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In breeds where a large fraction of animals with records on a maternally affected trait

are from dams that have no records and unknown parents, the genetic evaluation of

such trait may be hindered by misspecification of the genetic covariance matrix. The

specified covariance structure for the additive direct and maternal effects in the regular

maternal animal model (MAM) when dams have no records differs from the covariance

between relatives with maternal effects. Two solutions are possible. One is to include in

the vectors of breeding values for direct and maternal effects the dam or a ‘‘phantom’’

dam if the latter is unknown. As a consequence, the number of equations to be solved in

the MAM may increase considerably. Alternatively, one may replace the maternal

breeding value of the dam with 2/3 of the maternal breeding of the individual, and �1/3 of

the maternal breeding value of the sire of the individual. As this ‘‘regression’’ of breeding

values has been largely ignored, the goal of this paper is to present a parsimonious

equivalent MAM using such regression. The approach is extended to a similar situation for

models with grand maternal effects. Two small numerical examples are used to illustrate

the proposed methods.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

Newly composite beef breeds usually have an open policy of registering animals. In these breeds a large fraction of
animals with records on a maternally affected trait such as weaning weight, are calved by dams that themselves have no
records. Moreover, most of these dams lack pedigree information (i.e. their sire and dam identifications are missing) and
usually have only one calf with records in the data base. A consequence of having dams with missing records on the
genetic evaluation of a maternally affected trait is a possible misspecification of the genetic covariance matrix (Cantet
et al., 1992). When an individual with record has a dam without a record, the specified covariance structure for the
additive direct and maternal effects in the regular maternal animal model (MAM) is different from the covariance between
relatives with maternal effects as presented by Willham (1963). Cantet et al. (1992) observed that the additive covariance
between the breeding values of dam (D) and offspring (O), when the dam has no record, is equal to 1=2s2

AoþsAoAm. Instead,
in the formulation of Willham (1963), the covariance is equal to 1=2s2

Aoþ5=4sAoAmþ1=2s2
Am, where s2

Ao and s2
Am are the
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additive variance for direct and maternal effects, respectively, and sAoAm is the covariance between both types of breeding
values. This problem is generally ignored.

There are two possible solutions for specifying correctly the covariance between breeding values (Willham, 1963) in a
MAM when some dams have no records. The simplest one is to include in the vectors of breeding values for direct and
maternal effects the dam or a ‘‘phantom’’ dam if the latter is unknown (Westell et al., 1988; Van Vleck, 1990; Cantet et al.,
1992). Clearly, the number of equations to be solved in the MAM is greater than the case where those dams are ignored.
Although in some data bases this increase is inconsequential, for situations of composite breeding with a large fraction of
natural matings, the number of equations can increase up to 30% or more.

While reviewing the paper of Cantet et al. (1992), Richard L. Quaas in 1991 proposed another solution. He suggested
replacing the maternal breeding value of the dam (amD) with 2/3 of the maternal breeding of the individual (amO), and �1/3 of
the maternal breeding of the sire (S) of the individual (amS). Although the method has been used ever since the
genetic evaluation of beef cattle at Universidad de Buenos Aires, this ‘‘regression’’ of breeding values has been largely ignored.
Different equivalent (Henderson, 1985) MAMs are presented when dams of recorded animals have no records on
their own. The approach is extended to a similar situation in models with grand maternal effects (Willham, 1972;
Dodenhoff et al., 1998, 1999a,b).

2. An equivalent maternal animal model to deal with animals with records and missing dams

The model equation for the MAM is equal to

yijk ¼ xi
0bþaoiþamjþemjþeoi ð1Þ

In Eq. (1), yijk is the record of animal i with dam j and sire k; xi
0 is the row vector in the incidence matrix for the vector of

fixed effects (b) corresponding to the record of animal i, aoi is the direct breeding value of i, amj and emj are respectively the
maternal breeding value and environmental effect of dam j, and eoi is the error term. When j is unknown but sire k is
known, an alternative animal model equivalent (Henderson, 1985) to (1) results from ‘‘regressing’’ the maternal breeding
value of the dam on a linear combination of the maternal breeding values of the progeny and the sire such that

yijk ¼ xi
0bþaoiþbiamiþbkamkþriþemjþeoi ð2Þ

where ri ¼ amj�biami�bkamk is a maternal genetic residual term for animal i, and bk and bi are the regression coefficients of
amj on amk and ami, respectively. Model (2) is written more compactly as follows

yijk ¼ xi
0bþaoiþbiamiþbkamkþeoi ð3Þ

with

eoi ¼ riþemjþeoi ¼ amj�biami�bkamkþemjþeoi ð4Þ

In the next section we prove that in the equivalent model (3), bk¼�1/3 and bi¼2/3.

3. Regression of the breeding value of a dam on the breeding values of the sire and their common offspring

The solution of R. L. Quaas can be viewed as a regression of the BLUP (Best Linear Unbiased Predictor, Henderson, 1984)
of the breeding value of the unknown dam j on the BLUPs of breeding value of progeny i and sire k. In doing so, we form the
linear combination:

BLUP aj

� �
¼ bkBLUP akð ÞþbiBLUP aið Þ ð5Þ

The scalars bk and bi are the regression coefficients of BLUP(ak) and BLUP(ai), respectively, on BLUP(aj). Although the
derivation is general, when k is not inbred bk¼�1/3 and bi¼2/3. Now, BLUP is the estimator of the conditional expectation
of the random variable u given the random variable x (Henderson, 1984). Thus, we have that

BLUPðuÞ ¼ Ê u9x
� �

¼ cov u,xð Þ varðxÞ½ �
�1BLUPðxÞ

we employ this formula for any type of breeding value (direct, maternal, grand maternal, social interaction effects, etc).
Thus, u¼aj and x¼[ak, ai]

0. Thus:

BLUP aj

� �
¼ cov aj,

ak

ai

" #" #
Var

ak

ai

" #" #�1
âk

âi

" #
¼ bkbj

� � âk

âi

" #
ð6Þ

The symbol ^ indicates the BLUP of the random variable. Now, by the theory of the covariance between relatives in the
additive model we can write

cov aj,
ak

ai

" #" #
¼

0
1
2s

2
A

" #
ð7Þ
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The parameter s2
A is the additive variance or the variance of the breeding values. As j is an unknown dam, it is

reasonable to assume that she is unrelated to the sire so that cov (aj, ak)¼0. Moreover

Var
ak

ai

" #
¼

1þFk
1
2 1þFkð Þ

1
2 1þFkð Þ 1

2
4

3
5s2

A

The inverse of this matrix is

Var
ak

ai

" #" #�1

¼
1

s2
Ao

1þFkð Þ� 1
4 1þFkð Þ

2
h i�1

� 2� 1þFkð Þ

2

h i�1

� 2� 1þFkð Þ

2

h i�1
1

1�1=4 1þFkð Þ½ �

2
664

3
775 ð8Þ

After multiplying Eqs. (7) to (8), we have:

bk

bi

" #
¼ cov aj,

ak

ai

" #" #
Var

ak

ai

" #�1

¼

�1
4 1 � 1=4 1þ Fkð Þ½ �

1
2 1 � 1=4 1þ Fkð Þ½ �

2
64

3
75¼

�1
3�Fk½ �

2
3�Fk½ �

2
4

3
5 ð9Þ

when the father k is not inbred Fk¼0; the solution corresponding to Eq. (9) is equal to:

bk

bi

" #
¼
� 1

3
2
3

" #

When applied to Eq. (5), the resulting regression is then

âj ¼
2

3
âi�

1

3
âk ð10Þ

Regression Eq. (10) allows specifying correctly all additive (co)variances related to the records from individuals with
unidentified dams in animal models.
4. Equivalence between models (1) and (3)

To prove that both models are equivalent necessitates showing that the expected values and the variances are equal
(Henderson, 1985). Notice that taking expectations in both (1) and (3) produces E yijk

� �
¼ xi

0b. With regard to the variance
of (3) when bk¼�1/3 and bi¼2/3, we have:

Var yijk

� �
¼ Var ao iþ

2
3 ami�

1
3amkþeoi

� �
Consider first the covariance between the genetic and residual effects, which is equal to

cov ao iþ
2
3 ami�

1
3 amk,eoi

� �
¼ cov ao iþ

2
3 ami�

1
3 amk,amj�

2
3 amiþ

1
3amkþemjþeoi

� �
¼ cov ao iþ

2
3 ami�

1
3 amk,amj�

2
3 amiþ

1
3 amk

� �
¼ cov ao i,amj

� �
�2

3cov ao i,amið Þ

þ1
3 cov ao i,amkð Þþ2

3 cov am i,amj

� �
�4

9 cov am i,amið Þþ2
9cov am i,amkð Þ

�1
3 cov am k,amj

� �
þ2

9 cov am k,amið Þ�1
9cov am k,amkð Þ ¼ ð1Þ12 �

2
3 ð1Þþ

1
3

1
2

� �� �
sAoAm

þ 2
3

1
2

� �
�4

9 ð1Þþ
2
9

1
2

� �
þ1

3 0ð Þþ2
9

1
2

� �
�1

9ð1Þ
� �

s2
Am ¼ 0

Then, on using this result we have that

Var eo ið Þ ¼ Var amj�
2
3 amiþ

1
3 amkþemjþeoi

� �
¼ Var amj�

2
3 amiþ

1
3amk

� �
þVar emj

� �
þVar eoið Þ

¼ 1þ4
9 þ

1
9 �

2
3 �

2
9

� �
s2

Amþs
2
Emþs

2
Eo ¼

2

3
s2

Amþs
2
Emþs

2
Eo ð11Þ

moreover

var yijk

� �
¼ var a0ið Þþ

4

9
var amið Þþ

1

9
var amkð Þþ

4

3
cov a0i,amið Þ�

2

3
cov a0i,amkð Þ�

4

9
cov ami,amkð Þ

þvar e0ið Þ ¼ s2
Aoþ

4

9
s2

Amþ
1

9
s2

Amþ
4

3

� 	
sAoAmþ2 �

1

3

� 	
1

2
sAoAmþ2

2

3

� 	
�

1

3

� 	
1

2
s2

AmþVar eoið Þ

¼ s2
AoþsAoAmþ

1

3
s2

AmþVar eoið Þ ð12Þ

Inspection of Eq. (11) suggests that the quantity 2
3s

2
Amþs2

Em should be added to the error variance in the residual term.
This will allow the variance of model (3) (i.e. Eq. (12)) to account for all genetic and permanent environmental variation
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that is present in model (1), and the record of an individual with unknown dam will account for the same phenotypic
variance as in animals with records and known dams.

5. An equivalent maternal animal model for individuals with both parents unknown

In case both parents are missing a different MAM is possible by replacing the maternal breeding value of dam j with half
the maternal breeding value of its ith offspring:

amj ¼
1

2
ami ð13Þ

Thus, the resulting MAM is equal to:

yijk ¼ xi
0bþao iþ

1

2
amiþeoi ð14Þ

Using the variance operator in Eq. (14) we obtain

Var yijk

� �
¼ Var aoið ÞþVar 1

2ami

� �
þVar eoið Þþ2 cov aoi,

1
2ami

� �
¼ s2

Aoþ
1
4 s

2
Amþs

2
Eoþ2 1

2

� �
sAoAm ¼ s2

Aoþ
1
4s

2
Amþs

2
EoþsAoAm ð15Þ

Thus, the quantity 3
4s

2
Amþs2

Em should be added to the error variance and Eq. (14) is a MAM with a covariance structure
consistent with the formulation of Willham (1963). Therefore, the error variance is

Var eo ið Þ ¼ s2
Eoþ

3

4
s2

Amþs
2
Em ð16Þ

The regression of amj on am iuses the regression coefficient:

b¼
cov ami,amj

� �
Var amið Þ

¼
s2

Am=2
� �
s2

Am

¼
1

2

Clearly, half the maternal breeding value of an individual contains information on the breeding value of its dam. A small
numerical example of equivalent models with maternal effects and missing dams, or with both parents unknown, is
presented in Appendix A.

6. An equivalent grand maternal animal model for individuals with unknown grand dams

Consider now a model including direct, maternal and grand maternal effects (GMAM, Willham, 1972; Dodenhoff et al.,
1998, 1999a,b). We look at the case when the dam of an animal with record is known but the maternal grand dam is
unknown. Grand maternal effects are denoted with the subscript ‘‘n’’. In the GMAM, the expression that is similar to
Eq. (10) is

ang ¼
2

3
anj�

1

3
anl ð17Þ

In Eq. (17), l is the maternal grandsire of i. Whereas an expression similar to Eq. (13) is equal to

ang ¼
1

2
anj ð18Þ

Although expressions (17) and (18) allow for a correct specification of all additive covariances in the records of
individuals with missing maternal grand dams, there exists a fraction of additive variance that is unaccounted by the
model and should be added to the error term. As a result, when the breeding value of the unknown maternal grand dam g

in the record of her grandson is replaced by the breeding values of her daughter and the sire of this latter dam (l), the term
2
3s

2
An(the variance of grand maternal breeding values) should be added to the variance of the error term eoið Þ such that:

Var eoið Þ ¼ s2
Eoþ

2

3
s2

An ð19Þ

Alternatively, when the breeding value of the unknown maternal grand dam g in the record of her grandson is replaced
by the breeding values of her daughter j, 1

2 anj, it is necessary to add 3
4s

2
An to Var eoið Þ for the variance of the record to be

correctly specified. Then

Var eo ið Þ ¼ s2
Eoþ

3

4
s2

An ð20Þ

Detailed derivations of Eqs. (19) and (20) are displayed in Appendix B.
Expressions (19) and (20) are valid as long as the maternal grand sire l is not inbred. If this is not so and on denoting

with Fl the inbreeding of l, the fraction of additive variance in the error term will be smaller than in Eq. (19) and
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proportional to

1

3
2�Flð Þs2

An ð21Þ

A similar expression to (20) is obtained when sire k is inbred

1

4
3�Fkð Þs2

An ð22Þ

After enlarging Eq. (1) to accommodate grand maternal additive effects, and when the grand maternal breeding value
for unknown maternal grand dam g is replaced by a linear combination of the grand maternal breeding values of her
daughter j and the maternal grand sire l, the resulting GMAM is

yijl ¼ xi
0bþaoiþamjþ

2
3 anj�

1
3anlþemjþeoi ð23Þ

Using a similar reasoning, when both parents of the dam of the animal with record are unknown, an equivalent GMAM
with a specification of the additive covariance–matrix consistent with the formulation of Willham (1972) is equal to

yij ¼ xi
0bþaoiþamjþ

1

2
anjþemjþeoi ð24Þ

A small numerical example of the equivalent models with grand maternal effects and missing grand dams is presented
in Appendix C.
7. Discussion

To specify correctly the additive (co)variances in the records of animals with unknown dams, Van Vleck (1990)
suggested including the breeding values of ‘‘phantom’’ dams into the general vector of breeding values, by assuming that
these females are unrelated to each other and by considering that these dams have only one grand progeny each. However,
for populations evaluated with a large proportion of missing dams (i.e. newly formed breeds and composite breeds), the
number of mixed model equations that have to be solved is sizable. Each phantom dam increases the number of equations
by 3 in both the MAM and the GMAM. Alternatively, we present an alternative approach after the idea of R.L. Quaas that
does not require increasing the number of equations. The idea is to express the breeding values of the unknown dam, as a
linear function (i.e. a ‘‘regression’’) of the breeding values of the progeny (i.e. Eq. (10) or Eq. (13)) with record and the sire
of the progeny (i.e. Eq. (10)). In the same way but for the GMAM, the breeding value of an unknown grand dam is
‘‘regressed’’ on the breeding values of its daughter (the dam of the animal with record, i.e. Eqs. (17) or (18)) and of the
maternal grandsire of the animal with record (i.e. expression (17)). If the maternal grandsire is also unknown, then the
grand maternal effect of the grand dam can be replaced by half the grand maternal effect of its daughter (see Eq. (18)).
Notice that this is possible as for any individual and conditionally on the breeding values of the parents, the mendelian
additive residual is independent of the breeding values of any other animal (Bulmer, 1985), and the mendelian variance
and the error variance are diagonal. This facilitates an efficient way of building and solving the mixed model equations
(Schaeffer and Henderson, 1983). For the models proposed here to be equivalent to those consistent with the additive
covariance structures suggested by Willham (1963) for maternal effects, or by Willham (1972) for grand maternal effects, a
fraction of the additive covariances in the MAM Eq. (11) or Eq. (16) or the GMAM Eqs. (19) or (20), should be added to the
error term of the record. However, the resulting covariance matrix of error terms is still diagonal. Therefore, the mixed
model equations are easily formed and solved. If the sire in the MAM (3) is inbred, then the regression coefficients in Eq.
(9) should be used instead, and the fraction of the additive (co)variances will depend on the inbreeding of the sire. By a
similar argument, the regression coefficients in (9) are to be used in expression (17) for the GMAM, when the maternal
grandsire is inbred. Furthermore, Eqs. (21) and (22) should be used instead of Eqs. (19) and (20).

An additional issue when many dams have missing records is that estimation of s2
Am and, especially, sAoAm becomes

problematic. For example, using stochastic simulation Gerstmayr (1992) reported that estimates of s2
Am and of sAoAm were

highly inaccurate when dams were not recorded for the trait. Also, data sets having only one progeny per dam led to
decreased accuracy of all estimates when compared with data sets with larger progeny groups. Similar results were
obtained with a real data set by Maniatis and Pollott (2003). Notice that if phantom dams for animals with records and
unknown mother identification are not included in the estimation process or the equivalent model presented here is fitted
to the data, the resulting estimates are difficult to interpret as the genetic model of Willham (1963) is not correctly
specified.

From a computational point of view, the gain in computing time due to avoiding the inclusion of phantom dams to
predict breeding values with the mixed model equations is variable depending on the data structure and characteristics of
data recording. The FORTRAN code for the direct solver used here may be simpler when fitting equivalent models with
differential contributions to the coefficient matrix and residual structure, as compared to the code needed for these models
when solving by iteration on data.
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Appendix A. A numerical example for the MAM

In the following pedigree, letters denote unknown dams whereas numbers indicate known individuals.
Animals 1, 2, 3, 6, and 7 have their phenotypes recorded for weaning weight in the data vector y0 ¼
150 133 128 146 120
� �

, respectively. Dams a, b, and c are ‘‘phantoms’’ (Westell et al., 1988; Van Vleck, 1990).
A single covariate (b1, age at weaning, measured in days) is taken as the only fixed effect, and it is related to y by the vector

x0 ¼ 180 161 151 162 132
� �

. Dispersion parameters are taken to betlb Go ¼
100 �25

�25 75


 �
, s2

Em ¼ 50 and s2
Eo ¼ 500.

The vector of direct breeding values is

a0o ¼ aoa aob aoc ao1 ao2 ao3 ao4 ao5 ao6 ao7
� �

,

whereas the maternal breeding values are in the vector

a0m ¼ ama amb amc am1 am2 am3 am4 am5 am6 am7
� �

,

The remaining effects are those for permanent environment, and these are equal to

e0m ¼ ema emb emc em4 em5
� �

Respective incidence matrices for the random effects are

Zo ¼

0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1

2
6666664

3
7777775
; Zm ¼

1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

2
6666664

3
7777775
; Zp ¼ I5 ðA1Þ
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Let the (co)variance matrix for the breeding values, i.e. a 0 ¼ a0o9a
0
m

� �
be G¼A� Go, where A is the relationship matrix

among the 10 animals:

A¼

1 0 0 0:50 0:25 0:25 0 0 0:125 0:125

0 1 0 0 0:50 0 0 0 0:25 0

0 0 1 0 0 0:50 0 0 0 0:25

0:50 0 0 1 0:50 0:50 0 0 0:25 0:25

0:25 0:50 0 0:50 1 0:25 0 0 0:50 0:125

0:25 0 0:50 0:50 0:25 1 0 0 0:125 0:50

0 0 0 0 0 0 1 0 0:50 0

0 0 0 0 0 0 0 1 0 0:50

0:125 0:25 0 0:25 0:50 0:125 0:50 0 1 0:0625

0:125 0 0:25 0:25 0:125 0:50 0 0:50 0:0625 1

2
6666666666666666664

3
7777777777777777775

ðA2Þ

For the vector emthe (co)variance matrix is I5s2
Em , and for the error term R¼I5s2

Eo .
With all these specifications the mixed model equations are equal to:

x0R�1x x0R�1Zo x0R�1Zm x0R�1Zp

Z0oR�1x Z0oR�1ZoþA�1g11 Z0oR�1ZmþA�1g12 Z0oR�1Zp

Z0mR�1x Z0mR�1ZoþA�1g21 Z0mR�1ZmþA�1g22 Z0mR�1Zp

Z0pR�1x Z0pR�1Z Zp
0

R�1Zo Z0pR�1ZpþI5
1

50

2
666664

3
777775

b̂1

âo

âm

êm

2
66664

3
77775¼

x0R�1y

Z0oR�1y

Z0mR�1y

Z0pR�1y

2
666664

3
777775 ðA3Þ

where

G�1
0 ¼

g11 g12

g21 g22

" #

By replacing with Eqs. (A1) and (A2) and the inverse of R in Eq. (A3), solutions to these equations are

b̂1 ¼ 0:859;

âoa

âob

âoc

âo1

âo2

âo3

âo4

âo5

âo6

âo7

2
66666666666666666664

3
77777777777777777775

¼

�0:191

0:053

0:174

�0:637

�0:440
�0:125

0:255

0:242

0:419

0:543

2
6666666666666666664

3
7777777777777777775

;

âma

âmb

âmc

âm1

âm2

âm3

âm4

âm5

âm6

âm7

2
66666666666666666664

3
77777777777777777775

¼

�0:419

�0:569

�0:231

�0:074

�0:284
�0:179

0:639

0:606

0:049

0:092

2
6666666666666666664

3
7777777777777777775

;

êma

êmb

êmc

êm4

êm5

2
6666664

3
7777775
¼

�0:339

�0:404

�0:136

0:511

0:485

2
6666664

3
7777775

ðA4Þ

We now fit the equivalent more parsimonious MAM. The maternal breeding value of animal a is replaced by half of the
maternal breeding value of 1, and those maternal breeding values of b, c, 4 and 5 are absorbed by using Eq. (12). The use of
the ‘‘regressions’’ noticeably decreases the number of equations to be solved from 26 to 11, as the vector of breeding values
for the direct effects now is a0o ¼ ao1 ao2 ao3 ao6 ao7

� �
, and the vector of maternal breeding values is a0m ¼

am1 am2 am3 am6 am7
� �

. Respective incidence matrices are

Zo ¼

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

2
6666664

3
7777775
; Zm ¼

1
2 0 0 0 0

�1
3

2
3 0 0 0

�1
3 0 2

3 0 0

0 �1
3 0 2

3 0

0 0 �1
3 0 2

3

2
66666664

3
77777775

ðA5Þ

By eliminating animals a, b, c, 4 and 5, and removing the proper rows and columns in Eq. (A2) above, the resulting
relationship matrix is:

A¼

1 0:50 0:50 0:25 0:25

0:50 1 0:25 0:50 0:125

0:50 0:25 1 0:125 0:50

0:25 0:50 0:125 1 0:0625

0:25 0:125 0:50 0:0625 1

2
6666664

3
7777775

ðA6Þ
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The covariance of the error terms is diagonal but different from an identity matrix. By using Eq. (13), we add the
quantity 3

4 75ð Þþ50 to the variance of the record of individual 1, whereas the use of Eq. (12) to obtain the error variance for
animals 2, 3, 6 and 7 results in the quantity 2

3 75ð Þþ50 added to the diagonal elements of R. As a consequence, we have that

R¼

606:25 0 0 0 0

0 600 0 0 0

0 0 600 0 0

0 0 0 600 0

0 0 0 0 600

2
6666664

3
7777775

ðA7Þ

Thus, the mixed model equations are equal to

x0R�1x x0R�1Zo x0R�1Zm

Z0oR�1x Z0oR�1ZoþA�1g11 Z0oR�1ZmþA�1g12

Z0mR�1x Z0mR�1ZoþA�1g21 Z0mR�1ZmþA�1g22

2
664

3
775

b̂1

âo

âm

2
64

3
75¼

x0R�1y

Z0oR�1y

Z0mR�1y

2
664

3
775 ðA8Þ

The solutions of Eq. (A8) are

b̂1 ¼ 0:859;

âo1

âo2

âo3

âo6

âo7

2
6666664

3
7777775
¼

�0:637

�0:440

�0:125

0:419

0:543

2
6666664

3
7777775
;

âm1

âm2

âm3

âm6

âm7

2
6666664

3
7777775
¼

�0:074

�0:284

�0:179

0:049

0:092

2
6666664

3
7777775
; ðA9Þ

Clearly, solutions of the fixed effect and the breeding values that are alike in Eq. (A9) and Eq. (A4) are equal. The
equivalence between models is further observed while comparing the estimated expectation and the covariance matrix of
y under both models, which are respectively equal to

E ðyÞ ¼ xb1 ¼

180

161

151

162

132

2
6666664

3
7777775

0:859¼

154:62

138:30

129:71

139:16

113:39

2
6666664

3
7777775

ðA10Þ

and

V ¼

700 43:75 43:75 21:875 21:875

43:75 700 25 43:75 12:50

43:75 25 700 12:50 43:75

21:875 43:75 12:50 700 6:25

21:875 12:50 43:75 6:25 700

2
6666664

3
7777775

ðA11Þ

Expression (A11) was calculated by using

V ¼ ZoAZ0o100�25 ZoAZ0mþZmAZ0o
� �

þZmAZ0m75þZpZ0p50þ I5 500

for the conventional MAM; and by taking

V ¼ ZoAZ0o100�25 ZoAZ0mþZmAZ0o
� �

þZmAZ0m75þR,

for the equivalent model.

Appendix B. Derivation of the variance of eo i for the model with grand maternal effects and missing grand dams
Case 1. Maternal grand dam unknown and maternal grandsire known.
In the following pedigree, l represents the maternal grandsire of the animal with record i, g is the maternal grand dam of

i, and j is the dam of i.
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Starting with the following equation for the GMAM

yijg ¼ x0ibþao iþam jþan gþem jþeo i ðB1Þ

The variance of an observation is equal to

Var yijg

� �
¼ Var aoiþamjþangþemjþeoi

� �
¼ Var aoið ÞþVar amj

� �
þVar ang

� �
þ2cov aoi,amj

� �
þ2cov aoi,ang

� �
þ2cov amj,ang

� �
þVar emj

� �
þVar eoið Þ

¼ 1þFið Þs2
Aoþ 1þFj

� �
s2

Amþ 1þFg

� �
s2

Anþ2 Fi þ
1
2 1þFj

� �� �
sAoAm

þ2 Fiþ
1
4 1þFg

� �� �
sAoAnþ2 Fj þ

1
2 1þFg

� �� �
sAmAnþs2

Emþs
2
Eo ðB2Þ

When the maternal grand dam g is unknown, it may be safely assume in Eq. (B2) that Fg¼Fj¼0. Moreover, the grand
maternal breeding value of the grand dam can be replaced by the linear function of the grand maternal breeding values of
its daughter (j) and the sire of its daughter (l) displayed in Eq. (17) so that:

yijl ¼ xi
0bþaoiþamjþ

2
3 anj�

1
3anlþemjþeoi ðB3Þ

On using the variance operator in (B3) results in

Var yijl

� �
¼ Var aoiþamjþ

2
3 anj�

1
3anlþemjþeoi

� �
¼ Var aoið ÞþVar amj

� �
þ4

9 Var anj

� �
þ1

9Var anlð Þ

þVar emj

� �
þVar eoið Þþ2cov aoi,amj

� �
þ2cov aoi,

2
3anj

� �
þ2cov aoi,�

1
3anl

� �
þ2cov amj,

2
3anj

� �
þ2cov amj,�

1
3anl

� �
þ2cov 2

3 anj,�
1
3anl

� �
¼ 1þFið Þs2

Aoþ 1þFj

� �
s2

Amþ
4
9 1þFj

� �
s2

An

þ1
9 1þFlð Þs2

Anþs
2
EmþVar eoið Þþ2 1

2

� �
sAoAmþ2 2

3

� �
1
2 sAoAnþ2 �1

3

� �
1
4sAoAnþ2 2

3

� �
1þFj

� �
sAmAn

þ2 �1
3

� �
1
2 sAmAnþ22

3 �
1
3

� �
1
2 s

2
An ¼ 1þFið Þs2

Aoþ 1þFj

� �
s2

Amþ
4
9 1þFj

� �
s2

An

þ1
9 1þFlð Þs2

Anþs
2
EmþVar eoið ÞþsAoAmþ

2
3 sAoAn�

1
6 sAoAnþ

4
3 1þFj

� �
sAmAn�

1
3 sAmAn�

2
9s

2
An ¼ 1þFið Þs2

Ao

þ 1þFj

� �
s2

Amþ
4
9 1þFj

� �
þ1

9 1þFlð Þ�2
9

� �
s2

Anþs
2
EmþVar eoið ÞþsAoAmþ

2
3 �

1
6

� �
sAoAnþ

4
3 1þFj

� �
�1

3

� �
sAmAn

¼ 1þFið Þs2
Aoþ 1þFj

� �
s2

Amþ
1
3 þ

4FjþFlð Þ
9

h i
s2

Anþs
2
EmþVar eoið ÞþsAoAmþ

1
2sAoAnþ 1þ4

3Fj

� �
sAmAn

As g is unknown, it is reasonable to assume that the dam of i is not inbred, i.e. Fj¼0. Consequently, on using this result in
the previous expression produces the variance of a record under the GMAM when the grand dam is missing as follows

Var yijl

� �
¼ 1þFið Þs2

Aoþs
2
Amþ

1
3 þ

Fl

9

h i
s2

Anþs
2
EmþVar eoið ÞþsAoAmþ

1
2sAoAnþsAmAn ðB4Þ

The fraction of the additive variance that is not accounted by the model (B3) is thus obtained by subtracting Eq. (B4) from
(B2), and then solving for Var eoið Þ. In case the maternal grandsire is not inbred (i.e., Fl¼0), the residual variance is equal to

Var eoið Þ ¼ s2
Eoþ

2

3
s2

An ðB5Þ

Case 2. Maternal grand dam and maternal grandsire are both unknown.

When the maternal grandsire of the animal with record is also unknown, an equivalent GMAM consistent with the
specification of the covariance structure given by Willham (1972) is equal to

yij ¼ xi
0bþaoiþamjþ

1

2
anjþemjþeoi ðB6Þ

Dam j has both parents unknown, so that Fk¼Fl¼Fj¼0. Now, taking the variance operator on (B6) produces

Var yij

� �
¼ Var aoiþamjþ

1

2
anjþemjþeoi

� 	
¼ Var aoið ÞþVar amj

� �
þ

1

4
Var anj

� �
þVar emj

� �
þVar eoið Þ

þ2cov aoi,amj

� �
þ2cov aoi,

1
2anj

� �
þ2cov amj,

1
2anj

� �
¼ 1þFið Þs2

Aoþs
2
Amþ

1

4
s2

Anþs
2
Em

þVar eoið Þþ2 1
2

� �
sAoAmþ2 1

4

� �
sAoAnþ2 1

2

� �
sAmAn

Therefore

Var yij

� �
¼ 1þFið Þs2

Aoþs
2
Amþ

1

4
s2

Anþs
2
EmþVar eoið ÞþsAoAmþ

1

2
sAoAmþsAmAn ðB7Þ

And, on subtracting (B7) to (B2) we end up with the following variance of the error term

Var eoið Þ ¼ s2
Eoþ

3

4
s2

An ðB8Þ

Expressions (B5) and (B8) display the heterogeneity of residual variance due to missing pedigree information in
the GMAM.
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Appendix C. A numerical example of the grand maternal animal model with missing maternal grand dams

The pedigree for this example is seen below.
Dams a, b and c are unknown maternal grand dams (‘‘phantom’’). Individuals 3, 6, 7 and 10 have weaning weight records
in y such that y0 ¼ 150 133 128 146

� �
. Again, age at weaning in days is the only fixed effect (b1), and is related to y by

the incidence vector x0 ¼ 180 161 151 162
� �

. Covariance components are Go ¼

100 �25 15

�25 75 18

15 18 60

2
64

3
75, s2

Em ¼ 50, and
s2
Eo ¼ 500. The fitting of the GMAM of Willham (1972) necessitates the following vectors of direct, maternal and grand

maternal breeding values, and permanent maternal environmental effects:

a0o ¼ aoa aob aoc ao1 ao2 ao3 ao4 ao5 ao6 ao7 ao8 ao9 ao10
� �

;

a0m ¼ ama amb amc am1 am2 am3 am4 am5 am6 am7 am8 am9 am10
� �

;

a0n ¼ ana anb anc an1 an2 an3 an4 an5 an6 an7 an8 an9 an10
� �

;

e0m ¼ em1 em3 em5 em9
� �

;

The respective incidence matrices of those effects are

Zo ¼

0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1

2
6664

3
7775; Zm ¼

0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0

2
6664

3
7775;

Zn ¼

1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0

2
6664

3
7775; Zp ¼ I4; ðC1Þ

The relationship matrix A is

A¼

1 0 0 0:50 0 0:25 0 0 0:125 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0:50 0:25

0 0 1 0 0 0 0 0:50 0 0:25 0 0 0:125

0:50 0 0 1 0 0:50 0 0 0:25 0 0 0 0

0 0 0 0 1 0 0 0:50 0 0:25 0 0 0:125

0:25 0 0 0:50 0 1 0 0 0:50 0 0 0 0

0 0 0 0 0 0 1 0 0:50 0:50 0 0 0:25

0 0 0:50 0 0:50 0 0 1 0 0:50 0 0 0:25

0:125 0 0 0:25 0 0:50 0:50 0 1 0:25 0 0 0:125

0 0 0:25 0 0:25 0 0:50 0:50 0:25 1 0 0 0:50

0 0 0 0 0 0 0 0 0 0 1 0:50 0:25

0 0:50 0 0 0 0 0 0 0 0 0:50 1 0:50

0 0:25 0:125 0 0:125 0 0:25 0:25 0:125 0:50 0:25 0:50 1

2
666666666666666666666666664

3
777777777777777777777777775

ðC2Þ

The covariance matrix for the environmental maternal effects is Var emð Þ ¼ I4s2
Em, and for the error vector is R¼ I4s2

Eo.
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With all these specifications, MME are equal to

x0R�1x x0R�1Zo x0R�1Zm x0R�1Zn x0R�1Zp

Z0oR�1x Z0oR�1ZoþA�1g11 Z0oR�1ZmþA�1g12 Z0oR�1ZnþA�1g13 Z0oR�1Zp

Z0mR�1x Z0mR�1ZoþA�1g21 Z0mR�1ZmþA�1g22 Z0mR�1ZnþA�1g23 Z0mR�1Zp

Z0nR�1x Z0nR�1ZoþA�1g31 Z0nR�1ZmþA�1g32 Z0nR�1ZnþA�1g33 Z0nR�1Zp

Z0pR�1x Z0pR�1Zo Z0pR�1Zm Z0pR�1Zn Zp
0

R�1ZpþI4
1

50

2
666666664

3
777777775

b̂1

âo

âm

ân

êm

2
6666664

3
7777775
¼

x0R�1y

Z0oR�1y

Z0mR�1y

Z0oR�1y

Z0pR�1y

2
666666664

3
777777775

ðC3Þ

where

G�1
0 ¼

g11 g12 g13

g21 g22 g23

g31 g32 g33

2
64

3
75

After replacing with Eqs. (C1) and (C2) and the inverse of R, the solutions of the system are

b̂1 ¼ 0:852;

âoa

âob

âoc

âo1

âo2

âo3

âo4

âo5

âo6

âo7

âo8

âo9

âo10

2
666666666666666666666666664

3
777777777777777777777777775

¼

�0:168

0:281

0:908

�0:254

0:110

�0:492

�0:060

0:212

�0:525

0:264

0:128

0:332

0:809

2
666666666666666666666666664

3
777777777777777777777777775

;

âma

âmb

âmc

âm1

âm2

âm3

âm4

âm5

âm6

âm7

âm8

âm9

âm10

2
666666666666666666666666664

3
777777777777777777777777775

¼

�0:301

�0:504

�0:098

�0:504

�0:074

�0:417

0:015

�0:160

�0:139

�0:119

0:319

0:731

0:178

2
666666666666666666666666664

3
777777777777777777777777775

;

âna

ânb

ânc

ân1

ân2

ân3

ân4

ân5

ân6

ân7

ân8

ân9

ân10

2
666666666666666666666666664

3
777777777777777777777777775

¼

�0:444
0:744

�0:079

�0:563

0:002

�0:417

0:009

�0:036

�0:250

0:005

0:130

0:567

0:363

2
66666666666666666666666664

3
77777777777777777777777775

;

êm1

êm3

êm5

êm9

2
66664

3
77775¼

�0:181

�0:248

�0:067

0:511

2
6664

3
7775 ðC4Þ

As in MAM (3), fitting of models (23) and (24) allows a strong reduction in the number of equations. In this case, the
vectors ao, am and emare equal to

a0o ¼ ao1 ao2 ao3 ao4 ao5 ao6 ao7 ao8 ao9 ao10
� �

;

a0m ¼ am1 am2 am3 am4 am5 am6 am7 am8 am9 am10
� �

;

a0n ¼ an1 an2 an3 an4 an5 an6 an7 an8 an9 an10
� �

;

e0m ¼ em1 em3 em5 em9
� �

;

No breeding value for any type of effects was included for missing maternal. In matrix Zn, the grand maternal breeding
value of animal 3 was replaced by 1=2an1, the one for 7 by �1=3an2þ2=3an5, and for animal 10 the quantity added was
�1=3an8þ2=3an9. All in all, incidence matrices are equal to

Zo ¼

0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1

2
6664

3
7775; Zm ¼

1 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0

2
6664

3
7775;

Zn ¼

1
2 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0

0 �1
3 0 0 2

3 0 0 0 0 0

0 0 0 0 0 0 0 �1
3

2
3 0

2
66664

3
77775; Zp ¼ I4 ðC5Þ
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Now matrix A is

A¼

1 0 0:50 0 0 0:25 0 0 0 0

0 1 0 0 0:50 0 0:25 0 0 0:125

0:50 0 1 0 0 0:50 0 0 0 0

0 0 0 1 0 0:50 0:50 0 0 0:25

0 0:50 0 0 1 0 0:50 0 0 0:25

0:25 0 0:50 0:50 0 1 0:25 0 0 0:125

0 0:25 0 0:50 0:50 0:25 1 0 0 0:50

0 0 0 0 0 0 0 1 0:50 0:25

0 0 0 0 0 0 0 0:50 1 0:50

0 0:125 0 0:25 0:25 0:125 0:50 0:25 0:50 1

2
6666666666666666664

3
7777777777777777775

ðC6Þ

Finally, Var emð Þ ¼ I4s2
Em and

R¼

545 0 0 0

0 500 0 0

0 0 540 0

0 0 0 540

2
6664

3
7775 ðC7Þ

In Eq. (C7), 3=4ð60Þ was added to the error variance (500) for animal 1, whereas 2=3ð60Þ was added to those diagonal
elements of individuals 7 and 10. On using Eqs. (C5) to (C7) in Eq. (C3), we obtain the following solutions

b̂1 ¼ 0:852;

âo1

âo2

âo3

âo4

âo5

âo6

âo7

âo8

âo9

âo10

2
66666666666666666664

3
77777777777777777775

¼

�0:254

0:110

�0:492

�0:060

0:212

�0:525

0:264

0:128

0:332

0:809

2
6666666666666666664

3
7777777777777777775

;

âm1

âm2

âm3

âm4

âm5

âm6

âm7

âm8

âm9

âm10

2
66666666666666666664

3
77777777777777777775

¼

�0:504

�0:074

�0:417

0:015

�0:160

�0:139

�0:119

0:319

0:731

0:178

2
6666666666666666664

3
7777777777777777775

;

ân1

ân2

ân3

ân4

ân5

ân6

ân7

ân8

ân9

ân10

2
66666666666666666664

3
77777777777777777775

¼

�0:563

0:002

�0:417

0:009

�0:036

�0:250

0:005

0:130

0:567

0:363

2
6666666666666666664

3
7777777777777777775

;

êm1

êm3

êm5

êm9

2
66664

3
77775¼

�0:181

�0:248

�0:067

0:511

2
6664

3
7775 ðC8Þ

Solutions for all animals included in both systems of MME and displayed in Eq. (C4) and Eq. (C8), are equal. Model
equivalence is further observed when comparing the estimated expectation of y under both models, which is equal to

EðyÞ ¼ xb1 ¼

180

161

151

162

2
6664

3
77750:852¼

153:36

137:17

128:65

138:02

2
6664

3
7775 ðC9Þ

Calculating the covariance matrix under both models as

V ¼ ZoAZ0o100þZmAZ0m75þZnAZ0n60�25 ZoAZ0mþZmAZ0o
� �

þ15 ZoAZ0nþZnAZ0o
� �

þ18 ZmAZ0nþZnAZ0m
� �

þZpZ0p50þR

ðC10Þ

results in

V ¼

785:50 118:125 0 0

118:125 785:50 25 12:50

0 25 785:50 45:625

0 12:50 45:625 785:50

2
6664

3
7775 ðC11Þ
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