-cavity motor one should use Eq. (S11) to get

|sp|2 > |scrp |2 =

(
4

3

)3/2
2γ̄6

γeγbχ(γa − γb)2
. (S17)
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FIG. S2. (a) Function G(z) for different values of the MDOF x ∝ A. G±(z) stand for G(z, x±). The green dashed line
represents G(z) for some arbitrary value of x− 6 x 6 x+. (b) Hysteresis loop z ∝ |a|2 vs. x. By moving the MDOF from the
left to the right, x reaches the critical value x+ where z drops from z+ (circle) down to z2 (diamond) and the MDOF continues
moving to the right. On its way back, at critical value x−, z jumps from z− (square) to z4 (star) and the mirror continues its
motion to the left and repeats. The red solid line corresponds to the third root of Eq. (S10), which is physically inaccessible.

FIG. S3. G[z±] vs x. At the critical value Jc, Eq. (S15), two solutions of Eq. (S13) collapse into one point and no real solution
below Jc is possible (there is an imaginary component below Jc not shown in the plot). By increasing J , we increase the width
of the loop in Fig. S2(b).

II. MECHANICAL CRITERION

From the solution of Eq. (S6), we can predict whether work production is possible and also compute its value,
assuming that the whole bi-stability region is accessed by the MDOF. However, this assumption is not always satisfied.
Indeed, by considering only the photonic equations of motion, we cannot obtain information whether x will reach
this region dynamically or not. Instead, we have to consider also Eq. (S4c). In this section, we discuss a criterion
that guarantees that the steady state motion of the MDOF will explore the whole bistability region, hence producing
work.

The MDOF reaches its steady state when the dissipated energy wfr is balanced by the work of the photonic force
wph in each period of its motion. Assuming resonant driving, the work done per period by the friction force results

wfr =

2π/Ω∫

0

2Γẋ2dt = 2ΓΩ2x2
0

2π/Ω∫

0

cos2 Ωtdt = 2πΓΩx2
0. (S18)

Here, we have assumed

x(t) = xeq + x0 sin Ωt, (S19)

where xeq � x0 is the equilibrium position of the MDOF. Then, the amplitude x0 is given by

x0 =

√
wph

2πΓΩ
, wph = α

∮
|a(x)|2dx. (S20)
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FIG. S4. |a|2 vs x for (a) κ =
√
γaγb, δω = 0 and (b) κ = 2

√
γaγb, δω = −0.05ω0. The rest of the parameters are the same,

ω0 = 1, |se| = 0.15, γa = 2.0 · 10−3, γb = 12 · 10−3, χ = 1.0 · 10−4, α = 1.25 · 10−17. The green vertical line indicates the
maximum amplitude of the MDOF, x0.

If x0 > max
{
|x−|, |x+|

}
, the MDOF covers the whole bistability region and work production can sustain a self-

oscillation of the MDOF.

Notice that we have neglected the displacement of the equilibrium position of the MDOF since xeq � x0. The
precise criterion would be x0 > max

{
|x−|, |x+|

}
− xeq, however, we have numerically tested that neglecting xeq does

not affect the results.

As an example, in Fig. S4, we consider two scenarios where we vary the coupling and emitter detuning, given that
the rest of the parameters are the same, such that in both cases Eq. (S10) predicts non-zero area of the hysteresis
loop. Here, the MDOF covers the whole bistability region in case (a) only, while for the case in (b), x is not able
to reach the value required to explore the two branches of the loop. In consequence, no work is produced after each
cycle and finally the MDOF relaxes to the equilibrium position regardless of the initial conditions. We have verified
these statements via dynamical simulations.

III. INVARIANCE OF THE WORK PER CYCLE ALONG THE ISO-POWER LINE.

As discussed in the main text, the double-cavity setup has a nontrivial dependence of the mechanical power pro-
duction with the laser detuning, δω = ω − ω0, and the coupling, κ. In the present section, we show that Eq. (9) of
the main text (iso-power line),

δω2 =
γ2
b

κ2
0

(
κ2 − κ2

0

)
, κ > κ0, (S21)

indeed represents a line in the parameter space along which the power production is constant for any κ0 > 0.

In order to show this, we use again the fact that that the work per cycle is proportional to the area under the
loop associated to the bistability region, e.g. in Fig. S4. In principle, this hysteresis loop might be controlled by the
parameters A, B, and J in Eq. (S10), however, not all these parameters affect the area of the loop, and at the same
time, some of these parameters may remain unchanged under variations of the system parameters. Indeed, one can
verify that B and J are invariant under any values of (κ, δω) satisfying Eq. (S21). To show this, we consider Eqs. (S9)
to (S11) which result in

Γ2
b = γ2

b +
γ2
b

κ2
0

(
κ2 − κ2

0

)
= γ2

b

κ2

κ2
0

η2 =
(
κ4

0 + γ2
aγ

2
b

) κ2

κ2
0
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and therefore

B =
κ4

0 + γ2
aγ

2
b

γ̄2γ2
b

J =
κ2

0χ|se|2

γ̄3γ2
b

.

Here, B and J are invariant under variations of (κ, δω) satisfying the condition imposed by Eq. (S21). Finally, the
parameter A may shift the the boundaries of the hysteresis loop x±, but the bistability region A− 6 A 6 A+, which is
determined entirely by values of B and J , remains unchanged as well as its area. This invariance is translated to the
mechanical work, unless the required values of x become unsupported by the MDOF due to the mechanical criterion,
see Section II.

It could be shown that, for a given value of γb, the curves from the parametric family of Eq. (S21) do not cross. This
result suggests a simple method to determine the maximum power production on the manifold (δω,κ), assuming the
same set of the other parameters. Indeed, it is enough to find a maximum value of the mechanical power production
along the line δω = 0 and the corresponding value of coupling κ∗. This power value is the maximum possible and it
is preserved constant for any pair of detuning and coupling values bound by Eq. (S21) with κ0 = κ∗.

IV. NOISE QUANTIFICATION

In this section, we provide details about the noise strength quantification. In our time-domain simulations, we
consider white noise as a stochastic component in addition to the monochromatic driving in Eqs. (S1a) and (S4a).
To quantify the noise strength as compared to the signal, we consider a single mode a whose dynamics is given by a
Langevin equation,

da

dt
= iωra− γa+ isp

√
2γee

iωt + i
√

2γnθξ(t). (S22)

Here, ωr is the resonant frequency, γ represents the total loss, |sp|2 and ω are the power and the frequency of the
driving source, θ is the effective temperature (in energy units), and ξ(t) is delta-correlated Gaussian stochastic process:

〈ξ∗(t)ξ(t′)〉 = δ(t− t′), 〈ξ(t)〉 = 0.

For simplicity, we assume γn = γe = γ. For further analysis, it is convenient to rewrite Eq. (S22) in dimensionless
form:

dau
dτ

= iau − γuau + ieiετ + iλξ(τ), (S23)

where

ε =
ω

ωr
, γu =

γ

ωr
,

au = a
ωr√

2γe|sp|2
, λ =

√
γn
γe

√
ωrθ

|sp|2
,

〈ξ∗(τ)ξ(τ ′)〉 = δ(τ − τ ′), 〈ξ(τ)〉 = 0.

(S24)

Eq. (S23) could be formally integrated as

au(τ) = ie(i−γu)τ

τ∫

0

ds
{
e[γu+i(ε−1)]s + λe(γu−i)sξ(s)

}
(S25)

where we assume au(0) = 0. The average energy stored in the mode is proportional to the dimensionless value of
E = 〈 |au(τ)|2〉 and could be found from Eq. (S25) and ξ’s correlations properties as

〈 |au(τ)|2〉 τ�γ−1
u−−−−−→ 1

(ε− 1)2 + γ2
u

+
λ2

2γu
. (S26)
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The two terms in the latter expression correspond to regular, Er, and stochastic, Es, components respectively. In
the resonant absorption scenario ε = 1, the regular component is dominant. Indeed, for typical values of λ ∼ 1 and
γu = 0.01 the contribution ratio is Er/Es ≈ λ2/2γu ∼ 50.

Here, we quantify the noise strength via the fluctuations of the modal energy, given by the variance

σ2
a = Var(|au(τ)|2) = 〈|au(τ)|4〉 − 〈|au(τ)|2〉2 = λ2γ−3

u +O(γ−2
u ). (S27)

Here, the four-point correlation is evaluated using Isserlis’ theorem and only the main asymptotics of γ−1
u in the final

expression preserved. Finally, we quantify the noise strength by the expression

NS =
σa
E
≈ λγ

−3/2
u

γ−2
u

= λγ1/2
u . (S28)

Therefore, typical parameters used in the main text are γ/ω0 = 0.012 (γb/ω0 in the double-cavity motor) and noise
amplitude λ = 1 that correspond to a noise strength NS ≈ 10%. This amount of noise represents huge fluctuations
as compared with the ones associated to typical quantum noise values in lasers.

V. COMPARISON WITH EXISTING SELF-OSCILLATIONS IN OPTOMECHANICAL SYSTEMS.

In this section, we compare our mechanism with classical nonlinear dynamics in the context of optomechanicsS1.
In this case, the coupled equations of motion between the photonic and mechanical degrees of freedom, as presented
in Ref. S2, are

ȧm (t) =

(
ixm −

1

2

)
am (t) +

1

2
(S29)

ẍm = P |am|2 − ω2
m

(
xm − x0

m

)
− Γmẋm (S30)

Here, xm (t) and am (t) describe the MDOF and the PDOF respectively. The latter is given by am (t) = ãme
iωLtm

√
nmax

,

where tm is the time measured in units of the ring-down time of the cavity γ−1
m , ωL is the laser frequency, ãm is the

coherent light amplitude, and nmax is the maximum photon number (nmax = 4Pin/(γ~ωL),where Pin is the input
power). The parameters of the MDOF P, ωm, x0

m, and Γm provide, respectively, the coupling with the PDOF, the
unperturbed resonant frequency, the unperturbed equilibrium position and the mechanical damping rate.

The dynamics of a (t) resembles that of a driven damped oscillator with a natural frequency that is swept through
resonance non-adiabatically. Typically, the effects of radiation per cycle are weak, such that xm (t) moves approxi-
mately with sinusoidal oscillations, xm = xm +Am cos (ωmtm), where Am is the amplitude of the oscillation.

In Ref. S2, the authors provide and analytical expression for the output power P
(m)
out produced by the mechanical

force (P
(m)
out = P

〈
|am|2 ẋm

〉
tm

), which reads

P
(m)
out = PAmωmIm

[∑

n

a∗m (n, ωm) am (n+ 1, ωm)

]
.

Here, the supra-index (m) indicates that the output power is in units consistent with Eqs. S29 and S30 and

am (n, ωm) = 1
2

Jn(−Am
ωm

)
inωm+ 1

2−ix
where Jn is the Bessel function of the first kind. The above equation can be recast

as

P
(m)
out =

∞∑

n

(
−P Am

8 ω2
m

)
Jn

(
−Am

ωm

)
Jn+1

(
−Am

ωm

)

(
n (n+ 1)ω2

m − (2n+ 1)xωm + x2 + 1
4

)2
+
(
ωm

2

)2 .

By taking Eqs. S29 and S30 and performing the following replacements: a = ãm
√
~ωL, tm = tγ, xm = x0

m + δx0
m,

X =

[
(−δx0

m)
x0
m

+ (−A)
x0
m

cos (ωmγmt)

]
, ω0 =

(
x0

mγm
)
, γ = γm

2 , Pin = |sp|2, ω = ωLγm, Γ = γmΓm

2 , Ω = γmωm and

α =
(
− γ3

mP
4x0

mPin

)
we recover exactly our Eqs. 3(a,b) of the main text (but without the nonlinear photonic term).
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FIG. S5. Output power divided by
(
Ω2/ω2

0

)
as function of the frequency of the MDOF Ω/ω0. For this plot we used the

parameters indicated in Ref. S4 and x0 = 0.1 which is of the order of the amplitudes shown in panels (c) and (d) of Fig. 1 of
the main text.

The output power, in units consistent with our equations (Pout = 1
τ

∫ τ
0
α |a| 2Ẋdt) and written in terms of our

parameters, is

Pout =

∞∑

n

(
−α|sp|

2

2x0

)(
Ω
ω0

)2

Jn

(
− x0

(Ω/ω0)

)
Jn+1

(
− x0

(Ω/ω0)

)

(
n (n+ 1) ω0

2γx0

(
Ω
ω0

)2

− (2n+ 1) ω0

2γx0

(
Ω
ω0

)
+ ω0

2γx0
+ 2γ

4x0ω0

)2

+ 1
4x2

0

(
Ω
ω0

)2
.

Here, we emphasize that in Ref. S2, the authors were using a completely different approach and they were treating
the amplitude of the MDOF’s oscillation x0 as a parameter while, in our case, x0 corresponds to a single value that
results from energy conservation.

Although not so obvious from the equations, numerical evaluations confirm that the output power goes as Ω2 in the
limit of small Ω, see Fig. S5. This has at least two main consequences. First, it is clear then that, in the adiabatic
limit, only our mechanism can contribute significantly to the output power, since it is linear in Ω. Second, without
a nonlinear photonic term, self-oscillation with large frequency separation between the MDOF and PDOF is only
possible for high quality factors, otherwise, the expected oscillation amplitude will be extremely small. As can be seen
in the specialized literature, this is indeed the case. For example, in Ref. S3 the authors observed self-oscillations but
using cavities with a value of γ five orders of magnitude smaller than the ones used in the present manuscript, while
in Ref. S2 they used a value of γ three orders of magnitude smaller.
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