Crustal anatomy and evolution of a subduction-related orogenic system: Insights from the Southern Central Andes (22-35°S)

Laura Giambiagi, Andrés Tassara, Andrés Echaurren, Joaquín Julve, Rodrigo Quiroga, Matías Barrionuevo, Sibiao Liu, Iñigo Echeverría, Diego Mardónez, Julieta Suriano, José Mescua, Ana C. Lossada, Silvana Spagnotto, Macarena Bertoa, Lucas Lothari

PII:	80012-8252(22)00222-7
DOI:	https://doi.org/10.1016/j.earscirev.2022.104138
Reference:	EARTH 104138
To appear in:	Earth-Science Reviews
Received date:	28 January 2022
Revised date:	20 July 2022
Accepted date:	21 July 2022

Please cite this article as: L. Giambiagi, A. Tassara, A. Echaurren, et al., Crustal anatomy and evolution of a subduction-related orogenic system: Insights from the Southern Central Andes (22-35°S), *Earth-Science Reviews* (2022), https://doi.org/10.1016/j.earscirev.2022.104138

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2022 Published by Elsevier B.V.

Crustal anatomy and evolution of a subduction-related orogenic system: Insights from the Southern Central Andes (22-35°S)

Laura Giambiagi^{1*}, Andrés Tassara^{2,3}, Andrés Echaurren¹, Joaquín Julve^{2,3}, Rodrigo Quiroga¹, Matías Barrionuevo¹, Sibiao Liu⁴, Iñigo Echeverría²; Diego Mardónez¹, Julieta Suriano¹, José Mescua^{1,5}, Ana C. Lossada⁶, Silvana Spagnotto^{7,8}, Macarena Bertoa¹, Lucas Lothari¹

¹ IANIGLA-CONICET, Parque San Martín s/n, 5500 Mendoza, Argentina. *Corresponding author

² Departamento de Ciencias de la Tierra, Universidad de Concepción, Victor Lamas 1290, Concepción, Chile.

³ Millennium Nucleus CYCLO The Seismic Cycle along Subduction Zures, Chile.

⁴ GEOMAR, Helmholtz Centre for Ocean Research Kiel, Kiel, Gern. any

⁵ Universidad Nacional de Cuyo, Mendoza, Argentina

⁶ IDEAN-CONICET, Universidad de Buenos Aires, Argenária

⁷ Universidad Nacional de San Luis. CONICET, San Luis, Ary ntina

⁸ Universidad de Buenos Aires, Buenos Aires, Arcei, inc

Abstract

As the archetype of mountain building in subduction zones, the Central Andes has constituted an excellent example to investigating mountain-building processes for decades, but the mechanism oy which orogenic growth occurs remains debated. In this study we investigate the Scienterin Central Andes, between 22° and 35°S, by examining the along-strike variations in Cenozoic uplift history (<45 Ma) and the amount of tectonic shortening-thickening, and ving us to construct seven continental-scale cross-sections that are constrained by cincide the error central model. Our goal is to reconcile the kinematic model explaining crusical shortening-thickening and deformation with the geological constraints of this subduction-related orogen. To achieve this goal a representation of the thermomechanical structure of the orogen is constructed, and the results are applied to constrain the main decollement active for the last 15 Myr. Afterwards, the structural evolution of each transect is kinematically reconstructed through forward modeling, and the proposed deformation evolution is analyzed from a geodynamic perspective through the development of a numerical 2D geodynamic model of upper-plate lithospheric shortening.

In this model, low-strength zones at upper-mid crustal levels are proposed to act both as large decollements that are sequentially activated toward the foreland and as regions that concentrate most of the orogenic deformation. As the orogen evolves, crustal thickening and heating lead to the vanishing of the sharp contrast between low- and high-strength layers. Therefore, a new decollement develops towards the foreland, concentrating crustal shortening, uplift and exhumation and, in most cases, focusing shallow crustal seismicity. The north-south decrease in shortening, from 325 km at 22°S to 46 km at 35°S, and the

cumulated orogenic crustal thicknesses and width are both explained by transitional stages of crustal thickening: from pre-wedge, to wedge, to paired-wedge and, finally, to plateau stages.

1. Introduction

In active subduction-type orogens like the Andes, the classic paradigm (Bally et al., 1966; Dewey and Bird, 1970; Uyeda and Kanamori, 1979; Suppe, 1981; Price, 1981; Ramos et al., 2002) proposes that mountain ranges grow through sequential stacking of crustalthrust sheets from the hinterland (arc-region) to the foreland (back-arc region). This mechanism forms an internally-deformed crustal wedge, known as a fold-and-thrust belt, where thrusts are rooted into a major decollement. The critical wedge theory (Davis et al., 1983; Dahlen et al., 1984; Dahlen and Barr, 1989) assumes tha. the overall shape of the fold-and-thrust belt can be reproduced by a wedge of rocks have a prittle behavior and frictionally sliding above a basal decollement. This belt may have different structural styles, where thick- or thin-skinned end-member models explain whether or not the structural basement is involved in the deformation (Lacombe and Dellahsen, 2016, and references therein). However, at an orogenic scale, these end-riem per models may not make sense, because, in the hinterland, the basement is always involved in deformation (e.g., Coward, 1983). At this orogenic scale, major decollemer is are mid-crustal shear zones, located beneath the bottom of the upper brittle crust, the concentrate most of the relative horizontal displacement between an uppar and lower block (Harry et al., 1995; Oncken et al., 2012). They are regarded as mechanical discontinuities that are sharply delineated throughout the crust at medium gecthermal gradients, being absent at low or high geothermal gradients (Ord and Hobbs, 1989). These shear zones have been proposed to extend sub-horizontally for great d.star ces (Harry et al., 1995), constituting the main means of tectonic transport for nountain building in subduction-related orogens, such as the Central Andes (Isacks, 1688, McQuarrie, 2002; Oncken et al., 2003; Elger et al., 2005; Klev et al., 1997; Baby et al., 1977; Lacombe and Bellahsen, 2016; Martinod et al., 2020).

Worldwide, major decriller, ents have been proposed for several orogenic systems, both in collisional orogens, sign as the island of Taiwan (Suppe, 1981), the Apennines (Massoli et al., 2006), the Zagros (Mouthereau et al., 2006) or the Himalayas (Seeber et al., 1981; Avouac, 2008; Mukhopadhyay and Sharma, 2010), and in subduction-related orogens (Lacombe and Bellahsen, 2016, and references therein). Seismic reflection surveys have documented these decollements in the Pyrenees (Choukroune and ECORS team, 1989; Mouthereau et al., 2007) and in the Central Andes (ANCORP working group, 1999, 2003). In some of these orogens, like the Apennines (Massoli et al., 2006) or the Rocky Mountains (Bally et al., 1966), multiple decollements have been proposed. Several models propose a decoupling between the strong upper crust and the lower ductile crust, such as in the Zagros Mountain system (Mouthereau et al., 2006) and the Alps (Jammes and Huismans, 2012). In the Central Andes, this intracrustal decoupling zone has been visualized as a low-seismic velocity zone beneath the Altiplano-Puna plateau, resembling the crustal structure of the Tibetan plateau (Yuan et al., 2000). While these studies

suggest the existence of decollements beneath the orogenic systems, the spatial and temporal distribution of these decollements remain matters of dispute.

The Central Andes constitute an excellent example for investigating a tectonically active subduction orogen, produced by long-term ocean-continent collision between the Nazca and South American plates. This Andean segment exhibits a pronounced variation of orogenic crustal volume and architecture along strike, related to contrasted amounts of crustal shortening-thickening and morphostructural configuration. Its southern part, the Southern Central Andes, ranges from the Altiplano-Puna plateau in the north (22-27.5°S), described as a large and hot orogenic configuration, to the Principal Cordillera in the south (35°S), a small and cold orogen, following the classification of Jamieson and Beaumont (2013). Another major geodynamic feature of the Southern Cel tral Andes is the Pampean flat-slab segment between ~28 and 33°S, linked to changes in uppar-plate deformation and an eastward migration of the Neogene arc front (Cahill a. d Is acks, 1992; Ramos et al., 2002). However, despite decades of study, first-order aspects of this cordilleran system remain as a matter of dispute, such as the overall direct on of ectonic transport of the mountain belt, the spatio-temporal distribution of the denoilements that deform the orogenic wedge, and the controlling factors over tecunic shortening and crustal thickness distribution. This is exemplified by different proposals at distinctive sectors of the Andes supported by intrinsically different kinematic mcd als.

Specifically, at the Aconcagua latitudes (32 33°3), three types of models have been proposed: (i) a crustal-wedge model, (ii) a reast-vergent model and (iii) a west-vergent model (Fig. 1).

The crustal-wedge model (Fig. 1A) r roboses that one or two deep crustal wedges are pushed from the cratonic area into the orogenic system, forming a shallow, east-vergent, main decollement (Allmendir ter et al., 1990; Cristallini and Ramos, 2000). This model implies an eastward advance of deformation, with the incorporation of new upper-crustal material at the tip of the eastern orogenic wedge. Under this model, the lower crust behaves as brittle matirial and there is an asymmetric distribution of shortening.

The east-vergent mode. (Fig. 1B) is characterized by two decollements. The western one is rooted above the subduction-coupling zone and climbs upward and eastward into shallow crustal levels (Ramos et al., 2004; Farías et al., 2010; Giambiagi et al., 2012). Backthrusts affect the forearc region, but most of the shortening is absorbed along the east-vergent faults. The eastern decollement is younger, and disconnected from the western one, implying a migration of deformation towards the foreland.

The west-vergent model (Fig. 1C) is described as the juxtaposition of the crust and mantle lithosphere on top of the upper-crust at the core of the orogenic system (Armijo et al., 2010; Riesner et al., 2018, 2019). This proposal implies a concentration of shortening at the western cordillera slope and a younger western deformation, with the lithosphere behaving as brittle material. These three models imply the crustal root being constructed

by the incorporation of material coming from the east, i.e., from the craton area toward the core of the orogenic system.

Figure 1: Different structural models explaining the crustal and lithospheric deformation in the Central Andes at 32-, 3% ratitudes (A-C) and 21-22% latitudes (D-F). The sketches are redrawn from published studies (7 .: Cristallini and Ramos, 2000; B: Giambiagi et al., 2015a; C: Armijo et al., 2010; D: McQuarrie, 2002; E: Elger et al., 2005; F: Armijo et al., 2015).

Similarly, for the Altiplano transect where the orogenic plateau is located (at latitude 21°-22°S), there are also different tectonic models. First, the east-vergent model proposes two main stacked decollements (Fig. 1D), located in the upper-to-middle crust (McQuarrie, 2002; Anderson et al., 2018). This model implies that deformation progresses eastwards with the incorporation of crustal material both from the forearc and the craton into the orogenic core. Secondly, the model with two disconnected decollements (Fig. 1E) proposes an east-vergent decollement below the Altiplano plateau and a doubly-vergent wedge with a west-vergent decollement below the Eastern Cordillera and an east-vergent decollement below the Sub-Andean ranges (Elger et al., 2005; Oncken et al., 2012).

Finally, the doubly vergent, transcrustal-decollement model (Fig. 1F) proposes two opposite decollements reaching the Moho at the Altiplano axis (Armijo et al., 2015).

In our view, constraining the location and timing of activation and deactivation of these decollements appears as a key parameter for understanding orogen dynamics and the evolution of crustal anatomy. Since the Southern Central Andes exhibit significant variations in uplift history, amounts of crustal shortening, crustal anatomy and slab geometry (Jordan et al., 1983; Mpodozis and Ramos, 1989; Charrier et al., 2007; Ramos, 2018), we examine these along-strike changes by constructing seven continental-scale structural profiles crossing this subduction system (Fig. 2). These transects reproduce the present-day crustal structure by incorporating the differential mid-Cenozoic evolution (<45 Ma) of the margin, reconciling diverse geological evidence, and constituting a suitable tool for testing the decollement activity, i.e., where and when the decollements are created and deactivated.

In this contribution we integrate a plethora of previous a longer *i* geological data of the Southern Central Andes (22-35°S) for evaluating the tecturic and deformational evolution of this segment. First, we describe its morphotecton is configuration and present a thorough and updated compilation of previous geolegical data at a regional scale. Here, we describe the dominant geological units and here main episodes of crustal deformation, exhumation, and basin generation for each contribute transects. These data are used to build the seven continental cross-sections for which we obtained new estimations of crustal shortening and thickening values is for these transects identifying the present-day low-strength zones where the major de contents are likely located and constraining the crustal structure of the last stage or the structural modeling (the last 15 Myr). Additionally, we perform new numerical similations through a geodynamic model that characterizes the spatio-temporal evolution of crustal faulting.

These results are used to discuss the role that the thermal structure has on crustal rheology and the occurrence of low-strength decollements in the upper crust where surface structures call be rooted. We argue that the presence of sub-horizontal layers with contrasting strength promotes the generation of decollement levels in different sectors of the orogenic crust. However, this time-dependent rheological condition changes during the construction of the crustal root and the thinning of the lithosphere, which increase mid-crustal temperatures, reducing or eliminating the rheological contrast between the upper and lower crust, and therefore inducing the abandonment of the decollement and the generation of a new one towards the east, in an east-vergent evolution mode.

2. Geotectonic setting of the Southern Central Andes (22º-35ºS)

The Southern Central Andes comprise, in its northern sector (22° -27° S): (i) the Coastal Range, which mainly includes Jurassic to Cretaceous magmatic arcs and associated sedimentary basins (Reutter et al., 1996; Riquelme et al., 2003, Oliveros et al., 2006); (ii)

the Chilean Precordillera, or Domeyko Range, corresponding to the Late Cretaceous to Eocene magmatic arc, developed over a Devonian to Triassic basement (Coira et al., 1982; Amilibia et al., 2008; Mpodozis and Cornejo, 2012); (iii) the Western Cordillera, with the Miocene to Holocene magmatic arc (De Silva et al., 2006; Kay and Coira, 2009); (iv) the internally-drained Altiplano/Puna plateau, with an average elevation of 4,000 m (Isacks, 1988; Allmendinger et al., 1997); (v) the doubly vergent thrust belt of the Eastern Cordillera, which uplifts late Proterozoic to Paleozoic metasedimentary and sedimentary rocks (Sempere et al., 1990; Reutter et al., 1994; Kley and Monaldi, 2002; Hongn et al., 2010), (vi) the active eastward-tapering sedimentary wedge of Paleozoic to Neogene rocks of the Sub-Andean fold-and-thrust belt, north of 24°S, and the Santa Bárbara basementinvolved fault system, south of 24°S (Mingramm et al., 1979; Allmendinger et al., 1983; Roeder, 1988; Sheffels, 1990; Baby et al., 1992, 1995; Dunn et al., 1995; Kley and Reinhardt, 1994; McQuarrie, 2002); and, (vii) the foreland basin, fined with wedge-shaped Neogene clastic strata of up to 6 km of thickness, known as the Chaco Plains (Uba et al., 2005, 2006). This basin is underlayed by the Brazilian cra on, which has been a stable nucleus of South America since the Proterozoic (Litherl: nd e. al., 1986).

The Coastal Range is characterized by the presence of a pronounced high-velocity seismic wave anomaly to a depth of 60 km (Heit et al., 2008). To the east, geophysical analyses indicate petrophysical properties of the crust below the Altiplano, Puna and Eastern Cordillera (high Vp/Vs, high atternation, high conductivity), which may reflect a hydrated partially-melted crust at a dep of 15-25 km, known as the Altiplano Low-Velocity Zone ALVZ (Wigger et al., 1994; Craeber and Asch, 1999; Yuan et al., 2000; Schurr et al., 2003; Haberland and Rictbrock, 2001; Oncken et al., 2003; Heit et al., 2008). The high topography of the Altiplar or "una plateau is isostatically supported by both a 60to-75-km-thick continental crust (Yuen et al., 2000; Beck and Zandt, 2002; McGlashan et al., 2008; Tassara and Echaurish, 2012) and a thermally-thinned lithosphere underlain by a low-density asthenosphere , roidevaux and Isacks, 1984; Schurr et al., 1999; Prezzi et al., 2014; Ibarra et al., 2019). The lithosphere is proposed to be thermally thinned because of the removal of a der se and thickened, gravitationally-unstable, mantle lithosphere via delamination (Kay and Kay, 1993; Kay et al., 1994b; Garzione et al., 2017; Chen et al., 2020) or other dynamic mechanisms. The thickness of the crust was mainly achieved by Cenozoic tectonic shortening, linked to eastward displacement of megathrust sheets (Sheffels, 1990; Schmitz and Kley, 1997; McQuarrie, 2002; McQuarrie et al., 2005). The crust below the Eastern Cordillera and Sub-Andean Ranges reaches a thickness of 40 km (Schmitz and Kley, 1997).

According to the most widely accepted structural model, the flexurally-strong lithosphere representing the Brazilian shield (Watts et al., 1995) is being underthrusted beneath the Sub-Andean Ranges and the Eastern Cordillera, as is evidenced by seismicity extending ~120 km west from the thrust front (Cahill et al., 1992; Asch et al., 2006). To the west, seismicity is diffuse, and, in the Puna/Altiplano plateau, focal mechanisms show components of strike-slip and normal faulting (Allmendinger et al., 1997; Asch et al., 2006).

To the south, the Andes narrows from ~500 km in the Andean plateau to ~200 km at 35°S, and the crustal thickness diminishes from >65 km at 30°S to <55 km in the south (e.g. Introcaso et al., 1992; Fromm et al., 2004; Gans et al., 2011; Tassara and Echaurren, 2012). The Chilean/Pampean flat-slab segment (28º-32.5ºS) is characterized by a relatively shallow subduction angle (Isacks and Barazangi, 1977; Anderson et al., 2007) and a lack of active arc-related magmatism resulting from the eastward migration of the asthenospheric wedge (Pilger, 1981; Kay et al., 1988; Ramos et al., 2002). At these latitudes, the orogen comprises, from west to east, the following five morpho-tectonic provinces: (i) the Coastal Range, which underlies the modern forearc and is composed of Paleozoic and early Mesozoic accretionary belts (Diaz-Alvarado et al., 2019), and Jurassic to Lower Cretaceous plutonic and volcanic rocks (Mpodozis and Ramos, 1989); (ii) the Principal Cordillera, characterized by thick Jurassic and Cretacious marine and continental sedimentary sequences deformed within fold-and-thrust belts (Ramos et al., 1996b); (iii) the Frontal Cordillera, which consists of Proterozcic to Devonian metamorphic rocks, Carboniferous-Permian marine sedimentary rocks and Permian-Triassic volcanic and plutonic rocks (del Rey et al., 2019); (iv) the Precor (illera which corresponds to a foldand-thrust belt composed of Paleozoic sedimentary ruci s (Astini and Thomas, 1999; Mardonez et al., 2020); and (v) the Pampean Ranges, which are characterized by east and west-vergent uplifted basement blocks (Ramos et al., 2002).

Figure 2: Tectonic setting mean geological units and structural features of the Central Andes. A) DEM-derived topographic map highlighting the contrasting surface expression of the Andes in this portion of the margin. Grey dashed lines correspond to 40-km depth slab contours (Tassara and Echaurren, 2012) and real triangles to the active volcanic front. White East-West lines are the seven crustal-scale structural cross-sections analyzed in this work (Figs. 3 to 9). B) Simplified geological map (modified from Gómez et al., 2019), showing the main geological units, morphostructural units (red labels) and structural configuration of the Andean margin.

South of 32.5°S, the slab has a sub-horizontal subduction angle transitionally smoothing to a normal subduction geometry as it gets south of 34°S (Cahill and Isacks, 1992), where it reaches an angle of 27° (Nacif, 2015). In the transitional zone (32.5°-34°S), the Frontal Cordillera, the Precordillera and the Pampean Ranges gradually disappear, while the magmatic arc becomes active together with the development of the east-directed Malargue fold-and-thrust belt. Along the 32.5° to 35°S segment, horizontal shortening and crustal thickness decrease southward (Giambiagi et al., 2012).

3. Geological background of the transects

3.1 The Altiplano transect (22°S)

Previous to 45 Ma, deformation was localized in the magmatic arc, along the proto-Domeyko Range (Fig. 3), in a crustal-scale pop-up structure bounded by east- and westdirected reverse faults (Marinovic and Lahsen, 1984; Andriessen and Reutter, 1994; Reutter et al., 1996; Sempere et al., 1997; Maksaev and Zentilli, 1999; Ladino et al., 1999; Tomlinson et al., 2001, 2018; Muñoz et al., 2002; Victor et al., 2004; Mpodozis and Cornejo, 2012; Bascuñán et al., 2016; Tomlinson et al., 2018; Henriquez et al., 2019; López et al., 2020), as well as strike-slip faults along the Atacama fault system (Reutter et al., 1996; Riquelme et al., 2003; Farías et al., 2005).

During the middle Eocene (45-40 Ma), the crust achieved a thick, ess of >45 km below the Domeyko Range (Haschke et al., 2002). The uplift of this raine is constrained by thermochronology (Maksaev and Zentilli, 1999; Avdievitch et al., 2018) and the development of the Calama basin which received sediments from the west (Blanco et al., 2003). A rapid cooling of the Coastal Range is suggristed to be related to forearc uplift and exhumation (Juez-Larré et al., 2010; Reiners et al., 2015; Stalder et al., 2020). During this period, movement along the Khenayani-Uyuni fault system (Martinez et al., 1994; Sempere et al., 1990; Scheuber et al., 2006) occurs ed in the western Altiplano, prior to the deposition of the Late Oligocene- Middle Modes San Pedro and San Vicente Formations in the Salar de Atacama and Lípez basing respectively (Blanco et al., 2003; Elger et al., 2005). The proto-Eastern Cordillera ras deformed by east-directed faults (Lamb et al., 1997). This uplift is registered in the cerd mentary provenance of the foreland basin (Horton and DeCelles, 2001).

Figure 3: Geological cross-section alc or the 22°S, constructed with previous geological data and partial balanced cross-sections (Schn.itz and Kley, 1997; Elger et al., 2005), and chart describing the different deformational stages affecting the transect area according to published data.

Between 40 and 35 1.4a, chortening was focused on the Western Cordillera, as well as on the westernmost Altipla to and Eastern Cordillera (Kennan et al., 1995; Sempere et al., 1997; Horton, 1998, 2005; Horton and DeCelles, 2001; DeCelles and Horton, 2003; McQuarrie et al., 2005; Elger et al., 2005; Ege et al., 2007). The Calama basin continuously received sediments from the west and south (Blanco et al., 2003). The Domeyko Range became affected by strike-slip faults, such as the dextral movement of the West Fault (Maksaev and Zentilli, 1988, 1999; Mpodozis et al., 1993; Lindsay et al., 1995; Tomlinson et al., 2010) associated with a mylonitic fabric over plutonic complexes (Tomlinson et al., 2018).

During the 35-30 Ma period, the Lípez basin continued receiving sediments from both the west and east (Baby et al., 1990), with the continuous uplift of the Western Cordillera (Scheuber et al., 2006), the Eastern Cordillera controlled by the west- and east-directed faults (Roeder, 1988; Mon and Hongn, 1991; Baby et al., 1992; Kley et al., 1997;

Allmendinger et al., 1997; McQuarrie and DeCelles, 2001; McQuarrie, 2002; McQuarrie et al., 2005; Hongn et al., 2007; Anderson et al., 2018) and the east-directed faults affecting the central Altiplano (Elger et al., 2005). During this phase, between 36 and 33 Ma, the giant Chuquicamata porphyry system was syntectonically emplaced at the Domeyko Range through the dextral strike-slip of the West Fault (Lindsay et al., 1995; Reutter et al., 1996; Tomlinson et al., 2010, 2018; Mpodozis and Cornejo, 2012).

Between 30 and 21 Ma, extensional deformation was localized in the Calama (Blanco, 2008) and Salar de Atacama basins (Flint et al., 1993; Jordan et al., 2007), associated with a sinistral/normal movement of the West Fault system (Tomlinson et al., 2018). Contractional deformation was only focused on the Eastern Cordillera with a peak of deformation between 25 and 17 Ma (Elger et al., 2005).

Between 21 and 14 Ma, the Eastern Cordillera experienced contractional deformation and main exhumation (Kley, 1996; Horton, 1998; McQuarrie, 2002; Müller et al., 2002; Strecker et al., 2007). The Khenayani-Uyuni fault system got deapticated (Gubbels et al., 1993). Arid paleosols of the middle Miocene in the Salar de Atacema basin are overlain by late Miocene ignimbrites (Cowan et al., 2004; Jordan et cl., 2014) suggesting a minimum age for the contractional deformation in the Domeyko Range and Western Cordillera.

Between 14 and 7 Ma, deformation concentrated clong the eastern part of the Eastern Cordillera and, after 10 Ma, along the State not an thin-skinned fold-and-thrust belt (Mingramm et al., 1979; Allmendinger et al., 1983; Roeder, 1988; Sheffels, 1990; Baby et al., 1992, 1995; Dunn et al., 1995; Klay and Reinhardt, 1994; McQuarrie, 2002; Echavarría et al., 2003; Uba et al., 2009; Onckon et al., 2012), which absorbs ~55 km of shortening (Lamb and Hoke, 1997; Horton, 1993; Müller et al., 2002; Victor et al., 2004; Elger et al., 2005). The oldest undeformed lava hovering the western and central Altiplano thrust faults was dated at ~11 Ma (Baker and Francis, 1978; Silva-González, 2004), suggesting a minimum age for the end of the tening. Strike-slip faulting affected the Western Cordillera (Giambiagi et al., 2016) and the Altiplano (Riller et al., 2001; Acocella et al., 2011; Bonali et al., 2012; Lanza et el., 2 113). Likewise, deformation ceased in the Eastern Cordillera at 9-10 Ma, based on the distribution and undeformed nature of the San Juan de Oro erosional surface (Gubbels et al., 1993). The Chaco-Paraná foreland basin started to develop at 12.4 Ma (Uba et al., 2009), underlain by the Brazilian craton, a stable continental nucleus of South America since the Proterozoic (Litherland et al., 1985).

During the Late Miocene-Quaternary period (7-0 Ma), contractional deformation was concentrated along the easternmost Eastern Cordillera and the Sub-Andean ranges. Presently, the Sub-Andean ranges show active growth at its deformation front, as evidenced from seismicity and GPS data (Bevis et al., 1999; Lamb, 2000; Hindle and Kley, 2003; Brooks et al., 2011). The Atacama fault system was reactivated during the Pliocene-Quaternary as a normal fault system (González et al., 2003; 2006).

Along this transect, the main decollement has been proposed to be located below the Eastern Cordillera and Sub-Andean ranges and to be responsible for the underthrusting of

the flexurally-strong Precambrian Brazilian craton (Lyon-Caen et al., 1985; Isacks, 1988; Watts et al., 1995; Allmendinger and Gubbels, 1996; Lamb et al., 1997; Allmendinger et al., 1997; Anderson et al., 2018) under the thermomechanically weakened Andean sector (Baby et al., 1997; Lamb et al., 1997; Watts et al., 1995; Beck and Zandt, 2002; Ibarra et al., 2021). This decollement, located between 20 and 8 km depth, has a regional dip of 2° to 3° to the west (Kley and Monaldi, 2002; Pearson et al., 2013), and it is rooted by a ramp into the ductile and low-strength zone (Oncken et al., 2003; Lamb et al., 1997, Lynner et al., 2018), deep in mid crustal levels. The location of this ramp has been inferred from a dislocation model for back-arc deformation presented by Brooks et al. (2011) along the Altiplano transect, and by McFarland et al. (2017) along the Puna.

3.2 The Puna transect (24°S)

Prior to 45 Ma, the inversion of several back-arc basins took place (Fig. 4), such as the Mesozoic Domeyko basin (Ramírez and Gardeweg, 1982: why puozis et al., 2005; Arriagada et al., 2006; Marinovic, 2007; Mpodozis and Conceip, 2012; González et al., 2020) and the Salar de Atacama/Salar de Punta Negra foceland basin (Jordan et al., 2007; Martínez et al., 2019, 2020). This generated a thick crust below the Domeyko Range (40 to 45 km, Haschke et al., 2002; Haschke and Güntler, 2003; Amilibia et al., 2008; González et al., 2020), while the Salta rifting produced a thin crust below the actual Santa Bárbara range (Salfity and Marquillas, 1994; Conúnguez and Ramos, 1995; Marquillas et al., 2005; Kley et al., 2005).

During the middle Eocene (45-40 Ma), the inversion of the Atacama basin in the Domeyko Range took place (Maksaev and Zettilli, 1999; Carrapa and DeCelles, 2008; Reiners et al., 2015), with the generation and/o reactivation of strike-slip and reverse faults and sedimentation in the Salar de Aracama basin (Mpodozis and Cornejo, 2012). During the 40-35 Ma period, shortening vas cocused on the eastern Domeyko Range (Maksaev and Zentilli, 1999; Amilibia et al., 2008) and the proto-Puna (Haschke et al., 2005; Carrapa and DeCelles, 2008). At the end of this period, strike-slip faults affected the Domeyko Range (Niemeyer and Urrutia 20(9), associated with the intrusion of giant porphyry copper bodies, such as the Ecoondida cluster (38-35 Ma) (Kay et al., 1999; Mpodozis and Cornejo, 2012; Hervé cí al., 2012). The distal foreland experienced the first basement uplift of the Eastern Cordillera (Andriesen and Reutter, 1994; Seggiaro et al., 1998; Del Papa, 1999; Del Papa et al., 2013; Coutand et al., 2001; Deeken et al., 2006; Hongn et al., 2007, 2010; Payrola et al., 2009; Pearson et al., 2013; Montero-López et al., 2016), delimiting basins with internal drainage such as the Humahuaca basin (del Papa et al., 2013; Montero-López et al., 2020). This uplift had a Basin-and-Range or Pampean Range style (Coutand et al., 2001) with reactivation of pre-existing faults affecting the pre-Mesozoic basement (Hongn et al., 2010).

During the 35-30 Ma p and 1, contractional deformation was concentrated in the eastern Puna (Quade et al., 20.5) and the Eastern Cordillera (Deeken et al., 2006; Pearson et al., 2013). Afterwards, durn g the 30-21 Ma period, the Eastern Cordillera continued to uplift (Coutand et al., 2006; Deeken et al., 2006; Pearson et al., 2013). During the next stage, between 21 and 14 Ma, there was an eastward shift of thrusting from the plateau into the foreland (Deeken et al., 2006; Pearson et al., 2012). At the end of this stage, broken foreland basins with internal drainage conditions characterized the Puna and Puna/Eastern Cordillera border (Siks and Horton, 2011; DeCelles et al., 2015a; Pingel et al., 2019). Paleoaltimetric studies in the Arizaro basin at the central Puna suggest that uplift preceded the filling of the basin (Canavan et al., 2014; Quade et al., 2015). To the west, in the Domeyko Range, a low-intensity contractional event was registered after 17 Ma (Soto et al., 2005).

During the 14-7 Ma period, the uplift of the eastern sector of the Eastern Cordillera took place (Deeken et al., 2006). This phase is marked by the collapsed calderas on the plateau (Coira et al., 1982; De Silva, 1989) and sinistral strike-slip deformation along NW-SE

trending lineaments, such as the Olacapato-El Toro fault system (Riller et al., 2001; Acocella et al., 2011; Bonali et al., 2012; Lanza et al., 2013; Petrinovic et al., 2010, 2021); as well as intermontane sedimentation in the Puna region (del Papa and Petrinovic, 2017; Pingel et al., 2019).

During the last stage (7-0 Ma), the Santa Barbara system developed as a bivergent thickskinned fold-and-thrust belt (Allmendinger et al., 1983; Reynolds et al., 2000) controlled by pre-existing Cretaceous normal faults (Kley and Monaldi, 2002). Between 7 and 3.5 Ma, extensional faults were active in the southern Puna, as well as in the Atacama fault system (González et al., 2003; 2006).

3.3 The Southernmost Puna transect (27.6°S)

During the Late Cretaceous (Fig. 5), a compressional event thick, ned the crust in the present forearc and the westernmost sector of the Frontal Cordillera (Mpodozis et al., 1995; Kay and Mpodozis, 2001; Martinez et al., 2016, $2^{\circ}2^{\circ}1$). During the middle to upper Eocene (45-38 Ma), the eastern Coastal Range and the vestern Frontal Cordillera started to uplift (Cornejo et al., 1993; Tomlinson et al., 1993; 1954; Martinez et al., 2016, 2021). Sediments reached the foreland basin located in the central and eastern Frontal Cordillera and southernmost Puna at ~ 38 Ma (Zhou et al., 2017; Montero-López et al., 2020), coevally to the onset of the Pampean Range uplift, according to thermochronological data (Coutand et al., 2001; Mortimer et al., $2^{\circ}07$. The waning of contractional activity in the western Frontal Cordillera occurred at the end of this phase (Cornejo et al., 1993; Tomlinson et al., 1994).

During the upper Eocene-Oligocer e (35-23 Ma), the crust thickened and reached 45 km below the Maricunga volcanic belt (Kay and Mpodozis, 2001; Mpodozis et al., 2005), located in the western Fronta Curdillera. Regional high-angle faults with NW-SE orientation and sinistral motion were active during this time (Abels & Bischoff, 1999). A short period of extension work place during the Oligocene, evidenced by local extensional basins contemporane us with the volcanism developed along the Maricunga belt (Mpodozis et al., 2010). At the end of this period (~26 Ma), contractional deformation affected the easternment sector of the western Frontal Cordillera (Mpodozis et al., 2018; Martinez et al., 2016; Quiroga et al., 2021). The proximal foreland basin associated with this stage corresponds to the Valle Ancho basin (Mpodozis et al., 1997). During this stage, the distal foreland registered another pulse of uplift and exhumation (Coutand et al., 2001).

During the early Miocene (23-15 Ma), a compressional phase affected the eastern Frontal Cordillera (Mpodozis et al., 1995, 2018; Coutand et al., 2001) and the Fiambalá basin started to receive sediments (Safipour et al., 2015; Deri et al., 2019). The crust achieved a thickness >50 km (Kay and Mpodozis, 2001). Deformation propagated to the east, reaching the Fiambalá basin during the middle Miocene (15-10 Ma, Carrapa et al., 2008; Safipour et al., 2015), at the time when voluminous stratovolcanic complexes were emplaced at the Maricunga belt. The crust achieved its maximum thickness in this stage (>60 km; Kay et al., 1994, 2013; Mpodozis et al., 1995), and the volcanic arc migrated

eastward to its present position, close to the border between the Frontal Cordillera and the Precordillera (Mpodozis and Kay, 2009; Goss et al., 2013).

Figure 5: Geological cross-section are no the 27.6°S, constructed with previous geological data and balanced cross-sections (Ma tine. et al., 2016; Quiroga et al., 2021), and chart describing the different deformational regions affecting the transect area according to published data.

At 13 Ma, the western sector of the Pampean Ranges started to uplift (Carrapa et al., 2006, 2008, 2011; Davila and Astini, 2007; Mortimer et al., 2007; Davila, 2010; Seggiaro et al., 2014; Safipour et al., 2015). This is registered in the sedimentary fill of the intermontane basins (Strecker et al., 1989; Muruaga, 1998; Bossi et al., 2001; Mortimer et al., 2007; Bossi and Muruaga, 2009; Bonini et al., 2017). During the late Miocene, deformation was focused in the Fiambalá basin, which continued to receive sediments (Carrapa et al., 2008; Quiroga et al., 2021), while the eastern sector of the Pampean Ranges started to uplift (Sobel and Strecker, 2003; Mortimer et al., 2007; Bossi and Muruaga, 2009), showing a doubly vergent thrusting style (Cristallini et al., 2004). Back-arc volcanism of 9.5-6 Ma corresponds to the Farallón Negro volcanic complex located in the Pampean Ranges (Sasso, 1997; Harris et al., 2004; Halter et al., 2004). The Aconquija range started to uplift during the middle Miocene, ~12-9 Ma to the present (Löbens et al., 2013; Zapata et al., 2019, 2020), and since ~3 Ma the orographic barrier conditions were established (Sobel and Strecker, 2003; Zapata et al., 2019).The generation of a broken

foreland is marked by deposition of sedimentary sequences in isolated basins (Bossi et al., 2001; Mortimer et al., 2007; Bossi and Muruaga, 2009).

3.4 The flat-slab transect (30°S)

Prior to 45 Ma (Fig. 6), the forearc and backarc crust had a normal thickness (Jones et al., 2016). The magmatic arc was present in the Frontal Cordillera and forearc region was affected by the Atacama fault system (Arabasz, 1971). During the middle Eocene, thrusts and back-thrusts uplifted both the Principal Cordillera (Moscoso and Mpodozis, 1988; Emparan and Pineda, 1999) and the western sector of the Frontal Cordillera (Martin et al., 1997; Cembrano et al., 2003; Lossada et al., 2017; Murillo et al., 2017; Rodríguez et al., 2018). This uplift occurred simultaneously to deposition of distal sediments in the present Precordillera (Fosdick et al., 2017; Reat and Fosdick, 2018). Sciween 30 and 20 Ma, extension in the back-arc region (Winocur et al., 2015; Co. zález et al., 2020) controlled the extrusion of volcanic-arc deposits (Doña Ana arc) in the Frontal Cordillera (Maksaev et al., 1984; Jones et al., 2016; Murillo et al., 2017).

30°S	CR Principal Frontal		Frontal Cordillera	Precordiller	Western Pampean Rang	ges Pai	Eastern Pampean Ranges	
0 20 40 60				Rr eo bas Bermejo basin				
80- 100-	10	Murillo Mard	o et al. (2017) onez (2020)	, `•rdonez et al. (2020)		Distance fr	rom the trench (km)	
120		100	200	300	400	500	600	
Time (Ma)	CR	PC	(ronu' Cu Hillera	Precordillera	Western Pampean Rang	ges Parr	Eastern pean Ranges	
5-0 Ma					The			
8-5 Ma			80	-1				
12-8 Ma		DD	<u>+</u> ⊗ ⊙		The man			
15-12 Ma					TA			
20-15 Ma			+	-11-2-				
30-20 Ma			V + 1					
45-30 Ma		1A	in the	-1				
>45 Ma			†					
SIMBOLOO Compre Strike-slip fau	GY Tectonic regin ssion ∦ Norr Iting ⊗ ⊙ Dext	ne nal faulting tral ⊙ ⊗ Sini	Mag Active v	matism Estimation for the second seco	High t exhumation rate	termontane Rif asin ba	e it Flexural sin basin	
ROCK UNI Permo- Upper F Lower F Paleozo	TS Triassic intrusive Paleozoic sedime Paleozoic sedime Poic metamorphic	e rocks entary rocks entary rocks rocks	Cretaceous v Jurassic volca Jurassic intru Permo-Triass	olcanic and sedimentary r anic and sedimentary rock isive rocks sic volcanic rocks	ocks Middle Miocen ks Oligocene-lowe Eocene volcan Cretaceous-Ec	e-Quaternary sedimen er Miocene volcanic ar ic and sedimentary ro ocene intrusive rocks	itary rocks id sedimentary rocks cks	

Figure 6: Geological cross-section along the 30°S, constructed with previous geological data and balanced cross-sections (Murillo et al., 2017; Mardonez, 2020; Mardonez et al., 2020), and chart describing the different deformational stages affecting the transect area according to published data.

During the early Miocene, 20-15 Ma, the western Frontal Cordillera was uplifted through the east-directed Baños del Toro fault system (Moscoso and Mpodozis, 1988; Martin et al., 1995; 1997, Giambiagi et al., 2017). The eastern Frontal Cordillera started to uplift (Beer et al., 1990; Heredia et al., 2002; Mackaman-Lofland et al., 2019, Mardonez et al., 2020, Mackaman-Lofland et al., 2020,), related to flexural subsidence in the Rodeo basin (Reynolds et al., 1990) and basins located nowadays inside the Precordillera (Levina et al., 2014; Suriano et al., 2015;). New low-temperature thermochronological data indicate reactivation of pre-existing faults in the westernmost Pampean Konges (Ortiz et al., 2021).

Between 15 and 12 Ma, an eastward jump of the deformational front is marked by both thrusting in the western Precordillera (Suriano et al., 2017) and initial sedimentation in the Bermejo basin (Johnson et al., 1986; Jordan et al., 2001), Fosdick et al., 2015; Capaldi et al., 2020). In the Frontal Cordillera, contractional deformation was sealed by the Cerro Las Tórtolas volcanism (Maksaev et al., 1984; Murillo et al., 2017) but the eastern part of this range continued to be uplifted by a deeply-seat at ramp (Allmendinger at al., 1990; Mardonez et al., 2020). The back-arc volcanion, we splaced in the Rodeo basin and in the central Precordillera (Limarino et al., 2000, Pointa et al., 2017).

During 12-8 Ma period, the central Precoro."era and western Pampean Ranges were deformed and uplifted (Jordan et al., 1093; Coughlin et al., 1998; Levina et al., 2014; Allmendinger and Judge, 2014; Fc science et al., 2015), while deformation ceased in the western Precordillera. This every associated with a pronounced flexural subsidence in the Bermejo basin (Mardonez et al., 2020). The magmatic arc, with a geochemical signature indicating a thick cruet was established at the Rodeo basin and eastern Precordillera (Gualcamayo igr eous complex; Poma et al., 2017; D'Annunzio et al., 2018). Contraction deformation continued, between 8 and 5 Ma, with reverse faulting in the central Precordillera, during ongoing uplift of the Pampean Ranges (Jordan and Allmendinger, 1986; Ramos et al., 2002; Fosdick et al., 2015).

The Plio-Quaternary was marked by the last uplift of the Central Precordillera, deformation of the eastern Precordillera (Zapata and Allmendinger, 1996), and continuing uplift of the Pampean Ranges (Ortiz et al., 2015, 2021). Arc magmatism migrated towards the east to the Pampean Ranges, where it finally waned (Ramos et al., 2002). Neotectonic activity is present in the Rodeo basin (Siame et al., 2005; Perucca and Martos, 2012; Fazzito et al., 2013; Perucca and Vargas, 2014) and the Pampean Ranges (Costa et al., 2001; Siame et al., 2015; Perucca et al., 2018).

3.5 The Aconcagua transect (32.4°S)

During the Early Cretaceous, the crust was thin (< 33 km) below the Mesozoic marine basin, at the present-day Principal Cordillera, and it has a normal thickness (35-38 Ma)

below the Pampean Ranges (Fig. 7) (Perarnau et al., 2012). During the Late Cretaceous a compressional event affected the western Principal Cordillera and Coastal Range (Arancibia, 2004; Jara and Charrier, 2014; Rodríguez et al., 2018), but crustal thickness in the eastern Principal Cordillera remained normal (35 km; Carrapa et al., 2020). Afterward, during the late Eocene-early Miocene, extensional relaxation with mild horizontal extension took place (Charrier et al., 2005, 2009; Mpodozis and Cornejo, 2012; Piquer et al., 2016; Mackaman-Loftand et al., 2018; Boyce et al., 2020); while the Coastal Range experienced uplift (Stalder et al., 2020). The Miocene-Present contraction started at ~21-18 Ma, as registered in the western sector of the Principal Cordillera (Jara and Charrier, 2014) with high exhumation (Rodriguez et al., 2018; Stalder et al., 2020) and in the synorogenic record of the Cacheuta basin (Irigoyen et al., 2000; Buelow et al., 2018).

At 18 Ma, the Aconcagua fold-and-thrust belt started to develop as a thin-skinned belt in the eastern sector (Cegarra and Ramos, 1996, Martos et al., 2022) and a thick-skinned belt in its western sector with the inversion of pre-existing norr ial faults of the Abanico basin (Fock et al., 2006; Mardones et al., 2021). During this stage, the volcanic arc migrated from the Farellones arc (23-17 Ma) in western Principal Cordillera (Charrier et al., 2002; Nyström et al., 2003), to the Aconcagua arc (15-8 Ma) in the eastern Principal Cordillera (Ramos et al., 1996a). Uplift of the Frontal Cordillera tool, place during this time (~17 Ma; Buelow et al., 2018; Lossada et al., 2020).

During the 12 to 9 Ma period, the Aconcagua Fr B continued to deform below a crust of 44 km (Carrapa et al., 2022). Both Frontal Cordillera and Precordillera raised during this period (Ramos et al., 2004; Giambiagi et al., 2011), in agreement with sedimentological and provenance data from the Cacinenta basin (Buelow et al., 2018). Afterward, deformation is only concentrated in the eastern Precordillera, while the western Principal Cordillera experienced a reactination. (Farías et al., 2008). During the next period, between 6 and 3 Ma, the deformation migrated to the present thrust front in the easternmost Precordillera (Richard, 2020).

During the late Plicher e to Quaternary, horizontal shortening was accommodated along the easternmost sector of the eastern Precordillera, and the Cacheuta basin experienced uplift and denudation ("Juelow et al., 2018) and active reverse faulting (Cortés et al., 1999; Costa et al., 2000, 2015; Richard et al., 2019; Rimando et al., 2019). Towards the east, the uplift of the Pampean Ranges formed the broken foreland (Jordan et al., 1983; Ramos et al., 2002), where opposite-directed faults, controlled by inherited anisotropies, localize Quaternary deformation (Costa et al., 2019). These faults are interpreted to be deeply rooted into the lower crust (Perarnau et al., 2012).

Figure 7: Geological cross-section along the 32.4°S, constructed with previous geological data and balanced cross-sections (Cega ralond Ramos, 1996; Giambiagi et al., 2014), and chart describing the different deformation of songes affecting the transect area according to published data.

3.6 The Maipo/Tunuya. transect (33.6°S)

During the late Eocene to early Miocene times (Fig. 8), a protracted extensional event affected the western sector of the Principal Cordillera and generated the Abanico intra-arc basin (~35-21 Ma, Charrier et al., 2002; Muñoz et al., 2006; Piquer et al., 2017), associated with a ~30-35 km thick continental crust (Nyström et al., 2003; Kay et al., 2005; Muñoz et al., 2006). The Cenozoic compressional event started at 21-18 Ma, with the early inversion of the Abanico basin (Godoy et al., 1999; Charrier et al., 2002; Fock et al., 2006; Piquer et al., 2016), and was coeval with the development of the Farellones volcanic arc (Vergara et al., 1999). In the foreland, the back-arc volcanism of the Contreras Formation predated the formation of the Alto Tunuyán foreland basin (Giambiagi and Ramos, 2002), with a geochemical signature related to a thin or normal crust (Ramos et al., 1996b).

Uplift of the Aconcagua fold-and-thrust belt (Giambiagi and Ramos, 2002) and the Frontal Cordillera (Buelow et al., 2018; Lossada et al., 2020) initiated during the 18-15 Ma period. Both ranges produce flexural subsidence in the Alto Tunuyán intermontane basin (Porras et al., 2016) and in the Cacheuta basin (Irigoyen et al., 2000; Buelow et al., 2018).

Figure 8: Geological cross-section along the 33.6°S, constructed with previous geological data and balanced cross-sections (Giambiagi et al., 2003, 2015; Farías et al., 2010; Mardones et al., 2021), and chart describing the different deformational stages affecting the transect area according to published data.

During the middle Miocene (15-12 Ma), shortening was mainly absorbed in the Aconcagua FTB (Cegarra and Ramos, 1996). Both the Alto Tunuyán (Giambiagi et al., 2003; Porras et al., 2016) and Cacheuta (Buelow et al., 2018) basins continued to receive sediments. During the 12-9 Ma period, the volcanic activity practically waned, and plutons and porphyries intruded the Miocene Farellones volcanic arc (Kay and Kurtz, 1995; Kurtz et al., 1997; Kay et al., 2005; Deckart et al., 2010). Sedimentary provenance analysis (Irigoyen et al., 2000; Giambiagi et al., 2003; Porras et al., 2016; Buelow et al., 2018) indicates that, during the late Miocene (9-6 Ma), an important uplift of the eastern Frontal Cordillera took place. The ~2 km of topographic uplift in the Alto Tunuyán basin has been related to the

addition of lower crustal material (Hoke et al., 2014). However, western Principal Cordillera was still active, and was responsible for the back-thrust activity (Farías et al., 2008) and exhumation (Maskaev et al., 2004).

Magmatic activity resumed during the Pliocene at its current locus along the High Andean drainage divide. Shortening was absorbed in the eastern Frontal Cordillera, with generation of frontal thrusts affecting the Cacheuta basin deposits (Irigoyen et al., 2000) and the inversion of the Triassic Cuyo basin (Giambiagi et al., 2015b). During the upper Pliocene – Quaternary, shortening was accommodated in the Frontal Cordillera (García and Casa, 2015) and the westernmost sector of the Principal Cordillera with movements along the San Ramón fault (Vargas et al., 2014; Yáñez et al., 2020). Between 6 Ma and the present, a significant increase in exhumation rates along the western slope of the Andes has been attributed to a drastic change in climate (Stalder et al., 2020).

3.7 The Tinguiririca/Malargüe transect (35°S)

Uplift of the westernmost part of the Principal Cordillera Cocurred during the late Cretaceous (Fig. 9) (>90 Ma, Tunik et al., 2010; Mecicua et al., 2013, 2014), but it is not until the middle Miocene (16-13 Ma) that deformation and uplift propagated eastward (Baldauf, 1997), producing the inversion of earl / Necozoic inherited normal faults of the Neuquén basin extension (Mescua et al., 2014). This contraction produced flexural subsidence in the Malargüe foreland bacin. Horion et al., 2016). The 13-10 Ma period recorded further advance of the deformation towards the foreland (Giambiagi et al., 2008; Mescua et al., 2014; Fuentes et al., 2016; Horton et al., 2016). Out of sequence activity in the westernmost structures (El Fierro facit system, Godoy et al., 1999) took place likely during this stage, although the chror ology of this reactivation in the inner sector is not clear.

The main structures along the h-buntain front, such as the Malargüe fault, started their activity between 10 and 6 Ma (Silvestro et al., 2005; Boll et al., 2014; Fuentes et al., 2016), while out-of-sequence uplith and exhumation were recorded in the western Principal Cordillera around 8 Mar (Spikings et al., 2008). Out-of-sequence deformation was observed for the Las Leñas fault in the middle sector of the fold-and-thrust belt likely between 6 and 3 Ma (Kozlowski et al., 1993; Bande et al., 2020). During the late Pliocene-Quaternary, shortening was transferred to the easternmost sector of the Malargüe FTB, at the present orogenic front (Silvestro et al., 2005; Fuentes et al., 2016).

4. Methodology

4.1 Thermomechanica' structure

To better understand how orogenic-scale deformation occurs and which kinematic model best explains the observed geological data, we first construct a representation of the thermomechanical structure underneath the Central Andes. This model considers the geometries of geophysically-constrained lithospheric discontinuities and simple analytical expressions for temperature and brittle-elasto-ductile rheology.

We start from the 1D steady-state heat conduction equation with volumetric heat production. For the boundary conditions, we follow previous studies (Fox-Maule et al., 2005) by assuming that temperature T_b at a certain depth Z_b is independently known and that radiogenic heat decays exponentially with depth from a surface value H_0 . Under these assumptions, a convenient form of the 1D geothermal gradient describing the variation of temperature T with depth Z can be derived:

$$T(Z) = \frac{Qm}{k} Z - \frac{H_0 Z_i}{k} \left(Z_i (1 + exp^{\frac{-Z}{Z_i}}) + Zexp^{\frac{-Z_m}{Z_i}} \right) \quad (eq. 1)$$

Here, k is thermal conductivity, Z_i is the depth scale for exponential radiogenic decay, Z_m is Moho depth and Q_m is heat flow at the Moho, which can be defined as:

$$Q_{m} = \frac{1}{Z_{b}} \left[T_{b}k - H_{0}Z_{i} \left(Z_{i} - exp^{\frac{(-Z_{m})}{Z_{i}}} (Z_{i} + Z_{m}) \right) \right] \quad (eq. 2)$$

In order to provide values of Z_i , Z_m and the pair (T_b , Z_b), we consider the outputs of the geophysically-constrained 3D density model of the function margin (Tassara and Echaurren, 2012). This model was constructed by forward modeling of the Bouguer gravity anomaly under the geometric constraints imposed by published seismic results. The main output of this model is the geometry for the subducted slab, the Lithosphere-Asthenosphere Boundary (LAB) underneath the continental plate, the continental Moho that we assume equal to Z_m , and the intracrestal density discontinuity (ICD) separating dense lower crust from light upper crust. As radicactive elements are concentrated in the upper crust, we assume in our thermal model that the depth to the ICD defines the parameter Z_i . Considering E-W cross-subtions for the computation of the model, and for those points located eastward of the Slab-LAB intersection, we impose that:

$$T_{1} = T_{p} + GZ_{b} (eq.3)$$

Where T_p is mantle potential ten. perature, G is an adiabatic gradient and Z_b is defined by the depth to the LAB. A similar relation holds for points of the cross section located westward from the Slab 'A' intersection (Molnar and England, 1990), for which Z_b corresponds to the slap depth:

$$T_b = \frac{(Q_0 + \sigma V)Z_b}{k(1 + \frac{\sqrt{Z_b V \sin \alpha}}{\kappa})} \quad (eq. 4)$$

Here, α is the average subduction angle, κ is thermal diffusivity, and σ is shear stress at the interplate fault. The slab heat flow Q_0 depends on the age of the slab at the trench *t* (which we take from Müller et al., 2016) and is defined as:

$$Q_0 = \frac{kT_p}{\sqrt{\pi\kappa t}} \quad (eq.5)$$

Ensuring continuity of the temperature field between the eastern and western domains (i.e., equaling equations 3 and 4), a value of σ at the Slab-LAB intersection can be prescribed. Assuming a linear decrease to zero of this parameter toward the trench axis along the cross section, eq. 4 can be fully evaluated.

Values of the physical parameters included in eqs. 1 to 5 (Table A1.1 in Supplementary Material 1) were selected as averages for the study region and/or assuming common values from the literature (i.e., Turcotte and Schubert, 2014).

After computing the values of Tb in eqs 3 and 4, they can be replaced in eq 2 and then in eq 1 to define the 1D geotherm for each point of the EW cross section. The 1D temperature distribution T(Z) at these points is then used to prescribe the ductile yield strength σ_d with depth Z:

$$\sigma_d(Z) = \frac{\varepsilon^{1/n}}{A} \exp \frac{H}{nRT(Z)} \quad (eq.6)$$

Here $\dot{\varepsilon}=10^{-15}$ s⁻¹ is strain rate, R is the gas constant, and n, H and A are empirical material properties that depend on rock composition. Considering the compositional layering of the input model (Tassara and Echaurren, 2012) we assigned values to these parameters as shown in Table A1.2 in Supplementary Material 1.

We also consider that brittle yield strength σ_b increases linearly with depth Z at a constant gradient of 55 MPa/km (Burov and Diament, 1995). At a given depth, the actual yield strength (i.e., the maximum differential stress that can be elastically supported before permanent deformation is activated) will be the minimum between σ_d and σ_b . The yield strength envelope (YSE) constructed in this way predicts the potential mechanical behavior of crust and mantle. The actual hittle, elastic and/or ductile behavior results from the intersection of the YSE with a given on ferential stress gradient. Although the form of this gradient with depth is not known and could include in-plane tectonic stresses and flexural stresses due to plate bencing the Andean margin (Coblentz and Richardson, 1996; Tassara, 2005; Flesh and freemer, 2010). Into this framework, areas with yield strength higher than this value and expected to behave elastically and transmit stresses, while areas with lower strength in any deform either in a brittle (upper crust) or ductile (lower crust and mantle) manner (Fig. 10).

By implementing the method described above to the seven transects analyzed by us, we obtain thermomechanical transects like those of Figure 10, which are then used to constraint the present-day crustal structure in our kinematic structural models.

Figure 10: A) Modeled hermomechanical structure, showing a rheologically-stratified lithosphere with contrasting high- and low-strength zones, in blue and red colors respectively, and schematic yield-strength envelopes for different sectors of the orogen: (1) the thickest sector of the orogen, characterized by the presence of a thin low-strength zone located in the upper crust, and (2) the continental shield characterized by mechanically-coupled crust and uppermost mantle. Areas with strength higher than the main tectonic stress (σ_e) are expected to behave elastically and transmit stresses, while areas with lower strength may deform either in a brittle (upper crust) or ductile (middle-to-lower crust) manner. Decollements are interpreted to be located inside the upper crustal low-strength zone, which presents a ductile behavior. B) Kinematic model, with thermomechanical constraints, proposed to construct the regional and balanced cross-sections. In this model, the crust is thickened by imposing a fixed subduction zone and assigning a westward motion of the continental plate towards the trench.

4.2 Crustal structure and kinematic modeling with thermomechanical constraints

Our models assume that upper crustal faults are preferentially rooted in a shallow, subhorizontal decollement located inside a low-strength zone ($\sigma_d < \sigma_e$) derived from the thermo-mechanical model described above. The base of this shallow low-strength zone corresponds to the base of the upper crust in all of our thermomechanical transects for regions above the hot orogenic axis (Fig. 10), and it is defined by the depth to the ICD in the density model of Tassara and Echaurren (2012). The roof of the shallow low-strength zone is marked by the depth to the isotherm for which $\sigma_d = \sigma_e$. For the selected upper crustal material in our model (Table A1.2 in Supplementary Material 1), this isotherm is given by a temperature of ~250°C. Similarly, the roof of the deep low-strength mid-lower crust is defined by the 550°C isotherm.

For each section, geological background and published partial be anced cross-sections are first used to construct a geometric model of the time-zero stage (T0, >45 Ma) and a final (present-day) non-restored section with contacts be tween different lithologies, dips and out-cropping faults and folds. We then use the academic license of MOVE suite (Petroleum Experts) for forward modeling several successive deformation stages that are constrained by stratigraphic, structural, sedimental ogical, thermochronological and geochemical observations. We sequentially deiterm the upper crustal layers by imposing horizontal shortening at the western border on the modal to reach the final present-day stage (Supplementary Material 2). For cack, stage we use the published geological data described in section 3 and create or reactivate faults accordingly. This allows us to constrain the amount of shortening that we impose to the kinematic model. The final stages (the last 15 My of the mode() scheder the upper-middle crustal low-strength zone as a decollement zone.

An estimation of the crustal root thickness for each evolutionary stage is obtained from published paleo-crustal thickness and from our kinematic reconstruction of the different stages. The initial inferred crustal thickness and the area-balancing on a crustal-scale is used to explain the bickering of the crust by tectonic shortening, as has been proposed by previous models (Baby et al., 1997; Allmendinger and Gubbels, 1996; Allmendinger et al., 1997; Kley and Monaldi, 1998). We assign a velocity gradient between the continental plate and the fixed slab-forearc interface and apply a westward motion of the South American plate (Fig. 10B). This is achieved with an artificial line at the base of the Moho which has no geological significance and has been designed for the purpose of kinematical modeling (Supplementary Material 2). Displacement is transmitted along this base using the trishear algorithm until the singularity point S below the Cordilleran axis. At this point, shortening is transmitted to a ramp-flat master decollement, modeled with the fault parallel flow algorithm as a passive master fault.

Crustal material from the craton is gradually incorporated into the orogenic system, and this forms the crustal root. Consequently, this constructs topography by isostatic adjustments. In our models, the material is not lost by erosion at the subduction zone,

neither by crustal delamination or by the movement of material along strike, nor is it gained by magmatic addition. Through this method, plain strain along the transects is assumed.

The incorporation of isostatic-flexural compensation for the added topographic load and crustal root after each modeled deformation step permits the creation of basin space and Moho adjustments. To achieve this, flexural-isostatic adjustments to the lithosphere due to local load changes are made, assuming a default value for the Young's modulus $E=7x10^{10}$ Pa and the effective elastic thickness (Te) calculated in Tassara et al. (2007), Prezzi et al. (2009) and Ibarra et al. (2019; 2021). Our models produce enough foreland subsidence to accommodate the observed foreland stratigraphy.

4.3 Shortening estimation

We applied two approaches to estimate crustal shortening of pact cross-section: forward modeling to reconstruct the observed surface structure, as explained in the previous section, and crustal area balance between initial and final crustal thicknesses. Regarding the cross-section reconstruction, we defined two end moniber models for each initial crustal geometry, with a thinner or thicker initial crust, according to published geological and geochemical data, and used a mean value in our kinematic modeling. This allows us to assign an error for each estimated crustal shore ing (Table 1). The undeformed foreland thicknesses and Mesozoic rifting ovents are used to constrain the back-arc sector of the crust for the T0. For the second coproach, we used crustal area balance between initial and final Moho geometries (C in Fig. 11), and the isostatic compensation of the Moho depth (red and violet dashed lines) due to the topographic load (A in Fig. 11) and sedimentation in the forearc and fore and basins (B in Fig. 11). To calculate the topographic load, we produced topographic swath profiles with a bin width of 10 km and used the mean elevation (Perez Pena et al., 2017). The flexural/isostatic compensation is calculated with the 2D Decompaction module from MOVE, using average densities of 2.4-2.6 g/cm³, 2.6-2.8 g/cm³ cnd 3.3 g/cm³ for the sedimentary deposits, upper crust and mantle, respectively, and roung's Modulus of 70 GPa.

Figure 11: Shortening estimation by applying two-end mode's or initial crustal thickness: thin crust in red, thick crust in blue (full line for the pre-isostatic componential topography, dashed line for the compensated Moho). Topography for the TO is estimated by assuming isostatic compensation of the crust. The crustal material that is incorporated into the orogenic system from the east (orange rectangle) is equal to the area of the crustal root (in light green), the area between the Present and T0 topography (in grey), after frequencies (or yellow), after flexural/isostatic compensation, and the area filled with Cenozoic sedimentary basin deposits (or yellow), after flexural/isostatic compensations.

The amounts of shortening, calculated with the reconstruction approach, are 4-15% lower than the crustal area balance approach. (Table 1). This indicates that the estimations of shortening are conservative (Sheff eld, 1990) and additional shortening, such as the internal strain of the basement blocks (McQuarrie and Davis, 2002), layer-parallel shortening (Yonkee and Weil 2010) and/or strike-slip movement of crustal material along NW sinistral or NE dextral facilite (Riller et al., 2012) must be considered. This difference in crustal shortening comparing both methods fall within the proposed range for magmatic addition (Lamb and Hcke, 1997; Haschke and Gunther, 2003; Carrapa et al., 2022). Nevertheless, if we consider the subduction erosion proposed for the southern study sector (33-36°S; Kay et al., 2005; Stern, 2020) shortening calculated by the crustal area balance should increase and may compensate for the magmatic addition.

Table 1: Maximum, media and minimum values of crustal thickness used in the forward model set up for each transect. A. Values of shortening (maximum, media and minimum) calculated from crustal area balance between initial and final crustal thicknesses. B. Values of shortening calculated from the forward-kinematic modeling. A vs B. Percentage of variation between A and B.

		Α		В	
Latitude	Initial crustal thickness	Shortening	error	Shortening	Α
		(km)		(km)	vs
		(area)		(forward)	В

22°S		CRD	omeyko	WCA	ltiplano	EC	SA	foreland			
	maximum	32	53	48	46	43	35	33.5	258		
	media	32	47	43	42	39	35	33	325 ± 67	285	14%
	minimum	32	40	38	38	35	35	32.5	392		
24°S		CRD	omeyko	WC	Puna	EC	SS	foreland			
	maximum	32	50	42	40	38 33 35		35	235		
	media	32	45	40	38	36	33	34.5	270 ± 35	230	15%
	minimum	32	40	38	36	35	33	34	305		
27.6°S		CR	WFC	EFC	PRE-C	PR f	oreland				
	maximum	24-33	33-50	40- 44	40	39	35		194		
	media	24-32	32-40	38- 42	38.5	38	35		214 ± 20	194	9.5%
	minimum	24-31	31-30	35- 40	37	37	35		234		
30°S		CR	PC	FC	PRE-C	PR f	oreland				
	maximum	29-34	34-44	40-	44	40	36		171		
	media	29-	34-40	38-	40	39	35-36		155 ± 16	137	12%
		33.5		40							
	minimum	29-33	33-36	36- 38	36	38	35		139		
32.4°S		CR	WPC	EPC	FC	PRE-C f	oreland				
	maximum	24-31	31-38	34- 35	34	34-35	37-39		116		
	media	24-30	30-36	33- 35	33-34	34	37-55		104 ± 12	94	10%
	minimum	24-29	29-34	32- 34	33	33-34	36-50		92		
33.6°S		CR	WPC	EPC	FCf	or and					
	maximum	26-34	36-40	35	35-37	35 /			65		
	media	26-34	34-40	35	5.7	35-36			73 ± 9	69	5%
	minimum	26-34	34-38	34	34-35	_ 1-36			82		
35°S		CR	WPC	EPC f	orel nd						
	maximum	36-38	37-35	35-	36-4				39		
	media	35-36	35-33	3(۶5-39				46 ± 8	44	4%
	minimum	33-34	32-34	ی. عر	35-38				54		
				34	,						
			CR	Coa	stal Rang	e		FC	Frontal Cordillera	٦	
			wc	Wes	tern Cor	dillera		WFC	Western Frontal Cordillera	a	
			С	Prin	cipal Cor	dillera		EFC	Eastern Frontal Cordillera		
			WPC	Wes	tern Prin	icipal Cor	dillera	SS	Subandean Ranges		
			EPC	East	ern Princ	ipal Cord	illera Pre-C		Precordillera		
			EC	East	ern Cord	illera		PR	Pampean Ranges		

4.4 Geodynamic modeling of the upper-plate lithospheric shortening

To evaluate how the thermomechanical structure of the crust evolves during the different stages of crustal shortening and uplift, we developed a general 2D geodynamic model of upper-plate lithospheric shortening by using the geodynamic code ASPECT (Advanced Solver for Problems in Earth's ConvecTion; Bangerth et al., 2019). As we focus on the evolution of crustal deformation within the South American plate, we simply simulate the dynamics of shortening from the forearc to the foreland and neglect the subduction process to the west. This setup depicts a general and simple lithospheric structure, without

considering lateral variations of material properties and the particular features of each transect.

The resolution of the 2D model domain (Fig. 12) is 500 m per element in the lithosphere at 0–100 km depth and 7 km at 100–240 km depth. This variable resolution allows saving computational time while ensures a refined depiction of the lithospheric deformation pattern. Regarding the model geometry and parameters, we modified the initial setup presented in Barrionuevo et al. (2021; for more details see Supplementary Material 3). In particular, the lithospheric structure corresponds to the aforementioned thermomechanical structure under the Central Andes (Fig. 10), with a thicker zone in the westernmost part, corresponding to the forearc.

The continental lithosphere is divided into three layers with different rock properties, which are based on laboratory-derived rheological parameters used in previous numerical studies (e.g., Liu and Currie, 2016; Supplementary Materical character in continental crust is between 35-40 km thick and the maximum depth of the 'LAR is 100 km. The upper continental crust (CUC) has a wet Black Hills quartzite rheology (Gleason and Tullis, 1995). The lower crust (CLC) uses the same rheology as the upper crust but is five times stronger than the wet quartzite, assuming that it is chire and less silicic. The continental lithospheric mantle (CLM) is represented by dry character (Hirth and Kohlstedt, 2003).

The top boundary condition is zero traction with a 10-km-thick sticky air layer. This weak and light layer is used to approximate the free surface in a way that allows the formation and evolution of the faulting on the cortaine. To drive lithospheric shortening, we imposed a constant horizontal shortening rate contrained to the lithosphere at the right-hand boundary, which is an average estimate for the Central Andes from the late Cenozoic (Oncken et al., 2006). We added a small outflux velocity to the bottom boundary to maintain the mass balance. The temperature remains at 0 °C at the surface and 1396°C at the bottom. The initial temperature increases linearly from the surface to the bottom of the lithosphere and then a tiab stically between the lithosphere-asthenosphere boundary and the bottom of the model (Fig. 12). The side boundaries have conductive geotherms and no horizontal heat flux.

Fig. 12: Geodynamic initial model setup. Material 10 vs in from the lithosphere at the right-hand boundary (Vright) and flows out from the botton boundary (Vbottom) to maintain mass balance, which is used to simulate lithospheric show which is used to show an example of the initial effective viscosity (black solid line) and lithospheric show here here the used to show an example of the initial effective viscosity (black solid line) and lithospheric show an example of the initial effective viscosity (black solid line) and lithospheric show an example of the initial effective viscosity (black solid line) and lithospheric show an example of the initial effective viscosity (black solid line) and lithospheric show an example of the initial effective viscosity (black solid line) and lithospheric show an example of the initial the show an example of the initial the show an example of the initial the show and the show and the show and the show and the show an example of the initial the show and the show and the show an example of the initial the show an example of the

5. Results

5.1 Thermomechanical structure

The output model is an assembly of 1D vertical yield strength profiles distributed across each of the seven E-W studied transects with a resolution of 0.2° in longitude, which allows us to predict the strength layering inside the upper plate (as in Fig. 10A). The results show that, in the continental shield (column 2 in Fig. 10), a cold and strong crust is mechanically coupled with the mantle, while in the thermally-weakened arc region (column 1 in Fig. 10), the mantle and thick lower crust have no strength presenting a ductile behavior and rigidity is only concentrated in the colder mid-upper crust. The model also shows localized sub-horizontal low-strength zones inside the dominantly rigid upper crust, which we propose may act as decollements where crustal faults are rooted. The westward-dipping and sharp rheologic contrast between the rigid forearc and ductile orogenic lower-crust may act as a ramp for these decollements as has been already proposed (Tassara, 2005; Farías et al., 2010; Giambiagi et al., 2015; Comte et al., 2019).

For each of our studied transects, Figure 13A shows the temperature distribution inside the upper plate that is produced by our model and compares the modeled surface heat flow against available measurements compiled from the literature. This comparison demonstrates that, despite the simplicity of our analytical formulation of the thermal regime in a subduction environment, the model is able to reproduce the observed heat flow sufficiently well and can be considered a valid representation of the temperature field for each transect. The rheological-mechanical structure of the transects in Fig. 13B show that most of the upper-middle crust has a brittle-elastic behavior, particularly for the cold and rigid forearc and foreland regions, and a ductile behavior below the thermally-weakened arc region. However, in the Altiplano/Puna transects, a ductile behavior is also predicted by the model below the Western Cordillera, Eastern Cordillera and Sub-andean ranges, within a thin layer (< 7 km) at mid-crustal depths (5-15 km), as vall as for the entire middle and lower crust zone (i.e., deeper than 7 km) below the Altiplanch hand the western sector of the Eastern Cordillera. This upper-crust ductile aver is also observed in the normal subduction segments below Principal and Fror tal Cordilleras, and it is mostly controlled by the existence of a relatively shallow LAB undemeath the orogenic axis.

The flat-slab domain (30° and 32.4°S transects) is chara sterized by a relatively shallow subduction angle (Cahill and Isacks, 1992; Tassara and Echaurren, 2012) and a lack of active arc-related magmatism, resulting from the set stward migration of the asthenospheric wedge (Pilger, 1981; Kay et al., 1988). Here, the thermomechanical model suggests that the upper crustal low-strength layer is rothen thin, due to the cold flat-slab thermal structure implied by a deep LAB (Fig. 13).

As has been mentioned above, the run of the low-strength zones in the upper and lower crust are controlled in our thermome chanical model respectively by the depth to the 250° and 550°C isotherms. In the Scoplementary Material 1, we present a sensitivity analysis for each transect showing ho, the depth to these isotherms vary with possible changes of H₀ (±2 \Box W/m3), k (±1.5 W/m[']) and T_p (±250°C) around their selected mean values (Table A.1 in Supplementar, Material 1). For both isotherms, the effect of changing k and H₀ is much larger than the iges in T_p, mostly for regions of thick upper crust. The shallower 250°C isotherm is less rensitive to these changes than the deeper 550°C isotherm. For those particular regions where the base of the upper crust is deeper than the 250°C (delimiting shallow low-strength zones), we can conclude that the applied changes in thermal parameters imply maximum variations in the depth to the 250°C of ±5 km. Moreover, even in the coolest models (i.e., lowest values of H_0 and T_p , highest value of k), this isotherm is still shallower than the base of the upper crust, implying that the shallow low-strength zones are a robust feature of our model. The position for the roof of the deeper low-strength zone is less well constrained since the 550°C isotherm can exhibit variations of ±10 km around the mean depth.

This sensitivity analysis is also useful for discussing the possible effect that uncertainties in the depth of the LAB could have in the derived thermomechanical structure. In the conceptual framework of our thermal model, the LAB depth plays the primary role in controlling the thermal structure of the conductive lithosphere in the eastern part (arc and

backarc region) of the cross sections. The commonly smooth geometry of the LAB in the model of Tassara and Echaurren (2012) is loosely constrained by available S-wave seismic tomographies at the time of publication (Feng et al., 2004; 2007), measured surface heat flow and the weak gravity effect of the relatively small density anomaly between lithospheric and asthenospheric mantle. Seismic images of the LAB published after Tassara and Echaurren (2012) along the Andean margin are scarce and mostly based on S-wave receiver functions (i.e., Ammirati et al., 2013; Heit et al., 2014; Haddon et al., 2018). They show a general coincidence with the LAB geometry used by us, although some differences up to ±15 km could locally exist underneath the Altiplano-Puna plateau and Pampean Ranges. Changes in LAB depth for a given value of T_p are identical to changes in T_p for a given LAB depth. Particularly, the explored changes of ±250°C in T_p along a typical continental geotherm at mantle depths are iden. cal to variations of the order of ±20 km in the LAB depth. Such variations are larger than differences between seismically constrained LAB models and the one used by us, and therefore they contribute with an uncertainty of less than ±2.5 km in the depth of th ± 25 % C isotherm and ±5 km for the 550°C isotherm. This implies that possible local-scape upors in the used geometry of the LAB with respect to seismic models would have aminor effect on the resulting thermomechanical structure of each transect.

We must recall that our thermal model is fully based on a steady-state conductive geotherm. For the forearc, the analytical forn, tlation of Molnar and England (1990) does include the effect of heat advection by the subducted slab, but our model does not incorporate advective contributions associated to the motion of crustal material due to backarc shortening (as done for instance by Springer, 1999) or by magma and/or fluid injection underneath the magmatic area to be cognize that in the case of an interconnected crustal-scale magmatic plumbing systems like those envisaged by several authors (i.e., Cashman et al., 2017; Burchardt et al., 4022) the temperature at upper crustal levels can be largely augmented with respect to the conductive reference. This can actually be the reason behind a slightly reduced the upper crust would be likely similar to what our sensitivity tests show when increasing H₀ and T_p or reducing k, which produce a shallowing of the roof of the upper crustal low strength zone by some kilometers.

Figure 13: Thermal (r.) and mechanical (B) structure resulting from the analytical model. For each of the seven models I transects (see latitude at the bottom left corner), panel A shows the temperature distribution inside the upper plate (see color scheme at the right hand of the 35°S transect). Upper insets above each transect compares the surface heat flow resulting from the model (continuous blue line) with measured values and their uncertainties (in mW/m2) as compiled from the literature (Yamano and Uyeda, 1990; Uyeda and Watanabe, 1982; Henry and Pollack, 1988; Hamza and Muñoz, 1996; Bialas and Kukowsky, 2000; Muñoz and Hamza, 1993;
Grevemeyer et al., 2003, 2005, 2006; Kudrass et al., 1995; Springer and Foerster, 1998; Hamza et al., 2005; Flueh and Grevemeyer, 2005; Collo et al., 2018). Panel B shows the derived strength layering inside the overriding upper plate. Colors indicate yield strength (see color scheme at the right hand of the 35°S transect) showing strong regions (high-strength layers) in blue-green and weak zones (low-strength layers) in brownish-to-white colors. In both panels the continuous green and red lines mark respectively the geometry of the Intracrustal Density Discontinuity (ICD) and Moho, dashed purple line is the Lithosphere-Asthenosphere Boundary (LAB) and the gray area is

the subducted slab, which geometries are from Tassara and Echaurren (2012). Vertical exaggeration x1.5.

5.2 Kinematic models with thermomechanical constraints

In the following, we describe the structural forward modeling that results in the present configuration constrained by the thermomechanical models. We describe the main deformational events in different crustal domains that constraint the activity of different decollements. Data of this section are summarized in Table 2 and in Supplementary Material 2.

The Altiplano transect (22°S)

The Altiplano (22°S) is modeled with two decollements, the Aniplano/Puna (APD), and the Main Andean (MAD), in agreement with previously proposed models suggesting a complete disconnection between main deep structures (Eiger et al., 2005; Martinod et al., 2020). We configure the time zero (**T0**, >45 Ma, Fig. 14) with a previous contraction in the proto-Domeyko Range and strike-slip movement along the Atacama fault system. We model the first stage **T1** (45-40 Ma) with movement along the APD associated with 35 km of shortening distributed between the Domeyuon Range and the Khenayani-Uyuni fault system in Western Cordillera. The prote -Eestern Cordillera is deformed by east-directed faults. The APD is located below the plated 1, at a depth between 8 and 18 km, and is connected at depth with a west-dipping (10° to 20°) shear zone, previously highlighted by the ANCORP project (Oncken et al., 203). Flexural subsidence is generated in Calama and Lipez basins.

During the next stage (T2, 40 35 Ma), 50 km of shortening is focused on the Western Cordillera, the easternmost A. jolano and the Eastern Cordillera. The Domeyko Range becomes affected by downar strike-slip faults, such as the West Fault, but it is passively uplifted by the rame of the APD decollement. Flexural subsidence is generated in the Lípez basin and the for deep basins during T2 and T3 (35 to 30 Ma), resulting from the uplift of the Western Cordillera, Eastern Cordillera and central Altiplano. During T3, the West Fault system changed its strike-slip movement from dextral to sinistral, while deformation of the western Eastern Cordillera propagated westward together with the development of the Main Andean decollement (MAD). Our thermomechanical model suggests that the MAD extends westward, below the Eastern Cordillera, where a sharp contact between high and low strength zones exists. In our kinematic model, we extend this decollement toward the west, until 66.3°W and 65.9°W, in the Altiplano and Puna transects, respectively, where it roots into a ductile shear zone. This zone is a low-strength zone that reaches shallow depths below the Western Cordillera, Altiplano/Puna and Eastern Cordillera, and includes the mid-crustal zone of low-seismic velocity, called the Altiplano Low Velocity Zone by Yuan et al. (2002).
Between 30 and 21 Ma, **T4** stage, extensional deformation is localized in the Calama and Salar de Atacama basins, associated with a sinistral/normal movement of the West Fault system. Contractional deformation is focused only on the Eastern Cordillera, achieving 35 km of shortening.

During stage **T5** (21-14 Ma), 55 km of shortening are accommodated along the MAD, associated with deformation and main exhumation of the Eastern Cordillera. The Khenayani-Uyuni fault system gets deactivated, and regional strike-slip faults crosscut the previous thrusts. During stage **T6** (14-7 Ma), deformation concentrated along the eastern sector of the MAD, below the eastern part of the Eastern Cordillera and the Sub-Andean ranges, which absorbs ~55 km of shortening. Flexural subsidence is created in the Chaco-Paraná foreland basin starting at 12.4 Ma.

During the last stage **T7** (7-0 Ma), the Sub-Andean belt is mc delled as a thin-skinned foldand-thrust belt connected to a shallow-dipping decollement a^{3} b-14 km depth, with 60 km of shortening focused in the eastern segment of the MAD.

Table 2: Summary of the phases of construction of an transects analyzed in the Southern CentralAndes and the associated crustal shortening (Sh' a. 1tl ickening (Zm) for every step of the forwardmodeling. Numbers next to the foreland basir a conrespond to the studies of: 1) Elger et al., 2005; 2)Uba et al., 2006; 3) Alonso, 1992; Carrapa and DeCelles, 2008; 4) Siks and Horton, 2011; Pingel etal., 2019; 5) Carrapa et al., 2008; 6) Dávila et al., 2012; 7) Beer et al., 1990; Re et al., 2003; Ruskinand Jordan, 2007; Fosdick et al., 2017; 8) Reat and Fosdick, 2018; Mardonez et al., 2021; 9)Richard, 2020; 10) Giambiagi et al., 20a; Porras et al., 2016; 11) Buelow et al., 2018; 12) Horton etal., 2016.

Transect	Phase	Time (Ma)	Active decollement	Deformed morphostructural units	Sh (km)	Zm (km)	Foreland basin thickness (m)
Altiplano 22ºS	T1	45 - 40	Altiplano - Puna	Domeyko Range, Western and Eastern Cordilleras	35	53	1000
	T2	40 - 35	Altiplano - Puna	Western Cordillera, Altiplano	50	58	2000
	Т3	35 - 30	Altiplano - Puna, Main Andean	Altiplano, Western and Eastern Cordillera	40	63	3000 jasin
	T4	30 - 21	Main Andean	Eastern Cordillera	30	67	4200 20 (1) (2)
	T5	21 - 14	Main Andean	Eastern Cordillera	55	70	5000 1 250 5
	T6	14 - 7	Main Andean	Eastern Cordillera, Sub Andean ranges	55	71	5500 750 sq
	T7	7 - 0	Main Andean	Sub Andean ranges	60	73	6000 8
				TOTAL SHORTENING	325		Cha
Puna 24ºS	T1	45 - 40		Domeyko Range	30	52	1500
	T2	40 - 35	Altiplano - Puna	Domeyko Range, Puna, Eastern Cordillera	45	55	2000 5 400 8
	T3	35 - 30	Altiplano - Puna	Puna, Eastern Cordillera	30	60	bas
	T4	30 - 21	Altiplano - Puna	Eastern Cordillera	30	61	3000 🐒 1800 🖸 🚬
	T5	21 - 14	Altiplano - Puna Main Andean	Domeyko Range, Puna, Eastern Cordillera	45	63	Grand 0015 basi
	T6	14 - 7	Main Andean	Eastern Cordillera	50	63	4300 g 5000 g
	T7	7 - 0	Main Andean	Santa Barbara system	40	63	4500 2 6000 7
				TOTAL SHORTL NING	270		a (3) (4)
Southern- most Puna 27.6°S	T1	45 - 38	Frontal Cordillera	Frontal Cordillera, Pampean Ranges	49	46	
	T2	38 - 23	Frontal Cordillera	Frontal Cordillera, Pampean Ranges	30	49	
	Т3	23 - 15	Frontal Cordillera, Eastern Main	Frontal Cordillera	50	56	1400 uise uis
	T4	15 - 10	Eastern Main	Frontal Cordillera, Pampean Ranges	40	62	3700 9 1000 9
	T5	10 - 5	Eastern Main, Pampean Ranges	Pampean Ranges	32	63	4700 mpain 4700 mpain
	T6	5 - 0	Pampean Ranges	Pampean Ranges	24	63	5700 🛱 3500 🛱
				T TAL SHORTENING	225		(5) (6)
Flat slab 30°S	T1	45 - 30	—	Principal and Front. I Co	38	48	800 50
	T2	30 - 20			-3	50	<u>.</u> 150 . <u>.</u>
	T3	20 - 15	Frontal Cordillera	Frontal Cr diller:	40	58	2200 s 650 s
	T4	15 - 12	Frontal Cordillera, Precordillera	Frontal Co, Citr a, Precordillera	20	64	2600 3 1800
	15	12 - 8	Precordillera	Prec. dillera, Pampean Ranges	22	65	3100 2950
	16	8-5	Precordillera	Precordin, ra, Pampean Ranges	1/	66	3500 5500 (7) (8)
	17	5-0	Pampean Ranges	TOTAL SHORTENING	155	00	(7) (0)
Aconcagua 32.4°S	T1	21 - 18	—	i incipal Cordillera	17	42	100
	T2	18 - 15	Principal Cordil. a	Principal and Frontal Cordillera	20	50	700
	13	15 - 12	Principal Cordinata	Principal and Frontal Cordillera	17	52	1400
	TE	12 - 9	Frontal Col	Principal and Frontal Cordillera, Precordillera	14	52	1800 Jent
	15	9-0	Fronta Vordii sia	Precordillera	13	52	2600 2
	T7	3-0	F ontal `ordillera	Precordillera, Pampean Ranges	11	52	4700 (9)
				TOTAL SHORTENING	104		
Maipo/ Tunuyán 33.6°S	T1	21 - 18		Principal Cordillera, Coastal Ranges	8	44	(10) 200 (11)
	T2	18 - 15		Principal and Frontal Cordilleras	10	47	100 5 650 5
	T3	15 - 12	runcipal Cordillera	Principal Cordillera	17	49	1000 ຊື່ 1200 ຊື່
	T4	12 - 9	Principal Cordillera, Frontal Cordillera	Principal and Frontal Cordilleras	15	51	1400 up 1800 pm
	T5	9-6	Principal Cordillera Frontal Cordillera	Principal and Frontal Cordilleras	12	51	1800 JI 2100 June 1800
	T6	6-3	Frontal Cordillera	Frontal Cordillera	6	51	2400
	17	3-0	Frontal Cordillera		5	51	2800
Tinguiririca/ Malargue 35ºS	T1	16 - 13	Main	Principal Cordillera	a 13	44	400 (12)
	T2	13 - 10	Main	Principal Cordillera	9	46	800 88
	T3	10 - 6	Main	Principal Cordillera	12	47	800 0
	T4	6 - 3	Main	Principal Cordillera	8	48	500 b
	T5	3 - 0	Main	Principal Cordillera	8	48	2500
				TOTAL SHORTENING	46		W

Figure 14: Forward modeling of the Altiplano transect (22°S). Time 0 has been set to pre-45 Ma. By this time, deformation has been focused only in the Domeyko Range. During the next stages (T1 to T7), the crust is shortened by incorporating the equivalent of the crustal area (in black) into the crustal root, while the subduction zone is fixed. The length of the black area indicates the amount of crustal shortening achieved in each stage, calculated from the kinematic forward modeling +14% (14% is the difference between the crustal area balance and the kinematic forward modeling shortening estimates, see Table 1). APD: Altiplano/Puna decollement, and MAD: Main Andean decollement. Red and black lines indicate active and inactive faults, respectively. Orange color in T7 indicates low-strength zones according to the thermomechanical model.

The Puna transect (24°S)

For the time zero (**T0**, Fig. 15), we model the inversion of the Mesozoic Domeyko basin, the Salar de Atacama/Salar de Punta Negra foreland basin. This inversion generates a thick crust below the Domeyko Range (40 to 45 km), while a thinner than normal crust is present below the actual Santa Bárbara range as a result of the Cretaceous Salta rift.

During the next step (**T1**, 45-40 Ma), the Domeyko system and the westernmost Western Cordillera are shortened 30 km and the foredeep basin subsides 1,500 m. During **T2** (40-35 Ma), 45 km of shortening is focused on the eastern Domeyko Range, Western Cordillera and the proto-Puna. The Puna is deformed with east-directed thrusts and westdirected back-thrusts rooted into the APD. At the end of this str ge, strike-slip faults affect the Domeyko Range.

The first uplift of the Eastern Cordillera is modeled with the cactivation of pre-existing faults, during T2, which generate flexural subsidence in detimiting basins such as Salinas Grandes and Humahuaca basins. During **T3** (35-28 Ma), the APD propagates eastward with deformation concentrated in the eastern Puna. Ourling this stage, the crust achieves its maximum thickness below the Domeyko system, and the crustal root expands laterally towards the east.

During **T4** (28-21 Ma), 35 km of shortening is uscused on the easternmost Puna and Eastern Cordillera. During the next stage (7.5, 21-14 Ma), there is an eastward shift of thrusting, with 45 km of shortening concentrated along the MAD. During **T6** (14-7 Ma), the uplift of the westernmost Eastern Cordillera is modeled with movement along the MAD ramp. By this time, the APD becomes completely deactivated, while sinistral strike-slip faulting affects the Puna and the Eastern Cordillera. During the last stage **T7** (7-0 Ma), 40 km of shortening is absorbed along the MAD, associated with the development of the Santa Barbara system as a Divergent thick-skinned fold-and-thrust belt.

Figure 15: Forward modeling of the Puna transect (24°S). Time T0 has been set to pre-45 Ma. By this time, deformation has been focused only in the Domeyko Range. Pre-existing faults are in dashed violet lines. During the next stages (T1 to T7), the crust is shortened by incorporating the equivalent of the crustal area (in black) into the crustal root, while the subduction zone is fixed. The length of the black area indicates the amount of crustal shortening achieved in each stage, calculated from the kinematic forward modeling +15% (15% is the difference between the crustal

area balance and the kinematic forward modeling shortening estimates, see Table 1). APD: Altiplano/Puna decollement, MAD: Main Andean decollement. COT: Calama-Olacapato-El Toro fault system. Red and black lines indicate active and inactive faults, respectively. Orange color in T7 indicates low-strength zones according to the thermomechanical model.

The Southernmost Puna transect (27.6°S)

The core of the 27.6°S transect is modeled with movement along the Frontal Cordillera (FCD) and Eastern Main (EMD) decollements (Fig. 13). The incipient development of a shallow low-strength zone below the Pampean Ranges, inferred from the thermomechanical transect, is used to propose the existence of the active Pampean Range decollement (PRD) below this mountain belt. The EMD corresponds to a low-angle, west-dipping decollement placed in the upper ductile zone and worted into the lower ductile low-strength zone.

Time **T0** (Fig. 16) is modeled with a thick crust in the present Drearc and the westernmost sector of the Frontal Cordillera (35-40 km thick), produced by the Late Cretaceous contractional period. During stage **T1** (45-38 Ma), the FCD is active and is responsible for the uplift of the western Frontal Cordillera. This creates flexural subsidence in the Eocene foreland basin. At the end of this stage, a first uplift of the Pampean Ranges is modelled with reverse reactivation of deeply-seated faults.

During stage **T2** (38-23 Ma), the crust r ackes 45 km below the Maricunga volcanic belt. The uplift of the Frontal Cordillera generates flexural subsidence in the Valle Ancho basin. During this stage, the Pampean Ranges register another pulse of uplift and exhumation. At the beginning of stage **T3** (23-15 Ma), shortening is focused on the eastern Frontal Cordillera, with movement along the CD, where the crust achieves a thickness of >50 km, and in the Puna and Precordille. with movement along the EMD. As a result, the Fiambalá basin starts to subside.

Deformation propagates to the east, reaching the Fiambalá basin during stage **T4** (15-10 Ma), and faults of the vest arnmost sector of the Pampean Ranges reactivate. The crust thickens up to 60 km b, low the Southern Puna. Deformation is focused in the Precordillera and the eastern sector of the Pampean Ranges during the next stage (**T5**, 10-5 Ma). During the next stage **T6** (10-0 Ma), both EMD and PRD decollements are active and contractional deformation is focused on the eastern Precordillera and both western and eastern Pampean Ranges.

Figure 16: Forward modeling of the Southernmost Puna transect (27.6°S). Time 0 has been set to pre-45 Ma. By this time, deformation was focused only on the Coastal Range and the Domeyko Range. During the next stages (T1 to T6), the crust is shortened by incorporating the equivalent of the crustal area (in black) into the crustal root, while the subduction zone is fixed. The length of the black area indicates the amount of crustal shortening achieved in each stage, calculated from the kinematic forward modeling +9.5% (9.5% is the difference between the crustal area balance and the kinematic forward modeling shortening estimates, see Table 1). FCD: Frontal Cordillera decollement, EMD: Eastern Main decollement, PRD: Pampean Ranges decollement, PreC: Precordillera. Red and black lines indicate active and inactive faults, respectively. Orange color in T7 indicates low-strength zones according to the thermomechanical model.

The flat-slab transect (30°S)

The 30°S transect is modeled with two disconnected decollements: the Frontal Cordillera (FCD) and the Precordillera (pCD) decollements, following Mardonez (2020) and Mardonez et al. (2020). The pCD is rooted into the ductile lower crust through an upper-crust ramp previously proposed by Ammirati et al. (2018) with receiver function analysis.

Time zero (**T0**>45 Ma, Fig. 17) is modeled with a normal forearc and back-arc crust. The first stage of shortening (**T1**, 45-30 Ma) is modeled with 38 km of shortening and the generation of a back-to-back tectonic wedge with thrusts and back-thrusts uplifting both the Principal Cordillera and the western sector of the Frontal Cordillera. Subsidence is restricted to the Rodeo basin and Precordillera. During **T2** (30-?0 Ma), extension, focused on the arc region, is modeled with two east-dipping normal faults in the Frontal Cordillera. During stage **T3** (20-15 Ma), the western Frontal Cordillera is uplift creates flexural subsidence in the Rodeo basin and Precordillera.

During **T4** (15-12 Ma), an eastward jump of the deformational front is modeled with thrusting in the western Precordillera with the generation of the pCD. This generates subsidence in the Bermejo basin. At the beginn incord this phase, the FCD is still active, but it gets deactivated at the end of the phase. Furning **T5** (12-8 Ma), the central Precordillera and western Pampean Ranges are deformed at duplifted, while deformation ceases in the western Precordillera. This event is associated with a pronounced flexural subsidence in the Bermejo basin. The foreland is approximate by west- and east-dipping main faults, related to the uplift of the Pampean Rangec, but these faults are not interconnected to a decollement level.

During the next stage (**T6**, 8-6 Mic.), horizontal shortening is absorbed by reverse faults in the central Precordillera, during ongoing uplift of the Pampean Ranges and flexural subsidence in the Bermeic basin. The last stage **T7** (5-0 Ma) is marked by deformation of the eastern Precordillera which is modeled with a shallow decollement connected eastward with an eas. Cupping ramp responsible for the uplift of the Pampean Ranges.

Figure 17: Forward modeling of the flat-slab transect (30°S). Time 0 has been set to pre-45 Ma. By this time, deformation has been focused only on the Coastal Range. During the next stages (T1 to T7), the crust is shortened by incorporating the equivalent of the crustal area (in dark grey) into the crustal root, while the subduction zone is fixed. Active faults are in red. Inactive faults, developed in previous stages, are in black. The length of the black area indicates the amount of crustal

shortening achieved in each stage, calculated from the kinematic forward modeling +12% (12% is the difference between the crustal area balance and the kinematic forward modeling shortening estimates, see Table 1). FCD: Frontal Cordillera decollement, pCD: Precordillera decollement. Orange color in T7 indicates low-strength zones according to the thermomechanical model.

The Aconcagua transect (32.4°S)

This transect is modeled with two decollements located below the Principal Cordillera (PCD) and the Frontal Cordillera (FCD). Time zero (**T0** >21 Ma, Fig. 18) is modeled from an initially thin crust below the Mesozoic marine basin (30 to 33 km), and a normal crust below the Pampean Ranges (35 to 38 km). Afterwards, we simulate the Late Cretaceous contractional event with 17 km of shortening focused along a west-dipping decollement, and the early Oligocene-early Miocene extension with 3 km of herizontal extension following previous studies in the western Principal Cordillera (Chorner et al., 2005, 2009; Mpodozis and Cornejo, 2012; Piquer et al., 2016; Mackaman-Loftand et al., 2020; Boyce et al., 2020; and references therein). The Miocene-Presert contraction (**T1**, 21-18 Ma) is modeled with a ramp-flat-ramp decollement below the Coastal Range and the Principal Cordillera.

In the next phase (**T2**, 18-15 Ma), the PCD rampo upwards into the basal layers of the Mesozoic sequence and forms the Aconcagua and and thrust belt is created. The foreland is shortening with the generation of east-tions orted faults in the Frontal Cordillera. During the **T3** period (15-12 Ma), deformation is mainly focused in the PCD and the faults uplifting the Frontal Cordillera. This period is modeled with movement along both PCD and FCD decollements.

Stage **T4** (12-9 Ma) is modeled with movement along the PCD and FCD. The FCD propagates eastward uplifting the western sector of the Precordillera. By the end of this stage, the Aconcagua fold-and thrust belt becomes deactivated. During the **T5** stage (9-6 Ma), contractional deformation is concentrated along the FCD, promoting the uplift of the eastern Precordillera view the PCD experiences a reactivation. During the next stage **T6** (6-3 Ma), the deformation front migrates to the easternmost Precordillera.

During the last stage (17, 3-0 Ma), horizontal shortening is accommodated along the easternmost sector of the FCD, the Cacheuta basin experiences uplift and denudation, and the Pampean Ranges uplift creating a broken foreland.

Figure 18: Forward modeling of the Aconcagua transect (32.4°S). Time 0 has been set to pre-21 Ma. We model Time 0 with extension along the Triassic Cuyo basin, Upper Cretaceous contraction, focused in the western sector of the Principal Cordillera, and Oligocene – early Miocene extension, generating the Abanico intra-arc basin. During the next stages (T1 to T7), the crust is shortened by incorporating the equivalent of the crustal area (in black) into the crustal root, while the subduction zone is fixed. Active faults are in red, inactive faults are in dashed black lines. The length of the black area indicates the amount of crustal shortening achieved in each stage, calculated from the

kinematic forward modeling +10% (10% is the difference between the crustal area balance and the kinematic forward modeling shortening estimates, see Table 1). PCD: Principal Cordillera decollement, FCD: Frontal Cordillera decollement. Orange color in T7 indicates low-strength zones according to the thermomechanical model.

The Maipo/Tunuyán transect (33.6°S)

in a similar way to the 32.4°S transect, the 33.6°S transect (Fig. 13) is modeled with two decollements: the Principal Cordillera (PCD) and the Frontal Cordillera (FCD) decollements. The PCD has a ramp-flat geometry and is responsible for the uplift and exhumation of the western Principal Cordillera. Below the Acor, agua fold-and-thrust belt, it flattens and generates the Aconcagua orogenic wedge. The time zero (**T0**, Fig. 19) corresponds to the late Eocene to early Miocene extensional averate that generates the Abanico intra-arc basin.

The Cenozoic compressional event starts between 21 and 18 Ma (**T1**), with the inversion of the Abanico basin. We model this stage with move merit along both west- and eastdirected faults, which uplift the western Principal Cordille.a. During stage **T2** (18-15 Ma), the Aconcagua fold-and-thrust belt starts to de elop, and the Frontal Cordillera has its first uplift. Both ranges produce flexural subsidence in the Alto Tunuyán and Cacheuta basins.

During T3 (15-12 Ma), shortening is mainly absorbed in the Aconcagua FTB by movement along the PCD. During T4 (12-9 Ma), both the PCD and the FCD are active through backthrusting and out-of-sequence faults. During T5 (9-6 Ma), there is an important uplift of the eastern Frontal Cordillera along the -CD. However, the PCD is still active, and is responsible for the back-thrust activity and exhumation of the western Principal Cordillera.

During **T6** (6-3 Ma), the PCL becomes inactive, and shortening is absorbed in the eastern Frontal Cordillera, with generation of frontal thrusts affecting the Cacheuta basin and the inversion of the Tripssip Cu yo basin. During the last stage (**T7**, 3-0 Ma), shortening is accommodated in the ECD and the westernmost sector of the PCD with movements along the San Ramón fault.

Figure 19: Forward modeling of the Maipo transect (33.6°S), modified from Giambiagi et al. (2015a). Time 0 has been set to pre-21 Ma and modeled with extension along the Triassic Cuyo basin and the Jurassic Neuquén basin, Upper Cretaceous contraction, focused in the western sector of the Principal Cordillera, and Oligocene – early Miocene extension, generating the Abanico intra-arc basin. During the next stages (T1 to T7), the crust is shortened by incorporating the equivalent of the crustal area (in black) into the crustal root, while the subduction zone is fixed. Active faults are in red, inactive faults are in black lines. The length of the black area indicates the amount of crustal shortening achieved in each stage, calculated from the kinematic forward

modeling +5% (5% is the difference between the crustal area balance and the kinematic forward modeling shortening estimates, see Table 1). PCD: Principal Cordillera decollement, FCD: Frontal Cordillera decollement. Orange color in T7 indicates low-strength zones according to the thermomechanical model.

The Tinguiririca/Malargüe transect (35°S)

The 35°S transect is modeled with one gently-west-dipping main decollement (MD), located between 10 and 15 km in depth. This decollement has a ramp-flat geometry, similar to the PCD we model in the 32.6° and 33.6°S transects. The ramp is located below the westernmost sector of the Principal Cordillera, while the flat segment is underlying the Malargüe fold-and-thrust belt. Time zero (**T0**, Fig. 20) corresponds to the Late Cretaceous deformation, modeled with a 35-to-40-km-thick crust, below the a c and back-arc region.

During **T1** (16-13 Ma), the MD is created, and the Meso count ormal faults are reactivated. This contraction produces flexural subsidence in the Molargüe foreland basin. The following period (**T2**, 13-10 Ma) records further advance of the deformation towards the foreland modeled with an eastward prolongation of the main decollement. Out of sequence activity in the westernmost structures takes place filely during this stage.

Deformation propagates eastward during T: (10-6 Ma) and T4 (6-3 Ma), but out-ofsequence deformation is modeled inside the fold-and-thrust belt. Finally, the last period T5(3-0 Ma) corresponds to 9 km of shottening transferred from the main decollement the faults along the orogenic front.

> 2031 S

Figure 20: Forward modeling of the Tinguiririca transect (35°S). Time 0 has been set to pre-16 Ma. We model Time 0 with extension along the Jurassic Neuquén basin, and Late Cretaceous contraction, focused in the western sector of the Principal Cordillera. During the next stages (T1 to T6), the crust is shortened by incorporating the equivalent of the crustal area (in black) into the crustal root, while the subduction zone is fixed. Active faults are in red, inactive faults are in dashed black lines. The length of the black area indicates the amount of crustal shortening achieved in

each stage, calculated from the kinematic forward modeling +4% (4% is the difference between the crustal area balance and the kinematic forward modeling shortening estimates, see Table 1). MD: Main decollement. LBD: Los Blancos depocenter. Orange color in T7 indicates low-strength zones according to the thermomechanical model.

5.3 Geodynamic modeling of the upper-plate lithospheric shortening

The results of the deformation evolution obtained from the geodynamic model of the upper-plate lithospheric shortening are shown in Figure 21. This evolution is set up in stages related to the amount of horizontal shortening. The first stage, after 5 km of shortening, shows a pure-shear shortening mode with deforma. On uniformly distributed in the hottest and weakest region of the model domain (Fig. 21A C). The two crustal shear zones show different polarities and doubly vergence of westword and eastward dipping ~45°. The left one penetrates into the deep Moho, while the right one is rooted in the shallow ductile lower crust.

After 30 km of shortening, the crust thickens to ~40-45 k n and forms an upper-crustal wedge along the decollement zone within the region of the left east-vergent shear zone in the first stage (Fig. 21C). Under the wedge, a zone of lower viscosity relative to the surrounding area is formed at the base of the upper crust, while the crustal root appears in the Moho (Fig. 21D). Furthermore, pre-existing taults located near the right east-vergent shear zone in the first stage tend to reactive te with the formation of another low-viscosity zone.

The crust thickens further with continued shortening and its root becomes wider and deeper, reaching thicknesses c 55 km and >60 km after shortening by 80 km and 135 km, respectively (Fig. 21E-H). During the 80-km-shortening stage, a new crustal shear wedge is developed farther east of the tirst one due to the maturation of the second low-viscosity zone along a new eastware decollement (Fig. 21E-F).

At 135 km of shortening (Fig. 21G-H), a third low-viscosity zone is evolving as the decollement propagates eastward, resulting in deformation migrating toward the cold foreland without crustal root. Meanwhile, a high-topography hinterland with the thickest crust in the system has grown over the two crustal wedges formed in the first three wedge stages.

Our geodynamic model effectively reproduces the general evolution of crustal deformation as observed with the kinematic models described above for the Southern Central Andes. However, it is important to note that a major limitation in our model is the absence of any phase transformation processes, such as crustal eclogitization, which could be an essential driver for delamination and resultant lithospheric thinning (Krystopowicz and Currie, 2013). In addition, it is also necessary to consider the subduction dynamics in the west and the lateral variation between transects in future geodynamic models.

Figure. 21: Geodynamic model results chowing the evolution of deformation and viscosity. A-B) After 5 km of shortening, the deforma ion in uniformly distributed in crustal shear zones dipping 45°. C-D) By 30 km of shortening, and the formation of a low-viscosity zone at its bottom. E-F) After 80 km decollement, accompanied by the formation of a low-viscosity zone at its bottom. E-F) After 80 km of shortening, a new crustal shear wedge accommodates deformation farther east. G-H) At 135 km of shortening, the deformation migrates eastward from the hot high-topography hinterland to the cold foreland. CUC: continential upper crust; CLC: continental lower crust; CLM: continental lithospheric mantle; AS: Asthenosphere.

6. Discussion

6.1 Integrated model of crustal anatomy of the Southern Central Andes

The critical wedge theory (Dahlen et al., 1984; Dahlen and Barr, 1989) assumes that the overall shape of the fold-and-thrust belt can be reproduced by a wedge of rocks having a brittle behavior and frictionally sliding above a basal decollement. This analogy has been widely applied where a sedimentary cover is detached from the underlying basement along a shallow decollement, forming a thin-skinned thrust belt such as the Sub-Andean belt (22°S transect) or the Argentinean Precordillera (30°S transect). However, how far these decollements extend into the hinterland is a matter of debate (Martinod et al., 2020). At a greater depth, when the belt widens and the elevation of the hinterland increases, the

wedge acquires a dimension where the premise of frictional behavior is difficult to achieve (Dahlen and Barr, 1989; Willett et al., 1993; Jamieson and Beaumont, 2013). Our thermomechanical and geodynamic models suggest that, at a certain depth, the decollement would be located in a low-strength, thermally activated, creeping shear zone (Willett et al., 1993), where the critical taper-wedge model may not apply. These shear zones are the product of vertical variations in crustal strength. The high-strength upperand middle-crustal zones with competent elastic behavior are separated by a subhorizontal region of low strength, located at the base of the upper crust (Figs. 13 and 21). According to our model, the role of this weak, low-strength zone is crucial to the development of a nearly flat decollement and has to be evaluated to propose a kinematic model for the construction of the orogenic system. Our results suggest that the active decollements (Fig. 22, red lines) are the ones located at the eacternmost portion of the orogenic system at surface, while their westward extension at dool. are rooted into the middle-lower ductile crust (Fig. 21), where the crust is thick er our n to promote crustal flow.

Moreover, along- and across-strike variations in the Canozpic geological history of the Southern Central Andes compiled in our forward kine mail models, as well as the results from the geodynamic model, indicate that these active accollements were the last ones to be generated. This pattern suggests that the et stword-transport kinematic models are the most suitable to explain the tectonic development of the orogenic system, as a whole. Moreover, it agrees with the substantia' difference in the amount of crustal shortening absorbed on the western and eastern slophs of the orogenic system (Echaurren et al., 2022). It also agrees with the models proposed for the Altiplano by Elger et al. (2005) and Oncken et al. (2012), characterizer, c, two disconnected decollements instead of a single, eastward-growing crustal wedge (M. Cuarrie 2002, 2004). This interpretation is also shared by Martinod et al. (2020, who suggest that the widest sector of the Central Andes does not correspond to the eartward expansion of a single orogenic wedge, but rather to the presence of two distinct custal wedges, a western one deforming the Western Cordillera and the Altip'a. yr una plateau, and an eastern one affecting the Eastern Cordillera and foreic no ranges. Our geodynamic model reinforces this suggestion, favoring the generation of two in dependent crustal wedges, with the eastern wedge being the voungest.

According to our model, there is a marked along-strike, southward decrease in crustal shortening and crustal thickness from 22 to 35°S, reflected in a reduction of more than seven times in the magnitude of Cenozoic shortening (from ~325 to 46 km) and three times in the crustal root width (from ~526 to 170 km) (Fig. 22, Table 1). It is noteworthy that this trend is not coupled with the first-order segmentation of the Andes controlled by dip changes in the oceanic slab (e.g., Kay et al., 2009; and references therein), but agrees with the gradual and systematic decrease in the Eocene-Present crustal shortening values from the axis of the Andean orocline to the south (Isacks, 1988; Somoza et al., 1996; Kley, 1999; Prezzi and Alonso, 2002; Allmendinger et al., 2005; Arriagada et al., 2008; Giambiagi et al., 2012; Eichelberger and McQuarrie, 2015; Horton, 2018).

Figure 22: A) Results for the seven kinematically-modelled transects (see locations in Fig. 1): Altiplano (22°S), Puna (24°S), Southernmost Puna (27.6°S), flat-slab (30°S), Aconcagua (32.4°S), Maipo (33.6°S) and Malargüe (35°S), with the subducted Nazca plate (grey lines), present-day Moho (green lines) and lithosphere/asthenosphere boundary (dashed red lines). Areas of predicted low strength and ductile behavior are highlighted in orange. Active decollements (in red) are located inside the uppermost part of the low-strength areas. Seismicity was selected considering a band of

0.25° width from north to south of the actual latitude and with a threshold of Mw > 2.5. CR: Coastal Range, DD: Domeyko Range, WC: Western Cordillera, EC: Eastern Cordillera, SR: Sub-Andean ranges, SB: Santa Bárbara system, PC: Principal Cordillera, FC: Frontal Cordillera, Pre-C: Precordillera. B) and C) Four parameters are compared for each of the cross-sections: (i) maximum crustal thickness, (ii) crustal root width (>45 km), (iii) total horizontal shortening (with errors), and (iv) shortening rates for the 45-35 Ma, 35-20 Ma, 20-10 Ma and 10-0 Ma periods (Supplementary Material, Table A2). The comparison of these parameters indicates a close relationship between crustal root width and total amount of shortening, and the numbers of decollements responsible for the crustal deformation.

When comparing our calculated shortening achieved during the middle-late Eocene (45-35 Ma), the Oligocene-early Miocene (35-20 Ma), the middle Miocene (20-10 Ma) and the late Miocene-Quaternary (10-0 Ma), a similar steady southward decry is identified (Fig. 22B). However, when comparing the shortening rates for the different time periods (Fig. 23), it is observed that the southward-decreasing shortening absorbed by the Southern Central Andes is not equally distributed during the Cenozoic. Instead, during the first Cenozoic contraction period (middle-late Eocene, 45-32 Ma), shot tening was partitioned into rates of 7-10 mm/yr and ~2 mm/yr at the 22 and 27°S transects, respectively. Furthermore, the middle-late Eocene compressional phase only affects the segment north of 30°S (Oncken et al., 2012; Lossada et al., 2017; Faccena et al., 2017). Interestingly, the shortening rates for the northern transects (22-32°S) converge to the ximum values of ~6-8 mm/yr during the second Cenozoic contraction period (15-10 Ma) that, except for the northernmost transect at 22°S, decrease at similar rates curing the Pliocene-Quaternary (Fig. 23).

Figure 23: A) Location of the seven cross-sections of the Southern Central Andes with color-coded symbology. B) Shortening rates vs time for the different transects. Two periods of maximum shortening rates can be clearly distinguished (gray rectangles), separated by a period of extension that affected the southern sector (30-35°S). During the first period (middle-late Eocene), there is a clear pattern of shortening rate decrease from north (22°S) to south (30°S). No Eocene deformation is registered further south. During the second period (Miocene), the shortening rate patterns are more complex indicating the superposition of different first-, second-, and third-order controls. C) Nazca-South America orthogonal convergence rates in the trench, based on relative plate motions from poles of rotations from Bello-Gonzalez et al. (2018) for the 60-28 Ma period, and from Quiero et al. (2022) for the 28-0 Ma period.

This suggests that the present-day crustal anatomy of the Southern Central Andes is the result of a superposition of first-, second- and third-order controls. The first-order controls are responsible for the steady decrease, from the axis of the Andean orocline (20°S) to the south, of the amount of shortening and crustal thickening, as vell as the width of the crustal root. It is also responsible for the different onset of deturnation during the first Cenozoic event. One of these controls might be the sut lucion rate relative to the convergence rate that controls the advancing or retreating subduction type (Heuret and Lallemand, 2005; Doglioni et al., 2007). This ratio is related to variations in the slab thickness, controlled by the age of the Nazca plate at the trench (Yáñez and Cembrano, 2004; Capitanio et al., 2011). At the central part of the Andean orogen, where the slab is the oldest (50 Myr), the thick slab drives more traction towards the trench at the base of the continental plate (Capitanio et al., 211), explaining the strong symmetry of the Central Andes. The ratio may also be controlled by sub-lithospheric dynamic processes such as subduction-induced mantle flow (Wdovinski and O'Connell, 1991; Schellart et al., 2007; Faccena et al., 2017), and the resistence to slab retreat which is most significant in the center of the subduction zone (Hasser) et al., 2012; Schellart, 2017).

All these processes promote with the onset of Cenozoic contraction and the highest shortening rates at the axis of the Central Andes. Second-order controls, such as the convergence velocity and obliquity (Pardo-Casas and Molnar, 1987; Somoza, 1998; Quiero et al., 2022), and well correlated with the two periods of orogenic construction, the middle-late Eocene and the Miocene. Both contractional pulses occurred between periods of guasi-stationary convergence rates and changing tectonic conditions: while the first event took place during increasing convergence and orthogonality, the second one occurred simultaneously to convergence rates decreasing from a maximum value achieved after the break-up of the Farallon plate into the Nazca plate (Fig. 23C). Potential controlling factors over the diminishing of convergence rates during the second period include the anchoring of the Nazca plate at the 660 km-mantle discontinuity, taking place ~10-8 Myr after the breakup of the Farallon plate (Quinteros and Sobolev, 2013). Given the correlation of this latter event with the decrease of shortening rates, an additional control has been assigned to the increase of gravitational potential energy as the cordillera grows and shear stresses increase at the interplate megathrust (Norabuena et al., 1999; laffaldano et al., 2006; Quiero et al., 2022). During the second event of Andean orogenesis, different segments between 22 and 33°S show similar shortening rates, regardless of both their different previous orogenic development and their link with slab

dynamics. While subduction and deep-mantle dynamics are first- and second-order controlling factors of the onset of Cenozoic contraction, our data suggest that third-order controls are related to variations both in crustal strength of the overriding-plate and in its mechanical weakening during the orogenic construction. In turn, the latter parameters are controlled to a great extent by the inherited compositional/lithological configuration of the continental crust, as previously proposed (Allmendinger et al., 1997; Tassara and Yáñez, 2003; Tassara, 2005; Mescua et al., 2014, 2016). Another third-order control that might be considered is the out-of-the plane movement of crustal material which is not contemplated by our two-dimensional approach.

6.2 Relationship between crustal anatomy and seismicity

As has been proposed for many orogens around the World (Magy et al., 2000), most nonsubduction earthquakes in the Central Andes occur in the upper-iniddle crustal seismogenic layer, while the orogenic lower crust is complete'v aseismic. Tassara et al. (2007) and Ibarra et al. (2021) highlight the correlation tate of large lateral gradients in strength and location of active deformation and seismicity in the Altiplano/Puna latitudes. Of significant importance in convergent orogens is tipe m ddle-crust, high-strength zone (Royden, 1996; Vanderhaeghe et al., 2003), locater beaw the upper low-strength zone. This zone is present below the Eastern Cordille re, the western sector of the Santa Bárbara system, the Frontal Cordillera, the Precordillera and the Malargüe FTB (Fig. 22). Our model suggests that the juxtaposition of two low- and high-strength layers promotes strain localization in the ductile, low-strength $z_0 \Rightarrow$ and the generation of a decollement. The upper and lower high-strength layers with predicted elastic/plastic behavior by our thermomechanical modeling, are size ocued to high compressive stress and are seismically active (Fig. 22). In contrast, due to the aseismic creeping behavior of the decollements, seismicity is not concentrated clong them. Few earthquakes are detected inside these lowstrength zones, which are not likely related to frictional sliding, but to frictional-viscous behavior (Scholz, 1990). Sets micity inside these zones may reflect the fact that their elastic/elasto-plastic properties can sustain higher seismic strain rates than the ones necessary to activate dislocation or diffusion creep (Kirby et al., 1991).

In the western sector c, the plateau transects (22-27°S), crustal seismic events are distributed within the entire crust through subvertical zones, mainly in the cold and rigid fore-arc and in the Domeyko Range (Fig. 22). Stress inversion from focal mechanisms in the fore-arc indicates a compressional region with N-S compression (González et al., 2015; Herrera et al., 2021). Neotectonic kinematic interpretation of these subvertical seismic zones in the Domeyko Range, along with focal mechanism inversion, suggest a strike-slip regime with active N to NE-striking, dextral strike-slip shear zones (Fig. 22), absorbing the parallel-to-the-trench vector of the oblique subduction (Victor et al., 2004; Cembrano and Lara, 2009; Salazar et al., 2017; Santibañez et al., 2019; Herrera et al., 2021). In the eastern sector of the plateau transects, earthquakes are restricted to the crust that is being underthrusted under the Main Andean decollement. The area with high-strength is the most active in the foreland, reflecting a concentration of stress in the

elastic/plastic field as a result of a thinner crust when compared with the crustal shield to the east.

In the 30°S transect, the flattening of the subducted slab extends for hundreds of kilometers and concentrates up to 3-5 times greater seismic energy release at the foreland as a result of the cooling of the upper lithosphere (Gutscher et al., 2000). The seismicity is located in the foreland, below the western and eastern borders of the Precordillera and the entire Pampean Ranges, at depths between 10 and 50 km (Fig. 22) (Smalley and Isacks, 1990; Pardo et al., 2002; Ramos et al., 2002; Rivas et al., 2020). Although different depths of decollements have been proposed for the Pampean Ranges (see Ramos et al., 2002; Richardson et al., 2012), the uniform distribution of crustal seismicity allow us interpreting the absence of an individual decollement in this sector.

In the 32.4° and 33.6°S transects, seismicity is concentrated n th ee areas in the uppermiddle crust (Fig. 22): the fore-arc, the Principal Cordillere, and the forearc, seismicity is widely distributed, with a complicated r is of fortust and normal focal mechanisms (Comte et al., 2019). Below the central domession, seismicity depths delineate a west-dipping ramp rooted into the Moho, at the downdip limit of the elastic coupling along the subduction zone at ~55 km dept¹. (For fas et al., 2010). This ramp shallows toward the east, below the Principal Cordillere, where seismicity is located at depths shallower than 20 km, and it is aligned which the N-S fault systems present in the western slope (Barrientos et al., 2004; Conditient et al., 2005; Farías et al., 2010; Nacif et al., 2017; Ammirati et al., 2019), as well as along a shallow decollement located at 10 km (Ammirati et al., 2022). The foreland is characterized as a 50 km-thick seismogenic crust suggesting that active faults extending inclusions the crust rather than localized on upper-middle crust decollements (Meigs and Nabelle 6, 2010; Ammirati et al., 2018).

In the 35°S transect, the volconic arc concentrates the majority of the crustal earthquake events (Villegas et al., 2016). Most of the reported focal mechanisms in this area are strike-slip mechanisms (Autorado et al., 2005; Comte et al., 2008; Spagnotto et al., 2016; Villegas et al., 2016), a lien ited along subvertical faults. In the foreland, the seismicity is distributed in the vicinity of the Malargüe thrust front, with an Mw ~ 6.0 event (5/30/1929; Lunkenheimer 1930) and events of magnitude greater than 5.

6.3 The evolution of the decollements during the construction of the Andean orogenic system

By integrating results from the kinematic reconstructions, the present-day thermomechanical structure of the upper plate and the geodynamic numerical model, we propose the following four stages during the construction of the orogenic plateau system (Fig. 24): pre-wedge, wedge, paired-wedge and plateau stages. The pre-wedge stage resembles the small-cold orogen stage from Jamieson and Beaumont (2013) which consists of a single or back-to-back bivergent critical wedges with little or no ductile deformation. The plateau stage resembles their large-hot orogenic configuration with a central elevated plateau underlain by a weak ductile flow zone and flanked by external

wedges. The wedge and paired-wedge stages represent the transition between these twoend member models.

Pre-wedge stage: A normal-to-slightly-thickened crust (<40 km) with a very narrow crustal root and thick lithosphere inhibits the development of a thermally-activated shallow lowstrength zone. As a result of this, no decollement is generated and deformation (<30 km of shortening) is widely distributed throughout the crust, above the hottest part of the system (e.g., Fig. 21A-B). This stage resembles both a pure shear-dominated deformation stage with uniformly distributed plastic shear bands (Allmendinger and Gubbels, 1996; Jaquet et al., 2018) and the initial stage of a doubly vergent compressional orogen proposed by Willett et al. (1993), with the development of 45°-dipping shear zones under a symmetrical strain rate field. During this stage, pre-existing crustal anisotropies play a main role over the focus of deformation, guiding deformation through either reactivation of pre-existing contractional major faults, inversion of normal faults, or both. The model proposes that the first stage of Cenozoic uplift of the Domeyko Range, the prote Frontal Cordillera stage and the inversion of the extensional Oligocene intra-arc basins of the system correspond to this pre-wedge stage.

Wedge stage: As the crust thickens (40-55 km) and the crustal root widens (100-200 km), a shallow low-strength zone develops in the up re-middle crust as thermal response to a simultaneous thinning of the lithosphere. This shallow low-strength zone is utilized as a sub-horizontal decollement and focuses most or the crustal deformation (30-80 km of shortening). This promotes the development of an upper-crustal wedge (e.g., Fig. 21C), tapering both towards the hinterland and the foreland. This stage resembles both the small-cold orogen that deforms by an ical wedge mechanics (Jamieson and Beaumont, 2013) and the early deformation state with topography steadily uplifted proposed by Wdowinski and Bock (1994). T' e de collement is formed from a prominent crustal-scale shear zone dipping towards us hottest part of the system with a top-to-foreland thrust direction (Jaguet et al., 2018, and is promoted by the asymmetric lithosphereasthenosphere boundar; (bc.rionuevo et al., 2021). During this stage, pre-existing structures such as oar. Present in the foreland, may reactivate (e.g., Fig. 21D), uplifting basement blocks, such as the Pampean Ranges during the Miocene or the early uplift of the Eastern Cordillera during the Eocene. Crustal thickening requires proportional thickening of the mantle lithosphere as shown by our geodynamic model, but this must be compensated by some process capable of thinning the lid of lithosphere beneath the crustal root at a similar rate respect to the advancing crustal shortening/thickening (Pope and Willett, 1996). A continuous process has been proposed, such as ablative subduction (Tao and O'Connell, 1992; Pope and Willett, 1996) or the peeling off of the portion of dense lithospheric mantle by convective removal by the Rayleigh-Taylor gravitational instabilities developed in a thickened lithospheric mantle (Houseman et al., 1981; England and Houseman, 1989). These processes have been proposed for subduction-related orogens, such as the Colorado Plateau (Bird, 1979), the Canadian Cordillera (Bao et al., 2015), and the Altiplano-Puna Plateau (Kay and Kay, 1993; Lamb et al., 1997; Beck and Zandt, 2002; DeCelles et al., 2015b; Garzione et al., 2017).

Figure 24: Conceptual sketches representing the diffurent proposed orogenic stages. A) Pre-wedge stage without a shallow low-strength zone, inhibiting the development of a decollement. B) Wedge stage with an upper-r ridule crust shallow low-strength zone, promoting the development of a decollement. C) relied-wedge stage generated when the low-strength zone thickens and widens. The disappearance of a high contrast in strength produces the deactivation of the innermost 4 co lement and promotes the development of a new one towards the foreland. D) Platea. stage, where the low-strength zone considerably widens, deactivating the internal or ger c decollements and fostering both the development of a new decollement along the new low-to-high strength contrast zone and the concentra. n of shortening towards the foreland.

Paired-wedge stage: During the virceung of the crustal root (200-400 km), with a crustal thickness exceeding 55 km, the the momechanical structure of the lithosphere fosters the development of a new decollement towards the foreland. The location and development of this new decollement is controlled by a new low-to-high strength contrast zone, and promoted by thermal soften inr, (Jaquet et al., 2018) and strain localization (Oncken et al., 2012). Even though two decollements may be simultaneously active during the early state of this stage, the westorn decollement eventually deactivates with progressive shortening (e.g., Fig. 21E-F). In and model, the maintenance of the crustal rheological layering, with a large strength contrast, is essential for sustaining the activity of the decollement. The thinning of the lithosphere increases the crustal temperature and produces a lack of strength contrast which promotes broadened shear zones at the western tip of the decollement, where it may become diffuse and rooted into a broader area of ductile behavior. At the eastern edge of these sub-horizontal low-strength zones, the decollement may ramp upwards and reach another rheological sub-horizontal layer contrast, such as the basement/sedimentary-cover interphase in the Precordillera (30°S). This stage represents the transition from a small-cold orogen, governed by critical wedge mechanics (wedge stage), to a large-hot orogen (plateau stage) proposed by Jamieson and Beaumont (2013). During this stage, the thinning of the continental lithosphere is promoted when the lower crust and mantle lithosphere are sufficiently soft (Morency and Doin, 2004). The broadening of the low-strength zone at the orogenic crustal root may play a

C) Paired-wedge stage

critical role during this stage, promoting the decollement of the lithospheric mantle (Schott and Schmeling, 1998).

Plateau stage: The orogenic lithosphere weakens as the crust thickens and gets hotter, implying great temporal variations of the lithospheric strength (Jamieson et al., 2013; Chen and Gerya, 2016). Crustal thickening and lithospheric thinning leads to changes in the dominant deformational mechanism, from frictional Coulomb plasticity to thermally-activated viscous flow in the upper-middle crust (Willett et al., 1993; Jamieson et al., 2013; Jaquet et al., 2018). Moreover, the high strength contrast at mid-crustal levels may disappear, and the viscous flow of the lower crust promotes a low surface slope (Willett et al., 1993). The absence of lithospheric roots beneath the Altiplano/Puna plateau and the thinning of the lithosphere beneath the 27.6°S transect indicate that delamination or other lithospheric erosion processes should have occurred during the crustal shortening and thickening.

During this stage, a thick crust (>60 km) with a widened crustril root (>400 km) promotes the destruction of the elastic core by the expansion of the ductile low-strength zone, and, as a consequence, the demise of the internal decollumer t as the entire lower and middle crust becomes ductile. This stage is only achieved in the Altiplano (22°S) and Puna (24°S) transects. In these areas, active deformation is mainly concentrated along the eastern side of the Andes, where the upper crust is under thrusted beneath the Sub Andean ranges and the Eastern Cordillera (Lyon-Caen at al., 1585; Isacks, 1988).

A fundamental feature of our model is that, although the low-strength ductile zones may extend throughout the entire width c_i the orogen, the decollement would vanish if there were no high contrast between a sincle w high-strength zone and a deeper low-strength zone (Fig. 22).

Flat-slab particular crise. A particular case occurs when the subduction angle substantially decreaces, where the cooling effect of the subducting plate inhibits the development of the upper low-strength zone. This explains the deactivation of the decollement located below the Precordillera, at 30°S. Another particularity along the flat-slab transect is the abnormally deep brittle-ductile transition beneath the foreland (~40 km depth; Ammirati et al., 2013) associated with a highly active seismic zone at both crustal and mantle depths (Smalley et al., 1997; Alvarado et al., 2009).

7. Conclusions

In this study we investigated the crustal-scale structural evolution of the Southern Central Andes (22 -35°S), by integrating diverse previous and new geological and geophysical data with the results from new thermomechanical-numerical modeling. Our analysis of this Andean segment is focused in the last 45 Myr, when two distinct contractional episodes took place: during the middle-late Eocene and during the Miocene. These compressive pulses were unevenly distributed in space and time along the strike of the orogen,

associated with different amounts of crustal shortening-thickening, uplift history, magmatism, and basin development.

Our approach consisted in the construction of seven cross sections perpendicularly to the strike of the orogen, whose deep and shallow crustal anatomy is constrained by a new thermomechanical model. Specifically, this model identifies sub-horizontal zones characterized by a high rheological contrast between crustal layers of low- and highstrength, where major decollements are most likely nucleated. This crustal arrangement was used as the final state of the structural forward modeling performed in these seven transects, from which we obtained new calculations of tectonic shortening and thickening. This coupled analysis indicates a clear reduction of the orogenic magnitude from the northern to southern ends of the Southern Central Andes (22 and 35°S), expressed as a sevenfold reduction of crustal shortening (from ~325 to 46 km) and a threefold reduction of crustal thickness (from ~526 to 170 km). This southward decrease of orogenic shortening and thickening is characterized by the presence of two independent decollements in the Altiplano-Puna plateau and only one decollement in the rescipal Cordillera to the south. We complemented these results with a new geodynamic model that computes the spatiotemporal evolution of major crustal shear zones and the location of low-viscosity zones where subhorizontal decollements are generated. This model shows an eastward migration of these parameters -toward the fore land during increasing tectonic shortening, consistently with the deformational events described in the Southern Central Andes and the decollements constrained by the thr rmr mechanical model.

In this contribution, we propose a novel evolutionary path for the orogenic growth of the Southern Central Andes. The initial state (pre-wedge stage) is characterized by a uniform distribution of deformation within a narrow region, at the axial zone and hottest region of the orogenic system. This stage is followed by the formation of one (wedge stage) or two (paired-wedge stage) crustal wedges associated to individual decollements that expand the mountain belt both laterally and vertically. The final state (plateau stage) corresponds to a highly broadened and the controls a cratonward-directed tectonic transport.

Our results show a critical dependence between the localization of brittle deformation in the upper crust and the development of a mid-crustal, sub-horizontal decollement with a sharp contrast between low and high lithospheric strength. This structural arrangement can change during the formation of the crustal root and the asthenospheric thermal antiroot, with orogenic development and growth leading to the deactivation of the formerly active decollement and the generation of a new one toward the east.

Based in our integrated analysis, we identified the superposition of first-, second- and third-order controls over the evolution of the Southern Central Andes. The first-order controls correspond to subduction and sub-lithospheric dynamics correlated with the systematic decrease in the amounts of crustal shortening-thickening. Second-order controls are related to the convergence velocity and obliquity between the Nazca and South American plates. Third-order controls are associated with variations in the

geologically inherited crustal strength of the overriding plate and its mechanical weakening effect during mountain building.

Data availability

The data presented in this manuscript can be found in the Supplementary Material 1 and 2, and Tables 1 and 2. The geodynamic model was run using the open-source ASPECT v2.3.0 with all model input files found here: doi.org/10.5281/zenodo.5783270. The kinematic models made with MOVE are available at https://doi.org/10.5281/zenodo.6578074.

Acknowledgments

This work was supported by the Argentine ANPCyT (r 'C i-2016-0269; PICT-2019-0800), the Argentina/Germany GFZ-CONICET consortium (c raTeGy), the Argentine CONICET (PIP 11220200101409CO) and the Chilean A'NID project Nucleo Milenio CYCLO (NCN19_167). We thank the Cranounational Infrastructure for Geodynamics (geodynamics.org) for supporting the development of ASPECT. The geodynamic computation was supported by the North-German Supercomputing Alliance (HLRN). We acknowledge Midland Valley and Fotex for the Academic Licence of the program MOVE to the Universidad Nocional de Cuyo. This manuscript has benefited from very helpful reviews by David Whipp, Jonas Kley, Brian Horton and Carlo Doglioni, as well as two anonymous reviewers, who are gratefully acknowledged.

References

- Acocella, V., A. Gioncada, R. Omarini, U. Riller, R. Mazzuoli, and L. Vezzoli (2011), Tectonomagmatic characteristics of the back-arc portion of the Calama-Olacapato-El Toro fault zone, Central Andes, *Tectonics*, 30, TC3005, doi:10.1029/2010TC002854.
- Allmendinger, R.W., Gubbels, T., 1996. Pure and simple shear plateau uplift, Altiplano-Puna, Argentina and Bolivia. Tectonophys. 259, 1–13.
- Allmendinger, R.W., Judge, P., 2014. The Argentine Precordillera: A foreland thrust belt proximal to the subducted plate. Geosphere 10, doi:10.1130/GES01062.1
- Allmendinger, R.W., Zapata, T., 2000. The footwall ramp of the Subandean decollement, northernmost Argentina, from extended correlation of seismic reflection data. Tectonophys. 321, 37-55.
- Allmendinger, R.W., Ramos, V.A., Jordan, T.E., Palma, M., Isacks, B.L., 1983. Paleogeography and Andean structural geometry, northwest Argentina. Tectonics 2,: 1-16.

Allmendinger, R.W., Figueroa, D., Snyder, D., Beer, J., Mpodozis, C., Isacks, B. L., 1990. Foreland shortening and crustal balancing in the Andes at 30°S latitude. Tectonics 9, 789– 809. doi.org/10.1029/TC009i004p00789

- Allmendinger, R.W., Jordan, T., Kay, S.M., Isacks, B., 1997. The evolution of the Altiplano-Puna plateau of the Central Andes. Annu. Rev. Earth Planet.Sci. 25, 139-174.
- Allmendinger, R. W., Smalley, R., Bevis, M., Caprio, H., Brooks, B., 2005. Bending the Bolivian orocline in real time, Geology 33, 905 908, doi:10.1130/G21779.1
- Alonso, R., 1992. Estratigrafía del Cenozoico de la cuenca Pastos Grandes (Puna Salteña) con énfasis en la Formación Sijes y sus boratos. Rev. Asoc. Geol. Argentina 47, 189-199.
- Alvarado, P., Beck, S., Zandt, G., Araujo, M., Triep, E., 2005. Crustal deformation in the southcentral Andes backarc terranes as viewed from regional broad-band seismic waveform modelling. Geophys. J. Int. 163(2), 580-598.

Alvarado, P., et al., 2009. Flat-slab subduction and crustal models for the seismically active Sierras Pampeanas region of Argentina, in Kay, S.M., Ramos, V.A., and Dickinson, W.R., eds., Backbone of the Americas: Shallow Subduction, Platea Up ift, and Ridge and Terrane Collision: Geological The Geological Society of America, Mic. Your 204. doi: 10.1130/2009.1204(12). Amilibia, A., Sàbat, F., McClay, F. R. Muñoz, J. A., Roca, E., Chong, G., 2008. The role of inherited tectono-sedimentary architecture in the development of the Central Andean mountain belt: Insights from the Cordillera de Domeyko. J. Struct.

- Geol. 30, 1520-1539. Ammirati, J.-B., Alvarado, P., Perarnau, M. Saez ∴, Monsalvo, G., 2013. Crustal structure of the Central Proceedillora of San, Juan, Argent 2 (128) using telesoismic receiver functions
- the Central Precordillera of San Juan, Argentina (1°S) using teleseismic receiver functions. J. South Ame. Earth Sci. 46: 100-109.
- Ammirati, J.-B., Venerdini, A., Alcacer, C. M. Alvarado, P., Miranda, S., Gilbert, H., 2018. New insights on regional tectonics and baser. ent composition beneath the eastern Sierras Pampeanas (Argentine back-arc region) from seismological and gravity data. Tectonophys. 740–741, 42–52. https://doi.org/ice10.6/J.TECTO.2018.05.015.
- Ammirati, J.-B., Easton, G., Rebolleco, S., Abrahami, R., Potin, B., Leyton, F., Ruiz, S., 2019. The crustal seismicity of the Wettern Andean thrust (Central Chile, 33°34°S): Implications for regional tectonics and seigmic hazard in the Santiago area. Bull. Seis. Soc. America 109(5):1985-1999. DOI. <u>10.785/0120190082</u>
- Ammirati, J.-B. et al., 202. Anomated earthquake detection and local travel time tomography in the South-Central and s (32-35°S): Implications for regional tectonics. J. Geoph. Res. Solid Earth, 127, e2027J2'' r097.
- ANCORP-Working Gr. up, 1999. Seismic reflection image revealing offset of Andean subduction-zone earthquake locations into oceanic mantle. Nature 397, 341–344
- ANCORP-Working Group, 2003. Seismic imaging of a convergent continental margin and plateau in the central Andes (Andean Continental Research Project 1996 (ANCORP'96)). J Geophys Res 108(B7): doi 10.1029/2002JB001771
- Anderson, M., Alvarado, P., Zandt, G., Beck., S., 2007. Geometry and brittle deformation of the subducting Nazca Plate, Central Chile and Argentina. Geophys. J. Int. 171, 419-434.
- Anderson, R.B., Long, S. P., Horton, B. K., Thomson, S. N., Calle, A. Z., Stockli, D. F., 2018. Orogenic wedge evolution of the central Andes, Bolivia (21°S): Implications for Cordilleran cyclicity. Tectonics 37, 3577–3609. https://doi.org/10.1029/ 2018TC005132.
- Andriessen, P. A. M., Reutter K.-J., 1994. K-Ar and fission-track mineral age determination of igneous rocks related to multiple magmatic arc systems along the 23 latitude of Chile and NW Argentina, in: Reutter, K., Scheuber, E., Wigger, P. (Eds.), Tectonics of the Southern Central Andes, pp. 141–153, Springer, New York.

Arabasz, W.J.J., 1971. Geological and Geophysical studies of the Atacama fault zone in northern Chile. Geol. Planet. Sci. Department Ph.D, 264 pp..

Arancibia, G., 2004. Mid-cretaceous crustal shortening: evidence from a regional-scale ductile shear zone in the Coastal Range of central Chile (32°S). J.South Ame.Earth Sc. 17: 209-226.

Armijo, R., Rauld, R., Thiele, R., Vargas, G., Campos, J., Lacassin, R., Kausel, E., 2010. The West Andean Thrust, the San Ramon Fault, and the seismic hazard for Santiago, Chile Tectonics 29, TC2007.

Armijo, R., Lacassin, R., Coudurier-Curveur, A., Carrizo, D., 2015. Coupled tectonic evolution of Andean orogeny and global climate. Earth-Sci. Rev. 143, 1–35.

Arriagada, C., Cobbold, P. R., Roperch P., 2006. Salar de Atacama basin: A record of compressional tectonics in the central Andes since the mid-Cretaceous. Tectonics 25, TC1008, doi:10.1029/2004TC001770.

Asch, G., Schurr, B., Bohm, M., Yuan, X., Haberland, C., Heit, B., <ind, R., Woelbern, I., Bataille, K., Comte, D., Pardo, M., Viramonte, J., Rietbrock, A. Gicse, P., 2006.
Seismological studies of the central and southern Andes. In: Onci en, O., Chong, G., Franz, G., Giese, P., Goetze, H.-J., Ramos, V.A., Strecker, M.R. vünger, P. (Eds.), The Andes: Active Subduction Orogeny. Springer, Berlin, pp. 443–45. IS JN: 978-3-662-51783-3

Astini, R., Thomas, W., 1999. Origin and evolution of the Procordillera terrane of western Argentina: A drifted Laurentian orphan, in Ramos, V., ai d Keppie, J. eds. Laurentia-Gondwana Connections before Pangea. Geol. Soc A. e. Spec. Paper 336: 1-20.

Avdievitch, N. N., Ehlers, T. A., Glotzbach, C., 2010 Slow long-term exhumation of the west central Andean plate boundary, Chile. Tecton. 37. doi.org/10.1029/2017TC004944 (2018).

Avouac, J.-P., 2008. Dynamic Processes in Extensional and Compressional Settings - Mountain Building: From Earthquakes to Geolenice Deformation, in: Treatise on Geophysics. Vol.6. Elsevier, Amsterdam, pp. 377-439. ISB: '978-0-444-52748-6. https://resolver.caltech.edu/Caltec. AUTHORS:20110111-120419364

Baby, P., Sempere, T., Oller, J., Bans, L., Hérail, G., Marocco, R., 1990. Un bassin en compression d'age oligomiocene da is le Sud de l'Altiplano bolivien. C.R. Acad. Sci. Paris, 311 (Ser. II), 341-347.

Baby, P., Herail, H., Salinas, R., Compere, T., 1992. Geometry and kinematic evolution of passive roof duplexes actuated from crosssection balancing: Example from the foreland thrust system of the scritterin Bolivian Subandean Zone. Tectonics 11, 523–536.

Baby, P., Moretti, I., Cuillor, B., Limachi, R., Mendez, E., Oller, J., Specht, M., 1995. Petroleum system of the northorn and central Bolivian sub-Andean zone. In: Tankard, A.J., Suarez, R., Welsink, H.J. (Eds.), Petroleum Basins of South America: Am. Assoc. Petrol. Geol. Memoir 62, 445–458.

Baby, P., Rochat, P., Herail, H., Mascle, G., 1997. Neogene shortening contribution to crustal thickening in the back arc of the Central Andes. Geology 25, 883–886.

Baker, M., Francis, P., 1978. Upper Cenozoic volcanism in the central Andes: ages and volumes. Earth Planet. Sci. Lett. 41, 175-187.

Baldauf, P., 1997. Timing of the uplift of the Cordillera Principal, Mendoza Province, Argentina.M. Sc. Thesis, George Washington University, 356 p.

Bally, A., Gordy, P., Stewart, G., 1966. Structure, seismic data, and orogenic evolution of southern Canadian Rocky Mountains. Bull. Can. Petrol. Geol. 14: 337-381.

Bande, A., Boll, A., Fuentes, F., Horton, B., Stockli, D., 2020. Thermochronological constraints on the exhumation of the Malargüe fold-thrust belt, southern Central Andes. D. Kietzmann and A. Folguera (eds.), Opening and Closure of the Neuquén Basin in the Southern Andes, Springer Earth System Sciences, doi.org/10.1007/978-3-030-29680-315.

- Bangerth, W., Dannberg, J., Gassmoeller, R., Heister, T., 2019. ASPECT v2.1.0, *Zenodo*, https://doi.org/10.5281/zenodo.592692.
- Bao, X. W., Eaton, D., Guest, A., 2015. Plateau uplift in western Canada caused by lithosphere delamination along a craton edge, Nat. Geosci., 7, 830–833. channel flows: 1. Numerical models with applications to the tectonics of the Himalayan-Tibetan orogen. J. Geophys. Res: Solid Earth 109 (2004).
- Barrientos, S., Vera, E., Alvarado, P., Monfret, T., 2004. Crustal seismicity in central Chile, *J. South Am. Earth Sci.*, **16**, 759–768, doi:<u>10.1016/j.jsames.2003.12.001</u>.
- Barrionuevo, M., Sibiao, L., Mescua, J., Yagupsky, D., Quinteros, J., Giambiagi, L., Sobolev, S., Strecker, M., Rodríguez Piceda, C., 2021. The influence of variations in crustal composition and lithospheric strength on the evolution of deformation processes in the southern Central Andes: Insights from geodynamic models. J. Int. Earth Sci. https://doi.org/10.1007/s00531-021-01982-5
- Bascuñán, S., Arriagada, C., Le Roux, J., Deckart, K., 2016. Unraven of the Peruvian Phase of the Central Andes: stratigraphy, sedimentology and geochrololog / of the Salar de Atacama Basin (22°30–23°S), northern Chile. Basin Res. 28, 365–202
- Beck, S.L., Zandt, G., 2002. The nature of orogenic crust in the central Andes. J. Geophys. Res. Solid Earth 107, ESE 7-1-ESE 7-16.
- Beer, J.A., Allmendinger, R.W., Figueroa, D.E., Jordar, T.L., 1990. Seismic Stratigraphy of a Neogene Piggyback Basin, Argentina. Am. Assoc. Pt. Geol. Bull. 74, 1183–1202.
- Bello-González, J.P., Contreras-Reyes, E., Arriaçada, C., 2018. Predicted path for hotspot tracks off South America since Paleocene time: ¹ ectonic implications of ridge-trench collision along the Andean margin. Gordwala Res., doi:10.1016/j.gr.2018.07.008
- Bevis, M., Kendrick, E.C., Smalley, R., Łerring, T., Godoy, J., Galban, F., 1999. Crustal motion north and south of the Arica deflection: Comparing recent geodetic results from the central Andes. Geochem. Geophys. Geospirst. 1, doi.org/10.1029/1999GC000011.
- Bialas, J., & Kukowski, N. (2000). F. 3 Co. INE FAHRTBERICHT SO146/1&2/CRUISE REPORT SO146/1&2 GEOPECO: GEOpuly sic al experiments at the PEruvian COntinental margin investigations of tectonics, mechanics, gashydrates, and fluid transport; Arica-Talcahuano, March 1-May 4, 2000.
- Bird, P., 1979. Continental Velamination and the Colorado Plateau, J. Geophys. Res., 84(B13), 7561–7571, doi:10.10.29/J.x084iB13p07561.
- Blanco, N. 2008. Estratigo fía y evolución tectono-sedimentaria de la cuenca cenozoica de Calama (Chile, 220) Master's Thesis (unpublished), Universidad de Barcelona: 68 p.
- Blanco, N., Tomlinson, A.J., Mpodozis, C., Pérez d'Arce, C., Matthews, S., 2003. Formación Calama, Eoceno, II Región de Antofagasta: estratigrafía e implicancias tectónicas, in: proceedings of the 10th Congreso Geológico Chileno, Concepción.
- Boll A, Alonso, A., Fuentes, F., Vergara, M., Laffitte, G., & Villar, H. J., 2014. Factores controlantes |de las acumulaciones de hidrocarburos en el sector norte de la cuenca Neuquina, entre los ríos Diamante y Salado, Provincia de Mendoza, Argentina, in: proceedings of the 9th Congreso de Exploración y Desarrollo de Hidrocarburos, IAPG, Mendoza.Bonali, F.L., Corazzato, C, Tibaldi, A., 2012. Elastic stress interaction between faulting and volcanism in the Olacapato-San Antonio de Los Cobres area (Puna plateau, Argentina), Global Planet. Change, 90-91, 104, 120.
- Bonini, R. A., Georgieff, S. M., Candela, A. M., 2017. Stratigraphy, geochronology, and paleoenvironments of Miocene-Pliocene boundary of San Fernando, Belén (Catamarca, northwest of Argentina). J. South Amer. Earth Sci. 79, 459–471. doi.org/10.1016/j.jsames.2017.08.020.

- Bossi, G.E., Muruaga, C., 2009. Estratigrafía e inversión tectónica del rift neógeno en el Campo del Arenal, Catamarca, NO Argentina. Andean Geol. 36, 311-341.
- Bossi, G.E., Georgieff, S., Gavriloff, I., Ibañez, L., Muruaga, C., 2001. Cenozoic evolution of the intramontane Santa María Basin, Pampean Ranges, northwestern Argentina. J. S. Am. Earth Sci. 14, 725-734.
- Boyce, D., Charrier, R., Farías, M., 2020. The first Andean compressive tectonic phase: Sedimentologic and structural analysis of Mid-Cretaceous deposits in the Coastal Cordillera, Central Chile (32°50´S). Tectonics doi.org/10.1029/2019TC005825.
- Brooks, B. et al., 2011. Orogenic-wedge deformation and potential for great earthquakes in the central Andean backarc. Nature Geosci. 4(5), 1–4 https://doi.org/10.1038/ngeo1143.
- Buelow, E., Suriano, J., Mahoney, J. B., Kimbrough, D. L., Mescua, J. F., Giambiagi, L. B., Hoke, G. D., 2018. Sedimentologic and stratigraphic evolution of the Cacheuta Basin: Constraints on the development of the Miocene retroarc forela, d basin, South-Central Andes. Lithosphere. doi.org/10.1130/L709.1.
- Burchardt, S., Annen, C. J., Kavanagh, J. L., & Hilmi Hazim, S. (2022). Developments in the study of volcanic and igneous plumbing systems: outstanding problems and new opportunities. Bulletin of Volcanology, 84(6), 1-9.
- Burov, E.B., 2011. Rheology and strength of the lithosphere. Marine Petrol. Geol. 28, 1402–1443.
- Burov, E. B., Diament, M., 1995. The effective elastic thic ness (Te) of continental lithosphere: what does it really mean?. J. Geophys. Res. Suid Earth 100(B3), 3905-3927.
- Cahill, T., Isacks, B., 1992. Seismicity and Shape of the Subducted Nazca Plate. J. Geophys. Res. Solid Earth 97, 17503–17529.
- Canavan, R, Carrapa, B., Clementz, M. .., Cuade, J., DeCelles, P. G., Schoenbohm, L. M., 2014. Early Cenozoic uplift of the Puna Plateau, Central Andes, based on stable isotope paleoaltimetry of hydrated volcanic glass. Geology 42(5), 447–450. doi.org/10.1130/G35239.1.
- Capaldi, T. N., Horton, B. K., McKen ie N. R., Mackaman- Lofland, C., Stockli, D. F., Ortiz, G., Alvarado, P., 2020. Neogenetric foreland basin evolution, sediment provenance, and magmatism in response to flacelab subduction, western Argentina. Tectonics 39, doi.org/10.1029/2019TC 005.758.
- Capitanio, F.A., Faccenne, C. Zlotnik, S. Stegman, D.R., 2011. Subduction dynamics and the origin of Andean c ogeny and the Bolivian orocline. Nature Letters, doi:10.1038/nature10596.
- Carrapa, B., DeCeirs, C., 2008. Eccene exhumation and basin development in the Puna of northwestern Arger tina. Tectonics 27, TC1015. doi:10.1029/2007TC002127.
- Carrapa, B., Strecker, M.R., Sobel, E.R., 2006. Cenozoic orogenic growth in the Central Andes: evidence from sedimentary rock provenance and apatite fission track thermochronology in the Fiambalá Basin, southernmost Puna Plateau margin (NW Argentina). Earth Planet. Sci. Lett. 247, 82–100.
- Carrapa, B., Hauer, J., Schoenbohm, L., Strecker, M. R., Schmitt, A. K., Villanueva, A., Sosa Gomez, J., 2008. Dynamics of deformation and sedimentation in the northern sierras Pampeanas: An integrated study of the Neogene Fiambalá basin, NW Argentina. Geol. Soc. Am. Bull. 120, 1518–1543 doi.org/10.1130/B26111.1.
- Carrapa, B., Trimble, J.D., Stockli, D.F., 2011. Patterns and timing of exhumation and deformation in the Eastern Cordillera of NW Argentina revealed by (U-Th)/He thermochronology. Tectonics 30(TC3003).
- Carrapa, B. et al., 2022. Estimates of paleo-crustal thickness at Cerro Aconcagua (Southern Central Andes) from detrital proxy-records: Implications for models of continental arc evolution. Earth Planet. Sci. Lett. 585, 11726.

Cashman, K. V., Sparks, R. S. J., & Blundy, J. D. (2017). Vertically extensive and unstable magmatic systems: a unified view of igneous processes. Science, 355(6331), eaag3055.

Cegarra, M., Ramos, V.A., 1996. La faja plegada y corrida del Aconcagua. In: Ramos VA (ed.) Geología de la región del Aconcagua, provincias de San Juan y Mendoza. SEGEMAR, Anales 24, 387–422.

Cembrano, J., Lara, L., 2009. The link between volcanism and tectonics in the southern volcanic zone of the Chilean Andes: A review. Tectonophys. 471, 96-113.

Cembrano, J., Zentilli, M., Grist, A., Yáñez, G., 2003. Nuevas Edades De Trazas De Fisión Para Chile Central (30º-34ºS). Implicancias en el alzamiento y exhumación de Los Andes desde el Cretácico, in: proceedings of the 10th Congreso Geológico Chileno, Concepción.

Cembrano, J., Lavenu, A., Yañez, G., Riquelme, R., García, M., González, G., Hérail, G., 2007. Neotectonics, in: Moreno, T., Gibbons W. (Eds.), The geology of Chile, Geological Society of London, pp. 231–261. https://doi.org/10.1144/GOCH

Charrier, R., Baeza, O., Elgueta, S., Flynn, J. J., Gans, P., Kay, S. M., Munkoz, N., Wyss, A. R. Zurita, E., 2002. Evidence for Cenozoic extensional basin de 'elop ment and tectonic inversion south of the flat-slab segment, southern Central Andes, Clinic (55°–36°S). J. S. Am. Earth Sci. 15, 117–139.

Charrier, R., Bustamante, M., Comte, D., Elgueta, S., Flyn, J. J., Iturra, N., Muñoz, N., Pardo, M., Thiele, R., Wyss, A. R., 2005. The Abanico Extensic nal Basin: Regional extension, chronology of tectonic inversion, and relation to shall ve seismic activity and Andean uplift, Neues Jahrb. Geol. Palaeontol. Abh., 236, 43–47.

Charrier, R., Pinto, L., Rodri (guez, M. P., 2007 Cctr nostratigraphic evolution of the Andean Orogen in Chile, in: Moreno, T., Gibborn W. (Eds.), The geology of Chile, Geological Society of London, pp., 21–114.

Charrier, R., Farías, M., Maksaev, V., 2005. Evolución tectónica, paleogeográfica y metalogénica durante el cenozoico en los Andes de Chile Norte y Central e implicaciones para las regiones adyacentes de Lolivia y Argentina: Rev. Asoc. Geol. Argentina 65, 5–35.

Chen, L., Gerya, T.V., 2016. The role of lateral lithospheric strength heterogeneities in orogenic plateau growth: Insights from 3-2 thermo-mechanical modeling, J. Geophys. Res. Solid Earth 121, 3118–3138, doi:10.1.02/.016JB012872.

Chen, J., Kufner, S-K., Yua. λ. Heit, B., Wu, H., Yang, D., Schurr, B., Kay, S., 2020. Lithospheric delamina. On Denearth the Southern Puna plateau resolved by local earthquake tomography. J. Gεophys. Res. Solid Earth *125*, <u>e2019JB019040</u>.

https://doi.org/10.1225/20.9JB019040

- Choukroune, P., and L CORS Team, 1989, The ECORS Pyrenean deep seismic profile reflection data and the overall structure of an orogenic belt. Tectonics 8, 23– 89.
- Coblentz, D. D., & Richardson, R. M. (1996). Analysis of the South American intraplate stress field. Journal of Geophysical Research: Solid Earth, 101(B4), 8643-8657.

Coira, B., Davidson, J., Mpodozis, C., Ramos V.A., 1982. Tectonic and magmatic evolution of the Andes of northern Argentina and Chile, Earth Sci. Rev. 18, 303-322.

Collo, G., Ezpeleta, M., Dávila, F. M., Giménez, M., Soler, S., Martina, F., ... & Schiuma, M. (2018). Basin Thermal Structure in the Chilean-Pampean Flat Subduction Zone. In The Evolution of the Chilean-Argentinean Andes (pp. 537-564). Springer, Cham.

Comínguez, A.H., Ramos, V.A., 1995. Geometry and seismic expression of the Cretaceous Salta rift system, northwestern Argentina, in: Tankard, A.J., Suárez, R.; Welsink H.J. (Eds.), Petroleum basins of South America. Am. Assoc. Petrol. Geol. Memoir 62, 325-340.

Comte, D., Farías, M., Charrier, R., González, A., 2008. Active tectonics in the Central Chilean Andes: 3D tomography based on the aftershock sequence of the 28 August 2004 shallow

crustal earthquake, in: proceedings of the 7^o International Symposium on Andean Geodynamics (ISAG 2008, Nice), 160-163.

- Comte, D., Farías, M., Roecker, S., Russo, R., 2019. The nature of the subduction wedge in an erosive margin: Insights from the analysis of aftershocks of the 2015 Mw 8.3 illapel earthquake beneath the Chilean Coastal Range. Earth Planet. Sci. Lett. 520, 50-62.
- Cornejo, P., Mpodozic, C., Ramírez, C., Tomlinson, C.F., 1993. Estudio geológico de la región de El Salvador y Potrerillos. SERNAGEOMIN, Informe Registrado IR-93-1: 1-258, Santiago, Chile.
- Cortés, J., 2000. Hoja Palestina, Región de Antofagasta. SERNAGEOMIN, Mapas Geológicos 19, Santiago.
- Cortés, J.M., Vinciguerra, P., Yamín, M., Pasini, M., 1999. Tectónica Cuaternaria de la Región Andina del Nuevo Cuyo (28°–38° LS), in: Caminos, R. (Ed.), Geología Argentina, SEGEMAR. Anales, Buenos Aires, vol 29, 760–778.
- Costa, C., Diederix, H., Gardini, C., Cortés, J., 2000. The Andean orogenic front at Sierra de Las Peñas-Las Higueras, Mendoza, Argentina. J. South Am. Ear h Sc. 13, 287–292.
- Costa, C.H., Murillo, M.V., Sagripanti, G.L., Gardini, C.E., 20/1. Quaternary intraplate deformation in the Southeastern Sierras Pampeanas, *Arg* Intr.a. J. Seismol. 5, 399–409.
- Costa, C., Ahumada, E., Vázquez, F., Kröhling, D., 2015. F. Jocene shortening rates of an Andean-front thrust, Southern Precordillera, Argent na. Jectonophys. 664, 191–201.
- Costa, C. H., Schoenbohm, L. M., Brooks, B. A., Gardini, S. E., Richard, A. D., 2019. Assessing Quaternary shortening rates at an Andean from the thrust (32° 30'S), Argentina. Tectonics 38, 3034–3051.
- Coughlin, T.J., O'Sullivan, P.B., Kohn, B.P., Hulpombe, R.J., 1998. Apatite fission-track thermochronology of the Sierras Partoer las, central western Argentina: Implications for the mechanism of plateau uplift in the Ande. Geology 26, 999. doi.org/10.1130/0091-7613(1998)0262.3.CO;2.
- Coutand, I., Cobbold, P., de Urreiztier, N., Gautier, P., Chauvin, A., Gapais, D., Rossello, E., López Gamundi, O., 2001. Style : nr history of Andean deformation, Puna Plateau, northwestern Argentina. Ter tonus 20, 210–234.
- Coutand, I., Carrapa, B., Decken, A., Schmitt, A. K., Sobel, E., Strecker, M. R., 2006. Orogenic plateau formation and lateral growth of compressional basins and ranges: Insights from sandstone petrograph, and detrital apatite fission-track thermochronology in the Angastaco Basin, NW Argentina. Pasin Res. 18, 1–26.
- Cowan A. M., Reci, J. A., Currie, B. S., 2004. Mid-Miocene hyperaridity in the Atacama Desert, Chile: evidence from the gypsic Barros Arana paleosol. Geol. Soc. Am. 36, 293-303.
- Coward, M.P., 1983. Thrust tectonics, thin skinned or thick skinned, and the continuation of thrusts to deep in the crust. J. Struct. Geol. 5: 113-123.
- Cristallini, E. O., Ramos V.A., 2000. Thick-skinned and thin-skinned thrusting in the La Ramada fold and thrust belt: Crustal evolution of the High Andes of San Juan, Argentina (32°S). Tectonophys. 317(3-4), 205–235.
- Cristallini, E. O., Comínguez, A. H., Ramos, V. A., Mercerat, E. D., 2004. Basement doublewedge thrusting in the northern Sierras Pampeanas of Argentina (27-28°S): Constraints from deep seismic reflection, in K. R. McClay, ed., Thrust tectonics and hydrocarbon systems: AAPG Memoir 82, 65–90.
- D'Annunzio, C., Rubinstein, N., Rabbia, O., 2018. Petrogenesis of the Gualcamayo Igneous Complex: Regional implications of Miocene magmatism in the Precordillera over the Pampean flat slab segment, Argentina. J. South Ame. Earth Sci. doi: 10.1016/j.jsames.2018.06.012

- Dahlen, F.A., Barr, T.D., 1989. Brittle frictional mountain building, 1. Deformation and mechanical energy budget. J. Geophys. Res. 94, 3906-3922.
- Dahlen, F.A., Suppe, J., Davis, D., 1984. Mechanics of fold-and-thrust belts and accretionary wedges: Cohesive Coulomb theory. J. Geophys. Res. 89, 10,087–10,101, doi:10.1029/JB089iB12p10087.
- Dávila, F.M., 2010. Dynamics of deformation and sedimentation in the northern Sierras Pampeanas: An integrated study of the Neogene Fiambalá Basin, NW Argentina: Comment and Discussion. Geol. Soc. Am. Bull. 122, 946–949. doi:10.1130/B30133.1.
- Davila, F.M., Astini, R.A., 2007. Cenozoic provenance history of synorogenic conglomerates in western Argentina (Famatina belt): implications for Central Andean foreland development. Geol. Soc. Am. Bull. 119, 609–622.
- Dávila, F., Giménez, M., Nóbile, J., Martínez, P., 2012. The evolution of the high-elevated depocenters of the northern Sierras Pampeanas (ca. 28° SL), . rgentine broken foreland, South-Central Andes: The Pipanaco basin. Basin Res. 24, 1-22
- Davis, D., Suppe, J., Dahlen, F.A., 1983. Mechanics of fold-and thru: t belts and accretionary wedges. J. Geophys. Res. 1153–1172, doi:10.1029/JB08 אולירעבייטו1153.
- De Silva, S. L., 1989. Geochronology and stratigraphy of the ignir abrites from the 21 to 23° S portion of the central Andes of northern Chile, J. Volcan, Geotherm. Res. 37, 93–131.
- De Silva, S.; Zandt, G.; Trumbull, R.; Viramonte, J.G.; Salab, G.; Jiménez, N. 2006. Large ignimbrite eruptions and volcano-tectonic depressionation the Central Andes: A thermomechanical perspective. *In* Troise, C., *ctol.*, eds., Mechanisms of Activity and Unrest at Large Calderas: Geological Society of London, Special Publication 269: 47–63.
- DeCelles, P.G., Horton, B.K., 2003. Early to multile Tertiary foreland basin development and the history of Andean crustal shortening in Bruivia. Geol. Soc. Am. Bull. 115, 58–77.
- DeCelles, P.G., Carrapa, B., Horton, B.K., CNabb, J., Gehrels, E., Boyd, J., 2015a. The Miocene Arizaro basin, central And's hinterland: response to partial lithosphere removal? Geol. Soc. Am. Mem. 212: 359-20
- DeCelles, P.G., Ducea, M.N., Kapp, P. Zandt, G., 2015b. Cyclicity in Cordilleran orogenic systems. Nature Geosci., Doi:10.1038/NGEO469.
- Deckart, K., Godoy, E., Bertens, C., Jerez, D., Saeed, A., 2010. Barren Miocene granitoids in the central Andean metalogonic belt, Chile: geochemistry and Nd–Hf and U–Pb isotope systematic. Andean Gool. 37 (1), 1–31.
- Deeken, A., Sobel, E. R., Coutand, I., Haschke, M., Riller, U., Strecker, M. R., 2006. Development or the couthern Eastern Cordillera, NW Argentina, constrained by apatite fission track thermochronology: From early Cretaceous extension to middle Miocene shortening. Tectonics 25, TCp003, doi:10.1029/2005TC001894.
- del Papa, C., 1999. Sedimentation on a ramp type lake margin: Paleocene-Eocene Maíz Gordo Formation, Northwestern Argentina. J. South Am. Earth Sci. 12, 389–400.
- del Papa, C. E., Petrinovic, I. A., 2017. The development of Miocene extensional and short-lived basin in the Andean broken foreland: The Conglomerado Los Patos, Northwestern Argentina. J. South Ame. Earth Sci. 73, 191–201.
- del Papa, C., Hongn, F., Powell, J., Payrola, P., Do Campo, M., Strecker, M., Petrinovic, I., Schmitt, A., Pereyra, R., 2013. Middle Eocene- Oligocene broken- foreland evolution in the Andean Calchaqui Valley, NW Argentina: insights from stratigraphic, structural and provenance studies. Basin Res. 25(5), 574–593.
- del Rey, Á., Deckart, K., Planavsky, N., Arriagada, C., Martínez, F., 2019. Tectonic evolution of the southwestern margin of Pangea and its global implications: evidence from the mid Permian–Triassic magmatism along the Chilean-Argentine border. *Gondwana Res.* 76, 303-321.

- De Silva, S. L., 1989. Altiplano-Puna volcanic complex of the Central Andes. Geology 17(12), 1102–1106. doi.org/10.1130/0091-7613.
- Deri, M., Ciccioli, P., Amidon, W., Marenssi, S., 2019. Estratigrafía y edad máxima de depositación de la Formación Tambería en el Bolsón de Fiambalá, Catamarca, in: Proceedings of the 5th Simposio del Mioceno Pleistoceno del Centro y Norte de Argentina, 3.
- Dewey, J.F., Bird, J.M., 1970. Mountain belts and the new global tectonics. J. Geophys. Res. 75, 2625–2647. https://doi.org/10.1029/JB075i014p02625
- Díaz-Alvarado, J., Galaz, G., Oliveros, V., Creixell, C., Calderón, M., 2019. Fragments of the late Paleozoic accretionary complex in central and northern Chile: similarities and differences as a key to decipher the complexity of the late Paleozoic to Triassic early Andean events, in: Horton, B., Folguera, A. (Eds.), Andean tectonics, Elsevier, pp. 509-530.
- Dunn, J. F., Hartshorn K. G., Hartshorn, P. W., 1995. Structural styles and hydrocarbon potential of the Sub-Andean thrust belt of southern Bolivia, in Tankard, August Soruco, R., Welsink, H. (Eds.), Petroleum Basins of South America, Am. Assoc. Petrol. um Geol. Mem. 62, 523–543.
- Echaurren, A., et al., 2022. Fore-to-retroarc crustal structure and the north Patagonian margin: How is shortening distributed in Andean-type orogens? G. the and Planetary Change 209: 103734.
- Echavarria, R., Hernandez, R., Allmendinger, R. W., Payno'ds, J. H., 2003. Sub-Andean thrust and fold belt of northwest Argentina: Geometry and the ing of the Andean evolution, Am. Assoc. Petroleum Geol. Bull. 87, 965 –985, dr.: 10.1306/01200300196.
- Ege, H., Sobel, E. R., Scheuber, E., Jacobshare, V. 2007. Exhumation history of the southern Altiplano plateau (southern Bolivia) constrained by apatite fission track thermochronology. Tectonics 26, TC1004, doi:10.1029/2.105⁻ C001869.
- Eichelberger, N., McQuarrie, N., Ehlers, T., Enkelmann, E., Barnes, J.B., Lease, R.O., 2013. New constraints on the chronology, magnitude, and distribution of deformation within the central Andean orocline. Tector¹ 32, 1432–1453. https://doi.org/10.1002/tect.20073.
- Elger, K., Oncken, O., Glodny, J., 20 J5 Plateau-style accumulation of deformation: Southern Altiplano. Tectonics 24, TC4 020, doi:10.1029/2004TC001675.
- Emparan, C., Pineda, G., 1909. Area Condoriaco-Rivadavia, Región de Coquimbo: Mapas Geológicos, No12. SER, IAC EOMIN. Mapa escala 1:100.000.
- Emparan, C., Pineda, G., 200). Área La Serena-La Higuera, región de Coquimbo. SERNAGEOMIN. Map is Geológicos, No18. 1 Mapa escala 1:100.000.
- Emparan, C., Pineur, C., 2006. Geología del Área Andacollo-Puerto Aldea, Región de Coquimbo. SERNA GEOMIN, Cart. Geol. Chile. Geol. Básica 86, 85.
- England, P., Houseman, G., 1989. Extension during continental convergence, with application to the Tibetan Plateau. J. Geophys. Res. 94, doi:10.1029/JB094iB12p17561.
- Faccenna, C., Oncken, O., Holt, A.F., Becker, T.W., 2017. Initiation of the Andean orogeny by lower mantle subduction. Earth Planet. Sci. Lett. 463, 189–201.
- Farías, M., Charrier, R., Comte, D., Martinod J., Hérail G., 2005. Late Cenozoic deformation and uplift of the western flank of the Altiplano: Evidence from the depositional, tectonic, and geomorphologic evolution and shallow seismic activity (northern Chile at 19°30'S). Tectonics 24, TC4001, doi: 10.1029/2004TC001667.
- Farías, M., Charrier, R., Carretier, S., Martinod, J., Fock, A., Campbell, D., Cáceres, J., Comte, D., 2008. Late Miocene high and rapid surface uplift and its erosional response in the Andes of central Chile (33°–35°S). Tectonics 27, TC1005. doi.org/10.1029/2006TC002046.
- Farías, M., Comte, D., Charrier, R., Martinod, J., David, C., Tassara, A., Tapia, F., Fock, A., 2010. Crustal-scale structural architecture in central Chile based on seismicity and surface
geology: Implications for Andean mountain building. Tectonics 29, TC3006. doi.org/10.1029/2009TC002480.

- Fazzito. S., Cortés, J.M., Rapalini, A.E., Terrizzano, C. M., 2013. The geometry of the active strike-slip El Tigre Fault, Precordillera of San Juan, Central-Western Argentina: integrating resistivity surveys with structural and geomorphological data. Int. J. Earth. Sci. 102,1447– 1466.
- Feng, M., Assumpçao, M., Van der Lee, S., 2004. Group-velocity tomography and lithospheric S-velocity structure of the South American continent. Physics Earth Planet. Interiors 147(4), 315-331.
- Feng, M., Van der Lee, S., & Assumpção, M. (2007). Upper mantle structure of South America from joint inversion of waveforms and fundamental mode group velocities of Rayleigh waves. Journal of Geophysical Research: Solid Earth, 112(B4).
- Flesch, L. M., & Kreemer, C. (2010). Gravitational potential energy and regional stress and strain rate fields for continental plateaus: Examples from the central Ancos and Colorado Plateau. Tectonophysics, 482(1-4), 182-192.Flint, S., Turnere, P., Jolley, E., Hartley, A., 1993. Extensional tectonics in convergent margin basins: An example from the Salar de Atacama, Chilean Andes. Geol. Soc. Ame. Bull. 105:603-617.
- Flueh, E. R., & Grevemeyer, I. (2005). RV Sonne Fahrtben, ht/Cruise Report SO181 TIPTEQ (from The Incoming Plate to mega Thrust EarthQu^c kes) 06.12. 2004.-26.02. 2005.
- Fock, A., Charrier, R., Marsaev, V., Farías, M., Alvarez, C. 2006. Evolución cenozoica de los andes de chile central (33°-34°s), in: proceedir. of the 9th Congreso Geológico Chileno, Antofagasta, Chile, 2, 205-208.
- Fosdick, J. C., Carrapa, B., Ortiz, G., 2015 Facting and erosion in the Argentine Precordillera during changes in subduction regime Reconciling bedrock cooling and detrital records. Earth Planet. Sci. Lett. 432, 73 –83.
- Fosdick, J.C., Reat, E.J., Carrapa, B., Ortiz, G., Alvarado, P.M., 2017. Retroarc basin reorganization and aridification *c*.u. ing Paleogene uplift of the southern central Andes. Tectonics 36, 493–514. doi.org/1(1.1.)02/2016TC004400.
- Fox-Maule, C., Purucker, M. E Oron, N., Mosegaard, K., 2005. Heat flux anomalies in Antarctica revealed by sciellite magnetic data. Science 309(5733), 464-467.
- Froidevaux, C., Isacks, B., 198-. The mechanical state of the lithosphere in the Altiplano-Puna segment of the Andes. Farm Planet. Sci. Lett. 71, 305-314.
- Fromm, R., Zandt, G. Beck, S., 2004. Crustal thickness beneath the Andes and Sierras Pampeanas at Coccim/erred from Pn apparent phase velocities. Geophys. Res. Lett. 31, L06625, doi:10.1023/2003GL019231.
- Fuentes F., Horton, B. K., Starck, D., Boll, A., 2006. Structure and tectonic evolution of hybrid thick- and thin-skinned systems in the Malargüe fold-thrust belt, Neuquén basin, Argentina. Geol. Magaz. 153: 1066–1084.
- Furque, G. et al., 2003. Hoja Geológica 3169-II, San José de Jáchal. Provincias de San Juan y La Rioja., 259. SEGEMAR, Buenos Aires.
- Gans, Ch., Beck, S. L., Zandt, G., Gilbert, H., Alvarado, P., Anderson, M., Linkimer, L., 2011. Continental and oceanic crustal structure of the Pampean flat slab region, western Argentina, using receiver function analysis: new high-resolution results. Geophys. J. Int. 186, 45-58.
- García, V., Casa, A., 2015. Quaternary tectonics and seismic potential of the Andean retrowedge at 33-34°S. In: Sepulveda, S. et al. (Eds), Geodynamic Processes in the Andes of Central Chile and Argentina. Geol. Soc. London, Special Publications, 399, doi.org/10.1144/SP399.11.
- Garzione, C. et al., 2017. Tectonic evolution of the Central Andean Plateau and implications for the growth of plateaus. Annu. Rev. Earth Planet. Sci. 2017. 45:529-59.

- Giambiagi, L., Ramos, V.A., 2002. Structural evolution of the Andes between 33°30' and 33°45'S, above the transition zone between the flat and normal subduction segment, Argentina and Chile. J. S. Am. Earth Sci. 15, 99–114.
- Giambiagi, L.B., Ramos, V.A., Godoy, E., Alvarez, P.P., Orts, S., 2003. Cenozoic deformation and tectonic style of the Andes, between 33° and 34° south latitude. Tectonics 22 doi.org/10.1029/2001tc001354.
- Giambiagi, L., Bechis F., García V., Clark A., 2008. Temporal and spatial relationship between thick- and thin-skinned deformation in the Malargüe fold and thrust belt, southern Central Andes. Tectonophys. 459, 123-139.
- Giambiagi, L., Mescua, J., Bechis, F., Martínez, A., Folguera, A., 2011. Pre-Andean deformation of the Precordillera southern sector, Southern Central Andes. Geosphere 7, 1-21.
- Giambiagi, L., Mescua, J., Bechis, F., Tassara, A., Hoke, G., 2012. Thrust belts of the Southern Central Andes: Along-strike variations in shortening, topograph. *c* crustal geometry, and denudation. Geol. Soc. Ame. Bull. 124 (7-8), 1339-1351.
- Giambiagi, L. et al., 2014. Reactivation of Paleozoic structures during Cenozoic deformation in the Cordón del Plata and Southern Precordillera ranges (Mendoza, Argentina). J. Iberian Geol. 40 (2), 309-320.
- Giambiagi, L. et al., 2015a. Evolution of shallow and deep structures along the Maipo-Tunuyán transect (33°40'S): from the Pacific coast to the Andean foreland, in: Sepúlveda, S. et al. (Eds), Geodynamic Processes in the Andes of Central Chile and Argentina, Geol. Soc. London, Special Publication 399, 63-82. Doi.org/10.1144/SP399.14.
- Giambiagi, L., Spagnotto, S., Moreiras, S. M., Gurnez, G., Stahlschmidt, E., Mescua, J., 2015b. Three-dimensional approach to understanding the relationship between the Plio-Quaternary stress field and tectonic inversion in the Tliassic Cuyo basin, Argentina. Solid Earth 6,1-17.
- Giambiagi, L., Alvarez, P., Spagnotto, S., 2. 16. Temporal variation of the stress field during the construction of the Central Andes. Constrains from the volcanic arc region (22°-26°S), Western Cordillera, Chile, during the stress 20 Ma. Tectonics 35, doi:10.1002/2016TC004201.
- Giambiagi, L., Giambiagi, L., Alvarez P., Spagnotto, S., Godoy, E., Lossada, A., Mescua, J., Barrionuevo, M., Suriano, J 2019. Geomechanical model for a seismically active geothermal field: Insights from the Tinguin Sca volcanic-hydrothermal system. Geosci. Frontiers, 10.1016/j.gsf.2019.02.006.
- Giraudo, R., Limachi, R., 200[°]. Pre-Silurian control in the genesis of the central and southern Bolivian foldbelt. J So th Am. Earth Sci. 14, 665-680.
- Gleason G.C., Tuli, J., 1955. A flow law for dislocation creep of quartz aggregates determined with the molten sal, cell. Tectonophysics 247: 1-23.
- Godoy, E., Yáñez, C., Vera, E., 1999. Inversion of an Oligocene volcano-tectonic basin and uplift of its superimposed Miocene magmatic arc, Chilean Central Andes: first seismic and gravity evidence. Tectonophys. 306, 217–326.
- Gómez, J., Schobbenhaus, C., Montes, N.E., 2019. Geological Map of South America, scale 1:5 000 000. Commission for the Geological Map of the World (CGMW), Colombian Geological Survey and Geological Survey of Brazil, Paris.
- González, G., Niemeyer, H., 2005. Carta Antofagasta y Punta Tetas, Región de Antofagasta. SERNAGEOMIN. Carta No 89. 1 mapa escala 1:100.000. Santiago.
- González, G., Cembrano, J., Carrizo, D., Macci, A., Schneider, H., 2003. Link between forearc tectonics and Pliocene-Quaternary deformation of the Coastal Cordillera, Northern Chile. J. S. Am. Earth Sci. 16, 321–342.
- González, G., Dunai, T., Carrizo, D., Allmendinger, R., 2006. Young displacements on the Atacama fault system, northern Chile from field observations and cosmogenic 21Ne concentrations. Tectonics 25, 10.1029/2005TC001846.

- González, G., Cembrano, J., Aron, F., Veloso, E., Shyu, B., 2009. Coeval compressional deformation and volcanism in the central Andes, case studies from northern Chile (23°-24°S), Tectonics 28, TC6003, doi:10.1029/2009TC002538.
- González, G., Salazar, P., Loveless, J., Allmendinger, R., Aron, F., Mahesh, S., 2015. Upper plate reverse fault reactivation and the unclamping of the megathrust during the 2014 northern Chile earthquake sequence. Geology 43, doi:10.1130/G36703.1
- González, R., Espinoza, D., Robledo, F., Jeria, V., Espinoza, M., Torres, P., Rogers, H., 2020. Evidence for two stages of back-arc compression in the late Cretaceous fold-and-thrust belt in the Precordillera of northern Chile (24°30´S-25°30´S). J. South Am. Earth Sci. DOI: 10.1016/j.jsames.2020.102706.
- Goss, A., Kay, S.M., Mpodozis, C., 2013. Andean adakite-like high-Mg andesites on the northern margin of the Chilean-Pampean flat-slab (27-28.5°S) associated with frontal arc migration and fore-arc subduction erosion. J. Petrol. 54: 2193-2234.
- Graeber, F and Asch, G 1999 Three-dimensional models of P wave v locity and P-to-S velocity ratio in the southern central Andes by simultaneous inversion of k cal earthquake data. Journal of Geophysical Research, vol. 104, no. b9, pages 20,207-20,256, september 10, 1999
- Grevemeyer, I., Diaz-Naveas, J. L., Ranero, C. R., Villinger, H. W., & Leg, O. D. P. (2003). Heat flow over the descending Nazca plate in central Chile, 5? S to 41 S: Observations from ODP Leg 202 and the occurrence of natural gas hydrates. Tarth and Planetary Science Letters, 213(3-4), 285-298.
- Grevemeyer, I., Kaul, N., Diaz-Naveas, J. L., Villeyer, H. W., Ranero, C. R., & Reichert, C. (2005). Heat flow and bending-related fourthing at subduction trenches: Case studies offshore of Nicaragua and Central Chile. Earth and Planetary Science Letters, 236(1-2), 238-248.
- Grevemeyer, I., Kaul, N., & Diaz-Naveas, J. L. (2006). Geothermal evidence for fluid flow through the gas hydrate stability tic'd off Central Chile—transient flow related to large subduction zone earthquakes?. Graphysical Journal International, 166(1), 461-468.
- Gubbels, T.L., Isacks, B.L., Farrar, E, 1993. High-level surfaces, plateau uplift, and foreland development, Bolivian central A, des. Geology 21, 695–698.
- Gutscher, M-A., Spakman, W., B., vaard, H., Engdahl, R., 2000. Geodynamics of flat subduction: Seismicity and tomogra_L hic constraints from the Andean margin. Tectonics 9, 814-833.
- Haberland, Ch., Rietbroc, A. 2001. Attenuation tomography in the western central Andes: A detailed insight int the structure of a magmatic arc. J. Geophys. Res. Solid Earth, 106, 11,151-11,167.
- Haddon, A., Porter, R. 2018. S-Wave Receiver Function Analysis of the Pampean Flat-Slab Region: Evidence for a Torn Slab. Geochem. Geophys. Geosystems 19(10), 4021-4034.
- Halter, W.E. Bain N, Becker K, Heinrich CA, Landtwing M, VonQuadt A, Bissig T, Clark A. H, Sasso A. M, Tosdal R. M., 2004. From andesitic volcanism to the formation of a porphyry Cu-Au mineralizing magma chamber: The Farallón Negro Volcanic Complex, NW Argentina. J. Volc. Geoth. Res. 136, 1-30.
- Hamza, V. M., & Muñoz, M. (1996). Heat flow map of South America. Geothermics, 25(6), 599-646.
- Hamza, V. M., Dias, F. J. S., Gomes, A. J., & Terceros, Z. G. D. (2005). Numerical and functional representations of regional heat flow in South America. Physics of the Earth and Planetary Interiors, 152(4), 223-256.
- Harris, A.C., Allen, C. M., Bryan, S. E., Campbell, I. H., Holcombe, R. J., Palin, J. M., 2004. ELA-ICP-MS U-Pb zircon geochronology of regional volcanism hosting the Bajo de la Alumbrera Cu-Au deposit: implications for porphyry-related mineralization. Miner. Depos. 39, 46-67.

- Harry, D.L., Oldow, J.S., Sawyer, D.S., 1995. The growth of orogenic belts and the role of crustal heterogeneities in decollement tectonics. Geol. Soc. Am. Bull. 107, 1411-1426.
- Haschke, M., Siebel, W., Gunther, A., Scheuber, E., 2002. Repeated crustal thickening and recycling during the Andean orogeny in north Chile (21°–26°S). J. Geophys. Res. 107, 2019. doi:10.1029/2001JB000328.
- Haschke, M., Gunther, A., 2003. Balancing crustal thickening in arcs by tectonic vs. magmatic means. Geology 31, 933–936.
- Haschke, M., Deeken, A., Insel, N., Sobel, E., Grove, M., Schmitt, A., 2005. Growth pattern of the Andean Puna plateau constrained by apatite fission track, apatite (U-Th)/He, K-feldspar 40Ar/39Ar, and zircon U-Pb geochronology, in: proceedings of the 6th Int. Symposium Andean Geodyn, pp. 360-363.
- Henriquez, S., DeCelles, P. G., Carrapa, B., 2019. Cretaceous to middle Cenozoic exhumation history of the Cordillera de Domeyko and Salar de Atacama basin, northern Chile. Tectonics 38, 395–416. doi.org/ 10.1029/2018TC005203.
- Henriquez, S., DeCelles, P. G., Carrapa, B., Hughes, A. N., Dav s, G H., Alvarado, P., 2020. Deformation history of the Puna plateau, Central Andes of the Turwestern Argentina. J. Struct. Geol. 140, doi.org/10.1016/j.jsg.2020.104133
- Henry, S. G., & Pollack, H. N. (1988). Terrestrial heat flow chove the Andean subduction zone in Bolivia and Peru. Journal of Geophysical Research Soi d Earth, 93(B12), 15153-15162.
- Heredia, N., Rodriguez Fernández, L. R., Gallastegui, G., Gusquets P., Colombo, F., 2002. Geological setting of the Argentine Frontal Cord."era in the flat-slab segment (30°00'–31°30'S latitude), J. South Am. Earth Sci. 15, 79–99.
- Heit, B., Koulakov, I., Asch, G., Yuan, X., Kina, R., Alcozer-Rodriguez, I., Tawackoli, S., Wilke, H., 2008. More constraints to determine the seismic structure beneath the Central Andes at 21°S using teleseismic tomography analysis. J. South Am. Earth Sci. 25, 22–36.
- Herrera, C., Cassidy, J. F., Dosso, S. F., Dettmer, J., Bloch, W., Sippl, C., Salazar, P., 2021. The crustal stress field inferred f.o.m tocal mechanisms in northern Chile. Geophys. Res. Lett. 48, e2021GL092889. https://doi.c.ig/10.1029/2021GL092889
- Hervé, M., Sillitoe, R.H., Wong C., Sernández, P., Crignola, F., Ipinza, M., Urzúa, F., 2012. Geologic overview of the Sociedidad porphyry copper district, northern Chile. Soc. Econ. Geol. Spec. Public. 16, 5-72.
- Heuret, A., Lallemand, S., 20(J. Plate motions, slab dynamics and back-arc deformation. Phys. Earth Planet. Int., 49, 31–51, doi: 10.1016/j.pepi.2004.08.022.
- Hilairet, N., Reyna, ⁴ L. ¹⁷/ang, Y., Daniel, I., Merkel, S., Nishiyama, N., Petitgirard, S., 2007. High-pressure cree) of serpentine, interseismic deformation, and initiation of subduction. Science 318(5858), 1910-1913.
- Hindle, D., Kley, J., 2003. Displacements, strains and rotations in the Central Andean Plate Boundary Zone, in: S. Stein, J. Freymuller (Eds.), Plate Boundary Zones, AGU Geodynamics Series 30, American Geophysical Union, 135 – 144.
- Hirth G., Kohlstedt D. L., 2003. Rheology of the upper mantle and the mantle wedge: a view from the experimentalists. Geophys. Monogr. Ser. 138: 83-105.
- Hoke, G. D., Giambiagi, L., Garzione, C., Mahoney, B., Strecker, M., 2014. Neogene paleoelevation of intermontane basins in a narrow, compressional mountain range, southern Central Andes of Argentina, Earth Planet. Sci. Lett., 406, 153-164.
- Hoke, G. D., Graber, N. R., Mescua, J. F., Giambiagi, L. B., Fitzgerald, P. G., Metcalf, J. R., 2015. Near Pure Surface Uplift of the Argentine Frontal Cordillera: insights from (U–Th/ He) thermochronology and geomorphic analysis, in: Sepúlveda, S. et al. (Eds.), Geodynamic Processes in the Andes of Central Chile and Argentina. Geol. Soc. London, Spec. Publ 399, 383–399. doi.org/10.1144/SP399.4.

- Hongn, F., Sobel, E. R., Coutand, I., Haschke, M., Riller, U., Strecker, M. R., 2007. Middle Eocene deformation and sedimentation in the Puna-Eastern Cordillera transition (23–26°S): Control by preexisting heterogeneities on the pattern of initial Andean shortening. Geology 35, 271–274, doi:10.1130/G23189A.1.
- Hongn, F., Mon, R., Petrinovic, I., del Papa, C., Powell, J., 2010. Inversión y reactivación tectónicas cretácico-cenozoicas en el noroeste argentino: influencia de las heterogeneidades del basamento Neoproterozoico-Paleozoico inferior. Rev. Asociación Geol. Argentina 66, 38-53.
- Horton, B. K., 1998. Sediment accumulation on top of the Andean orogenic wedge: Oligocene to late Miocene basins of the Eastern Cordillera, southern Bolivia. Geol. Soc. Am. Bull. 110, 1174–1192.
- Horton, B. K., 2005. Revised deformation history of the central Andes: Inferences from Cenozoic foredeep and intermontane basins of the Eastern Cordillera, Buiyia. Tectonics 24, TC3011, doi:10.1029/2003TC001619.
- Horton, B., 2018. Tectonic regimes of the central and southern / nde : responses to variations in plate coupling during subduction. Tectonics 37, 402-429 (2018). doi.org/10.1002/2017TC004624.
- Horton, B.K., DeCelles, P.G., 2001. Modern and ancient flucial megafans in the foreland basin systems of the central Andes, southern Bolivia: implications for drainage network evolution fold-thrust belts. Basin Res. 13, 43–63.
- Horton, B.K., Fuentes, F., Boll, A., Starck, D., Razinizz, S. G., Stockli, D. F., 2016. Andean stratigraphic record of the transition from back and extension to orogenic shortening: a case study from the northern Neuquén Basin, Argantina. J. S. Am. Earth Sci. 71:17–40.
- Houseman, G.A., McKenzie, D.P., Molner, P., 1981. Convective instability of a thickened boundary layer and its relevance for the thermal evolution of continental convergent belts. J. Geophys. Res. 86, 6115-6132.
- Husson, L., Conrad, C., Faccenna, J. 20.2. Plate motions, Andean orogeny, and volcanism above the South Atlantic convection cell. Earth Planet. Sci. Lett. 317–318, 126–135.
- laffaldano, G., Bunge, H.-P., Di con, T. H., 2006. Feedback between mountain belt growth and plate convergence. Geolo 19 51, 893–896.
- Ibarra F., S. Liu, C. Meeßer, C.3. Prezzi, J. Bott, M. Scheck-Wenderoth, S. Sobolev, M.R. Strecker, 2019. 3D da. a-derived lithospheric structure of the Central Andes and its implications for deformation: Insights from gravity and geodynamics modeling. Tectonophys. 766, 453-468.
- Ibarra, F., Prezzi, C. B. Bott, J., Scheck- Wenderoth, M., Strecker, M., 2021. Distribution of temperature and strength in the Central Andean lithosphere and its relationship to seismicity and active deformation. J. Geophys. Res. Solid Earth 126, e2020JB021231. <u>https://doi.org/10.1029/2020JB021231</u>
- Introcaso, A., Pacino, M.C., Fraga, H., 1992. Gravity, isostasy and Andean crustal shortening between latitudes 30 and 35°S. Tectonophys. 205, 31-48.
- Irigoyen, M.V., Buchan, K.L., Brown, R.L., 2000. Magnetostratigraphy of Neogene Andean foreland-basin strata, lat 33°S, Mendoza Province, Argentina. Geol. Soc. Am. Bull. 112, 803– 816.
- Isacks, B.L., 1988. Uplift of the Central Andean Plateau and bending of the Bolivian Orocline. J. Geophys. Res. 93, 3211–3231.
- Isacks, B.L., Barazangi, M., 1977. Geometry of Benioff zones: Lateral segmentation and downward bending of the subducted lithosphere, in Island arcs, Deep Sea Trenches and Back arc basins, in: Talwani, M., Pitman, W. (Eds), AGU, pp. 99-114, Washington, D.C.

- Jamieson, R.A., Beaumont, C., 2013. On the origin of orogens. Geol. Soc. Ame. Bull. 125, 1671-1702.
- Jammes, S., Huismans, R., 2012. Structural styles of mountain building: Controls of lithospheric rheologic stratification and extensional inheritance. J. Geophys. Res. 117, B10403,doi:10.1029/2012JB009376.
- Jaquet, Y., Duretz, T., Grujic, D., Masson, H., Schmalholz, S.M., 2018. Formation of orogenic wedges and crustal shear zones by thermal softening, associated topographic evolution and application to natural orogens. Tectonophys. 746, 512–529.
- Jara, P., Charrier, R., 2014. Nuevos antecedentes geocronológicos y estratigráficos en la Cordillera Principal de Chile central entre 32° y 32°300S Implicancias paleogeográficas y estructurales. Andean Geology 41(1). doi.org/10.5027/andgeoV41n1-a07.
- Jensen, E., Cembrano, J., Faulkner, D., Veloso, E., Arancibia, G, 2011. Development of a selfsimilar strike-slip duplex system in the Atacama fault system, Chile. J. Struct. Geol. 33, 1611-1626.
- Johnson, N.M., Jordan, T.E., Johnsson, P.A., Naeser, C.W., 19(6. Magnetic Polarity Stratigraphy, Age and Tectonic Setting of Fluvial Sedimer is in an Eastern Andean Foreland Basin, San Juan Province, Argentina, in: Foreland Basins. Bleckwell Publishing Ltd., Oxford, UK, pp. 63–75. doi.org/10.1002/9781444303810.ch3.
- Jones, R. E., Kirstein, L. A., Kasemann, S. A., Litvak, /. D. Poma, S., Alonso, R. N., Hinton, R., 2016. The role of changing geodynamics in the progressive contamination of Late Cretaceous to Late Miocene arc magmas in the routhern Central Andes, Lithos 262, 169-191.
- Jordan, T. E., Isacks, B. L., Allmendinger. P. V. Brewer, J. A., Ramos, V. A., Ando, C. J., 1983, Andean tectonics related to geometric of subducted Nazca Plate. Geol. Soc. Am. Bull. 94(3), 341–361.
- Jordan, T. E., Allmendinger, R. W., 1596. The Sierras Pampeanas of Argentina: A modern analogue of Rocky Mountain for an deformation. Amer. J. Sci. 286(10), 737–764. doi.org/10.2475/ajs.286.10.737.
- Jordan, T. E., Alonso, R. N., 1937. Cenozoic Stratigraphy and Basin Tectonics of the Andes Mountains, 20° -28° South Latitude. Am. Assoc. Petroleum Geol. Bull. 71, 49–64 doi.org/10.1306/94886L 14 - 1704 -11D7 - 8645000102C1865D.
- Jordan, T. E., Allmending יר, F. W., Damanti J. F.,Drake, R. E., 1993. Chronology of motion in a complete thrust be וני וויי Precordillera, 30–31°S, Andes Mountains, J. Geol. 101(2), 135–156 (1993).
- Jordan, T.E., Schlune, ger, F., Cardozo, N., 2001. Unsteady and spatially variable evolution of the Neogene Angean Bermejo foreland basin, Argentina. J. South Am. Earth Sci. 14, 775–798. doi.org/10.1016/S0895- 9811(01)00072-4.
- Jordan, T.E., Mpodozis, C., Munoz, N., Blanco, N., Pananont, P., Gardeweg, M., 2007. Cenozoic subsurface stratigraphy and structure of the Salar de Atacama Basin, northern Chile. J. South Ame. Earth Sci. 23, 122–146.
- Jordan, T.E., Kirk-Lawlor, N.E., Blanco, N.P., Rech, J.A., Cosentino, N.J., 2014. Landscape modification in response to repeated onset of hyperarid paleoclimate states since 14 Ma, Atacama Desert, Chile. Geol. Soc. Am. Bull. 126 (7–8), 1016–1046.Juez-Larré, J., Kukowski, N., Dunai, T., Hartley, A., Andriessen, P., 2010. Thermal and exhumation history of the Coastal Cordillera arc of northern Chile revealed by thermochronological dating. Tectonophysics 495:48-66.
- Kay, S.M., Coira, B., 2009. Shallowing and steepening subduction zones, continental lithosphere loss, magmatism and crustal flow under the central Andean Altiplano–Puna plateau, in:

Backbone of the Americas: Shallow Subduction, Plateau and Ridge and Terrane Collisions. Geol. Soc. Ame., 204, pp. 229–260.

- Kay, R. W., Kay, S. M., 1993. Delamination and delamination magmatism. Tectonophys. 219, 177–189.
- Kay, S., Kurtz, A., 1995. Magmatic and tectonic characterization of the El Teniente region: Internal report, Superintendencia de Geología, El Teniente, CODELCO, 180 p.
- Kay, S.M., Mpodozis, C., 2001. Central Andean Ore Deposits Linked to Evolving Shallow Subduction Systems and Thickening Crust. GSA Today 11, 4. doi.org/10.1130/1052-5173(2001)0112.0.CO;2.
- Kay, S.M., Mpodozis, C., 2002. Magmatism as a probe to the Neogene shallowing of the Nazca plate beneath the modern Chilean flat-slab. J. South Am. Earth Sci. 15, 39–57.
- Kay, S., Maksaev, V., Moscoso, R., Mpodozis, C., Nasi, C., Gordillo, C.E., 1988. Tertiary Andean magmatism in Chile and Argentina between 28°S and 33°S: Correlation of magmatic chemistry with a changing Benioff zone. J. South Ame. Earth Sci. 121-38.
- Kay, S.M., Coira, B., Viramonte, J., 1994a. Young mafic back ar poleanic rocks as indicators of continental lithospheric delamination beneath the Argentice Plateau, Central Andes. J. Geophys. Res. 99, 24323–24339.
- Kay, S. M., Mpodozis, C., Tittler, A., Cornejo, P., 1994b. Te. tiary magmatic evolution of the Maricunga mineral belt in Chile. International Geolr gy haview, 36(12), 1079-1112.
- Kay, S.M., Mpodozis, C., Coira, B., 1999. Magmatism. teoonism, and mineral deposits of the central Andes (22°-33°S). In: Skinner, B., (Ed.), Geology and Ore Deposits of the Central Andes. Soc. Econom. Geol. Special Public. 7, 77-79.
- Kay, S.M., Godoy, E., Kurtz, A., 2005. Epicodic arc migration, crustal thickening, subduction erosion, and magmatism in the south cert.ral Andes. Geol. Soc. Am. Bull. 117, 67-88.
- Kay, S.M., Ramos, V.A., Dickinson, W., 2009. Backbone of the Americas: Shallow subduction, plateau uplift, and ridge and terrary collision.Geol. Soc. Am. Memoir 204, 279 pp.
- Kay, S.M., Mpodozis, C., Gardewer, A., 2013. Magma sources and tectonic setting of Central Andean andesites (25.5 28°S) related to crustal thickening, forearc subduction erosion and delamination. Geol. Soc. London. Special Public. 385, doi:10.1144/SP385.11.
- Kelly, J.G., 1961. Geología de las sierras de Moquina y perspectivas petrolíferas, Dto. de Jáchal, Provincia de Sa, Juan, YPF, Gerencia Exploración Buenos Aires.
- Kennan, L., Lamb, S., Rundle C., 1995. K-Ar dates from the Altiplano and Cordillera Oriental of Bolivia: implication s to. Cenozoic stratigraphy and tectonics. J. South Am. Earth Sci. 8, 163-186.
- Kirby, S.H., Durham, V'.B., Stern, L.A., 1991. Mantle phase changes and deep-earthquake faulting in subducing lithosphere. Science 252, 216-225.
- Kley, J., Reinhardt, M., 1994. Geothermal and tectonic evolution of the Eastern Cordillera and the Subandean ranges of southern Bolivia, in: Tectonics of the Southern Central Andes: Structure and evolution of an active continental margin. Berlin, Springer-Verlag, pp. 155-170.
- Kley, J., 1996. Transition from basement-involved to thin-skinned thrusting in the Cordillera Oriental of southern Bolivia. Tectonics 15, 763–775.
- Kley, J., Müller, J., Tawackoli, S., Jacobshagen, V., Manutsoglu, E., 1997. Pre-Andean and Andean age deformation in the eastern Cordillera of southern Bolivia, J. South Am. Earth Sci. 10, 1–19, doi:10.1016/ S0895-9811(97)00001-1.
- Kley, J., Monaldi C. R., 1998. Tectonic shortening and crustal thickness in the central Andes: How good is the correlation? Geology 26, 723–726.
- Kley, J., 1999. Geologic and geometric constraints on a kinematic model of the Bolivian orocline. J. S. Am. Earth Sci. 12, 221-235.

- Kley, J., Monaldi C. R., 2002. Tectonic inversion in the Santa Barbara System of the central Andean foreland thrust belt, northwestern Argentina. Tectonics 21 doi:10.1029/2002TC902003.
- Kley, J., Rossello, E.A., Monaldi, C.R., Habighorst, B., 2005. Seismic and field evidence for selective inversion of Cretaceous normal faults, Salta rift, northwest Argentina. Tectonophys. 399, 155-172.
- Kozlowski, E., Manceda, R., Ramos, V.A., 1993. Estructura. In: Ramos VA (ed) Geología y Recursos Naturales de Mendoza. Asoc. Geol. Argentina, Buenos Aires, pp 235–256.
- Krystopowicz, N.J., Currie, C.A., 2013. Crustal eclogitization and lithosphere delamination in orogens. Earth Plan. Sci. Lett. 361, 195–207, doi.org/10.1016/j.epsl.2012.09.056.
- Kudrass, H. R., Delisle, G., Goergens, A., Heeren, F., von Huene, R., Jensen, A., ... & Marzan, I. (1995). Crustal investigations off-and onshore, Nazca/Central Andes (CINCA), Bundesanstalt für Geowissenschaften und Rohstoffe Hannover (Germany). Report Sonne-Cruise 104.
- Kurtz, A., Kay, S.M., Charrier, R., Farrar, E., 1997. Geochronology f Miocene plutons and exhumation history of the el Teniente region, Central Chile (3/2-35 S). Rev. Geol. Chile 24 (1), 75–90.
- Lacombe, O., Bellahsen, N., 2016. Thick-skinned tectonics and Lasement-involved fold-thrust belts. Insights from selected Cenozoic orogens. Geol. Nagazine 1, 1-48. Doi:10.1017/S0016756816000078.
- Ladino, M., Tomlinson, A., Blanco, N., 1999. New concernations for the age of the Cretaceous compressional deformation in the Andes of norther a Configuration of the Ath International Symposition on Andean Geodynamics, Göttingen, Germany, 407-410, Paris.
- Lamb, S., Hoke, L., 1997. Origin of the high, lacou in the central Andes, Bolivia, South America. Tectonics 16, 623–649.
- Lamb. S., Hoke, L., Kennan, L., Dewey, J., 197. Cenozoic evolution of the Central Andes in Bolivia and northern Chile, in: Burg JP, Ford M (eds), Orogeny through time. Geol. Soc. Spec. Pub. 121, 237–264.
- Lanza, F., A. Tibaldi, F.L. Bonali, and C. Corazzato (2013), Space-time variations of stresses in the Miocene-Quaternary along the Calama-Olacapato-El Toro fault zone, Central Andes, *Tectonoph.* 593, 33,56.
- Levina, M., Horton, B. K., Fuchtes, F., Stockli D. F., 2014. Cenozoic sedimentation and exhumation of the foreunc basin system preserved in the Precordillera thrust belt (31–32°S), southern central Andes Argentina. Tectonics 33, doi:10.1002/2013TC003424.
- Lindsay, D., Zentilli, M., nojas de la Rivera, J., 1995. Evolution of an active ductile to brittle shear system controlling mineralization at the Cuquicamata porphyry copper deposits, northern Chile. Int. Geol. Rev. 37, 945-95.
- Limarino, C. O., Fauqué, L. A., Cardó, R., Gagliardo, M. L., Escoteguy, L., 2002. La faja volcánica miocena de la Precordillera septentrional. Rev. Asoc. Geol. Argentina 57, 289-304.
- Litherland, M., Klinck, B.A. O'Connor, E.A, Pitfield, P., 1985. Andean-trending mobile belts in the Brazilian Shield. Nature 314, 345-348.
- Liu S., Currie C. A., 2016. Farallon plate dynamics prior to the Laramide orogeny: numerical models of flat subduction. Tectonophysics 666:33-47.
- Löbens, S., Sobel, E. R., Bense, F. A., Wemmer, K., Dunkl, I., Siegesmund, S., 2013. Refined thermochronological aspects of the Northern Sierras Pampeanas. Tectonics 32 (3), 453-472. doi.org/10.1002/tect.20038.
- López, C., Martínez, F., Del Ventisette, C., Bonini, M., Montanari, D., Muñoz, B., Riquelme, R., 2020. East-vergent thrusts and inversion structures: An updated tectonic model to understand the Domeyko Cordillera and the Salar de Atacama basin transition in the western Central Andes. J. South. Am. Earth Sci. 103, doi.org/10.1016/j.jsames.2020.102741.

- Lossada, A. C., Giambiagi, L., Hoke, G.D., Fitzgerald, P.G., Creixell, C., Murillo, I., Mardonez, D., Velásquez, R., Suriano, J., 2017. Thermochronologic evidence for Late Eocene Andean mountain building at 30°S. Tectonics, 36, 2693–2713. doi.org/10.1002/2017TC004674.
- Lossada, A., Hoke, G. D., Giambiagi, L. B., Fitzgerald, P. G., Mescua, J. F., Suriano, J., Aguilar, A., 2020. Detrital thermochronology reveals major middle Miocene exhumation of the eastern flank of the Andes, predating the Pampean flat-slab (33°-33.5°S). Tectonics Doi:10.1029/2019TC005764.
- Lunkenheimer, F. 1930. El terremoto submendocino del 30 de mayo de 1929. Observatorio Astronómico de La Plata. Contribuciones Geofísicas Tomo III, Nº 2. La Plata
- Lynner, C., Beck, S., Zandt, G., Porritt, R., Lin, F-C., Eilon, Z., 2018. Midcrustal deformation in the Central Andes constrained by radial anisotropy. J. Geophys. Res. Solid Earth 123, 4798-4813, https://doi.org/10.1029/2017JB014936.
- Lyon-Caen, H., Molnar, P., Suárez, G., 1985. Gravity anomalies and flexure of the Brazilian Shield beneath the Bolivian Andes. Earth Plan. Sci. Lett. 75: 81-9_ Doi 10.1016/0012-821X(85)90053-6
- Mackaman-Lofland, C., Horton, B.K., Fuentes, F., Consteniuc, M., Stockli, D.F., 2019. Mesozoic to Cenozoic retroarc basin evolution during changer in tectonic regime, southern Central Andes (31–33°S): Insights from zircon U-Pb gechronology. J. South Am. Earth Sci. 89, 299–318. doi.org/10.1016/j.jsames.2018.10.004.
- Mackaman-Lofland, C. et al., 2020. Andean mountain building and foreland basin evolution during thin- and thick-skinned Neogene deformation (32–33°S). Tectonics 39,

e2019TC005838. https://doi.org/10.1029/2.191.005838.

- Maggi, A., Jackson, J., McKenzie, D., P est¹₂y, K., 2000. Earthquake focal depths, effective elastic thickness, and the strength of the continental lithosphere. Geology 28, 495-498.
- Maksaev, V., Marinovic, N., 1980. Cue drángulos Cerro de la Mica, Quillagua, Cerro Posada y Oficina Prosperidad, Región de au fotagasta. Instituto de Investigaciones Geológicas, Carta Geológica de Chile 45-48: 63 pp.
- Maksaev, V., Zentilli, M., 1988 Maco metalogénico regional de los megadepósitos de tipo pórfido cuprífero del norto grade de Chile, in: proceedings of the 5th Congreso Geológico Chileno, 1, B181-B212.
- Maksaev, V., Zentilli, M., 1999. Fission track thermochronology of the Domeyko Cordillera, Northern Chile: Implications for Andean tectonics and porphyry copper metallogenesis. Exploration and Mining Geology 8: 65-89.
- Maksaev, V., Moscosc R., Mpodozis, C., Nasi, C., 1984. Las unidades volcánicas y plutónicas del Cenozoico superior en la alta Cordillera del Norte Chico (29°-31°S): Geología, alteración hidrotermal y mineralización, Rev. Geol. Chile 21, 11-51.
- Maksaev, V., Munizaga, F., McWilliams, M., Fanning, M., Mathur, R., Ruiz, J., Zentilli, M., 2004. New chronology for El Teniente, Chilean Andes, from U/Pb, 40Ar/39Ar, Re-Os and fission track dating: Implications for the evolution of a supergiant porphyry Cu-Mo deposit. In Andean Metallogeny: New Discoveries, Concepts and Updates (Sillitoe, R.H.; Perelló, J.; Vidal, C.E.; editors). Soc. Econom. Geol., Special Public. 11, 15-5.
- Mardones, V., Peña, M., Pairoa, S., Ammirati, J.-B., Leisen, M., 2021. Architecture, kinematics, and tectonic evolution of the principal cordillera of the Andes in central Chile (~33.5°S): Insights from detrital zircon U-Pb geochronology and seismotectonics implications. Tectonics 40, e2020TC006499. <u>https://doi.org/10.1029/2020TC006499</u>
- Mardonez, D., 2020. Relación entre estructuras profundas y someras a lo largo de la transecta La Serena-Jáchal (30°S), Andes Centrales Sur. PhD thesis. Universidad Nacional de Córdoba, Argentina.

- Mardonez, D., Suriano, J., Giambiagi, L. B., Mescua, J. F., Lossada, A. C., Creixell, C., Murillo, I., 2020. Cenozoic structural evolution of the 30°S transect, between the Frontal Cordillera and the Western Sierras Pampeanas, Argentina. J. South Am. Earth Sci. 104, doi.org/10.1016/j.jsames.2020.102838.
- Marinovic, N.; Lahsen, A. 1984. Hoja Calama, Región de Antofagasta. Servicio Nacional de Geología y Minería, Carta Geológica de Chile 58: 140 p., 1 mapa escala 1:250.000. Santiago.
- Marinovic, N., 2007. Carta Oficina Domeyko, Región de Antofagasta. SERNAGEOMIN. Carta Geológica de Chile, Serie Geología Básica 105, p 41 (1: 100.000).
- Marquillas, R. A., del Papa, C., Sabino I. F., 2005. Sedimentary aspects and paleoenvironmental evolution of a rift basin: Salta Group (Cretaceous-Paleogene), northwestern Argentina, Int. J. Earth Sci. 94(1), 94–113, doi:10.1007/s00531-004-0443-2.
- Martin, M.W., Clavero, J. Mpodozis, C., Cuitiño, L., 1995. Estudio reológico de la franja El Indio, Cordillera de Coquimbo. SERNAGEOMIN, Informe Registrado IR-25-6, pp. 1-238, Santiago.
- Martin, M.W., Clavero, J., Mpodozis, C., 1997. Eocene to late M ocer e structural development of Chile's El Indio gold belt, ~30°S, in: proceedings of the 8th congreso Geológico Chileno 1, 144-148, Antofagasta, Chile.
- Martínez, C., Soria, E., Uribe, H., Escoba, A., Hinajosa, A., 1994. Estructura y evolución del Altiplano sur occidental: el sistema de cabalgamien os ce Uyuni-Khenayani y su relación con la sedimentación terciaria. Revista Técnica de YPFB (3-4): 245-264.
- Martínez, F., Arriagada, C., Peña, M., Deckart, K., Charrier, R., 2016. Tectonic styles and crustal shortening of the Central Andes "Pampean" fix:-sl-ib segment in northern Chile (27–29°S). Tectonophysics 667(23), 144–162. doi org/.0.1016/j.tecto.2015.11.019.
- Martínez, F., López, C., Parra, M., Espir oza D., 2019. Testing the occurrence of thick-skinned triangle zones in the Central Andes forecre: Example from the Salar de Punta Negra Basin in northern Chile. J. Struct. Geol. 12c, 14-28 10.1016/j.jsg.2018.12.009.
- Martínez, F., López, C., Parra, M., 2070. Effects of Pre-Orogenic Tectonic Structures On The Cenozoic Evolution Of Andean *D* formed Belts: Evidence From The Salar De Punta Negra Basin In The Central Andes Of Corthern Chile. Basin Res. doi.org/10.1111/bre.12436.
- Martínez, F., Peña, M., Parra, M., López, C., 2021. Contraction and exhumation of the western Central Andes induced by basin inversion: New evidence from "Pampean" subduction segment. Basin Res. 33(5), 2706-272.
- Martinod, J., Gérault, M., Husson, L., Regards, V., 2020. Widening of the Andes: an interplay between subduction dynamics and crustal wedge tectonics. Earth Sci. Rev. doi:10.1016/j.earsc rev.2020.103170.
- Martos, F.E., et al., 2022. Neogene evolution of the Aconcagua fold-and-thrust belt: linking structural, sedimentary analyses and provenance U-Pb detrital zircon data for the Penitentes basin. Tectonophysics 825, 229233.
- Massoli, D., Koyi, H., Barchi, M., 2006. Structural evolution of a fold and thrust belt generated by multiple decollements: analogue models and natural examples from the Northern Apennines (Italy). J. Struct. Geol. 28, 185-199.
- Matteini, M., Mazzuoli, R., Omarini, R., Cas, R. A., Maas, R., 2002. Geodynamical evolution of the Central Andes at 24°S as inferred by magma composition along the Calama-Olacapato-El Toro transversal volcanic belt. J. Volcanol. Geotherm. Res. 118, 205-228.
- McFarland, P. K., Bennett, R. A., Alvarado, P., DeCelles, P. G., 2017. Rapid geodetic shortening across the Eastern Cordillera of NW Argentina observed by the Puna-Andes GPS Array. J. Geophys. Res. 122, 8600–8623. doi.org/ 10.1002/2017JB014739.
- McGlashan, N., Brown, L., Kay, S., 2008. Crustal thickness in the central Andes from teleseismically recorded depth phase precursors. Geophys. J. Int. 175, 1013-1022.

- McQuarrie, N., 2002. The kinematic history of the central Andean fold-thrust belt, Bolivia: Implications for building a high plateau, Geol. Soc. Am. Bull., 114, 950 –963, doi:10.1130/0016-7606.
- McQuarrie, N., Davis, G.H., 2002. Crossing the several scales of strain-accomplishing mechanisms in the hinterland of the central Andes fold-thrust belt, Bolivia. J. Struct. Geol. 24, 1587-1602.

McQuarrie, N., DeCelles, P.G., 2001. Geometry and structural evolution of the central Andean. Tectonics 20, 669–692. doi.org/10.1029/2000TC001232.

McQuarrie, N., Horton, B., Zandt, G. Beck, S., DeCelles, P., 2005. Lithospheric evolution of the Andean fold-thrust belt, Bolivia, and the origin of the Central Andean Plateau. Tectonophys., 399, 15–37, doi:10.1016/j.tecto.2004.12.013.

Meigs, A.J., Nabelek, J., 2010. Crustal-scale pure shear foreland deformation of western Argentina. Geophys. Res. Letters 37, L11304, doi:10.1029/2011GL043220.

Mescua, J.F., Giambiagi, L., Ramos, V.A., 2013. Late Cretaceous up.⁴⁴ in the Malargüe foldand-thrust belt (35° S), southern central Andes of Argentina and Chile. Andean Geol. 40, 102–116.

Mescua, J., Giambiagi, L., Tassara, A., Gimenez, M., Ramps, V./., 2014. Influence of pre-Andean history over Cenozoic foreland deformation: structural styles in the Malargüe foldand-thrust belt at 35°S, Andes of Argentina. Geosphere 10(3), 585-609.

Mingramm, A., Russo, A., Pozzo, A., Cazau, L., 1979. Signal Subandinas. In: Turner, J. (Ed.), Geología Regional Argentina, Academia Nacional de Ciencias, Córdoba, pp. 95-138 (1979).

- Molnar, P., England, P., 1990. Temperatures, he v. flu x, and frictional stress near major thrust faults. J. Geophys. Res. Solid Earth 95(94), 4833-4856.
- Mon, R., Hongn, F., 1991. The structure of the Precambrian and lower Paleozoic basement of the Central Andes between 22° and 32 C Latin Geologische Rundschau 80, 745–758.
- Mon, R., Salfity, J. A., 1995. Tectonic production of the Andes of northern Argentina, in Petroleum Basins of South America, edited product A. J. Tankard et al., Ame. Assoc. Petr. Geol. Mem., 62, 269–283.

Montero-López, C., del Papa, C. E., Hongn, F. D., Strecker, M. R., Aramayo, A., 2016. Synsedimentary broken frieland tectonics during the Paleogene in the Andes of NW Argentine: new evidence from regional to centimetre-scale deformation features. Basin Research, 1–18. doi.o. 7/10.1111/bre.12212.

- Montero-López, C. et (1., 2020. Development of an incipient Paleogene topography between the present-day Eastern American Plateau (Puna) and the Eastern Cordillera, southern Central Andes, NW Argentina. Basi 1 Res. 33(2), 1194-1217.
- Morency, C., Doin M. P., 2004. Numerical simulations of the mantle lithosphere delamination, J. Geophys. Res., 109, B03410, doi:10.1029/ 2003JB002414
- Mortimer, E., Carrapa, B., Coutand, I., Schoenbohm, L., Sobel, E. R., Sosa Gomez, J., Strecker, M. R., 2007. Fragmentation of a foreland basin in response to out-ofsequence basement uplifts and structural reactivation; El Cajon-Campo del Arenal Basin, NW Argentina. Geol. Soc. Am. Bull. 119, 637-653. doi.org/10.1130/B25884.1.
- Moscoso, R., Mpodozis, C., 1988. Estilos estructurales en el Norte Chico de Chile (28°-31°S), Regiones de Atacama y Coquimbo, Rev. Geol., de Chile 25, 151-166.
- Mouthereau, F., Lacomb, O., and Meyer, B., 2006. The Zagros folded belt (Fars, Iran): constrains from topography and critical wedge modelling. Geophys. J. Int. 165: 336-356.
- Mouthereau, F. et al. 2007. Placing limits to shortening evolution in the Pyrenees: Role of margin architecture and implications for the Iberia/Europe convergence. Tectonics 26, doi:10.1002/2014TC003663

Mpodozis, C., Cornejo, P., 1986. Hoja Pisco-Elqui. SERNAGEOMIN, Carta No. 68.

- Mpodozis, C., Cornejo, P., 2012. Cenozoic tectonics and porphyry copper systems of the Chilean Andes. Soc. Econom. Geol., Special Public. 16, 329-360.
- Mpodozis, C., Kay, S. M., 2009. Evolution of less than 10 Ma Valle Ancho region lavas, southern end of the Central Andean Volcanic Zone (27.58S), in: proceedings of the 12th Congreso Geologico Chileno, Santiago, S7 019.
- Mpodozis C, Ramos, V. A., 1989. The Andes of Chile and Argentina. In: Ericksen G E, Cañas Pinochet M T, Rieinemud J A (eds) Geology of the Andes and its Relation to Hydrocarbon and Mineral Resources. Circumpacific Council for Energy and Mineral Resources, Earth Science Series, 11:59–90
- Mpodozic, C., Marinovic, N., Smoje, I., Cuitiño, L., 1993. Estudio geológico-estructural de la Cordillera de Domeyko entre Sierra Limón Verge y Sierra Mariposas, Región de Antofagasta. Sernageomin-Codelco, 282 pp., Santiago.
- Mpodozis, C., Cornejo, P., Kay, S., Tittler, A., 1995. La Franja de Jaricunga: síntesis de la evolución del frente volcánico oligocenomioceno de la zona sur de los Andes Centrales. Rev. Geol. Chile 22, 273-313.
- Mpodozis, C., Kay, S., Gardeweg, M., Coira, B., 1997. Geologic de la región de Valle Ancho-Laguna Verde (Catamarca, Argentina): Una ventana al de sarr ento del extremo sur de la zona volcánica de los Andes Centrales, in: proceedings of the 8th Congreso Geológico Chileno, Antofagasta, 3, 1689-1693.
- Mpodozis, C., Arriagada, C., Basso, M., Roperch, P., Cochold, P., Reich, M., 2005. Late Mesozoic to Paleogene stratigraphy of the Salar de Atacama Basin, Antofagasta, Northern Chile: Implications for the tectonics evolution of the central Andes. Tectonophys. 399, 125 – 154, doi:10.1016/j.tecto.2004.12.019.
- Mpodozis, C., Clavero, J., Quiroga, R., ^rroguett, B., Arcos, R., 2018. Geología del área Cerro Cadillal-Cerro Jotabeche, región de Atacama. SERNAGEOMIN, Carta Geológica de Chile, Serie Geología Básica 200, 1 map. escala 1:100.000. Santiago.
- Mukhopadhyay, S., Sharma, J., 20¹ o. Crustal scale detachment in the Himalayas: a reappraisal. Geophys. J. Int.I 183, 850-860.
- Müller, J.P., Kley, J., Jacobshauen, V., 2002. Structure and Cenozoic kinematics of the Eastern Cordillera, southern Bolivia (2.°S). Tectonics 21, doi 10.1029/2001TC001340.
- Müller, R. D. et al., 2016. Crea. basin evolution and global-scale plate reorganization events since Pangea breakup Annu. Rev. Earth Planet. Sci. 44, 107-138.
- Muñoz, N., Charrier, K., Jordan, T., 2002. Interactions between basement and cover during the evolution of the Salar de Atacama basin, northern Chile. Andean Geol. 29, 55-80.
- Muñoz, M., Fuentes, F., Vergara, M., Aguirr, L., Olov Nyström, J., Féraud, G., Demant, A., 2006. Abanico East Formation: petrology and geochemistry of volcanic rocks behind the Cenozoic arc front in the Andean Cordillera, central Chile (33°50′S). Rev. Geol. Chile 33, 109-140.
- Muñoz, N., Blanco, N., Pananont, P., Gardeweg, M., 2007. Cenozoic subsurface stratigraphy and structure of the Salar de Atacama basin, northern Chile. J.South Am.Earth Sci. 23: 122-146.
- Muñoz, M., & Hamza, V. (1993). Heat flow and temperature gradients in Chile. Studia geophysica et geodaetica, 37(3), 315-348.
- Murillo, I., Velasquez, R., Creixell, C., 2017. Geología del área Guanta-Los Cuartitos y Paso de Vacas Heladas, escala 1:100.000. SERNAGEOMIN Carta Geológica de Chile, Serie Geología Básica.
- Muruaga, C.M., 1998. Estratigrafía y Sedimentología del Terciario Superior de la Sierra de Hualfín, entre las localidades de Villavil y San Fernando, Provincia de Catamarca. Ph. D. Thesis. Universidad Nacional de Tucuman, Facultad de Ciencias Naturales e Instituto M. Lillo, 270 pp.

Nacif, S., Lupari, M., Triep, E., Nacif, A., Alvarez, O., Folguera, A., Gimenez, M., 2017. Change in the pattern of cristal seismicity at the southern Central Andes from a local seismic network. Tectonophys. 708: 56-69.

Nacif, S, Triep, E, Spagnotto, S, Aragon, E, Furlani, R y Álvarez, O. 2015 The flat to normal subduction transition study to obtain the nazca plate morphology using high resolution seismicity data from the nazca plate in central chile. Tectonophysics. 10.1016/j.tecto.2015.06.027. Volumen 657, Pag. 102–112.

Niemeyer, H., Urrutia, C., 2009. Transcurrencia a lo largo de la Falla Sierra de Varas (Sistema de fallas de la Cordillera de Domeyko), norte de Chile. Andean Geol. 36, 37-49.

Niemeyer, H., 2013. Geología del área Cerro Lila-Peine, Región de Antofagasta. SERNAGEOMIN, Serio Geología Básica 147, 39p, Santiago.

Norabuena, E. O., Dixon, T. H., Stein, S., Harrison, C. G., 1999. Decelerating Nazca- South America and Nazca- Pacific plate motions. Geophys. Res. Let. 26, 3405–3408.,

Nyström, J.O., Vergara, M., Morata. D., Levi, B., 2003. Tertiary volcauism in central Chile (33°15′-33°45′S): a case of Andean Magmatism. Geol. Soc. Am. 3ull. 115, 1523-1537.

Oliveros, V., Féraud, G., Aguirre, L., Fornari, M., Morata, D. 2003. The Early Andean Magmatic Province (EAMP): 40Ar/39Ar dating on Mesozoic volcabic and plutonic rocks from the Coastal Cordillera, northern Chile. J. Volcanol. Geotheric: Res. *157*, 311-330.

Oncken, O., Sobolev, S., Stiller, M., Luschen, E., 2003 Sermic imaging of a convergent continental margin and plateau in the central Ander (Ander Continental Research Project 1996 ANCORP' 96). J. Geophys. Res. Solid Farth 108, 2328. Doi:10.1029/2002JB001771.

Oncken O, Hindle D, Kley J, Elger K, Victor P, Scherr mann, K., 2006. Deformation of the Central Andean Upper Plate System — Facis, Fiction, and Constraints for Plateau Models, in: The Andes. Springer Berlin Heide perc, pp. 3–27. https://doi.org/10.1007/978-3-540-48684-8_1

Oncken, O., Boutelier, D., Dresen, G., Schemmann, K., 2012. Strain accumulation controls failure of a plate boundary zone: Linkin.g deformation of the Central Andes and lithosphere mechanics. Geochem. Geophys. *3c* osyst. 13, Q12007, doi:10.1029/2012GC004280.

Ord, A., Hobbs, B.E., 1989. The strength of the continental crust, detachment zones and the development of plastic increase. Tectonophysics 158: 269-289.

Ortiz, G., Alvarado, P., Foscick, J. C., Perucca, L., Saez, M., Venerdini, A., 2015. Active deformation in the northerr Sierra de Valle Fertil, Sierras Pampeanas, Argentina. J. South Am. Earth Sci. 64, 335 -350. doi.org/10.1016/j.jsames.2015.08.015 (2015).

Ortiz, G., Goddaro, A. S., Fosdick, J. C., Alvarado, P., Carrapa, B., Cristofolini, E., 2021. Fault reactivation in the cierras Pampeanas resolved across Andean extensional and compressional regimes using thermocrhonologic modeling. J. South Am. Earth Sci. 112 (6):103533

Pardo, M., Comte, D., Monfret, T., 2002. Seismotectonic and stress distribution in the central Chile subduction zone. J. South Am. Earth Sci. 15, 11-22.

Pardo-Casas, F., Molnar, P., 1987. Relative motions of the Nazca (Farallon) and South American plates since late Cretaceous time. Tectonics 6, 233-248.

Payrola, P., Powell, J., del Papa, C., Hongn, F., 2009. Middle Eocene deformationsedimentation in the Luracatao Valley: Tracking the beginning of the foreland basin of northwestern Argentina. J. South Am. Earth Sci. 28, 142-154.

Pearson, D. et al., 2012. Major Miocene exhumation by fault-propagation folding within a metamorphosed, early Paleozoic thrust belt: Northwestern Argentina. Tectonics 31(4), 1–24. http://doi.org/10.1029/2011TC003043.

Pearson, D., Kapp, P., DeCelles, P. G., Reiners, P. W., Gehrels, G. E., Ducea, M. N., Pullen, A., 2013. Influence of pre-Andean crustal structure on Cenozoic thrust belt kinematics and

shortening magnitude: Northwestern Argentina. Geosphere 9(6), 1766–1782. http://doi.org/10.1130/GES00923.S2.

- Perarnau, M., Gilbert, H., Alvarado P., Martino, R., Anderson, M., 2012. Crustal structure of the Eastern Sierras Pampeanas of Argentina using high frequency local receiver functions. Tectonophys. 580, 208-217.
- Pérez-Peña, J.V., Al-Awabdeh, M., Azañón, J.M., Galve, G., Booth-Rea, J.P., Notti, D., 2017. SwathProfiler and NProfiler: Two new ArcGIS Add-ins for the automatic extraction of swath and normalized river profiles. Computers & Geosciences 104,135-150, https://doi.org/10.1016/j.cageo.2016.08.008.
- Perucca, L.P., Martos, L.M., 2012. Geomorphology, tectonism and Quaternary landscape evolution of the central Andes of San Juan (30°S–69°W), Argentina. Quat. Int. 253, 80–90. https://doi.org/10.1016/j.quaint.2011.08.009.
- Perucca, L.P., Vargas, N., 2014. Neotectónica de la provincia de Can Juan, centro-oeste de Argentina. Bol. la Soc. Geológica Mex. 66, 291–304.
- Perucca, L. P., Espejo, K., Angillieri, M. Y. E., Rothis, M., Tejada, F., Vargas, M., 2018. Neotectonic controls and stream piracy on the evolution of a fiver catchment: a case study in the Agua de la Peña River basin, Western Pampean Rongres. Argentina. J. Iber. Geol. 44, 207–224. doi.org/10.1007/s41513-018-0052-8.
- Petrinovic I., Martí, J., Aguirre-Diaz, G. J., Guzmán, S Gejer, A., Paz, N. S., 2010. The Cerro Aguas Calientes caldera, NW Argentina: An example in a tectonically controlled, polygenetic collapse caldera, and its regional significance id. Volcanol. Geotherm. Res. 194, 15–26. doi.org/10.1016/j.jvolgeores.2010.04.012.
- Petrinovic I., Hernando, I.; Guzmán, S.R., 202, Miocene to Recent collapse calderas of the southern and central volcanic zones of the Andes and their tectonic constraints. Int. . Earth Sci. 110, 2399-2434.
- Pilger, R., 1981. Plate Reconstruction: Aseismic Ridges, and Low-Angle Subduction Beneath the Andes. Geol. Soc. Am. Bull. Jac. 4-3-456.
- Pineda, G., Emparán, C., 2006. Geo oc.a del área Vicuña-Pichasca, Región de Coquimbo. SERNAGEOMIN Carta Geo óguna de Chile, Serie Geología Básica, v. 97, p. 40.
- Pingel, H., Alonso, R., Altenherger, U., Cottle, J., Strecker, M., 2019. Miocene to Quaternary basin evolution at the scithe astern Andean Plateau (Puna) margin (ca. 24°S lat, Northwestern Argentina). Lasin Res. doi.org/10.1111/bre.12346.
- Piquer, J.; Berry, R.F., Scott, R.J., Cooke, D.R., 2016. Arc-oblique fault systems: their role in the Cenozoic struction and metallogenesis of the Andes of central Chile. J. Struct. Geol, 89, 101-117.
- Piquer, J., Hollings, F., Rivera, O., Cooke, D. R., Baker, M., Testa, F., 2017. Along-strike segmentation of the Abanico Basin, central Chile: New chronological, geochemical and structural constraints. Lithos 268–271, 174–197.
- Poma, S., Ramos, A. M., Litvak, V. D., Quenardelle, S. M., Maisonnave, E. B., Díaz, I., 2017. Southern Central Andes Neogene magmatism over the Pampean flat slab: implications on crustal and slab melts contribution to magma generation in Precordillera, Western Argentina. Andean Geol. 44, 249-274.
- Pope, D., Willett, S.D., 1996. Thermal-mechanical model for crustal thickening in the central Andes driven by ablative subduction. Geology 26: 511-514.
- Porras, H., Pinto, L., Tunik, M., Giambiagi, L., Deckart, K., 2016. Provenance of the Miocene Alto Tunuyán Basin (33°40'S, Argentina) and its implications for the evolution of the Andean Range: Insights from petrography and U–Pb LA–ICPMS zircon ages. Tectonophys. 690, 298–317. doi.org/10.1016/j.tecto.2016.09.034.

- Porth, R. A., 2000. Strain-rate-dependent force model of lithospheric strength. Geophys. J. Int. 141(3), 647-660.
- Prezzi, C. B., Alonso, R. N., 2002. New paleomagnetic data from the northern Argentine Puna: Central Andes rotation pattern reanalyzed, J. Geophys. Res., 107(B2), 2041, doi:10.1029/ 2001JB000225.
- Prezzi, C., Götze, H.-J., Schmidt, S., 2009. 3D density model of the Central Andes. Phys. Earth Planet. Inter. 177, 217–234. http://dx.doi.org/10.1016/j.pepi.2009.09.004.
- Prezzi, C., Iglesia Llanos, M. P., Götze, H. J., Schmidt, S. 2014. Thermal and geody-namic contributions to the elevation of the Altiplano-Puna plateau. Physics Earth Planet. Interiors 237, 51-64.
- Price, R., 1981. The Cordilleran foreland thrust and fold belt in the southern Canadian Rocky Mountains. Geol. Soc. Lon., Spec. Pub. 9: 427-448.
- Quade, J. et al., 2015. The growth of the central Andes, 22°S-26° In: DeCelles et al. (Eds), Geodynamics of a Cordilleran Orogenic System: The Central Andes of Argentina and Northern Chile: Geol. Soc. Am. Memoir, pp. 277-308.
- Quiero, F., Tassara, A., laffaldano, G., Rabbia, O., 2022. Growic on Neogene Andes linked to changes in plate convergence using high-resolution kiner, atic models. Nature Communications 13, 1339.
- Quinteros, J., Sobolev, S., 2013. Why has the Nazca r late slowed since the Neogene? Geology 41, 31–34.
- Quiroga, R. et al., 2021. Spatio-temporal variation on the strain field in the southern Central Andes broken-foreland (27°30´S) during the Lote Cenozoic. J. South Ame. Earth Sci., doi.org/10.1016/j.jsames.2020.102981
- Ramirez, C.F., Gardeweg, M., 1982. Hc a Troonao, Region de Antofagasta. SERNAGEOMIN Carta Geol de Chile. 54, p 122.
- Ramos, V.A., Godoy, E., Godoy, V., Fángaro, F., 1996a. Evolución tectónica de la cordillera principal Argentino–Chilena a la la intitud del Paso de Piuquenes (33°30'S) in: proceedings of the 13th Congreso Geológico Argent no, Buenos Aires, pp. 337–352 (1996a).
- Ramos, V.A., Cegarra, M., Cris allu, E., 1996b. Cenozoic tectonics of the high Andes of westcentral Argentina (30-36° lauride). Tectonophys. 259, 185–200. doi.org/10.1016/0040-1951(95)00064-x.
- Ramos, V.A., Cristallini, Perez, D., 2002. The Pampean flat-slab of the Central Andes, J. South. Am. Earth Sci. '5, 59-78.
- Ramos, V.A., Zapala, T.P., Cristallini, E.O., Introcaso, A., 2004. The Andean Thrust System— Latitudinal Variations in Structural Styles and Orogenic Shortening, in: McClay, K.R. (Ed.), Thrust Tectonics and Hydrocarbon Systems. Am. Assoc. Petroleum Geol. Memoir, 30–50 doi.org/10.1306/M82813C3.
- Ramos, V. A., 2018. Tectonic evolution of the central Andes: From terrane accretion to crustal delamination, in G. Zamora, K. M. McClay, and V.A. Ramos, eds. Petroleum basins and hydrocarbon potential of the Andes of Peru and Bolivia. Am. Assoc. Petroleum Geol. Memoir 117, pp. 1–34.
- Re, G., Jordan, T., Kelley, S., 2003. Cronología y paleogeografía del Terciario de la cuenca intermontana de Iglesia septentrional, Andes de San Juan, Argentina. Rev. Asoc. Geol. Argentina 58, 31-48.
- Reat, E.J., Fosdick, J.C., 2018. Basin evolution during Cretaceous-Oligocene changes in sediment routing in the Eastern Precordillera, Argentina. J. South Am. Earth Sci. 84, 422– 443. doi.org/10.1016/j.jsames.2018.02.010.
- Reiners, P., et al., 2015. Low-temperature thermochronology trends across the Central Andes, 21°S-28°S. Geol. Soc. Am. Mem. 212, doi:10.1130/2015.1212(12).

Reutter, K.J., Scheuber, E., Wigger, P., 1994. Tectonics of the Southern Central Andes: structure and evolution of an active continental margin. Springer-Verlag, Berlin. 335 pp.

- Reutter, K., Scheuber, E., Chong, G., 1996. The Precordillera fault system of Chuquicamata, northern Chile: Evidence for reversal along arc-parallel strike-slip faults. Tectonophys. 259, 213–228.
- Reynolds, J.H., Jordan, T.E., Johnson, N.M., Damanti, J.F., Tabbutt, K., 1990. Neogene deformation of the flatsubduction segment of the Argentine-Chilean Andes:
 Magnetostratigraphic constraints from Las Juntas, La Rioja province, Argentina. Geol. Soc. Am. Bull. 102, 1607–1622. doi.org/10.1130/0016- 7606(1990)1022.3.CO;2.
- Reynolds, J. H., Galli, C. I., Hernández, R. M., Idleman, B. D., Kotila, J. M., Hilliard, R. V., Naeser, C. W., 2000. Middle Miocene tectonic development of the Transition Zone, Salta Province, northwest Argentina: Magnetic stratigraphy from the Metan Subgroup, Sierra de Gonzalez, Geol. Soc. Am. Bull. 112(11), 1736–1751.
- Richard, A.D., 2020. Modelado cinemático aplicado a neotectónica en el frente orogénico andino entre 32°10′S – 32°40′S, provincias de Mendoza y San Juar (Ph.) thesis, Universidad Nacional de San Luis, 189 pp.
- Richard, A.D., Costa, C., Giambiagi, L., Moreno Marcó, C. A'hum ada, E., Vázquez, F., 2019. Neotectónica del extremo austral de la falla La Rinconac'a, Precordillera oriental, provincia de San Juan. Rev. Asoc. Geo. Argentina 76(1), 24-39
- Richardson, T., Gilbert, H., Anderson, M., Ridgway, K. 2012. Seismicity within the actively deforming Eastern Sierras Pampeanas, Argen 2013. Geophys. J. Int. 188, 408-420.
- Riesner, M., Lacassin, R., Simoes, M., Carrizo L Ar nijo, R., 2018. Revisiting the crustal structure and kinematics of the Central Anals at 33.5°S: Implications for the mechanics of Andean mountain building. Tectonice 37 1347–1375. <u>https://doi.org/10.1002/2017TC004513</u>
- Riesner, M., Simoes, M., Carrizo, D., Laca, in, R., 2019. Early exhumation of the Frontal Cordillera (Southern Central Ande, and implications for Andean mountain-building at~ 33.5° S. Scientific reports, 9(1), 1-10.
- Riller, U., Petrinovic, I., Ramelow, J., Strecker, M. R., Oncken, O., 2001. Late Cenozoic tectonism, collapse caldera ano plateau formation in the central Andes, Earth Planet. Sci. Lett. 188, 299–311, doi:11.10.3/S0012-821X(01)00333-8.
- Riller, U., Cruden, A.R, Boutellet, D., Schrank, C., 2012. The causes of sinuous crustal-scale deformation patterns in ho orogens: Evidence from scaled analogue experiments and the southern Central Anders. J. Struct. Geol., 37, 65-74.
- Rimando, J., Schounbuhn, L. M., Costa, C. H., Owen, L. A., Cesta, J. M., Richard, A. D., Gardini, C. E., 201: Late Quaternary Activity of the La Rinconada Fault Zone, San Juan, Argentina. Tectonics 38, 916–940. doi.org/10.1029/2018TC005321.
- Riquelme, R., Martinod, J., Hérail, G., Darrozes, J., Charrier, R., 2003. A geomorphological approach to determining the Neogene to Recent tectonic deformation in the Coastal Cordillera of northern Chile (Atacama). Tectonophys. 361, 255–275.
- Rivas, C., Ortiz, G., Alvarado, P., Podesta, M., Martin, A., 2019. Modern cristal seismicity in the northern Andean Precordillera, Argentina. Tectonophys. 762: 144-158.
- Rodríguez, M.P., Pinto, L., Encinas, A., 2012. Cenozoic erosion in the Andean forearc in Central Chile (33°–34°S): Sediment provenance inferred by heavy mineral studies, in: Rasbury, E.T., Hemming, S.R., and Riggs, N.R. (Eds.), Mineralogical and Geochemical Approaches to Provenance. Geol. Soc. Am. Special Paper 487, 141–162, doi:10.1130/2012.2487(09).
- Rodríguez, M. P., Charrier, R., Brichau, S., Carretier, S., Farías, M., de Parseval, P., Ketcham, R. A., 2018. Latitudinal and Longitudinal Patterns of Exhumation in the Andes of North-Central Chile. Tectonics 37, 2863–2886. doi.org/10.1029/2018TC004997.

- Rodríguez Fernández, L.R., Heredia, N., Espina, R., Cegarra, M., 1999. Estratigrafía y estructura de los Andes Centrales Argentinos entre los 30° y 31°S de Latitud Sur. Acta Geol. Hisp. 32, 51-75.
- Roeder, D., 1988. Andean-age structure of Eastern Cordillera (Province of La Paz, Bolivia). Tectonics 7, 23–39.

Rojas Vera, E., Giampaoli, P., Gobbo, E., Rocha, E., Olivieri, G., Figueroa, D., 2019. Structure and tectonic evolution of the Interandean and Subandean zones of the central Andean fold-and-thrust belt of Bolivia. Andean Tectonics, doi.org/10.1016/B978-0-12-816009-1.00016-2.

Royden, L., 1996. Coupling and decoupling of crust and mantle in convergent orogens: Implications for strain partitioning in the crust. J. Geophys. Res. 101, 17,679-17,705.

Ruskin, B., Jordan, T., 2007. Climate change across continental sequence boundaries: paleopedology and lithofacies of Iglesia basin, northwestern Argentina. J. Sed. Res. 77, 661-679.

Safipour, R., Carrapa, B., DeCelles, P.G., Thomson, S.N., 2015. Exhumation of the Precordillera and northern Sierras Pampeanas and along-strike correlation of the Andean orogenic front, northwestern Argentina, in: DeCelles, P.G., Ducea, M.N., Garrapa, B., and Kapp, P.A. (Eds.), Geodynamics of a Cordilleran Orogenic System: The Cortiral andes of Argentina and Northern Chile. Geol. Soc. Am. Memoir 212, 181–199. Coi:10.1130/2015.1212(10).

Salazar, P., Kummerow, J., Wigger, P., Shapiro, S., A. ch, G., 2017. State of stress and crustal fluid migration related to west-dipping structures in the slab-forearc system in the northern Chilean subduction zone. Geophys. J. Int. 209. 1403-1413. doi: 10.1093/gji/ggw463

Salfity, J. A., Marquillas, R. A., 1994. Tectonic ar. ' se limentary evolution of the Cretaceous-Eocene Salta Group Basin, Argentina, in: Scifity, J. (Ed.), Cretaceous Tectonics of the Andes, Vieweg, Brunswick, pp. 266 315. Germany.

Santibáñez, I., Cembrano, J., García-Pérez, T., Costa, C., Yáñez, G., Marquardt, C., Arancibia, G., González, G., 2019. Crustal fac¹ts in the Chilean Andes: geological constraints and seismic potential. Andean Geol. +, ⁽¹⁾. 32-65. doi: 10.5027/andgeoV46n1-3067

Sasso, A.M., 1997. Geological evolution and metallogenetic relationships of the Farallon Negro Volcanic Complex, NW Argentin, PhD Thesis, Queen University, 842 p., Kingston.

Saylor, J.E., Horton, B.K., 20(4., 'onuniform surface uplift of the Andean plateau revealed by deuterium isotopes in Mince, e volcanic glass from southern Peru. Earth Planet. Sci. Lett. 387, 120–131. doi.org/10.1016/j.epsl.2013.11.015.

Schellart, W.P., 2017 And ean mountain building and magmatic arc migration driven by subduction-induced whole mantle flow. Nature Communications 8:2010, DOI: 10.1038/s41467-017-01847-z

Schellart, W. P., Freeman, J., Stegman, D. R., Moresi, L., May, D., 2007. Evolution and diversity of subduction zones controlled by slab width. Nature 446, 308–311.

Scheuber, E., Giese, P., 1999. Architecture of the Central Andes: a compilation of geoscientific data along a transect at 21°S. J. South Am. Earth Sci. 12, 103–107.

Scheuber, E., Mertmann, D., Ege, H., Silva-González, P., Heubeck, C., Reutter, K. J., Jacobshagen, V., 2006. Exhumation and basin development related to formation of the Central Andean plateau, 21°S, in: The Andes 10.1007/978-3-540-48684-8_13.

Schmeling H, Babeyko AY, Enns A, et al. (2008). A benchmark comparison of spontaneous subduction models-Towards a free surface. Phys Earth Planet Inter 171:198–223. https://doi.org/10.1016/j.pepi.2008.06.028

Schmitz, M. A., 1994. balanced model of the Southern Central Andes. Tectonics 13, 484-492.

Schmitz, M., Kley, J., 1997. The geometry of the Central Andean backarc crust: Joint interpretation of cross-section balancing and seismic refraction data. J. South Am. Earth Sci. 10, 99-110. Schoenbohm, L.M., Strecker, M.R., 2009. Normal faulting along the southern margin of the Puna Plateau, northwest Argentina. Tectonics 28, TC5008, doi:10.1029/2008TC002341.

Scholz, C. H., 1990. Mechanics of Faulting and Earthquakes. Cambridge University Press, Cambridge, 484 pp.

Schott, B., Schmeling, H., 1998. Delamination and detachment of a lithospheric root. Tectonophys. 296: 225-247. <u>https://doi.org/10.1016/S0040-1951(98)00154-1</u>

Schurr, B., Asch, G., Rietbrock, A., Kind, R., Pardo, M., Heit, B., Monfret, T., 1999. Seismicity and average velocity beneath the Argentine Puna. Geophys. Res. Lett. 26, 3015-3028.

Schurr, B., Asch, G., Rietbrock, A., Trumbull, R., Haberland, C., 2003. Complex patterns of fluid and melt transport in the central Andean subduction zone revealed by attenuation tomography. Earth Planet. Sci. Lett. 215, 105-119.

Seeber, L., Armbruster, J., Quittmeyer, R., 1981. Seismicity and continental subduction in the Himalayan arc, in Zagros, Hindu Kush, Himalaya, Geodynamic evolution, pp. 215-242, eds Gupta H.K. and Delany, F.M., American Geophysical Unions, Geodynamic Series 3, Washington DC.

Seggiaro, R.E. et al., 1998. Estudio geológico integrado de la cuenada de Humahuaca. Servicio Geológico Nacional, Argentina, pp 88.

Seggiaro, R.E. et al., 2014. evolución tectónica Andina entre las Sierras de Hualfin, Capillitas y extremo sur de Aconquija, Provincia de Catamarca Rev. la Asoc. Argent., 71(4), 500-512.

Sempere, T., Herail, G., Oller, J., Bonhomme, M. G., 195 Late Oligocene-early Miocene major tectonic crisis and related basins in Bolivia. Gruingy 18, 946 – 949.

Sempere, T., Butler, R. F., Richards, D. R., Marshall, L. G., Sharp, W., Swisher Iii, C. C., 1997. Stratigraphy and chronology of Upper Crata seous-lower Paleogene strata in Bolivia and northwest Argentina. Bull. Geol. Soc. Am 109, 709–727. doi.org/10. 1130/0016-7606(1997)1092.3.CO;2.

Sheffels, B.M., 1990. Lower bound on the amount of crustal shortening in the central Bolivian Andes. Geology 18, 812–815. d/u. rg/10.1130/0091-7613(1990)0182.3.CO;2.

Siame, L.L., Bellier, O., Sébrier, M., vraujo, M., 2005. Deformation partitioning in flat subduction setting: case of the Andean ore and of western Argentina (28°S-33°S). Tectonics 24, doi.10.1029/2005TC0017.47.

Silva-González, P., 2004. Lor södliche Altiplano im Tertiär: Sedimentáre Entwicklung und tektonische Implikatio, on, oh.D. thesis, Freie Univ., Berlin, Germany.

Silvestro, J., Kraemer, P., Achilli, F., Brinkworth, W., 2005. Evolución de las cuencas sinorogénicas a. la Cridillera Principal entre 35°-36° S, Malargüe. Rev. Asoc. Geol. Argentina 60(4), 62 7-643.

Siks, B., Horton, B., 2011. Growth and fragmentation of the Andean foreland basin during eastward advance of fold-thrust deformation, Puna plateau and Eastern Cordillera, northern Argentina. Tectonics 30, TC6017, doi:10.1029/2011TC002944.

Smalley, R., Isacks, B., 1990. Seismotectonics of thin- and thick-skinned deformation in the Andean foreland from local network data: Evidence for a seismogenic lower crust. J. Geophys. Res. 95, 12,487-12,497.

Smalley, R.F., et al., 1993, Basement seismicity beneath the Andean Precordillera thinskinned thrust belt and implications for crustal and lithospheric behavior. Tectonics 12,63–76, Sobel, E.R., Strecker, M.R., 2003. Uplift, exhumation and precipitation: tectonic and climatic control of Late Cenozoic landscape evolution in the northern Sierras Pampeanas, Argentina. Basin Res. 15, 431–451.

Sobolev, S., Babeyko, A., 2005. What drives orogeny in the Andes? Geology 33: 617–620; doi: 10.1130/G21557.1.

- Somoza, R., 1998. Updated Nazca (Farallon)-South America relative motions during the last 40 Ma: Implications for mountain building in the Central Andean region. J. South Am. Earth Sci. 11, 211-215.
- Somoza, R., Singer, S., Coira, B., 1996. Paleomagnetism of upper Miocene ignimbrites at the Puna: An analysis of vertical-axis rotations in the Central Andes. J. Geophys. Res. 101 (B5), 11387± 11400.
- Soto, R., Martinod, J., Riquelme, R., Hérail, G., Audin, L., 2005. Using geomorphological markers to discriminate Neogene tectonic activity in the Precordillera of North Chilean forearc (24-25°S). Tectonophys. 411, 41-55.
- Spagnotto, S., Triep, E., Giambiagi, L., Lupari, M., 2015. Triggered seismicity in the Andean arc region via static stress variation by the Mw=8.8, February 27, 2010, Maule Earthquake. J. South Am. Earth Sci. 63, 36-47.
- Springer, M. (1999). Interpretation of heat-flow density in the Cent 3' Andes. Tectonophysics, 306(3-4), 377-395.
- Springer, M., & Förster, A. (1998). Heat-flow density across the Cent al Andean subduction zone. Tectonophysics, 291(1-4), 123-139.
- Stalder, N.F., Herman, F., Fellin, G. M., Coutand, I., Aguiler, G., Fleiners, P. W., Fox, M., 2020.
 The relationships between tectonics, climate and exhunination in the Central Andes (18–36°S): Evidence from low-temperature thermochror olog /. Earth Sci. Rev. doi.org/ 10.1016/j.earscirev.2020.103276.
- Stern, Ch., 2020. The role of subduction erosion in the generation of Andean and other convergent plate boundary arc magmas, the continental crust and mantle. Gondwana Research 88, 220-249.
- Strecker, M. R., Cerveny, P., Arthur, L., Jali ia, D., 1989. Late Cenozoic tectonism and landscape development in the foreland of the Andes: Northern Sierras Pampeanas (26°–28°S), Argentina. Tectonics 8, 517–534, doi:10.1029/TC008i003p00517.
- Strecker, M. R., Alonso, R. N., Boolange, B., Carrapa, B., Hilley, G. E., Sobel, E. R., Trauth, M. H., 2007. Tectonics and climate citile southern central Andes. Annu. Rev. Earth Planet. Sci. 35, 747–787 doi.org/10.1146/an.urev.earth.35.031306.140158.
- Suppe, J., 1981. Mechanics of mountain building and metamorphism in Taiwan. Geol. Soc. China Mem., 4: 67-89.
- Suriano, J., Limarino, C.C. Tedesco, A.M., Alonso, M.S., 2015. Sedimentation model of piggyback basins: Central ceamples of San Juan Precordillera, Argentina, in: Sepulveda et al. (eds), Geodynamic Processes in the Andes of Central Chile and Argentina. Geol. Soc., London, Spec. Pub 399, http://dx.doi.org/10.1144/SP399.17.
- Suriano, J., Mardonez, D., Mahoney, J. B., Mescua, J. F., Giambiagi, L. B., Kimbrough, D., Lossada, A., 2017. Uplift sequence of the Andes at 30°S: insights from sedimentology and U/Pb dating of synorogenic deposits J. South. Am. Earth Sci. 75, 11-34.
- Tao, W. C., O'Connell, R. J., 1992. Ablative subduction: A two-sided alternative to the conventional subduction model. J. Geophys. Res. 97: 8877-8904.
- Tassara, A. (2005). Interaction between the Nazca and South American plates and formation of the Altiplano–Puna plateau: Review of a flexural analysis along the Andean margin (15–34 S). Tectonophysics, 399(1-4), 39-57.
- Tassara, A., Echaurren, A., 2012. Anatomy of the Andean subduction zone: three-dimensional density model upgraded and compared against global-scale models. Geophys. J. Int. 189, 161-168, doi:10.1111/j.1365-246X.2012.05397x.
- Tassara, A., Swain, C., Hackney, R., Kirby, J., 2007. Elastic thickness structure of South America estimated using wavelets and satellite-derived gravity data, Earth planet. Sci. Lett., 253, 17–36.

Tomlinson, A.J., Mpodozis, C., Cornejo, P.C., Ramirez, C.F., 1993. Structural Geology of the Sierra Castillo–Agua Amarga Fault System, Precordillera of Chile, El Salvador-Potrerillos. Second ISAG, Oxford (K), pp. 259–262.

Tomlinson, A., Mpodozis, C., Cornejo, P., Ramirez, C., Dumitru, T., 1994. El sistema de fallas Sierra Castillo – Agua Amarga: Transpresió sinestral eocena en la Precordillera de Potrerillos, El Salvador, in: proceedings of the 7th Congreso Geológico Chileno, 1459-1463.

- Tomlinson, A., Blanco, N., Maksaev, V., Dilles, J., Grunder, A. L., Ladino, M., 2001. Geología de la Precordillera andina de Quebrada Blanca – Chuquicamata, Regiones I y II (20°30´-22°30´S). Servicio Nacional de Geología y Minería, Chile, Informe registrado IR-01-20, 2, 444 pp, 20 maps (1:50.000), Santiago.
- Tomlinson, A. J., Blanco, N., Dilles, J.H., 2010. Carta Calama, Región de Antofagasta, CartaGeológica de Chile, Serie Preliminar 8, Servicio Nacional de Geología y Minería, Santiago 1:50000.
- Tomlinson A.; Blanco, N.; Dilles J.; Maksaev V.; Ladino M. 2018. Cator Calama, región de Antofagasta. Servicio Nacional de Geología y Minería, Carta Geo ógica de Chile, Serie Geología Básica 199: 213 p. Santiago.
- Tunik, M., Folguera, A., Naipauer, M., Pimentel, M., Ramor, V. A., 2010. Early uplift and orogenic deformation in the Neuquén Basin: Constraints on the Andean uplift from U–Pb and Hf isotopic data of detrital zircons. Tectonophys. 48.9, 2: 8–273.
- Turcotte, D. L., Schubert, G., 2014. Geodynamics 3rd 9u. Cambridge University Press. doi.org/10.1017/CBO9780511843877.

Uba, C.E., Heubeck, C., Hulka, C., 2005. Facies Chalviss and basin architecture of the Neogene Subandean synorogenic wedge, southern Polivia. Sediment. Geol. 180, 91–123.

- Uba, C.E., Heubeck, C., Hulka, C., 2006 Ev Jution of the late Cenozoic Chaco foreland basin, Southern Bolivia. Basin Res. 18, 145-1, ?, doi:10/1111/j.1365-2117.2006.00291.x.
- Uba, C.E., Kley, J., Strecker, M.R., Submitt, A.K., 2009. Unsteady evolution of the Bolivian Subandean thrust belt: The role on panlanced erosion and clastic wedge progradation: Earth Planet. Sci. Lett. 281, 134–146, c oi: 10.1016 /j.epsl.2009.02.010.
- Uyeda, S., Kanamori, H., 1979 Bac'r-arc opening and the mode of subduction. J. Geophis. Res. 84, 1049-1061.
- Uyeda, S., & Watanabe, T. (19c?). Terrestrial heat flow in western South America. Tectonophysics, 83(1-2), 6 5-70.
- Vanderhaeghe, O., Neavede, S., Fullsack, P., Beaumont, C., Jamieson, R., 2001. Evolution of orogenic wedges and continental plateaux: Insights from crustal thermal-mechanical models overlying subducting mantle lithosphere. *Geophys. J. Int.*, **153**, 27–51.
- Vargas, G. et al., 2014. Probing large intraplate earthquakes at the west flank of the Andes. Geology 42, 1083-1086.
- Vergara, M., Morata, D., Villarroel, R., Nyström, J., Aguirre, L., 1999. Ar/Ar ages, very low-grade metamorphism and geochemistry of the volcanic rocks from "Cerro El Abanico", Santiago Andean Cordillera (33°30´S-70°30´-70°25´W)., in: proceedings of the 4° International Symposium on Andean Geodynamics, Göttingen, Germany, 785-788.
- Victor, P., Oncken, O., Glodny, J., 2004. Uplift of the western Altiplano plateau: evidence from the Precordillera between 20° and 21°S (northern Chile). Tectonics 23, doi 10.1029/2003TC001519.

- Villegas, A., Raquel, J., Zahradnik, J., Nacif, S., Spagnotto, S., Winocur, D., Flavia Leiva, M., 2016. Waveform inversion and focal mechanisms of two weak earthquakes in Cordillera Principal (Argentina) between 35 degrees and 35.5 degrees S. J. South Am. Earth Sci. 71, 359-369.
- Watts, A.B., Lamb, S.H., Fairhead, J.D., Dewey, J.F., 1995. Lithospheric flexure and bending of the Central Andes. Earth Plan. Scie. Let. 134, 9–21.
- Wdowinski, S., Bock, Y., 1994. The evolution of deformation and topography of high elevated plateaus, 2. Application to the central Andes. J. Geophys. Res. 99: 7121–7130.
- Wdowinski, S., O'Connell, R. J., 1991. Deformation of the central Andes (15-27S)
- derived from a flow model of subduction zones. J. Geophys. Res. 96, 12245–12255.
- Wigger P.J. et al., 1994. Variation in the crustal structure of the southern central Andes deduced from seismic refraction investigations, in: Reutter, K.J., Scheuber, E., Wigger, P.J. (Eds.), Tectonics of the Southern Central Andes. Springer-Verlag, Bei in, pp. 23–48.
- Willett, S., Beaumont, C., Fullsack, P., 1993. Mechanical Model for the Tectonics of Doubly Vergent Compressional Orogens. Geology 21, 371–374.
- Winocur, D. A., Litvak, V. D., Ramos, V. A., 2015. Magmatic and tectonic evolution of the Oligocene Valle del Cura Basin, Main Andes of Argentina and Chile: Evidence for generalized extension, in: Geodynamic processes in the Andes of central Chile and Argentina. Geol. Soc. Special Publ. 399, 109–130.
- Yamano, M., & Uyeda, S. (1990). Heat-flow studies in the Peru Trench subduction zone. In Proc. Ocean Drill. Program, Sci. Results (Vol. 112, rp. 653-661).
- Yáñez, G., Cembrano, J., 2004. Role of viscous, 'ate coupling in the late Tertiary Andean tectonics. J. Geophys. Res. 109, B02407, doi: 10.1029/2003JB002494.
- Yáñez, G., Perez-Estay, N., Araya-Varg s, J., Sanhueza, J., Figueroa, R., Maringue, J., Rojas, T., 2020. Shallow anatomy of the San Komón Fault (Chile), constrained by geophysical methods: Implications for its role II. the Andean deformation. Tectonics 39, e2020TC006294. https://doi.org/10.1029/2020TCfor295
- Yonkee, A., Weil, A., 2010. Reconstructing the kinematic evolution of curved mountain belts: linternal strain patterns in the Wyoming salient, Sevier thrust belt, USA. Geol. Soc. Am. Bull. 122, 24-49.
- Yuan, X. et al., 2000. Subaction and collision processes in the Central Andes constrained by converted seismic phanes. Nature 408, 958-961.
- Yuan, X., Sobolev, S. Z., Find, R., 2002. Moho topography in the central Andes and its geodynamic implications. Earth Planet. Sci. Lett. 199, 389–402.
- Zapata, T. R., Allmencinger, R. W., 1996. Thrust-front zone of the Precordillera, Argentina: A thick-skinned triangle zone. Am. Assoc. Petroleum Geol. Bull. 80(3), 359–381.
- Zapata, S., Sobel, E. R., del Papa, C., Jelinek, A. R., Glodny, J., 2019. Using a paleosurface to constrain low-temperature thermochronological data: Tectonic evolution of the Cuevas range, Central Andes. Tectonics 38 doi.org/10.1029/2019TC005887.
- Zapata, S., Sobel, E., del Papa, C., Glodny, J., 2020. Upper plate controls on the formation of broken foreland basins in the Andean retro-arc between 26 and 28°S: from Cretaceous rifting to Paleogene and Miocene broken foreland basins. Geochem. Geophys. Geosyst. 21, https://doi.org/10.1029/2019GC008876.
- Zhou, R., Schoenbohm, L., Sobel, E., Davis, D., Glodny, J., 2017. New constraints on orogenic models of the southern Central Andean Plateau: Cenozoic basin evolution and bedrock exhumation. Geol. Soc. Am. Bull. 129, 152-170. Doi.org/10.1130/B31384.1

Declaration of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

The authors declare the following financial interests/personal relationships which may be considered as potential competing interests:

Crustal anatomy and evolution of a subduction-related orogenic system: Insights from the Southern Central Andes (22-35°S)

Laura Giambiagi^{1*}, Andrés Tassara^{2,3}, Andrés Echaurren¹, Joaquín Julve^{2,3}, Rodrigo Quiroga¹, Matías Barrionuevo¹, Sibiao Liu⁴, Iñigo Echeverría²; Diego Mardónez¹, Julieta Suriano¹, José Mescua^{1,5}, Ana C. Lossada⁶, Silvana Spagnotto^{7,8}, Macarena Bertoa¹, Lucas Lothari¹

¹ IANIGLA-CONICET, Parque San Martín s/n, 5500 Mendoza, Argentina. *Corresponding author

² Departamento de Ciencias de la Tierra, Universidad de Concepción, Victor Lamas 1290, Concepción, Chile.

³ Millennium Nucleus CYCLO The Seismic Cycle along Subduction Zones, Chile.

⁴ GEOMAR, Helmholtz Centre for Ocean Research Kiel, Kiel, Germany

⁵ Universidad Nacional de Cuyo, Mendoza, Argentina

⁶ IDEAN-CONICET, Universidad de Buenos Aires, Argentina

⁷ Universidad Nacional de San Luis. CONICET, San Luis, Argentina

⁸ Universidad de Buenos Aires, Buenos Aires, Arge ıtır a

Abstract

As the archetype of mountain building in subduction zones, the Central Andes has constituted an excellent example for in restigating mountain-building processes for decades, but the mechanism by which orogenic growth occurs remains debated. In this study we investigate the Souther. Central Andes, between 22° and 35°S, by examining the along-strike variations in Cenozoic uplift history (<45 Ma) and the amount of tectonic shortening-thickening, allewing us to construct seven continental-scale cross-sections that are constrained by a new thermomechanical model. Our goal is to reconcile the kinematic model explaining classely shortening-thickening and deformation with the geological constraints of this subcliction-related orogen. To achieve this goal a representation of the thermomechanical structure of the orogen is constructed, and the results are applied to constrain the main decollement active for the last 15 Myr. Afterwards, the structural evolution of each transect is kinematically reconstructed through forward modeling, and the proposed deformation evolution is analyzed from a geodynamic perspective through the development of a numerical 2D geodynamic model of upper-plate lithospheric shortening.

In this model, low-strength zones at upper-mid crustal levels are proposed to act both as large decollements that are sequentially activated toward the foreland and as regions that concentrate most of the orogenic deformation. As the orogen evolves, crustal thickening and heating lead to the vanishing of the sharp contrast between low- and high-strength layers. Therefore, a new decollement develops towards the foreland, concentrating crustal shortening, uplift and exhumation and, in most cases, focusing shallow crustal seismicity. The north-south decrease in shortening, from 325 km at 22°S to 46 km at 35°S, and the cumulated orogenic crustal thicknesses and width are both explained by transitional

stages of crustal thickening: from pre-wedge, to wedge, to paired-wedge and, finally, to plateau stages.

3. Introduction

In active subduction-type orogens like the Andes, the classic paradigm (Bally et al., 1966; Dewey and Bird, 1970; Uyeda and Kanamori, 1979; Suppe, 1981; Price, 1981; Ramos et al., 2002) proposes that mountain ranges grow through sequential stacking of crustalthrust sheets from the hinterland (arc-region) to the foreland (back-arc region). This mechanism forms an internally-deformed crustal wedge, known as a fold-and-thrust belt, where thrusts are rooted into a major decollement. The critical wedge theory (Davis et al., 1983; Dahlen et al., 1984; Dahlen and Barr, 1989) assumes that the overall shape of the fold-and-thrust belt can be reproduced by a wedge of rocks having brittle behavior and frictionally sliding above a basal decollement. This belt may have different structural styles, where thick- or thin-skinned end-member models explain whence or not the structural basement is involved in the deformation (Lacombe and Bellah sen, 2016, and references therein). However, at an orogenic scale, these end-mem er models may not make sense, because, in the hinterland, the basement is always i volved in deformation (e.g., Coward, 1983). At this orogenic scale, major decollements are n.d-crustal shear zones, located beneath the bottom of the upper brittle crust, that concentrate most of the relative horizontal displacement between an upper a dictiver block (Harry et al., 1995; Oncken et al., 2012). They are regarded as mechanical discontinuities that are sharply delineated throughout the crust at medium geothers, a gradients, being absent at low or high geothermal gradients (Ord and Hobits, 1989). These shear zones have been proposed to extend sub-horizontally for great distances (Harry et al., 1995), constituting the main means of tectonic transport for mour to n building in subduction-related orogens, such as the Central Andes (Isacks, 1983; M. Quarrie, 2002; Oncken et al., 2003; Elger et al., 2005; Kley et al., 1997; Baby et al., 1997; Lacombe and Bellahsen, 2016; Martinod et al., 2020).

Worldwide, major decoller, on's have been proposed for several orogenic systems, both in collisional orogens. su has the island of Taiwan (Suppe, 1981), the Apennines (Massoli et al., 2006), the Zagros (Mouthereau et al., 2006) or the Himalayas (Seeber et al., 1981; Avouac, 2008; Mukhon Johyay and Sharma, 2010), and in subduction-related orogens (Lacombe and Bellahsen, 2016, and references therein). Seismic reflection surveys have documented these decollements in the Pyrenees (Choukroune and ECORS team, 1989; Mouthereau et al., 2007) and in the Central Andes (ANCORP working group, 1999, 2003). In some of these orogens, like the Apennines (Massoli et al., 2006) or the Rocky Mountains (Bally et al., 1966), multiple decollements have been proposed. Several models propose a decoupling between the strong upper crust and the lower ductile crust, such as in the Zagros Mountain system (Mouthereau et al., 2006) and the Alps (Jammes and Huismans, 2012). In the Central Andes, this intracrustal decoupling zone has been visualized as a low-seismic velocity zone beneath the Altiplano-Puna plateau, resembling the crustal structure of the Tibetan plateau (Yuan et al., 2000). While these studies suggest the existence of decollements beneath the orogenic systems, the spatial and temporal distribution of these decollements remain matters of dispute.

The Central Andes constitute an excellent example for investigating a tectonically active subduction orogen, produced by long-term ocean-continent collision between the Nazca and South American plates. This Andean segment exhibits a pronounced variation of orogenic crustal volume and architecture along strike, related to contrasted amounts of crustal shortening-thickening and morphostructural configuration. Its southern part, the Southern Central Andes, ranges from the Altiplano-Puna plateau in the north (22-27.5°S). described as a large and hot orogenic configuration, to the Principal Cordillera in the south (35°S), a small and cold orogen, following the classification of Jamieson and Beaumont (2013). Another major geodynamic feature of the Southern Central Andes is the Pampean flat-slab segment between ~28 and 33°S, linked to changes in upper-plate deformation and an eastward migration of the Neogene arc front (Cahill and Isacks, 1992; Ramos et al., 2002). However, despite decades of study, first-order aspects of this cordilleran system remain as a matter of dispute, such as the overall direction of tortonic transport of the mountain belt, the spatio-temporal distribution of the decollen onto that deform the orogenic wedge, and the controlling factors over tectonic (hor ening and crustal thickness distribution. This is exemplified by different proposals at distinctive sectors of the Andes supported by intrinsically different kinematic models.

Specifically, at the Aconcagua latitudes (32-33°S). three types of models have been proposed: (i) a crustal-wedge model, (ii) an east-vergent model and (iii) a west-vergent model (Fig. 1).

The crustal-wedge model (Fig. 1A) proposes that one or two deep crustal wedges are pushed from the cratonic area into the orogenic system, forming a shallow, east-vergent, main decollement (Allmendinger et al. 1090; Cristallini and Ramos, 2000). This model implies an eastward advance of deferrentiation, with the incorporation of new upper-crustal material at the tip of the easter. orogenic wedge. Under this model, the lower crust behaves as brittle material, a. d there is an asymmetric distribution of shortening.

The east-vergent model (Eg. (B) is characterized by two decollements. The western one is rooted above the subduction-coupling zone and climbs upward and eastward into shallow crustal levels (Ramos et al., 2004; Farías et al., 2010; Giambiagi et al., 2012). Backthrusts affect the forearc region, but most of the shortening is absorbed along the east-vergent faults. The eastern decollement is younger, and disconnected from the western one, implying a migration of deformation towards the foreland.

The west-vergent model (Fig. 1C) is described as the juxtaposition of the crust and mantle lithosphere on top of the upper-crust at the core of the orogenic system (Armijo et al., 2010; Riesner et al., 2018, 2019). This proposal implies a concentration of shortening at the western cordillera slope and a younger western deformation, with the lithosphere behaving as brittle material. These three models imply the crustal root being constructed by the incorporation of material coming from the east, i.e., from the craton area toward the core of the orogenic system.

Figure 1: Different structural models enplaining the crustal and lithospheric deformation in the Central Andes at 32-33°S latituc's (A C) and 21-22°S latitudes (D-F). The sketches are redrawn from published studies (A: Cristrallin and Ramos, 2000; B: Giambiagi et al., 2015a; C: Armijo et al., 2010; D: McQuarrie, 2002; E: Elger et al., 2005; F: Armijo et al., 2015).

Similarly, for the Altipla to transect where the orogenic plateau is located (at latitude 21°-22°S), there are also different tectonic models. First, the east-vergent model proposes two main stacked decollements (Fig. 1D), located in the upper-to-middle crust (McQuarrie, 2002; Anderson et al., 2018). This model implies that deformation progresses eastwards with the incorporation of crustal material both from the forearc and the craton into the orogenic core. Secondly, the model with two disconnected decollements (Fig. 1E) proposes an east-vergent decollement below the Altiplano plateau and a doubly-vergent wedge with a west-vergent decollement below the Eastern Cordillera and an east-vergent decollement below the Sub-Andean ranges (Elger et al., 2005; Oncken et al., 2012). Finally, the doubly vergent, transcrustal-decollement model (Fig. 1F) proposes two opposite decollements reaching the Moho at the Altiplano axis (Armijo et al., 2015).

In our view, constraining the location and timing of activation and deactivation of these decollements appears as a key parameter for understanding orogen dynamics and the evolution of crustal anatomy. Since the Southern Central Andes exhibit significant variations in uplift history, amounts of crustal shortening, crustal anatomy and slab geometry (Jordan et al., 1983; Mpodozis and Ramos, 1989; Charrier et al., 2007; Ramos, 2018), we examine these along-strike changes by constructing seven continental-scale structural profiles crossing this subduction system (Fig. 2). These transects reproduce the present-day crustal structure by incorporating the differential mid-Cenozoic evolution (<45 Ma) of the margin, reconciling diverse geological evidence, and constituting a suitable tool for testing the decollement activity, i.e., where and when the decollements are created and deactivated.

In this contribution we integrate a plethora of previous and new neclogical data of the Southern Central Andes (22-35°S) for evaluating the tectonic and deformational evolution of this segment. First, we describe its morphotectonic con'igulation and present a thorough and updated compilation of previous geological outs at a regional scale. Here, we describe the dominant geological units and the main episodes of crustal deformation, exhumation, and basin generation for each of these transects. These data are used to build the seven continental cross-sections from which we obtained new estimations of crustal shortening and thickening values through to ward structural modeling. We also present new thermomechanical results for the se transects identifying the present-day low-strength zones where the major decollements are likely located and constraining the crustal structure of the last stage of the structural modeling (the last 15 Myr). Additionally, we perform new numerical simulation, through a geodynamic model that characterizes the spatio-temporal evolution of crustal traciting.

These results are used to discuss the role that the thermal structure has on crustal rheology and the occurrence of low-strength decollements in the upper crust where surface structures can be routed. We argue that the presence of sub-horizontal layers with contrasting strength promotes the generation of decollement levels in different sectors of the orogenic crust. Ho vever, this time-dependent rheological condition changes during the construction of the crustal root and the thinning of the lithosphere, which increase mid-crustal temperatures reducing or eliminating the rheological contrast between the upper and lower crust, and therefore inducing the abandonment of the decollement and the generation of a new one towards the east, in an east-vergent evolution mode.

4. Geotectonic setting of the Southern Central Andes (22º-35ºS)

The Southern Central Andes comprise, in its northern sector (22° -27° S): (i) the Coastal Range, which mainly includes Jurassic to Cretaceous magmatic arcs and associated sedimentary basins (Reutter et al., 1996; Riquelme et al., 2003, Oliveros et al., 2006); (ii) the Chilean Precordillera, or Domeyko Range, corresponding to the Late Cretaceous to Eocene magmatic arc, developed over a Devonian to Triassic basement (Coira et al., 1982; Amilibia et al., 2008; Mpodozis and Cornejo, 2012); (iii) the Western Cordillera, with

the Miocene to Holocene magmatic arc (De Silva et al., 2006; Kay and Coira, 2009); (iv) the internally-drained Altiplano/Puna plateau, with an average elevation of 4,000 m (Isacks, 1988; Allmendinger et al., 1997); (v) the doubly vergent thrust belt of the Eastern Cordillera, which uplifts late Proterozoic to Paleozoic metasedimentary and sedimentary rocks (Sempere et al., 1990; Reutter et al., 1994; Kley and Monaldi, 2002; Hongn et al., 2010), (vi) the active eastward-tapering sedimentary wedge of Paleozoic to Neogene rocks of the Sub-Andean fold-and-thrust belt, north of 24°S, and the Santa Bárbara basement-involved fault system, south of 24°S (Mingramm et al., 1979; Allmendinger et al., 1983; Roeder, 1988; Sheffels, 1990; Baby et al., 1992, 1995; Dunn et al, 1995; Kley and Reinhardt, 1994; McQuarrie, 2002); and, (vii) the foreland basin, filled with wedge-shaped Neogene clastic strata of up to 6 km of thickness, known as the Chaco Plains (Uba et al., 2005, 2006). This basin is underlayed by the Brazilian craton, v. t. ich has been a stable nucleus of South America since the Proterozoic (Litherland et cl., 1986).

The Coastal Range is characterized by the presence of a Jro, ounced high-velocity seismic wave anomaly to a depth of 60 km (Heit et al., 3003). To the east, geophysical analyses indicate petrophysical properties of the crust set w the Altiplano, Puna and Eastern Cordillera (high Vp/Vs, high attenuation, high conductivity), which may reflect a hydrated partially-melted crust at a depth of 15-25 l.m, k. own as the Altiplano Low-Velocity Zone ALVZ (Wigger et al., 1994; Graever and Asch, 1999; Yuan et al., 2000; Schurr et al., 2003; Haberland and Rietbrock, 2001; Oncken et al., 2003; Heit et al., 2008). The high topography of the Altiplano/ P_{1} αr lateau is isostatically supported by both a 60to-75-km-thick continental crust (Yuan et al. 2000; Beck and Zandt, 2002; McGlashan et al., 2008; Tassara and Echaurren, 2012) and a thermally-thinned lithosphere underlain by a low-density asthenosphere (Froice Sux and Isacks, 1984; Schurr et al., 1999; Prezzi et al., 2014; Ibarra et al., 2019). The liter sphere is proposed to be thermally thinned because of the removal of a dense and inickened, gravitationally-unstable, mantle lithosphere via delamination (Kay and Kay 1293; Kay et al., 1994b; Garzione et al., 2017; Chen et al., 2020) or other dynamic mech. nisms. The thickness of the crust was mainly achieved by Cenozoic tectonic shorter, ing, linked to eastward displacement of megathrust sheets (Sheffels, 1990; Sci mild Kley, 1997; McQuarrie, 2002; McQuarrie et al., 2005). The crust below the Eastern Cordillera and Sub-Andean Ranges reaches a thickness of 40 km (Schmitz and Kley, 1997).

According to the most widely accepted structural model, the flexurally-strong lithosphere representing the Brazilian shield (Watts et al., 1995) is being underthrusted beneath the Sub-Andean Ranges and the Eastern Cordillera, as is evidenced by seismicity extending ~120 km west from the thrust front (Cahill et al., 1992; Asch et al., 2006). To the west, seismicity is diffuse, and, in the Puna/Altiplano plateau, focal mechanisms show components of strike-slip and normal faulting (Allmendinger et al., 1997; Asch et al., 2006).

To the south, the Andes narrows from ~500 km in the Andean plateau to ~200 km at 35°S, and the crustal thickness diminishes from >65 km at 30°S to <55 km in the south (e.g. Introcaso et al., 1992; Fromm et al., 2004; Gans et al., 2011; Tassara and Echaurren, 2012). The Chilean/Pampean flat-slab segment (28°-32.5°S) is characterized by a

relatively shallow subduction angle (Isacks and Barazangi, 1977; Anderson et al., 2007) and a lack of active arc-related magmatism resulting from the eastward migration of the asthenospheric wedge (Pilger, 1981; Kay et al., 1988; Ramos et al., 2002). At these latitudes, the orogen comprises, from west to east, the following five morpho-tectonic provinces: (i) the Coastal Range, which underlies the modern forearc and is composed of Paleozoic and early Mesozoic accretionary belts (Diaz-Alvarado et al., 2019), and Jurassic to Lower Cretaceous plutonic and volcanic rocks (Mpodozis and Ramos, 1989); (ii) the Principal Cordillera, characterized by thick Jurassic and Cretaceous marine and continental sedimentary sequences deformed within fold-and-thrust belts (Ramos et al., 1996b); (iii) the Frontal Cordillera, which consists of Proterozoic to Devonian metamorphic rocks, Carboniferous-Permian marine sedimentary rocks and Permian-Triassic volcanic and plutonic rocks (del Rey et al., 2019); (iv) the Precordillera v. bich corresponds to a fold-and-thrust belt composed of Paleozoic sedimentary rocks (Astin: a, d Thomas, 1999; Mardonez et al., 2020); and (v) the Pampean Ranges, which ver v.haracterized by east and west- vergent uplifted basement blocks (Ramos et al., 20\2).

Figure 2: Tectonic setting, main geological units and structural features of the Central Andes. A) DEM-derived topographic map highlighting the contrasting surface expression of the Andes in this portion of the margin. Grey dashed lines correspond to 40-km depth slab contours (Tassara and Echaurren, 2012) and red triangles to the active volcanic front. White East-West lines are the seven crustal-scale structural cross-sections analyzed in this work (Figs. 3 to 9). B) Simplified geological map (modified from Gómez et al., 2019), showing the main geological units, morphostructural units (red labels) and structural configuration of the Andean margin.

South of 32.5°S, the slab has a sub-horizontal subduction angle transitionally smoothing to a normal subduction geometry as it gets south of 34°S (Cahill and Isacks, 1992), where it reaches an angle of 27° (Nacif, 2015). In the transitional zone (32.5°-34°S), the Frontal Cordillera, the Precordillera and the Pampean Ranges gradually disappear, while the magmatic arc becomes active together with the development or the east-directed Malargue fold-and-thrust belt. Along the 32.5° to 35°S segmeration is contained and crustal thickness decrease southward (Giambiagi et al., 2012).

3. Geological background of the transects

3.1 The Altiplano transect (22°S)

Previous to 45 Ma, deformation was loc aiz, d n. the magmatic arc, along the proto-Domeyko Range (Fig. 3), in a crustal-scal pop-up structure bounded by east- and westdirected reverse faults (Marinovic and Lahsen, 1984; Andriessen and Reutter, 1994; Reutter et al., 1996; Sempere et al., 1957; Maksaev and Zentilli, 1999; Ladino et al., 1999; Tomlinson et al., 2001, 2018; Muñoz e al., 2002; Victor et al., 2004; Mpodozis and Cornejo, 2012; Bascuñán et al. 2016; Tomlinson et al., 2018; Henriquez et al., 2019; López et al., 2020), as well a struce-slip faults along the Atacama fault system (Reutter et al., 1996; Riquelme et al., 2013; Farías et al., 2005).

During the middle Eoc ine '45-40 Ma), the crust achieved a thickness of >45 km below the Domeyko Range (Ha, The et al., 2002). The uplift of this range is constrained by thermochronology (Mai saev and Zentilli, 1999; Avdievitch et al., 2018) and the development of the Calama basin which received sediments from the west (Blanco et al., 2003). A rapid cooling of the Coastal Range is suggested to be related to forearc uplift and exhumation (Juez-Larré et al., 2010; Reiners et al., 2015; Stalder et al., 2020). During this period, movement along the Khenayani-Uyuni fault system (Martinez et al., 1994; Sempere et al., 1990; Scheuber et al., 2006) occurred in the western Altiplano, prior to the deposition of the Late Oligocene- Middle Miocene San Pedro and San Vicente Formations in the Salar de Atacama and Lípez basins, respectively (Blanco et al., 2003; Elger et al., 2005). The proto-Eastern Cordillera was deformed by east-directed faults (Lamb et al., 1997). This uplift is registered in the sedimentary provenance of the foreland basin (Horton and DeCelles, 2001).

Figure 3: Geological cross-section alcoc the 22°S, constructed with previous geological data and partial balanced cross-sections (Schuitz and Kley, 1997; Elger et al., 2005), and chart describing the different deformational stages affecting the transect area according to published data.

Between 40 and 35 1.4a, chortening was focused on the Western Cordillera, as well as on the westernmost Altipla to and Eastern Cordillera (Kennan et al., 1995; Sempere et al., 1997; Horton, 1998, 2005; Horton and DeCelles, 2001; DeCelles and Horton, 2003; McQuarrie et al., 2005; Elger et al., 2005; Ege et al., 2007). The Calama basin continuously received sediments from the west and south (Blanco et al., 2003). The Domeyko Range became affected by strike-slip faults, such as the dextral movement of the West Fault (Maksaev and Zentilli, 1988, 1999; Mpodozis et al., 1993; Lindsay et al., 1995; Tomlinson et al., 2010) associated with a mylonitic fabric over plutonic complexes (Tomlinson et al., 2018).

During the 35-30 Ma period, the Lípez basin continued receiving sediments from both the west and east (Baby et al., 1990), with the continuous uplift of the Western Cordillera (Scheuber et al., 2006), the Eastern Cordillera controlled by the west- and east-directed faults (Roeder, 1988; Mon and Hongn, 1991; Baby et al., 1992; Kley et al., 1997;

Allmendinger et al., 1997; McQuarrie and DeCelles, 2001; McQuarrie, 2002; McQuarrie et al., 2005; Hongn et al., 2007; Anderson et al., 2018) and the east-directed faults affecting the central Altiplano (Elger et al., 2005). During this phase, between 36 and 33 Ma, the giant Chuquicamata porphyry system was syntectonically emplaced at the Domeyko Range through the dextral strike-slip of the West Fault (Lindsay et al., 1995; Reutter et al., 1996; Tomlinson et al., 2010, 2018; Mpodozis and Cornejo, 2012).

Between 30 and 21 Ma, extensional deformation was localized in the Calama (Blanco, 2008) and Salar de Atacama basins (Flint et al., 1993; Jordan et al., 2007), associated with a sinistral/normal movement of the West Fault system (Tomlinson et al., 2018). Contractional deformation was only focused on the Eastern Cordillera with a peak of deformation between 25 and 17 Ma (Elger et al., 2005).

Between 21 and 14 Ma, the Eastern Cordillera experienced contractional deformation and main exhumation (Kley, 1996; Horton, 1998; McQuarrie, 2002; Müller et al., 2002; Strecker et al., 2007). The Khenayani-Uyuni fault system got deapticated (Gubbels et al., 1993). Arid paleosols of the middle Miocene in the Salar de Atacema basin are overlain by late Miocene ignimbrites (Cowan et al., 2004; Jordan et cl., 2014) suggesting a minimum age for the contractional deformation in the Domeyko Range and Western Cordillera.

Between 14 and 7 Ma, deformation concentricted clong the eastern part of the Eastern Cordillera and, after 10 Ma, along the Silo-innol an thin-skinned fold-and-thrust belt (Mingramm et al., 1979; Allmendinger et cl., 1983; Roeder, 1988; Sheffels, 1990; Baby et al., 1992, 1995; Dunn et al., 1995; Klay and Reinhardt, 1994; McQuarrie, 2002; Echavarría et al., 2003; Uba et al., 2009; Onckon et al., 2012), which absorbs ~55 km of shortening (Lamb and Hoke, 1997; Horton, 1993; Müller et al., 2002; Victor et al., 2004; Elger et al., 2005). The oldest undeformed lava covering the western and central Altiplano thrust faults was dated at ~11 Ma (Baker and Trancis, 1978; Silva-González, 2004), suggesting a minimum age for the end of choltening. Strike-slip faulting affected the Western Cordillera (Giambiagi et al., 2016) and the Altiplano (Riller et al., 2001; Acocella et al., 2011; Bonali et al., 2012; Lanza et al., 2013). Likewise, deformation ceased in the Eastern Cordillera at 9-10 Ma, based on the distribution and undeformed nature of the San Juan de Oro erosional surface (Gubbels et al., 1993). The Chaco-Paraná foreland basin started to develop at 12.4 Ma (Uba et al., 2009), underlain by the Brazilian craton, a stable continental nucleus of South America since the Proterozoic (Litherland et al., 1985).

During the Late Miocene-Quaternary period (7-0 Ma), contractional deformation was concentrated along the easternmost Eastern Cordillera and the Sub-Andean ranges. Presently, the Sub-Andean ranges show active growth at its deformation front, as evidenced from seismicity and GPS data (Bevis et al., 1999; Lamb, 2000; Hindle and Kley, 2003; Brooks et al., 2011). The Atacama fault system was reactivated during the Pliocene-Quaternary as a normal fault system (González et al., 2003; 2006).

Along this transect, the main decollement has been proposed to be located below the Eastern Cordillera and Sub-Andean ranges and to be responsible for the underthrusting of

the flexurally-strong Precambrian Brazilian craton (Lyon-Caen et al., 1985; Isacks, 1988; Watts et al., 1995; Allmendinger and Gubbels, 1996; Lamb et al., 1997; Allmendinger et al., 1997; Anderson et al., 2018) under the thermomechanically weakened Andean sector (Baby et al., 1997; Lamb et al., 1997; Watts et al., 1995; Beck and Zandt, 2002; Ibarra et al., 2021). This decollement, located between 20 and 8 km depth, has a regional dip of 2° to 3° to the west (Kley and Monaldi, 2002; Pearson et al., 2013), and it is rooted by a ramp into the ductile and low-strength zone (Oncken et al., 2003; Lamb et al., 1997, Lynner et al., 2018), deep in mid crustal levels. The location of this ramp has been inferred from a dislocation model for back-arc deformation presented by Brooks et al. (2011) along the Altiplano transect, and by McFarland et al. (2017) along the Puna.

3.2 The Puna transect (24°S)

Prior to 45 Ma, the inversion of several back-arc basins took place (Fig. 4), such as the Mesozoic Domeyko basin (Ramírez and Gardeweg, 1982: Mp puozis et al., 2005; Arriagada et al., 2006; Marinovic, 2007; Mpodozis and Conceip, 2012; González et al., 2020) and the Salar de Atacama/Salar de Punta Negra foceland basin (Jordan et al., 2007; Martínez et al., 2019, 2020). This generated a thick crust below the Domeyko Range (40 to 45 km, Haschke et al., 2002; Haschke and Güntler, 2003; Amilibia et al., 2008; González et al., 2020), while the Salta rifting produced a thin crust below the actual Santa Bárbara range (Salfity and Marquillas, 1994; Conúnguez and Ramos, 1995; Marquillas et al., 2005; Kley et al., 2005).

During the middle Eocene (45-40 Ma), the inversion of the Atacama basin in the Domeyko Range took place (Maksaev and Zettilli, 1999; Carrapa and DeCelles, 2008; Reiners et al., 2015), with the generation and/o reactivation of strike-slip and reverse faults and sedimentation in the Salar de Aracama basin (Mpodozis and Cornejo, 2012). During the 40-35 Ma period, shortening vas cocused on the eastern Domeyko Range (Maksaev and Zentilli, 1999; Amilibia et al., 2008) and the proto-Puna (Haschke et al., 2005; Carrapa and DeCelles, 2008). At the end of this period, strike-slip faults affected the Domeyko Range (Niemeyer and Urrutia 20(9), associated with the intrusion of giant porphyry copper bodies, such as the Ecoondida cluster (38-35 Ma) (Kay et al., 1999; Mpodozis and Cornejo, 2012; Hervé cí al., 2012). The distal foreland experienced the first basement uplift of the Eastern Cordillera (Andriesen and Reutter, 1994; Seggiaro et al., 1998; Del Papa, 1999; Del Papa et al., 2013; Coutand et al., 2001; Deeken et al., 2006; Hongn et al., 2007, 2010; Payrola et al., 2009; Pearson et al., 2013; Montero-López et al., 2016), delimiting basins with internal drainage such as the Humahuaca basin (del Papa et al., 2013; Montero-López et al., 2020). This uplift had a Basin-and-Range or Pampean Range style (Coutand et al., 2001) with reactivation of pre-existing faults affecting the pre-Mesozoic basement (Hongn et al., 2010).

During the 35-30 Ma p and 1, contractional deformation was concentrated in the eastern Puna (Quade et al., 20.5) and the Eastern Cordillera (Deeken et al., 2006; Pearson et al., 2013). Afterwards, durn g the 30-21 Ma period, the Eastern Cordillera continued to uplift (Coutand et al., 2006; Deeken et al., 2006; Pearson et al., 2013). During the next stage, between 21 and 14 Ma, there was an eastward shift of thrusting from the plateau into the foreland (Deeken et al., 2006; Pearson et al., 2012). At the end of this stage, broken foreland basins with internal drainage conditions characterized the Puna and Puna/Eastern Cordillera border (Siks and Horton, 2011; DeCelles et al., 2015a; Pingel et al., 2019). Paleoaltimetric studies in the Arizaro basin at the central Puna suggest that uplift preceded the filling of the basin (Canavan et al., 2014; Quade et al., 2015). To the west, in the Domeyko Range, a low-intensity contractional event was registered after 17 Ma (Soto et al., 2005).

During the 14-7 Ma period, the uplift of the eastern sector of the Eastern Cordillera took place (Deeken et al., 2006). This phase is marked by the collapsed calderas on the plateau (Coira et al., 1982; De Silva, 1989) and sinistral strike-slip deformation along NW-SE

trending lineaments, such as the Olacapato-El Toro fault system (Riller et al., 2001; Acocella et al., 2011; Bonali et al., 2012; Lanza et al., 2013; Petrinovic et al., 2010, 2021); as well as intermontane sedimentation in the Puna region (del Papa and Petrinovic, 2017; Pingel et al., 2019).

During the last stage (7-0 Ma), the Santa Barbara system developed as a bivergent thickskinned fold-and-thrust belt (Allmendinger et al., 1983; Reynolds et al., 2000) controlled by pre-existing Cretaceous normal faults (Kley and Monaldi, 2002). Between 7 and 3.5 Ma, extensional faults were active in the southern Puna, as well as in the Atacama fault system (González et al., 2003; 2006).

3.3 The Southernmost Puna transect (27.6°S)

During the Late Cretaceous (Fig. 5), a compressional event thick ned the crust in the present forearc and the westernmost sector of the Frontal Cordillera (Mpodozis et al., 1995; Kay and Mpodozis, 2001; Martinez et al., 2016, $2^{\circ}2^{\circ}$). During the middle to upper Eocene (45-38 Ma), the eastern Coastal Range and the vestern Frontal Cordillera started to uplift (Cornejo et al., 1993; Tomlinson et al., 1993; 1954; Martinez et al., 2016, 2021). Sediments reached the foreland basin located in the central and eastern Frontal Cordillera and southernmost Puna at ~ 38 Ma (Zhou et al., 2017; Montero-López et al., 2020), coevally to the onset of the Pampean Range uplift, according to thermochronological data (Coutand et al., 2001; Mortimer et al., $2^{\circ}07$. The waning of contractional activity in the western Frontal Cordillera occurred at the end of this phase (Cornejo et al., 1993; Tomlinson et al., 1994).

During the upper Eocene-Oligocer e (35-23 Ma), the crust thickened and reached 45 km below the Maricunga volcanic belt (Kay and Mpodozis, 2001; Mpodozis et al., 2005), located in the western Frontal Condillera. Regional high-angle faults with NW-SE orientation and sinistral motion were active during this time (Abels & Bischoff, 1999). A short period of extension work place during the Oligocene, evidenced by local extensional basins contemporane us with the volcanism developed along the Maricunga belt (Mpodozis et al., 2010). At the end of this period (~26 Ma), contractional deformation affected the easternment sector of the western Frontal Cordillera (Mpodozis et al., 2018; Martinez et al., 2016; Quiroga et al., 2021). The proximal foreland basin associated with this stage corresponds to the Valle Ancho basin (Mpodozis et al., 1997). During this stage, the distal foreland registered another pulse of uplift and exhumation (Coutand et al., 2001).

During the early Miocene (23-15 Ma), a compressional phase affected the eastern Frontal Cordillera (Mpodozis et al., 1995, 2018; Coutand et al., 2001) and the Fiambalá basin started to receive sediments (Safipour et al., 2015; Deri et al., 2019). The crust achieved a thickness >50 km (Kay and Mpodozis, 2001). Deformation propagated to the east, reaching the Fiambalá basin during the middle Miocene (15-10 Ma, Carrapa et al., 2008; Safipour et al., 2015), at the time when voluminous stratovolcanic complexes were emplaced at the Maricunga belt. The crust achieved its maximum thickness in this stage (>60 km; Kay et al., 1994, 2013; Mpodozis et al., 1995), and the volcanic arc migrated

eastward to its present position, close to the border between the Frontal Cordillera and the Precordillera (Mpodozis and Kay, 2009; Goss et al., 2013).

Figure 5: Geological cross-section are no the 27.6°S, constructed with previous geological data and balanced cross-sections (Ma tine. et al., 2016; Quiroga et al., 2021), and chart describing the different deformational regions affecting the transect area according to published data.

At 13 Ma, the western sector of the Pampean Ranges started to uplift (Carrapa et al., 2006, 2008, 2011; Davila and Astini, 2007; Mortimer et al., 2007; Davila, 2010; Seggiaro et al., 2014; Safipour et al., 2015). This is registered in the sedimentary fill of the intermontane basins (Strecker et al., 1989; Muruaga, 1998; Bossi et al., 2001; Mortimer et al., 2007; Bossi and Muruaga, 2009; Bonini et al., 2017). During the late Miocene, deformation was focused in the Fiambalá basin, which continued to receive sediments (Carrapa et al., 2008; Quiroga et al., 2021), while the eastern sector of the Pampean Ranges started to uplift (Sobel and Strecker, 2003; Mortimer et al., 2007; Bossi and Muruaga, 2009), showing a doubly vergent thrusting style (Cristallini et al., 2004). Back-arc volcanism of 9.5-6 Ma corresponds to the Farallón Negro volcanic complex located in the Pampean Ranges (Sasso, 1997; Harris et al., 2004; Halter et al., 2004). The Aconquija range started to uplift during the middle Miocene, ~12-9 Ma to the present (Löbens et al., 2013; Zapata et al., 2019, 2020), and since ~3 Ma the orographic barrier conditions were established (Sobel and Strecker, 2003; Zapata et al., 2019).The generation of a broken
foreland is marked by deposition of sedimentary sequences in isolated basins (Bossi et al., 2001; Mortimer et al., 2007; Bossi and Muruaga, 2009).

3.4 The flat-slab transect (30°S)

Prior to 45 Ma (Fig. 6), the forearc and backarc crust had a normal thickness (Jones et al., 2016). The magmatic arc was present in the Frontal Cordillera and forearc region was affected by the Atacama fault system (Arabasz, 1971). During the middle Eocene, thrusts and back-thrusts uplifted both the Principal Cordillera (Moscoso and Mpodozis, 1988; Emparan and Pineda, 1999) and the western sector of the Frontal Cordillera (Martin et al., 1997; Cembrano et al., 2003; Lossada et al., 2017; Murillo et al., 2017; Rodríguez et al., 2018). This uplift occurred simultaneously to deposition of distal sediments in the present Precordillera (Fosdick et al., 2017; Reat and Fosdick, 2018). Sciween 30 and 20 Ma, extension in the back-arc region (Winocur et al., 2015; Co. zález et al., 2020) controlled the extrusion of volcanic-arc deposits (Doña Ana arc) in the Frontal Cordillera (Maksaev et al., 1984; Jones et al., 2016; Murillo et al., 2017).

30°S		CR	Principal Cordillera	Frontal Cordillera	Precordille	n	We Pampea	stern n Ranges	Eastern Pampean Ranges
0 20- 40- 60- 80- 100- 120-		100	Murillo Mard	et al. (2017) onez (2020)	Rr ao bas. Berr ba	mejo sin . (2020)		500	Distance from the trench (km)
	0		100		300	J	400	500	0 000
Time (Ma)		CR	PC	Cu Hillera	Precordille	era	We: Pampea	stern n Ranges	Eastern Pampean Ranges
5-0 Ma	a 🛛						TA.	ì	
8-5 Ma	1			8 O	-	1-2-			
12-8 Ma	a			+⊗ ⊙				•	
15-12 M	la				And with			-	
20-15 M	la			Ť	-11-2-				
30-20 M	la			1 + 1					
45-30 N	la		1A	A -	-1				
>45 Ma	a		-	†					
SIMBOL	OGY — Tector pression ` faulting &	nic regim ♥ Norm ○ Dextra	e al faulting al ⊙ ⊗ Sinis	Magu Active v	<i>matism</i> olcanism n/porphyry systen	Exhu	mation High exhumation rate	معني Intermontar basin	-Subsidence Rift basin Flexural basin
ROCK UI	NITS to-Triassic r Paleozo er Paleozo ozoic meta	c intrusive ic sedime ic sedime amorphic r	rocks ntary rocks ntary rocks rocks	Cretaceous vo Jurassic volca Jurassic intru Permo-Triass	olcanic and sedim anic and sedimen sive rocks ic volcanic rocks	nentary rock tary rocks	S Middle Oligoce Eocene Cretac	Miocene-Quaterr ne-lower Miocen volcanic and se eous-Eocene intr	nary sedimentary rocks e volcanic and sedimentary rocks dimentary rocks usive rocks

Figure 6: Geological cross-section along the 30°S, constructed with previous geological data and balanced cross-sections (Murillo et al., 2017; Mardonez, 2020; Mardonez et al., 2020), and chart describing the different deformational stages affecting the transect area according to published data.

During the early Miocene, 20-15 Ma, the western Frontal Cordillera was uplifted through the east-directed Baños del Toro fault system (Moscoso and Mpodozis, 1988; Martin et al., 1995; 1997, Giambiagi et al., 2017). The eastern Frontal Cordillera started to uplift (Beer et al., 1990; Heredia et al., 2002; Mackaman-Lofland et al., 2019, Mardonez et al., 2020, Mackaman-Lofland et al., 2020,), related to flexural subsidence in the Rodeo basin (Reynolds et al., 1990) and basins located nowadays inside the Precordillera (Levina et al., 2014; Suriano et al., 2015;). New low-temperature thermochronological data indicate reactivation of pre-existing faults in the westernmost Pampean Konges (Ortiz et al., 2021).

Between 15 and 12 Ma, an eastward jump of the deformational front is marked by both thrusting in the western Precordillera (Suriano et al., 2017) and initial sedimentation in the Bermejo basin (Johnson et al., 1986; Jordan et al., 2001), Fosdick et al., 2015; Capaldi et al., 2020). In the Frontal Cordillera, contractional deformation was sealed by the Cerro Las Tórtolas volcanism (Maksaev et al., 1984; Murillo et al., 2017) but the eastern part of this range continued to be uplifted by a deeply-seated ramp (Allmendinger at al., 1990; Mardonez et al., 2020). The back-arc volcanion, we splaced in the Rodeo basin and in the central Precordillera (Limarino et al., 2000, Pointa et al., 2017).

During 12-8 Ma period, the central Precord."era and western Pampean Ranges were deformed and uplifted (Jordan et al., 1093; Coughlin et al., 1998; Levina et al., 2014; Allmendinger and Judge, 2014; Fc schollet al., 2015), while deformation ceased in the western Precordillera. This every associated with a pronounced flexural subsidence in the Bermejo basin (Mardonez et al., 2020). The magmatic arc, with a geochemical signature indicating a thick cruet was established at the Rodeo basin and eastern Precordillera (Gualcamayo igr eous complex; Poma et al., 2017; D'Annunzio et al., 2018). Contraction deformation continued, between 8 and 5 Ma, with reverse faulting in the central Precordillera, during ongoing uplift of the Pampean Ranges (Jordan and Allmendinger, 1986; Ramos et al., 2002; Fosdick et al., 2015).

The Plio-Quaternary was marked by the last uplift of the Central Precordillera, deformation of the eastern Precordillera (Zapata and Allmendinger, 1996), and continuing uplift of the Pampean Ranges (Ortiz et al., 2015, 2021). Arc magmatism migrated towards the east to the Pampean Ranges, where it finally waned (Ramos et al., 2002). Neotectonic activity is present in the Rodeo basin (Siame et al., 2005; Perucca and Martos, 2012; Fazzito et al., 2013; Perucca and Vargas, 2014) and the Pampean Ranges (Costa et al., 2001; Siame et al., 2015; Perucca et al., 2018).

3.5 The Aconcagua transect (32.4°S)

During the Early Cretaceous, the crust was thin (< 33 km) below the Mesozoic marine basin, at the present-day Principal Cordillera, and it has a normal thickness (35-38 Ma)

below the Pampean Ranges (Fig. 7) (Perarnau et al., 2012). During the Late Cretaceous a compressional event affected the western Principal Cordillera and Coastal Range (Arancibia, 2004; Jara and Charrier, 2014; Rodríguez et al., 2018), but crustal thickness in the eastern Principal Cordillera remained normal (35 km; Carrapa et al., 2020). Afterward, during the late Eocene-early Miocene, extensional relaxation with mild horizontal extension took place (Charrier et al., 2005, 2009; Mpodozis and Cornejo, 2012; Piquer et al., 2016; Mackaman-Loftand et al., 2018; Boyce et al., 2020); while the Coastal Range experienced uplift (Stalder et al., 2020). The Miocene-Present contraction started at ~21-18 Ma, as registered in the western sector of the Principal Cordillera (Jara and Charrier, 2014) with high exhumation (Rodriguez et al., 2018; Stalder et al., 2020) and in the synorogenic record of the Cacheuta basin (Irigoyen et al., 2000; Buelow et al., 2018).

At 18 Ma, the Aconcagua fold-and-thrust belt started to develop as a thin-skinned belt in the eastern sector (Cegarra and Ramos, 1996, Martos et al, 2022) and a thick-skinned belt in its western sector with the inversion of pre-existing norr ial faults of the Abanico basin (Fock et al., 2006; Mardones et al., 2021). During this stage, the volcanic arc migrated from the Farellones arc (23-17 Ma) in western Principal Cordillera (Charrier et al., 2002; Nyström et al., 2003), to the Aconcagua arc (15-8 Ma) in the eastern Principal Cordillera (Ramos et al., 1996a). Uplift of the Frontal Cordillera tool, place during this time (~17 Ma; Buelow et al., 2018; Lossada et al., 2020).

During the 12 to 9 Ma period, the Aconcagua Fr B continued to deform below a crust of 44 km (Carrapa et al., 2022). Both Frontal Condillera and Precordillera raised during this period (Ramos et al., 2004; Giambiagi et al., 2011), in agreement with sedimentological and provenance data from the Cacine Inta basin (Buelow et al., 2018). Afterward, deformation is only concentrated in the eastern Precordillera, while the western Principal Cordillera experienced a reactination. (Farías et al., 2008). During the next period, between 6 and 3 Ma, the deformation inigrated to the present thrust front in the easternmost Precordillera (Richard, 2020).

During the late Pliccer e to Quaternary, horizontal shortening was accommodated along the easternmost sector or the eastern Precordillera, and the Cacheuta basin experienced uplift and denudation ("Juelow et al., 2018) and active reverse faulting (Cortés et al., 1999; Costa et al., 2000, 2015; Richard et al., 2019; Rimando et al., 2019). Towards the east, the uplift of the Pampean Ranges formed the broken foreland (Jordan et al., 1983; Ramos et al., 2002), where opposite-directed faults, controlled by inherited anisotropies, localize Quaternary deformation (Costa et al., 2019). These faults are interpreted to be deeply rooted into the lower crust (Perarnau et al., 2012).

Figure 7: Geological cross-section along the 32.4°S, constructed with previous geological data and balanced cross-sections (Cega ralond Ramos, 1996; Giambiagi et al., 2014), and chart describing the different deformation of songes affecting the transect area according to published data.

3.6 The Maipo/Tunuya. transect (33.6°S)

During the late Eocene to early Miocene times (Fig. 8), a protracted extensional event affected the western sector of the Principal Cordillera and generated the Abanico intra-arc basin (~35-21 Ma, Charrier et al., 2002; Muñoz et al., 2006; Piquer et al., 2017), associated with a ~30-35 km thick continental crust (Nyström et al., 2003; Kay et al., 2005; Muñoz et al., 2006). The Cenozoic compressional event started at 21-18 Ma, with the early inversion of the Abanico basin (Godoy et al., 1999; Charrier et al., 2002; Fock et al., 2006; Piquer et al., 2016), and was coeval with the development of the Farellones volcanic arc (Vergara et al., 1999). In the foreland, the back-arc volcanism of the Contreras Formation predated the formation of the Alto Tunuyán foreland basin (Giambiagi and Ramos, 2002), with a geochemical signature related to a thin or normal crust (Ramos et al., 1996b).

Uplift of the Aconcagua fold-and-thrust belt (Giambiagi and Ramos, 2002) and the Frontal Cordillera (Buelow et al., 2018; Lossada et al., 2020) initiated during the 18-15 Ma period. Both ranges produce flexural subsidence in the Alto Tunuyán intermontane basin (Porras et al., 2016) and in the Cacheuta basin (Irigoyen et al., 2000; Buelow et al., 2018).

Figure 8: Geological cross-section along the 33.6°S, constructed with previous geological data and balanced cross-sections (Giambiagi et al., 2003, 2015; Farías et al., 2010; Mardones et al., 2021), and chart describing the different deformational stages affecting the transect area according to published data.

During the middle Miocene (15-12 Ma), shortening was mainly absorbed in the Aconcagua FTB (Cegarra and Ramos, 1996). Both the Alto Tunuyán (Giambiagi et al., 2003; Porras et al., 2016) and Cacheuta (Buelow et al., 2018) basins continued to receive sediments. During the 12-9 Ma period, the volcanic activity practically waned, and plutons and porphyries intruded the Miocene Farellones volcanic arc (Kay and Kurtz, 1995; Kurtz et al., 1997; Kay et al., 2005; Deckart et al., 2010). Sedimentary provenance analysis (Irigoyen et al., 2000; Giambiagi et al., 2003; Porras et al., 2016; Buelow et al., 2018) indicates that, during the late Miocene (9-6 Ma), an important uplift of the eastern Frontal Cordillera took place. The ~2 km of topographic uplift in the Alto Tunuyán basin has been related to the

addition of lower crustal material (Hoke et al., 2014). However, western Principal Cordillera was still active, and was responsible for the back-thrust activity (Farías et al., 2008) and exhumation (Maskaev et al., 2004).

Magmatic activity resumed during the Pliocene at its current locus along the High Andean drainage divide. Shortening was absorbed in the eastern Frontal Cordillera, with generation of frontal thrusts affecting the Cacheuta basin deposits (Irigoyen et al., 2000) and the inversion of the Triassic Cuyo basin (Giambiagi et al., 2015b). During the upper Pliocene – Quaternary, shortening was accommodated in the Frontal Cordillera (García and Casa, 2015) and the westernmost sector of the Principal Cordillera with movements along the San Ramón fault (Vargas et al., 2014; Yáñez et al., 2020). Between 6 Ma and the present, a significant increase in exhumation rates along the western slope of the Andes has been attributed to a drastic change in climate (Stalder et al., 2020).

3.7 The Tinguiririca/Malargüe transect (35°S)

Uplift of the westernmost part of the Principal Cordillera Cocurred during the late Cretaceous (Fig. 9) (>90 Ma, Tunik et al., 2010; Mecicua et al., 2013, 2014), but it is not until the middle Miocene (16-13 Ma) that deformation and uplift propagated eastward (Baldauf, 1997), producing the inversion of earl / Necozoic inherited normal faults of the Neuquén basin extension (Mescua et al., 2014). This contraction produced flexural subsidence in the Malargüe foreland bacin. Horion et al., 2016). The 13-10 Ma period recorded further advance of the deformation towards the foreland (Giambiagi et al., 2008; Mescua et al., 2014; Fuentes et al., 2016; Horton et al., 2016). Out of sequence activity in the westernmost structures (El Fierro facit system, Godoy et al., 1999) took place likely during this stage, although the chror ology of this reactivation in the inner sector is not clear.

The main structures along the h-buntain front, such as the Malargüe fault, started their activity between 10 and 6 Ma (Silvestro et al., 2005; Boll et al., 2014; Fuentes et al., 2016), while out-of-sequence uplith and exhumation were recorded in the western Principal Cordillera around 8 Mar (Spikings et al., 2008). Out-of-sequence deformation was observed for the Las Leñas fault in the middle sector of the fold-and-thrust belt likely between 6 and 3 Ma (Kozlowski et al., 1993; Bande et al., 2020). During the late Pliocene-Quaternary, shortening was transferred to the easternmost sector of the Malargüe FTB, at the present orogenic front (Silvestro et al., 2005; Fuentes et al., 2016).

4. Methodology

4.1 Thermomechanica' structure

To better understand how orogenic-scale deformation occurs and which kinematic model best explains the observed geological data, we first construct a representation of the thermomechanical structure underneath the Central Andes. This model considers the geometries of geophysically-constrained lithospheric discontinuities and simple analytical expressions for temperature and brittle-elasto-ductile rheology.

We start from the 1D steady-state heat conduction equation with volumetric heat production. For the boundary conditions, we follow previous studies (Fox-Maule et al., 2005) by assuming that temperature T_b at a certain depth Z_b is independently known and that radiogenic heat decays exponentially with depth from a surface value H_0 . Under these assumptions, a convenient form of the 1D geothermal gradient describing the variation of temperature T with depth Z can be derived:

$$T(Z) = \frac{Qm}{k} Z - \frac{H_0 Z_i}{k} \left(Z_i (1 + exp^{\frac{-Z}{Z_i}}) + Zexp^{\frac{-Z_m}{Z_i}} \right) \quad (eq. 1)$$

Here, k is thermal conductivity, Z_i is the depth scale for exponential radiogenic decay, Z_m is Moho depth and Q_m is heat flow at the Moho, which can be defined as:

$$Q_{m} = \frac{1}{Z_{b}} \left[T_{b}k - H_{0}Z_{i} \left(Z_{i} - exp^{\frac{(-Z_{m})}{Z_{i}}} (Z_{i} + Z_{m}) \right) \right] \quad (eq. 2)$$

In order to provide values of Z_i , Z_m and the pair (T_b , Z_b), we consider the outputs of the geophysically-constrained 3D density model of the function margin (Tassara and Echaurren, 2012). This model was constructed by forward modeling of the Bouguer gravity anomaly under the geometric constraints imposed by published seismic results. The main output of this model is the geometry for the subducted slab, the Lithosphere-Asthenosphere Boundary (LAB) underneath the continental plate, the continental Moho that we assume equal to Z_m , and the intracrestal density discontinuity (ICD) separating dense lower crust from light upper crust. As radicactive elements are concentrated in the upper crust, we assume in our thermal model that the depth to the ICD defines the parameter Z_i . Considering E-W cross-subtions for the computation of the model, and for those points located eastward of the Slab-LAB intersection, we impose that:

$$T_{1} = T_{p} + GZ_{b} (eq.3)$$

Where T_p is mantle potential ten. perature, G is an adiabatic gradient and Z_b is defined by the depth to the LAB. A similar relation holds for points of the cross section located westward from the Slab 'A' intersection (Molnar and England, 1990), for which Z_b corresponds to the slap depth:

$$T_b = \frac{(Q_0 + \sigma V)Z_b}{k(1 + \frac{\sqrt{Z_b V \sin \alpha}}{\kappa})} \quad (eq. 4)$$

Here, α is the average subduction angle, κ is thermal diffusivity, and σ is shear stress at the interplate fault. The slab heat flow Q_0 depends on the age of the slab at the trench *t* (which we take from Müller et al., 2016) and is defined as:

$$Q_0 = \frac{kT_p}{\sqrt{\pi\kappa t}} \quad (eq.5)$$

Ensuring continuity of the temperature field between the eastern and western domains (i.e., equaling equations 3 and 4), a value of σ at the Slab-LAB intersection can be prescribed. Assuming a linear decrease to zero of this parameter toward the trench axis along the cross section, eq. 4 can be fully evaluated.

Values of the physical parameters included in eqs. 1 to 5 (Table A1.1 in Supplementary Material 1) were selected as averages for the study region and/or assuming common values from the literature (i.e., Turcotte and Schubert, 2014).

After computing the values of Tb in eqs 3 and 4, they can be replaced in eq 2 and then in eq 1 to define the 1D geotherm for each point of the EW cross section. The 1D temperature distribution T(Z) at these points is then used to prescribe the ductile yield strength σ_d with depth Z:

$$\sigma_d(Z) = \frac{\varepsilon^{1/n}}{A} \exp \frac{H}{nRT(Z)} \quad (eq.6)$$

Here $\dot{\varepsilon}=10^{-15}$ s⁻¹ is strain rate, R is the gas constant, and n, H and A are empirical material properties that depend on rock composition. Considering the compositional layering of the input model (Tassara and Echaurren, 2012) we assigned values to these parameters as shown in Table A1.2 in Supplementary Material 1.

We also consider that brittle yield strength σ_b increases linearly with depth Z at a constant gradient of 55 MPa/km (Burov and Diament, 1995). At a given depth, the actual yield strength (i.e., the maximum differential stress that can be elastically supported before permanent deformation is activated) will be the minimum between σ_d and σ_b . The yield strength envelope (YSE) constructed in this way predicts the potential mechanical behavior of crust and mantle. The actual behavior ductile behavior results from the intersection of the YSE with a given of ferential stress gradient. Although the form of this gradient with depth is not known and could include in-plane tectonic stresses and flexural stresses due to plate bencing the Andean margin (Coblentz and Richardson, 1996; Tassara, 2005; Flesh and freemer, 2010). Into this framework, areas with yield strength higher than this value and expected to behave elastically and transmit stresses, while areas with lower strength in any deform either in a brittle (upper crust) or ductile (lower crust and mantle) manner (Fig. 10).

By implementing the method described above to the seven transects analyzed by us, we obtain thermomechanical transects like those of Figure 10, which are then used to constraint the present-day crustal structure in our kinematic structural models.

Figure 10: A) Modeled hermomechanical structure, showing a rheologically-stratified lithosphere with contrasting high- and low-strength zones, in blue and red colors respectively, and schematic yield-strength envelopes for different sectors of the orogen: (1) the thickest sector of the orogen, characterized by the presence of a thin low-strength zone located in the upper crust, and (2) the continental shield characterized by mechanically-coupled crust and uppermost mantle. Areas with strength higher than the main tectonic stress (σ_e) are expected to behave elastically and transmit stresses, while areas with lower strength may deform either in a brittle (upper crust) or ductile (middle-to-lower crust) manner. Decollements are interpreted to be located inside the upper crustal low-strength zone, which presents a ductile behavior. B) Kinematic model, with thermomechanical constraints, proposed to construct the regional and balanced cross-sections. In this model, the crust is thickened by imposing a fixed subduction zone and assigning a westward motion of the continental plate towards the trench.

4.2 Crustal structure and kinematic modeling with thermomechanical constraints

Our models assume that upper crustal faults are preferentially rooted in a shallow, subhorizontal decollement located inside a low-strength zone ($\sigma_d < \sigma_e$) derived from the thermo-mechanical model described above. The base of this shallow low-strength zone corresponds to the base of the upper crust in all of our thermomechanical transects for regions above the hot orogenic axis (Fig. 10), and it is defined by the depth to the ICD in the density model of Tassara and Echaurren (2012). The roof of the shallow low-strength zone is marked by the depth to the isotherm for which $\sigma_d = \sigma_e$. For the selected upper crustal material in our model (Table A1.2 in Supplementary Material 1), this isotherm is given by a temperature of ~250°C. Similarly, the roof of the deep low-strength mid-lower crust is defined by the 550°C isotherm.

For each section, geological background and published partial be anced cross-sections are first used to construct a geometric model of the time-zero stage (T0, >45 Ma) and a final (present-day) non-restored section with contacts be tween different lithologies, dips and out-cropping faults and folds. We then use the academic license of MOVE suite (Petroleum Experts) for forward modeling several successive deformation stages that are constrained by stratigraphic, structural, sedimental ogical, thermochronological and geochemical observations. We sequentially deiterm the upper crustal layers by imposing horizontal shortening at the western border on the modal to reach the final present-day stage (Supplementary Material 2). For cack, stage we use the published geological data described in section 3 and create or reactivate faults accordingly. This allows us to constrain the amount of shortening that we impose to the kinematic model. The final stages (the last 15 My of the mode() scheder the upper-middle crustal low-strength zone as a decollement zone.

An estimation of the crustal root thickness for each evolutionary stage is obtained from published paleo-crustal thickness and from our kinematic reconstruction of the different stages. The initial inferred crustal thickness and the area-balancing on a crustal-scale is used to explain the bickering of the crust by tectonic shortening, as has been proposed by previous models (Baby et al., 1997; Allmendinger and Gubbels, 1996; Allmendinger et al., 1997; Kley and Monaldi, 1998). We assign a velocity gradient between the continental plate and the fixed slab-forearc interface and apply a westward motion of the South American plate (Fig. 10B). This is achieved with an artificial line at the base of the Moho which has no geological significance and has been designed for the purpose of kinematical modeling (Supplementary Material 2). Displacement is transmitted along this base using the trishear algorithm until the singularity point S below the Cordilleran axis. At this point, shortening is transmitted to a ramp-flat master decollement, modeled with the fault parallel flow algorithm as a passive master fault.

Crustal material from the craton is gradually incorporated into the orogenic system, and this forms the crustal root. Consequently, this constructs topography by isostatic adjustments. In our models, the material is not lost by erosion at the subduction zone,

neither by crustal delamination or by the movement of material along strike, nor is it gained by magmatic addition. Through this method, plain strain along the transects is assumed.

The incorporation of isostatic-flexural compensation for the added topographic load and crustal root after each modeled deformation step permits the creation of basin space and Moho adjustments. To achieve this, flexural-isostatic adjustments to the lithosphere due to local load changes are made, assuming a default value for the Young's modulus $E=7x10^{10}$ Pa and the effective elastic thickness (Te) calculated in Tassara et al. (2007), Prezzi et al. (2009) and Ibarra et al. (2019; 2021). Our models produce enough foreland subsidence to accommodate the observed foreland stratigraphy.

4.3 Shortening estimation

We applied two approaches to estimate crustal shortening of pact cross-section: forward modeling to reconstruct the observed surface structure, as explained in the previous section, and crustal area balance between initial and final crustal thicknesses. Regarding the cross-section reconstruction, we defined two end moniber models for each initial crustal geometry, with a thinner or thicker initial crust, according to published geological and geochemical data, and used a mean value in our kinematic modeling. This allows us to assign an error for each estimated crustal shore ing (Table 1). The undeformed foreland thicknesses and Mesozoic rifting ovents are used to constrain the back-arc sector of the crust for the T0. For the second coproach, we used crustal area balance between initial and final Moho geometries (C in Fig. 11), and the isostatic compensation of the Moho depth (red and violet dashed lines) due to the topographic load (A in Fig. 11) and sedimentation in the forearc and fore and basins (B in Fig. 11). To calculate the topographic load, we produced topographic swath profiles with a bin width of 10 km and used the mean elevation (Perez Pena et al., 2017). The flexural/isostatic compensation is calculated with the 2D Decompaction module from MOVE, using average densities of 2.4-2.6 g/cm³, 2.6-2.8 g/cm³ cnd 3.3 g/cm³ for the sedimentary deposits, upper crust and mantle, respectively, and roung's Modulus of 70 GPa.

Figure 11: Shortening estimation by applying two-end mode's or initial crustal thickness: thin crust in red, thick crust in blue (full line for the pre-isostatic componsation of actual topography, dashed line for the compensated Moho). Topography for the TO is estimated by assuming isostatic compensation of the crust. The crustal material that is incorporated into the orogenic system from the east (orange rectangle) is equal to the area of the crustal root (in light green), the area between the Present and TO topography (in grey), after frequencies (or and the area filled with Cenozoic sedimentary basin depositions (in the green), after frequencies (in the compensation) of the area filled with Cenozoic sedimentary basin deposition (in the crust) of the compensation of the compensations.

The amounts of shortening, calculated with the reconstruction approach, are 4-15% lower than the crustal area balance approach. (Table 1). This indicates that the estimations of shortening are conservative (Sheff eld, 1990) and additional shortening, such as the internal strain of the basement blocks (McQuarrie and Davis, 2002), layer-parallel shortening (Yonkee and Weil 2010) and/or strike-slip movement of crustal material along NW sinistral or NE dextral facilite (Riller et al., 2012) must be considered. This difference in crustal shortening comparing both methods fall within the proposed range for magmatic addition (Lamb and Hcke, 1997; Haschke and Gunther, 2003; Carrapa et al., 2022). Nevertheless, if we consider the subduction erosion proposed for the southern study sector (33-36°S; Kay et al., 2005; Stern, 2020) shortening calculated by the crustal area balance should increase and may compensate for the magmatic addition.

Table 1: Maximum, media and minimum values of crustal thickness used in the forward model set up for each transect. A. Values of shortening (maximum, media and minimum) calculated from crustal area balance between initial and final crustal thicknesses. B. Values of shortening calculated from the forward-kinematic modeling. A vs B. Percentage of variation between A and B.

		Α		В	
Latitude	Initial crustal thickness	Shortening	error	Shortening	Α
		(km)		(km)	vs
		(area)		(forward)	В

22°S		CRD	omeyko	eyko WCAltiplano EC SA forelan		foreland	k				
	maximum	32	53	48	46	43	35	33.5	258		
	media	32	47	43	42	39	35	33	325 ± 67	285	14%
	minimum	32	40	38	38	35	35	32.5	392		
24°S		CRD	omeyko	WC	Puna	EC	SS	foreland			
	maximum	32	50	42	40	38	33	35	235		
	media	32	45	40	38	36	33	34.5	270 ± 35	230	15%
	minimum	32	40	38	36	35	33	34	305		
27.6°S		CR	WFC	EFC	PRE-C	PR f	oreland				
	maximum	24-33	33-50	40- 44	40	39	35		194		
	media	24-32	32-40	38- 42	38.5	38	35		214 ± 20	194	9.5%
	minimum	24-31	31-30	35- 40	37	37	35		234		
30°S		CR	PC	FC	PRE-C	PR f	oreland				
	maximum	29-34	34-44	40-	44	40	36		171		
	media	29-	34-40	38-	40	39	35-36		155 ± 16	137	12%
		33.5		40							
	minimum	29-33	33-36	36- 38	36	38	35		139		
32.4°S		CR	WPC	EPC	FC	PRE-C f	oreland				
	maximum	24-31	31-38	34- 35	34	34-35	37-39		116		
	media	24-30	30-36	33- 35	33-34	34	37-55		104 ± 12	94	10%
	minimum	24-29	29-34	32- 34	33	33-34	36-50		92		
33.6°S		CR	WPC	EPC	FCf	or and					
	maximum	26-34	36-40	35	35-37	35 /			65		
	media	26-34	34-40	35	5.7	35-36			73 ± 9	69	5%
	minimum	26-34	34-38	34	34-35	_ 1-36			82		
35°S		CR	WPC	EPC f	orel nd						
	maximum	36-38	37-35	35-	36-4				39		
	media	35-36	35-33	3(۶5-39				46 ± 8	44	4%
	minimum	33-34	32-34	ی. _ ۲-	35-38				54		
				34	,						
			CR	Coa	stal Rang	e		FC	Frontal Cordillera	٦	
			wc	Wes	tern Cor	dillera		WFC	Western Frontal Cordillera	a	
			c	Prin	cipal Cor	dillera		EFC	Eastern Frontal Cordillera		
			WPC	Wes	tern Prin	icipal Cor	dillera	SS	Subandean Ranges		
			EPC	East	ern Princ	ipal Cord	lillera	Pre-C	Precordillera		
			EC	East	ern Cord	illera		PR	Pampean Ranges		

4.4 Geodynamic modeling of the upper-plate lithospheric shortening

To evaluate how the thermomechanical structure of the crust evolves during the different stages of crustal shortening and uplift, we developed a general 2D geodynamic model of upper-plate lithospheric shortening by using the geodynamic code ASPECT (Advanced Solver for Problems in Earth's ConvecTion; Bangerth et al., 2019). As we focus on the evolution of crustal deformation within the South American plate, we simply simulate the dynamics of shortening from the forearc to the foreland and neglect the subduction process to the west. This setup depicts a general and simple lithospheric structure, without

considering lateral variations of material properties and the particular features of each transect.

The resolution of the 2D model domain (Fig. 12) is 500 m per element in the lithosphere at 0–100 km depth and 7 km at 100–240 km depth. This variable resolution allows saving computational time while ensures a refined depiction of the lithospheric deformation pattern. Regarding the model geometry and parameters, we modified the initial setup presented in Barrionuevo et al. (2021; for more details see Supplementary Material 3). In particular, the lithospheric structure corresponds to the aforementioned thermomechanical structure under the Central Andes (Fig. 10), with a thicker zone in the westernmost part, corresponding to the forearc.

The continental lithosphere is divided into three layers with different rock properties, which are based on laboratory-derived rheological parameters used in previous numerical studies (e.g., Liu and Currie, 2016; Supplementary Materical character in continental crust is between 35-40 km thick and the maximum depth of the 'LAR is 100 km. The upper continental crust (CUC) has a wet Black Hills quartzite rheology (Gleason and Tullis, 1995). The lower crust (CLC) uses the same rheology as the upper crust but is five times stronger than the wet quartzite, assuming that it is chire and less silicic. The continental lithospheric mantle (CLM) is represented by dry character (Hirth and Kohlstedt, 2003).

The top boundary condition is zero traction with a 10-km-thick sticky air layer. This weak and light layer is used to approximate the free surface in a way that allows the formation and evolution of the faulting on the cortaine. To drive lithospheric shortening, we imposed a constant horizontal shortening rate contrained to the lithosphere at the right-hand boundary, which is an average estimate for the Central Andes from the late Cenozoic (Oncken et al., 2006). We added a small outflux velocity to the bottom boundary to maintain the mass balance. The temperature remains at 0 °C at the surface and 1396°C at the bottom. The initial temperature increases linearly from the surface to the bottom of the lithosphere and then a tiab stically between the lithosphere-asthenosphere boundary and the bottom of the model (Fig. 12). The side boundaries have conductive geotherms and no horizontal heat flux.

Fig. 12: Geodynamic initial model setup. Material 10 vs in from the lithosphere at the right-hand boundary (Vright) and flows out from the botton boundary (Vbottom) to maintain mass balance, which is used to simulate lithospheric show which is used to show an example of the initial effective viscosity (black solid line) and lithospheric show here here the used to simulate the lithospheric show and the lithospheric show and

5. Results

5.1 Thermomechanical structure

The output model is an assembly of 1D vertical yield strength profiles distributed across each of the seven E-W studied transects with a resolution of 0.2° in longitude, which allows us to predict the strength layering inside the upper plate (as in Fig. 10A). The results show that, in the continental shield (column 2 in Fig. 10), a cold and strong crust is mechanically coupled with the mantle, while in the thermally-weakened arc region (column 1 in Fig. 10), the mantle and thick lower crust have no strength presenting a ductile behavior and rigidity is only concentrated in the colder mid-upper crust. The model also shows localized sub-horizontal low-strength zones inside the dominantly rigid upper crust, which we propose may act as decollements where crustal faults are rooted. The westward-dipping and sharp rheologic contrast between the rigid forearc and ductile orogenic lower-crust may act as a ramp for these decollements as has been already proposed (Tassara, 2005; Farías et al., 2010; Giambiagi et al., 2015; Comte et al., 2019).

For each of our studied transects, Figure 13A shows the temperature distribution inside the upper plate that is produced by our model and compares the modeled surface heat flow against available measurements compiled from the literature. This comparison demonstrates that, despite the simplicity of our analytical formulation of the thermal regime in a subduction environment, the model is able to reproduce the observed heat flow sufficiently well and can be considered a valid representation of the temperature field for each transect. The rheological-mechanical structure of the transects in Fig. 13B show that most of the upper-middle crust has a brittle-elastic behavior, particularly for the cold and rigid forearc and foreland regions, and a ductile behavior below the thermally-weakened arc region. However, in the Altiplano/Puna transects, a ductile behavior is also predicted by the model below the Western Cordillera, Eastern Cordillera and Sub-andean ranges, within a thin layer (< 7 km) at mid-crustal depths (5-15 km), as vall as for the entire middle and lower crust zone (i.e., deeper than 7 km) below the Altiple:/h. a plateau and the western sector of the Eastern Cordillera. This upper-crust ductile aver is also observed in the normal subduction segments below Principal and Fror tal Cordilleras, and it is mostly controlled by the existence of a relatively shallow LAB to demeath the orogenic axis.

The flat-slab domain (30° and 32.4°S transects) is chara terized by a relatively shallow subduction angle (Cahill and Isacks, 1992; Tassara and Echaurren, 2012) and a lack of active arc-related magmatism, resulting from the set stward migration of the asthenospheric wedge (Pilger, 1981; Kay et al., 1988). Here, the thermomechanical model suggests that the upper crustal low-strength layer is rothen thin, due to the cold flat-slab thermal structure implied by a deep LAB (Fig. 13).

As has been mentioned above, the run of the low-strength zones in the upper and lower crust are controlled in our thermome chanical model respectively by the depth to the 250° and 550°C isotherms. In the Scoplementary Material 1, we present a sensitivity analysis for each transect showing ho, the depth to these isotherms vary with possible changes of H₀ (±2 \Box W/m3), k (±1.5 W/m[']) and T_p (±250°C) around their selected mean values (Table A.1 in Supplementary Material 1). For both isotherms, the effect of changing k and H₀ is much larger than the iges in T_p, mostly for regions of thick upper crust. The shallower 250°C isotherm is less rensitive to these changes than the deeper 550°C isotherm. For those particular regions where the base of the upper crust is deeper than the 250°C (delimiting shallow low-strength zones), we can conclude that the applied changes in thermal parameters imply maximum variations in the depth to the 250°C of ±5 km. Moreover, even in the coolest models (i.e., lowest values of H_0 and T_p , highest value of k), this isotherm is still shallower than the base of the upper crust, implying that the shallow low-strength zones are a robust feature of our model. The position for the roof of the deeper low-strength zone is less well constrained since the 550°C isotherm can exhibit variations of ±10 km around the mean depth.

This sensitivity analysis is also useful for discussing the possible effect that uncertainties in the depth of the LAB could have in the derived thermomechanical structure. In the conceptual framework of our thermal model, the LAB depth plays the primary role in controlling the thermal structure of the conductive lithosphere in the eastern part (arc and

backarc region) of the cross sections. The commonly smooth geometry of the LAB in the model of Tassara and Echaurren (2012) is loosely constrained by available S-wave seismic tomographies at the time of publication (Feng et al., 2004; 2007), measured surface heat flow and the weak gravity effect of the relatively small density anomaly between lithospheric and asthenospheric mantle. Seismic images of the LAB published after Tassara and Echaurren (2012) along the Andean margin are scarce and mostly based on S-wave receiver functions (i.e., Ammirati et al., 2013; Heit et al., 2014; Haddon et al., 2018). They show a general coincidence with the LAB geometry used by us, although some differences up to ±15 km could locally exist underneath the Altiplano-Puna plateau and Pampean Ranges. Changes in LAB depth for a given value of T_p are identical to changes in T_p for a given LAB depth. Particularly, the explored changes of ±250°C in T_p along a typical continental geotherm at mantle depths are iden. al to variations of the order of ±20 km in the LAB depth. Such variations are larger than differences between seismically constrained LAB models and the one used by us, and therefore they contribute with an uncertainty of less than ±2.5 km in the depth of the 25.0°C isotherm and ±5 km for the 550°C isotherm. This implies that possible local-scape upors in the used geometry of the LAB with respect to seismic models would have aminor effect on the resulting thermomechanical structure of each transect.

We must recall that our thermal model is fully based on a steady-state conductive geotherm. For the forearc, the analytical form, tlation of Molnar and England (1990) does include the effect of heat advection by the subducted slab, but our model does not incorporate advective contributions associated to the motion of crustal material due to backarc shortening (as done for instance by Springer, 1999) or by magma and/or fluid injection underneath the magmatic area to be cognize that in the case of an interconnected crustal-scale magmatic plumbing systems like those envisaged by several authors (i.e., Cashman et al., 2017; Burchardt et al., 4022) the temperature at upper crustal levels can be largely augmented with respect to the conductive reference. This can actually be the reason behind a slightly reduced the upper crust would be likely similar to what our sensitivity tests show when increasing H₀ and T_p or reducing k, which produce a shallowing of the roof of the upper crustal low strength zone by some kilometers.

Figure 13: Thermal (r.) and mechanical (B) structure resulting from the analytical model. For each of the seven models I transects (see latitude at the bottom left corner), panel A shows the temperature distribution inside the upper plate (see color scheme at the right hand of the 35°S transect). Upper insets above each transect compares the surface heat flow resulting from the model (continuous blue line) with measured values and their uncertainties (in mW/m2) as compiled from the literature (Yamano and Uyeda, 1990; Uyeda and Watanabe, 1982; Henry and Pollack, 1988; Hamza and Muñoz, 1996; Bialas and Kukowsky, 2000; Muñoz and Hamza, 1993;
Grevemeyer et al., 2003, 2005, 2006; Kudrass et al., 1995; Springer and Foerster, 1998; Hamza et al., 2005; Flueh and Grevemeyer, 2005; Collo et al., 2018). Panel B shows the derived strength layering inside the overriding upper plate. Colors indicate yield strength (see color scheme at the right hand of the 35°S transect) showing strong regions (high-strength layers) in blue-green and weak zones (low-strength layers) in brownish-to-white colors. In both panels the continuous green and red lines mark respectively the geometry of the Intracrustal Density Discontinuity (ICD) and Moho, dashed purple line is the Lithosphere-Asthenosphere Boundary (LAB) and the gray area is

the subducted slab, which geometries are from Tassara and Echaurren (2012). Vertical exaggeration x1.5.

5.2 Kinematic models with thermomechanical constraints

In the following, we describe the structural forward modeling that results in the present configuration constrained by the thermomechanical models. We describe the main deformational events in different crustal domains that constraint the activity of different decollements. Data of this section are summarized in Table 2 and in Supplementary Material 2.

The Altiplano transect (22°S)

The Altiplano (22°S) is modeled with two decollements, the Ariplano/Puna (APD), and the Main Andean (MAD), in agreement with previously proposed models suggesting a complete disconnection between main deep structures (Figer et al., 2005; Martinod et al., 2020). We configure the time zero (**T0**, >45 Ma, Fig. 14) with a previous contraction in the proto-Domeyko Range and strike-slip movement along the Atacama fault system. We model the first stage **T1** (45-40 Ma) with movement along the APD associated with 35 km of shortening distributed between the Domeyulon Range and the Khenayani-Uyuni fault system in Western Cordillera. The prote -Ee stern Cordillera is deformed by east-directed faults. The APD is located below the plated 1, at a depth between 8 and 18 km, and is connected at depth with a west-dipping (10° to 20°) shear zone, previously highlighted by the ANCORP project (Oncken et al., 2003). Flexural subsidence is generated in Calama and Lipez basins.

During the next stage (T2, 40 35 Ma), 50 km of shortening is focused on the Western Cordillera, the easternmost A. jolano and the Eastern Cordillera. The Domeyko Range becomes affected by doctranstrike-slip faults, such as the West Fault, but it is passively uplifted by the rame of the APD decollement. Flexural subsidence is generated in the Lípez basin and the for deep basins during T2 and T3 (35 to 30 Ma), resulting from the uplift of the Western Cordillera, Eastern Cordillera and central Altiplano. During T3, the West Fault system changed its strike-slip movement from dextral to sinistral, while deformation of the western Eastern Cordillera propagated westward together with the development of the Main Andean decollement (MAD). Our thermomechanical model suggests that the MAD extends westward, below the Eastern Cordillera, where a sharp contact between high and low strength zones exists. In our kinematic model, we extend this decollement toward the west, until 66.3°W and 65.9°W, in the Altiplano and Puna transects, respectively, where it roots into a ductile shear zone. This zone is a low-strength zone that reaches shallow depths below the Western Cordillera, Altiplano/Puna and Eastern Cordillera, and includes the mid-crustal zone of low-seismic velocity, called the Altiplano Low Velocity Zone by Yuan et al. (2002).

Between 30 and 21 Ma, **T4** stage, extensional deformation is localized in the Calama and Salar de Atacama basins, associated with a sinistral/normal movement of the West Fault system. Contractional deformation is focused only on the Eastern Cordillera, achieving 35 km of shortening.

During stage **T5** (21-14 Ma), 55 km of shortening are accommodated along the MAD, associated with deformation and main exhumation of the Eastern Cordillera. The Khenayani-Uyuni fault system gets deactivated, and regional strike-slip faults crosscut the previous thrusts. During stage **T6** (14-7 Ma), deformation concentrated along the eastern sector of the MAD, below the eastern part of the Eastern Cordillera and the Sub-Andean ranges, which absorbs ~55 km of shortening. Flexural subsidence is created in the Chaco-Paraná foreland basin starting at 12.4 Ma.

During the last stage **T7** (7-0 Ma), the Sub-Andean belt is mc delled as a thin-skinned foldand-thrust belt connected to a shallow-dipping decollement a^{3} b-14 km depth, with 60 km of shortening focused in the eastern segment of the MAD.

Table 2: Summary of the phases of construction of an transects analyzed in the Southern CentralAndes and the associated crustal shortening (Sh' a. 1tl ickening (Zm) for every step of the forwardmodeling. Numbers next to the foreland basir a conrespond to the studies of: 1) Elger et al., 2005; 2)Uba et al., 2006; 3) Alonso, 1992; Carrapa and DeCelles, 2008; 4) Siks and Horton, 2011; Pingel etal., 2019; 5) Carrapa et al., 2008; 6) Dávila et al., 2012; 7) Beer et al., 1990; Re et al., 2003; Ruskinand Jordan, 2007; Fosdick et al., 2017; 8) Reat and Fosdick, 2018; Mardonez et al., 2021; 9)Richard, 2020; 10) Giambiagi et al., 20a; Porras et al., 2016; 11) Buelow et al., 2018; 12) Horton etal., 2016.

Transect	Phase	Time (Ma)	Active decollement	Deformed morphostructural units	Sh (km)	Zm Foreland basin (km) thickness (m)		
	T1	45 - 40	Altiplano - Puna	Domeyko Range, Western and Eastern Cordilleras	35	53	1000	
Altiplano	T2	40 - 35	Altiplano - Puna	Western Cordillera, Altiplano	50	58	2000	
	Т3	35 - 30	Altiplano - Puna, Main Andean	Altiplano, Western and Eastern Cordillera	40	63	3000 jasin	
	T4	30 - 21	Main Andean	Eastern Cordillera	30	67	4200 20 (1) (2)	
22°S	T5	21 - 14	Main Andean	Eastern Cordillera	55	70	5000 1 250 5	
	T6	14 - 7	Main Andean	Eastern Cordillera, Sub Andean ranges	55	71	5500 750 sq	
	T7	7 - 0	Main Andean	Sub Andean ranges	60	73	6000 8	
		TOTAL SHORTENING					Cha	
	T1	45 - 40		Domeyko Range	30	52	1500	
	T2	40 - 35	Altiplano - Puna	Domeyko Range, Puna, Eastern Cordillera	45	55	2000 5 400 8	
	T3	35 - 30	Altiplano - Puna	Puna, Eastern Cordillera	30	60	bas	
Puna	T4	30 - 21	Altiplano - Puna	Eastern Cordillera	30	61	3000 🐒 1800 🖸 🚬	
24°S	T5	21 - 14	Altiplano - Puna Main Andean	Domeyko Range, Puna, Eastern Cordillera	45	63	Grand 0015 basi	
2.0	T6	14 - 7	Main Andean	Eastern Cordillera	50	63	4300 g 5000 g	
	T7	7 - 0	Main Andean	Santa Barbara system	40	63	4500 2 6000 7	
				TOTAL SHORTL NING	270		a (3) (4)	
	T1	45 - 38	Frontal Cordillera	Frontal Cordillera, Pampean Ranges	49	46		
0	T2	38 - 23	Frontal Cordillera	Frontal Cordillera, Pampean Ranges	30	49		
most	Т3	23 - 15	Frontal Cordillera, Eastern Main	Frontal Cordillera	50	56	1400 uise uis	
' una	T4	15 - 10	Eastern Main	Frontal Cordillera, Pampean Ranges	40	62	3700 9 1000 9	
27.6°S	T5	10 - 5	Eastern Main, Pampean Ranges	Pampean Ranges	32	63	4700 mpain 4700 mpain	
	T6	5 - 0	Pampean Ranges	Pampean Ranges	24	63	5700 🛱 3500 🛱	
				T TAL SHORTENING	225		(5) (6)	
	T1	45 - 30	—	Principal and Front. I Co	38	48	800 50	
	T2	30 - 20			-3	50	<u>.</u> 150 . <u>.</u>	
Flat slah	T3	20 - 15	Frontal Cordillera	Frontal Cr diller:	40	58	2200 s 650 s	
30°S	T4	15 - 12	Frontal Cordillera, Precordillera	Frontal Co, Citr a, Precordillera	20	64	2600 3 1800	
	15	12 - 8	Precordillera	Prec. dillera, Pampean Ranges	22	65	3100 2950	
	16	8-5	Precordillera	Precordin, ra, Pampean Ranges	1/	66	3500 5500 (7) (8)	
	17	5-0	Pampean Ranges	TOTAL SHORTENING	155	00	(7) (0)	
	T1	21 - 18	—	i incipal Cordillera	17	42	100	
	T2	18 - 15	Principal Cordil. a	Principal and Frontal Cordillera	20	50	700	
Aconcaqua	13	15 - 12	Principal Cordinata	Principal and Frontal Cordillera	17	52	1400	
32.4°S	TE	12 - 9	Frontal Col	Principal and Frontal Cordillera, Precordillera	14	52	1800 Jent	
	15	9-0	Fronta Vordii sia	Precordillera	13	52	2600 2	
	T7	3-0	F ontal `ordillera	Precordillera, Pampean Ranges	11	52	4700 (9)	
				TOTAL SHORTENING	104			
	T1	21 - 18		Principal Cordillera, Coastal Ranges	8	44	(10) 200 (11)	
Maipo/	T2	18 - 15		Principal and Frontal Cordilleras	10	47	100 5 650 5	
Tunuyán	T3	15 - 12	runcipal Cordillera	Principal Cordillera	17	49	1000 ຊື່ 1200 ຊື່	
22 600	T4	12 - 9	Principal Cordillera, Frontal Cordillera	Principal and Frontal Cordilleras	15	51	1400 up 1800 pm	
33.0 3	T5	9-6	Principal Cordillera Frontal Cordillera	Principal and Frontal Cordilleras	12	51	1800 JI 2100 June 1800	
	T6	6-3	Frontal Cordillera	Frontal Cordillera	6	51	2400	
	17	3-0	Frontal Cordillera		5	51	2800	
	T1	16 - 13	Main	Principal Cordillera	a 13	44	400 (12)	
Tinguiririca/	T2	13 - 10	Main	Principal Cordillera	9	46	800 88	
maiargue	T3	10 - 6	Main	Principal Cordillera	12	47	800 0	
35°S	T4	6 - 3	Main	Principal Cordillera	8	48	500 b	
	T5	3 - 0	Main	Principal Cordillera	8	48	2500	
				TOTAL SHORTENING	46		W	

Figure 14: Forward modeling of the Altiplano transect (22°S). Time 0 has been set to pre-45 Ma. By this time, deformation has been focused only in the Domeyko Range. During the next stages (T1 to T7), the crust is shortened by incorporating the equivalent of the crustal area (in black) into the crustal root, while the subduction zone is fixed. The length of the black area indicates the amount of crustal shortening achieved in each stage, calculated from the kinematic forward modeling +14% (14% is the difference between the crustal area balance and the kinematic forward modeling shortening estimates, see Table 1). APD: Altiplano/Puna decollement, and MAD: Main Andean decollement. Red and black lines indicate active and inactive faults, respectively. Orange color in T7 indicates low-strength zones according to the thermomechanical model.

The Puna transect (24°S)

For the time zero (**T0**, Fig. 15), we model the inversion of the Mesozoic Domeyko basin, the Salar de Atacama/Salar de Punta Negra foreland basin. This inversion generates a thick crust below the Domeyko Range (40 to 45 km), while a thinner than normal crust is present below the actual Santa Bárbara range as a result of the Cretaceous Salta rift.

During the next step (**T1**, 45-40 Ma), the Domeyko system and the westernmost Western Cordillera are shortened 30 km and the foredeep basin subsides 1,500 m. During **T2** (40-35 Ma), 45 km of shortening is focused on the eastern Domeyko Range, Western Cordillera and the proto-Puna. The Puna is deformed with east-directed thrusts and westdirected back-thrusts rooted into the APD. At the end of this str ge, strike-slip faults affect the Domeyko Range.

The first uplift of the Eastern Cordillera is modeled with the cactivation of pre-existing faults, during T2, which generate flexural subsidence in detimiting basins such as Salinas Grandes and Humahuaca basins. During **T3** (35-28 Ma), the APD propagates eastward with deformation concentrated in the eastern Puna. Ourling this stage, the crust achieves its maximum thickness below the Domeyko system and the crustal root expands laterally towards the east.

During **T4** (28-21 Ma), 35 km of shortening is uscused on the easternmost Puna and Eastern Cordillera. During the next stage (7.5, 21-14 Ma), there is an eastward shift of thrusting, with 45 km of shortening concentrated along the MAD. During **T6** (14-7 Ma), the uplift of the westernmost Eastern Cordillera is modeled with movement along the MAD ramp. By this time, the APD becomes completely deactivated, while sinistral strike-slip faulting affects the Puna and the Eastern Cordillera. During the last stage **T7** (7-0 Ma), 40 km of shortening is absorbed along the MAD, associated with the development of the Santa Barbara system as a Divergent thick-skinned fold-and-thrust belt.

Figure 15: Forward modeling of the Puna transect (24°S). Time T0 has been set to pre-45 Ma. By this time, deformation has been focused only in the Domeyko Range. Pre-existing faults are in dashed violet lines. During the next stages (T1 to T7), the crust is shortened by incorporating the equivalent of the crustal area (in black) into the crustal root, while the subduction zone is fixed. The length of the black area indicates the amount of crustal shortening achieved in each stage, calculated from the kinematic forward modeling +15% (15% is the difference between the crustal

area balance and the kinematic forward modeling shortening estimates, see Table 1). APD: Altiplano/Puna decollement, MAD: Main Andean decollement. COT: Calama-Olacapato-El Toro fault system. Red and black lines indicate active and inactive faults, respectively. Orange color in T7 indicates low-strength zones according to the thermomechanical model.

The Southernmost Puna transect (27.6°S)

The core of the 27.6°S transect is modeled with movement along the Frontal Cordillera (FCD) and Eastern Main (EMD) decollements (Fig. 13). The incipient development of a shallow low-strength zone below the Pampean Ranges, inferred from the thermomechanical transect, is used to propose the existence of the active Pampean Range decollement (PRD) below this mountain belt. The EMD corresponds to a low-angle, west-dipping decollement placed in the upper ductile zone and moted into the lower ductile low-strength zone.

Time **T0** (Fig. 16) is modeled with a thick crust in the present Drearc and the westernmost sector of the Frontal Cordillera (35-40 km thick), produced by the Late Cretaceous contractional period. During stage **T1** (45-38 Ma), the FCD is active and is responsible for the uplift of the western Frontal Cordillera. This creates flexural subsidence in the Eocene foreland basin. At the end of this stage, a first uplift of the Pampean Ranges is modelled with reverse reactivation of deeply-seated faults.

During stage **T2** (38-23 Ma), the crust r ackes 45 km below the Maricunga volcanic belt. The uplift of the Frontal Cordillera generates flexural subsidence in the Valle Ancho basin. During this stage, the Pampean Ranges register another pulse of uplift and exhumation. At the beginning of stage **T3** (23-15 Ma), shortening is focused on the eastern Frontal Cordillera, with movement along the CD, where the crust achieves a thickness of >50 km, and in the Puna and Precordille. with movement along the EMD. As a result, the Fiambalá basin starts to subside.

Deformation propagates to the east, reaching the Fiambalá basin during stage **T4** (15-10 Ma), and faults of the vest arnmost sector of the Pampean Ranges reactivate. The crust thickens up to 60 km b, low the Southern Puna. Deformation is focused in the Precordillera and the eastern sector of the Pampean Ranges during the next stage (**T5**, 10-5 Ma). During the next stage **T6** (10-0 Ma), both EMD and PRD decollements are active and contractional deformation is focused on the eastern Precordillera and both western and eastern Pampean Ranges.

Figure 16: Forward modeling of the Southernmost Puna transect (27.6°S). Time 0 has been set to pre-45 Ma. By this time, deformation was focused only on the Coastal Range and the Domeyko Range. During the next stages (T1 to T6), the crust is shortened by incorporating the equivalent of the crustal area (in black) into the crustal root, while the subduction zone is fixed. The length of the black area indicates the amount of crustal shortening achieved in each stage, calculated from the kinematic forward modeling +9.5% (9.5% is the difference between the crustal area balance and the kinematic forward modeling shortening estimates, see Table 1). FCD: Frontal Cordillera decollement, EMD: Eastern Main decollement, PRD: Pampean Ranges decollement, PreC: Precordillera. Red and black lines indicate active and inactive faults, respectively. Orange color in T7 indicates low-strength zones according to the thermomechanical model.

The flat-slab transect (30°S)

The 30°S transect is modeled with two disconnected decollements: the Frontal Cordillera (FCD) and the Precordillera (pCD) decollements, following Mardonez (2020) and Mardonez et al. (2020). The pCD is rooted into the ductile lower crust through an uppercrust ramp previously proposed by Ammirati et al. (2018) with receiver function analysis.

Time zero (**T0**>45 Ma, Fig. 17) is modeled with a normal forearc and back-arc crust. The first stage of shortening (**T1**, 45-30 Ma) is modeled with 38 km of shortening and the generation of a back-to-back tectonic wedge with thrusts and back-thrusts uplifting both the Principal Cordillera and the western sector of the Frontal Cordillera. Subsidence is restricted to the Rodeo basin and Precordillera. During **T2** (30-?0 Ma), extension, focused on the arc region, is modeled with two east-dipping normal faults in the Frontal Cordillera. During stage **T3** (20-15 Ma), the western Frontal Cordillera is uplift creates flexural subsidence in the Rodeo basin and Precordillera.

During **T4** (15-12 Ma), an eastward jump of the deformational front is modeled with thrusting in the western Precordillera with the generation of the pCD. This generates subsidence in the Bermejo basin. At the beginn incord this phase, the FCD is still active, but it gets deactivated at the end of the phase. Furning **T5** (12-8 Ma), the central Precordillera and western Pampean Ranges are deformed at duplifted, while deformation ceases in the western Precordillera. This event is associated with a pronounced flexural subsidence in the Bermejo basin. The foreland is approximate by west- and east-dipping main faults, related to the uplift of the Pampean Rangec, but these faults are not interconnected to a decollement level.

During the next stage (**T6**, 8-6 Mic.), horizontal shortening is absorbed by reverse faults in the central Precordillera, during ongoing uplift of the Pampean Ranges and flexural subsidence in the Bermeic basin. The last stage **T7** (5-0 Ma) is marked by deformation of the eastern Precordillera which is modeled with a shallow decollement connected eastward with an eas. Tupping ramp responsible for the uplift of the Pampean Ranges.

Figure 17: Forward modeling of the flat-slab transect (30°S). Time 0 has been set to pre-45 Ma. By this time, deformation has been focused only on the Coastal Range. During the next stages (T1 to T7), the crust is shortened by incorporating the equivalent of the crustal area (in dark grey) into the crustal root, while the subduction zone is fixed. Active faults are in red. Inactive faults, developed in previous stages, are in black. The length of the black area indicates the amount of crustal

shortening achieved in each stage, calculated from the kinematic forward modeling +12% (12% is the difference between the crustal area balance and the kinematic forward modeling shortening estimates, see Table 1). FCD: Frontal Cordillera decollement, pCD: Precordillera decollement. Orange color in T7 indicates low-strength zones according to the thermomechanical model.

The Aconcagua transect (32.4°S)

This transect is modeled with two decollements located below the Principal Cordillera (PCD) and the Frontal Cordillera (FCD). Time zero (**T0** >21 Ma, Fig. 18) is modeled from an initially thin crust below the Mesozoic marine basin (30 to 33 km), and a normal crust below the Pampean Ranges (35 to 38 km). Afterwards, we simulate the Late Cretaceous contractional event with 17 km of shortening focused along a west-dipping decollement, and the early Oligocene-early Miocene extension with 3 km of herizontal extension following previous studies in the western Principal Cordillera (Cretrer et al., 2005, 2009; Mpodozis and Cornejo, 2012; Piquer et al., 2016; Mackaman-Loftand et al., 2020; Boyce et al., 2020; and references therein). The Miocene-Presert contraction (**T1**, 21-18 Ma) is modeled with a ramp-flat-ramp decollement below the Creastal Range and the Principal Cordillera.

In the next phase (**T2**, 18-15 Ma), the PCD rampo upwards into the basal layers of the Mesozoic sequence and forms the Aconcagua and and thrust belt is created. The foreland is shortening with the generation of east-tions orted faults in the Frontal Cordillera. During the **T3** period (15-12 Ma), deformation is mainly focused in the PCD and the faults uplifting the Frontal Cordillera. This period is modeled with movement along both PCD and FCD decollements.

Stage **T4** (12-9 Ma) is modeled with movement along the PCD and FCD. The FCD propagates eastward uplifting the western sector of the Precordillera. By the end of this stage, the Aconcagua fold-and thrust belt becomes deactivated. During the **T5** stage (9-6 Ma), contractional deformation is concentrated along the FCD, promoting the uplift of the eastern Precordillera view the PCD experiences a reactivation. During the next stage **T6** (6-3 Ma), the deformation front migrates to the easternmost Precordillera.

During the last stage (17, 3-0 Ma), horizontal shortening is accommodated along the easternmost sector of the FCD, the Cacheuta basin experiences uplift and denudation, and the Pampean Ranges uplift creating a broken foreland.

Figure 18: Forward modeling of the Aconcagua transect (32.4°S). Time 0 has been set to pre-21 Ma. We model Time 0 with extension along the Triassic Cuyo basin, Upper Cretaceous contraction, focused in the western sector of the Principal Cordillera, and Oligocene – early Miocene extension, generating the Abanico intra-arc basin. During the next stages (T1 to T7), the crust is shortened by incorporating the equivalent of the crustal area (in black) into the crustal root, while the subduction zone is fixed. Active faults are in red, inactive faults are in dashed black lines. The length of the black area indicates the amount of crustal shortening achieved in each stage, calculated from the

kinematic forward modeling +10% (10% is the difference between the crustal area balance and the kinematic forward modeling shortening estimates, see Table 1). PCD: Principal Cordillera decollement, FCD: Frontal Cordillera decollement. Orange color in T7 indicates low-strength zones according to the thermomechanical model.

The Maipo/Tunuyán transect (33.6°S)

in a similar way to the 32.4°S transect, the 33.6°S transect (Fig. 13) is modeled with two decollements: the Principal Cordillera (PCD) and the Frontal Cordillera (FCD) decollements. The PCD has a ramp-flat geometry and is responsible for the uplift and exhumation of the western Principal Cordillera. Below the Acon agua fold-and-thrust belt, it flattens and generates the Aconcagua orogenic wedge. The time zero (**T0**, Fig. 19) corresponds to the late Eocene to early Miocene extensional averate that generates the Abanico intra-arc basin.

The Cenozoic compressional event starts between 21 and 18 Ma (**T1**), with the inversion of the Abanico basin. We model this stage with move merit along both west- and eastdirected faults, which uplift the western Principal Cordille.a. During stage **T2** (18-15 Ma), the Aconcagua fold-and-thrust belt starts to develop, and the Frontal Cordillera has its first uplift. Both ranges produce flexural subsidence in the Alto Tunuyán and Cacheuta basins.

During T3 (15-12 Ma), shortening is mainly absorbed in the Aconcagua FTB by movement along the PCD. During T4 (12-9 Ma), both the PCD and the FCD are active through back-thrusting and out-of-sequence faults. During T5 (9-6 Ma), there is an important uplift of the eastern Frontal Cordillera along the -CD. However, the PCD is still active, and is responsible for the back-thrust octivity and exhumation of the western Principal Cordillera.

During **T6** (6-3 Ma), the PCL becomes inactive, and shortening is absorbed in the eastern Frontal Cordillera, with generation of frontal thrusts affecting the Cacheuta basin and the inversion of the Tripssip Cu yo basin. During the last stage (**T7**, 3-0 Ma), shortening is accommodated in the ECD and the westernmost sector of the PCD with movements along the San Ramón fault.

Figure 19: Forward modeling of the Maipo transect (33.6°S), modified from Giambiagi et al. (2015a). Time 0 has been set to pre-21 Ma and modeled with extension along the Triassic Cuyo basin and the Jurassic Neuquén basin, Upper Cretaceous contraction, focused in the western sector of the Principal Cordillera, and Oligocene – early Miocene extension, generating the Abanico intra-arc basin. During the next stages (T1 to T7), the crust is shortened by incorporating the equivalent of the crustal area (in black) into the crustal root, while the subduction zone is fixed. Active faults are in red, inactive faults are in black lines. The length of the black area indicates the amount of crustal shortening achieved in each stage, calculated from the kinematic forward

modeling +5% (5% is the difference between the crustal area balance and the kinematic forward modeling shortening estimates, see Table 1). PCD: Principal Cordillera decollement, FCD: Frontal Cordillera decollement. Orange color in T7 indicates low-strength zones according to the thermomechanical model.

The Tinguiririca/Malargüe transect (35°S)

The 35°S transect is modeled with one gently-west-dipping main decollement (MD), located between 10 and 15 km in depth. This decollement has a ramp-flat geometry, similar to the PCD we model in the 32.6° and 33.6°S transects. The ramp is located below the westernmost sector of the Principal Cordillera, while the flat segment is underlying the Malargüe fold-and-thrust belt. Time zero (**T0**, Fig. 20) corresponds to the Late Cretaceous deformation, modeled with a 35-to-40-km-thick crust, below the a c and back-arc region.

During **T1** (16-13 Ma), the MD is created, and the Meso our normal faults are reactivated. This contraction produces flexural subsidence in the Molargüe foreland basin. The following period (**T2**, 13-10 Ma) records further advance of the deformation towards the foreland modeled with an eastward prolongation of one main decollement. Out of sequence activity in the westernmost structures takes place filely during this stage.

Deformation propagates eastward during T: (10-6 Ma) and T4 (6-3 Ma), but out-ofsequence deformation is modeled inside the fold-and-thrust belt. Finally, the last period T5(3-0 Ma) corresponds to 9 km of shottening transferred from the main decollement the faults along the orogenic front.

> 2031 2011

Figure 20: Forward modeling of the Tinguiririca transect (35°S). Time 0 has been set to pre-16 Ma. We model Time 0 with extension along the Jurassic Neuquén basin, and Late Cretaceous contraction, focused in the western sector of the Principal Cordillera. During the next stages (T1 to T6), the crust is shortened by incorporating the equivalent of the crustal area (in black) into the crustal root, while the subduction zone is fixed. Active faults are in red, inactive faults are in dashed black lines. The length of the black area indicates the amount of crustal shortening achieved in

each stage, calculated from the kinematic forward modeling +4% (4% is the difference between the crustal area balance and the kinematic forward modeling shortening estimates, see Table 1). MD: Main decollement. LBD: Los Blancos depocenter. Orange color in T7 indicates low-strength zones according to the thermomechanical model.

5.3 Geodynamic modeling of the upper-plate lithospheric shortening

The results of the deformation evolution obtained from the geodynamic model of the upper-plate lithospheric shortening are shown in Figure 21. This evolution is set up in stages related to the amount of horizontal shortening. The first stage, after 5 km of shortening, shows a pure-shear shortening mode with deforma. On uniformly distributed in the hottest and weakest region of the model domain (Fig. 21A C). The two crustal shear zones show different polarities and doubly vergence of westword and eastward dipping ~45°. The left one penetrates into the deep Moho, while the right one is rooted in the shallow ductile lower crust.

After 30 km of shortening, the crust thickens to ~40-45 k n and forms an upper-crustal wedge along the decollement zone within the region of the left east-vergent shear zone in the first stage (Fig. 21C). Under the wedge, a zone of lower viscosity relative to the surrounding area is formed at the base of the upper crust, while the crustal root appears in the Moho (Fig. 21D). Furthermore, pre-existing taults located near the right east-vergent shear zone in the first stage tend to reactive te with the formation of another low-viscosity zone.

The crust thickens further with continued shortening and its root becomes wider and deeper, reaching thicknesses c 55 km and >60 km after shortening by 80 km and 135 km, respectively (Fig. 21E-H). During the 80-km-shortening stage, a new crustal shear wedge is developed farther east of the tirst one due to the maturation of the second low-viscosity zone along a new eastware decollement (Fig. 21E-F).

At 135 km of shortening (Fig. 21G-H), a third low-viscosity zone is evolving as the decollement propagates eastward, resulting in deformation migrating toward the cold foreland without crustal root. Meanwhile, a high-topography hinterland with the thickest crust in the system has grown over the two crustal wedges formed in the first three wedge stages.

Our geodynamic model effectively reproduces the general evolution of crustal deformation as observed with the kinematic models described above for the Southern Central Andes. However, it is important to note that a major limitation in our model is the absence of any phase transformation processes, such as crustal eclogitization, which could be an essential driver for delamination and resultant lithospheric thinning (Krystopowicz and Currie, 2013). In addition, it is also necessary to consider the subduction dynamics in the west and the lateral variation between transects in future geodynamic models.

Figure. 21: Geodynamic model results chowing the evolution of deformation and viscosity. A-B) After 5 km of shortening, the deforma ion in uniformly distributed in crustal shear zones dipping 45°. C-D) By 30 km of shortening, and the formation of a low-viscosity zone at its bottom. E-F) After 80 km decollement, accompanied by the formation of a low-viscosity zone at its bottom. E-F) After 80 km of shortening, a new crustal shear wedge accommodates deformation farther east. G-H) At 135 km of shortening, the deformation migrates eastward from the hot high-topography hinterland to the cold foreland. CUC: continential upper crust; CLC: continental lower crust; CLM: continental lithospheric mantle; AS: Asthenosphere.

8. Discussion

6.1 Integrated model of crustal anatomy of the Southern Central Andes

The critical wedge theory (Dahlen et al., 1984; Dahlen and Barr, 1989) assumes that the overall shape of the fold-and-thrust belt can be reproduced by a wedge of rocks having a brittle behavior and frictionally sliding above a basal decollement. This analogy has been widely applied where a sedimentary cover is detached from the underlying basement along a shallow decollement, forming a thin-skinned thrust belt such as the Sub-Andean belt (22°S transect) or the Argentinean Precordillera (30°S transect). However, how far these decollements extend into the hinterland is a matter of debate (Martinod et al., 2020). At a greater depth, when the belt widens and the elevation of the hinterland increases, the

wedge acquires a dimension where the premise of frictional behavior is difficult to achieve (Dahlen and Barr, 1989; Willett et al., 1993; Jamieson and Beaumont, 2013). Our thermomechanical and geodynamic models suggest that, at a certain depth, the decollement would be located in a low-strength, thermally activated, creeping shear zone (Willett et al., 1993), where the critical taper-wedge model may not apply. These shear zones are the product of vertical variations in crustal strength. The high-strength upperand middle-crustal zones with competent elastic behavior are separated by a subhorizontal region of low strength, located at the base of the upper crust (Figs. 13 and 21). According to our model, the role of this weak, low-strength zone is crucial to the development of a nearly flat decollement and has to be evaluated to propose a kinematic model for the construction of the orogenic system. Our results suggest that the active decollements (Fig. 22, red lines) are the ones located at the eact ernot portion of the orogenic system at surface, while their westward extension at dool are rooted into the middle-lower ductile crust (Fig. 21), where the crust is thick er our to promote crustal flow.

Moreover, along- and across-strike variations in the Canozpic geological history of the Southern Central Andes compiled in our forward kine mail models, as well as the results from the geodynamic model, indicate that these active accollements were the last ones to be generated. This pattern suggests that the et stword-transport kinematic models are the most suitable to explain the tectonic development of the orogenic system, as a whole. Moreover, it agrees with the substantia' difference in the amount of crustal shortening absorbed on the western and eastern slophs of the orogenic system (Echaurren et al., 2022). It also agrees with the models proposed for the Altiplano by Elger et al. (2005) and Oncken et al. (2012), characterizer, c, two disconnected decollements instead of a single, eastward-growing crustal wedge (M. Cuarrie 2002, 2004). This interpretation is also shared by Martinod et al. (2020, who suggest that the widest sector of the Central Andes does not correspond to the eartward expansion of a single orogenic wedge, but rather to the presence of two distinct custal wedges, a western one deforming the Western Cordillera and the Altip'a. yr una plateau, and an eastern one affecting the Eastern Cordillera and foreic no ranges. Our geodynamic model reinforces this suggestion, favoring the generation of two in dependent crustal wedges, with the eastern wedge being the voungest.

According to our model, there is a marked along-strike, southward decrease in crustal shortening and crustal thickness from 22 to 35°S, reflected in a reduction of more than seven times in the magnitude of Cenozoic shortening (from ~325 to 46 km) and three times in the crustal root width (from ~526 to 170 km) (Fig. 22, Table 1). It is noteworthy that this trend is not coupled with the first-order segmentation of the Andes controlled by dip changes in the oceanic slab (e.g., Kay et al., 2009; and references therein), but agrees with the gradual and systematic decrease in the Eocene-Present crustal shortening values from the axis of the Andean orocline to the south (Isacks, 1988; Somoza et al., 1996; Kley, 1999; Prezzi and Alonso, 2002; Allmendinger et al., 2005; Arriagada et al., 2008; Giambiagi et al., 2012; Eichelberger and McQuarrie, 2015; Horton, 2018).

Figure 22: A) Results for the seven kinematically-modelled transects (see locations in Fig. 1): Altiplano (22°S), Puna (24°S), Southernmost Puna (27.6°S), flat-slab (30°S), Aconcagua (32.4°S), Maipo (33.6°S) and Malargüe (35°S), with the subducted Nazca plate (grey lines), present-day Moho (green lines) and lithosphere/asthenosphere boundary (dashed red lines). Areas of predicted low strength and ductile behavior are highlighted in orange. Active decollements (in red) are located inside the uppermost part of the low-strength areas. Seismicity was selected considering a band of

0.25° width from north to south of the actual latitude and with a threshold of Mw > 2.5. CR: Coastal Range, DD: Domeyko Range, WC: Western Cordillera, EC: Eastern Cordillera, SR: Sub-Andean ranges, SB: Santa Bárbara system, PC: Principal Cordillera, FC: Frontal Cordillera, Pre-C: Precordillera. B) and C) Four parameters are compared for each of the cross-sections: (i) maximum crustal thickness, (ii) crustal root width (>45 km), (iii) total horizontal shortening (with errors), and (iv) shortening rates for the 45-35 Ma, 35-20 Ma, 20-10 Ma and 10-0 Ma periods (Supplementary Material, Table A2). The comparison of these parameters indicates a close relationship between crustal root width and total amount of shortening, and the numbers of decollements responsible for the crustal deformation.

When comparing our calculated shortening achieved during the middle-late Eocene (45-35 Ma), the Oligocene-early Miocene (35-20 Ma), the middle Miocene (20-10 Ma) and the late Miocene-Quaternary (10-0 Ma), a similar steady southward decry is identified (Fig. 22B). However, when comparing the shortening rates for the different time periods (Fig. 23), it is observed that the southward-decreasing shortening absorbed by the Southern Central Andes is not equally distributed during the Cenozoic. Instead, during the first Cenozoic contraction period (middle-late Eocene, 45-32 Ma), shot tening was partitioned into rates of 7-10 mm/yr and ~2 mm/yr at the 22 and 27°S transects, respectively. Furthermore, the middle-late Eocene compressional phase only affects the segment north of 30°S (Oncken et al., 2012; Lossada et al., 2017; Faccena et al., 2017). Interestingly, the shortening rates for the northern transects (22-32°S) converge to the ximum values of ~6-8 mm/yr during the second Cenozoic contraction period (15-10 Ma) that, except for the northernmost transect at 22°S, decrease at similar rates curing the Pliocene-Quaternary (Fig. 23).

Figure 23: A) Location of the seven cross-sections of the Southern Central Andes with color-coded symbology. B) Shortening rates vs time for the different transects. Two periods of maximum shortening rates can be clearly distinguished (gray rectangles), separated by a period of extension that affected the southern sector (30-35°S). During the first period (middle-late Eocene), there is a clear pattern of shortening rate decrease from north (22°S) to south (30°S). No Eocene deformation is registered further south. During the second period (Miocene), the shortening rate patterns are more complex indicating the superposition of different first-, second-, and third-order controls. C) Nazca-South America orthogonal convergence rates in the trench, based on relative plate motions from poles of rotations from Bello-Gonzalez et al. (2018) for the 60-28 Ma period, and from Quiero et al. (2022) for the 28-0 Ma period.

This suggests that the present-day crustal anatomy of the Southern Central Andes is the result of a superposition of first-, second- and third-order controls. The first-order controls are responsible for the steady decrease, from the axis of the A. dean orocline (20°S) to the south, of the amount of shortening and crustal thickening, as vell as the width of the crustal root. It is also responsible for the different onset of deturnation during the first Cenozoic event. One of these controls might be the sut lucion rate relative to the convergence rate that controls the advancing or retreating subduction type (Heuret and Lallemand, 2005; Doglioni et al., 2007). This ratio is related to variations in the slab thickness, controlled by the age of the Nazca plate at the trench (Yáñez and Cembrano, 2004; Capitanio et al., 2011). At the central part of the Andean orogen, where the slab is the oldest (50 Myr), the thick slab drives more traction towards the trench at the base of the continental plate (Capitanio et al., 2 11), explaining the strong symmetry of the Central Andes. The ratio may also be controlled by sub-lithospheric dynamic processes such as subduction-induced mantle flow (Wdovinski and O'Connell, 1991; Schellart et al., 2007; Faccena et al., 2017), and the resistence to slab retreat which is most significant in the center of the subduction zone (Hasser) et al., 2012; Schellart, 2017).

All these processes promote with the onset of Cenozoic contraction and the highest shortening rates at the axis of the Central Andes. Second-order controls, such as the convergence velocity and obliquity (Pardo-Casas and Molnar, 1987; Somoza, 1998; Quiero et al., 2022), and well correlated with the two periods of orogenic construction, the middle-late Eocene and the Miocene. Both contractional pulses occurred between periods of guasi-stationary convergence rates and changing tectonic conditions: while the first event took place during increasing convergence and orthogonality, the second one occurred simultaneously to convergence rates decreasing from a maximum value achieved after the break-up of the Farallon plate into the Nazca plate (Fig. 23C). Potential controlling factors over the diminishing of convergence rates during the second period include the anchoring of the Nazca plate at the 660 km-mantle discontinuity, taking place ~10-8 Myr after the breakup of the Farallon plate (Quinteros and Sobolev, 2013). Given the correlation of this latter event with the decrease of shortening rates, an additional control has been assigned to the increase of gravitational potential energy as the cordillera grows and shear stresses increase at the interplate megathrust (Norabuena et al., 1999; laffaldano et al., 2006; Quiero et al., 2022). During the second event of Andean orogenesis, different segments between 22 and 33°S show similar shortening rates, regardless of both their different previous orogenic development and their link with slab

dynamics. While subduction and deep-mantle dynamics are first- and second-order controlling factors of the onset of Cenozoic contraction, our data suggest that third-order controls are related to variations both in crustal strength of the overriding-plate and in its mechanical weakening during the orogenic construction. In turn, the latter parameters are controlled to a great extent by the inherited compositional/lithological configuration of the continental crust, as previously proposed (Allmendinger et al., 1997; Tassara and Yáñez, 2003; Tassara, 2005; Mescua et al., 2014, 2016). Another third-order control that might be considered is the out-of-the plane movement of crustal material which is not contemplated by our two-dimensional approach.

6.2 Relationship between crustal anatomy and seismicity

As has been proposed for many orogens around the World (Magy et al., 2000), most nonsubduction earthquakes in the Central Andes occur in the upper-iniddle crustal seismogenic layer, while the orogenic lower crust is complete'v aseismic. Tassara et al. (2007) and Ibarra et al. (2021) highlight the correlation batter large lateral gradients in strength and location of active deformation and seismicity in the Altiplano/Puna latitudes. Of significant importance in convergent orogens is tipe m ddle-crust, high-strength zone (Royden, 1996; Vanderhaeghe et al., 2003), locater bed w the upper low-strength zone. This zone is present below the Eastern Cordille ra, the western sector of the Santa Bárbara system, the Frontal Cordillera, the Precordillera and the Malargüe FTB (Fig. 22). Our model suggests that the juxtaposition of (wc low - and high-strength layers promotes strain localization in the ductile, low-strength $z_0 \Rightarrow$ and the generation of a decollement. The upper and lower high-strength layers with predicted elastic/plastic behavior by our thermomechanical modeling, are s'ap relied to high compressive stress and are seismically active (Fig. 22). In contrast, due to the aseismic creeping behavior of the decollements, seismicity is not concentrated clong them. Few earthquakes are detected inside these lowstrength zones, which are no. likely related to frictional sliding, but to frictional-viscous behavior (Scholz, 1990). Sets micity inside these zones may reflect the fact that their elastic/elasto-plastic properties can sustain higher seismic strain rates than the ones necessary to activate dislocation or diffusion creep (Kirby et al., 1991).

In the western sector **C**, the plateau transects (22-27°S), crustal seismic events are distributed within the entire crust through subvertical zones, mainly in the cold and rigid fore-arc and in the Domeyko Range (Fig. 22). Stress inversion from focal mechanisms in the fore-arc indicates a compressional region with N-S compression (González et al., 2015; Herrera et al., 2021). Neotectonic kinematic interpretation of these subvertical seismic zones in the Domeyko Range, along with focal mechanism inversion, suggest a strike-slip regime with active N to NE-striking, dextral strike-slip shear zones (Fig. 22), absorbing the parallel-to-the-trench vector of the oblique subduction (Victor et al., 2004; Cembrano and Lara, 2009; Salazar et al., 2017; Santibañez et al., 2019; Herrera et al., 2021). In the eastern sector of the plateau transects, earthquakes are restricted to the crust that is being underthrusted under the Main Andean decollement. The area with high-strength is the most active in the foreland, reflecting a concentration of stress in the

elastic/plastic field as a result of a thinner crust when compared with the crustal shield to the east.

In the 30°S transect, the flattening of the subducted slab extends for hundreds of kilometers and concentrates up to 3-5 times greater seismic energy release at the foreland as a result of the cooling of the upper lithosphere (Gutscher et al., 2000). The seismicity is located in the foreland, below the western and eastern borders of the Precordillera and the entire Pampean Ranges, at depths between 10 and 50 km (Fig. 22) (Smalley and Isacks, 1990; Pardo et al., 2002; Ramos et al., 2002; Rivas et al., 2020). Although different depths of decollements have been proposed for the Pampean Ranges (see Ramos et al., 2002; Richardson et al., 2012), the uniform distribution of crustal seismicity allow us interpreting the absence of an individual decollement in this sector.

In the 32.4° and 33.6°S transects, seismicity is concentrated n th ee areas in the uppermiddle crust (Fig. 22): the fore-arc, the Principal Cordillere, and the forearc, seismicity is widely distributed, with a complicated r is of inrust and normal focal mechanisms (Comte et al., 2019). Below the central domession, seismicity depths delineate a west-dipping ramp rooted into the Moho, at the downdip limit of the elastic coupling along the subduction zone at ~55 km dept¹. (Farias et al., 2010). This ramp shallows toward the east, below the Principal Coruillera, where seismicity is located at depths shallower than 20 km, and it is aligned which the N-S fault systems present in the western slope (Barrientos et al., 2004; Charlier et al., 2005; Farias et al., 2010; Nacif et al., 2017; Ammirati et al., 2019), as well as along a shallow decollement located at 10 km (Ammirati et al., 2022). The foreland is characterized as a 50 km-thick seismogenic crust suggesting that active faults extendio arous the crust rather than localized on upper-middle crust decollements (Meigs and Nabelle 4, 2010; Ammirati et al., 2018).

In the 35°S transect, the volconic arc concentrates the majority of the crustal earthquake events (Villegas et al., 2016). Most of the reported focal mechanisms in this area are strike-slip mechanisms (Autor do et al., 2005; Comte et al., 2008; Spagnotto et al., 2016; Villegas et al., 2016), a lien sted along subvertical faults. In the foreland, the seismicity is distributed in the vicinity of the Malargüe thrust front, with an Mw ~ 6.0 event (5/30/1929; Lunkenheimer 1930) and events of magnitude greater than 5.

6.3 The evolution of the decollements during the construction of the Andean orogenic system

By integrating results from the kinematic reconstructions, the present-day thermomechanical structure of the upper plate and the geodynamic numerical model, we propose the following four stages during the construction of the orogenic plateau system (Fig. 24): pre-wedge, wedge, paired-wedge and plateau stages. The pre-wedge stage resembles the small-cold orogen stage from Jamieson and Beaumont (2013) which consists of a single or back-to-back bivergent critical wedges with little or no ductile deformation. The plateau stage resembles their large-hot orogenic configuration with a central elevated plateau underlain by a weak ductile flow zone and flanked by external

wedges. The wedge and paired-wedge stages represent the transition between these twoend member models.

Pre-wedge stage: A normal-to-slightly-thickened crust (<40 km) with a very narrow crustal root and thick lithosphere inhibits the development of a thermally-activated shallow lowstrength zone. As a result of this, no decollement is generated and deformation (<30 km of shortening) is widely distributed throughout the crust, above the hottest part of the system (e.g., Fig. 21A-B). This stage resembles both a pure shear-dominated deformation stage with uniformly distributed plastic shear bands (Allmendinger and Gubbels, 1996; Jaquet et al., 2018) and the initial stage of a doubly vergent compressional orogen proposed by Willett et al. (1993), with the development of 45°-dipping shear zones under a symmetrical strain rate field. During this stage, pre-existing crustal anisotropies play a main role over the focus of deformation, guiding deformation through either reactivation of pre-existing contractional major faults, inversion of normal faults, or both. The model proposes that the first stage of Cenozoic uplift of the Domeyko Range, the prote Frontal Cordillera stage and the inversion of the extensional Oligocene intra-arc basins of the system correspond to this pre-wedge stage.

Wedge stage: As the crust thickens (40-55 km) and the crustal root widens (100-200 km), a shallow low-strength zone develops in the up re-middle crust as thermal response to a simultaneous thinning of the lithosphere. This shallow low-strength zone is utilized as a sub-horizontal decollement and focuses most or the crustal deformation (30-80 km of shortening). This promotes the development of an upper-crustal wedge (e.g., Fig. 21C), tapering both towards the hinterland and the foreland. This stage resembles both the small-cold orogen that deforms by an ical wedge mechanics (Jamieson and Beaumont, 2013) and the early deformation state with topography steadily uplifted proposed by Wdowinski and Bock (1994). T' e de collement is formed from a prominent crustal-scale shear zone dipping towards us hottest part of the system with a top-to-foreland thrust direction (Jaguet et al., 2018, and is promoted by the asymmetric lithosphereasthenosphere boundar; (bc.rionuevo et al., 2021). During this stage, pre-existing structures such as oar. Present in the foreland, may reactivate (e.g., Fig. 21D), uplifting basement blocks, such as the Pampean Ranges during the Miocene or the early uplift of the Eastern Cordillera during the Eocene. Crustal thickening requires proportional thickening of the mantle lithosphere as shown by our geodynamic model, but this must be compensated by some process capable of thinning the lid of lithosphere beneath the crustal root at a similar rate respect to the advancing crustal shortening/thickening (Pope and Willett, 1996). A continuous process has been proposed, such as ablative subduction (Tao and O'Connell, 1992; Pope and Willett, 1996) or the peeling off of the portion of dense lithospheric mantle by convective removal by the Rayleigh-Taylor gravitational instabilities developed in a thickened lithospheric mantle (Houseman et al., 1981; England and Houseman, 1989). These processes have been proposed for subduction-related orogens, such as the Colorado Plateau (Bird, 1979), the Canadian Cordillera (Bao et al., 2015), and the Altiplano-Puna Plateau (Kay and Kay, 1993; Lamb et al., 1997; Beck and Zandt, 2002; DeCelles et al., 2015b; Garzione et al., 2017).

Figure 24: Conceptual sketches representing the diffurent proposed orogenic stages. A) Pre-wedge stage without a shallow low-strength zone, inhibiting the development of a decollement. B) Wedge stage with an upper-r ridule crust shallow low-strength zone, promoting the development of a decollement. C) relied-wedge stage generated when the low-strength zone thickens and widens. The disappearance of a high contrast in strength produces the deactivation of the innermost 4 co lement and promotes the development of a new one towards the foreland. D) Platea. stage, where the low-strength zone considerably widens, deactivating the internal or ger c decollements and fostering both the development of a new decollement along the new low-to-high strength contrast zone and the concentra. n of shortening towards the foreland.

Paired-wedge stage: During the virceung of the crustal root (200-400 km), with a crustal thickness exceeding 55 km, the the momechanical structure of the lithosphere fosters the development of a new decollement towards the foreland. The location and development of this new decollement is controlled by a new low-to-high strength contrast zone, and promoted by thermal soften inr, (Jaquet et al., 2018) and strain localization (Oncken et al., 2012). Even though two decollements may be simultaneously active during the early state of this stage, the westorn decollement eventually deactivates with progressive shortening (e.g., Fig. 21E-F). In and model, the maintenance of the crustal rheological layering, with a large strength contrast, is essential for sustaining the activity of the decollement. The thinning of the lithosphere increases the crustal temperature and produces a lack of strength contrast which promotes broadened shear zones at the western tip of the decollement, where it may become diffuse and rooted into a broader area of ductile behavior. At the eastern edge of these sub-horizontal low-strength zones, the decollement may ramp upwards and reach another rheological sub-horizontal layer contrast, such as the basement/sedimentary-cover interphase in the Precordillera (30°S). This stage represents the transition from a small-cold orogen, governed by critical wedge mechanics (wedge stage), to a large-hot orogen (plateau stage) proposed by Jamieson and Beaumont (2013). During this stage, the thinning of the continental lithosphere is promoted when the lower crust and mantle lithosphere are sufficiently soft (Morency and Doin, 2004). The broadening of the low-strength zone at the orogenic crustal root may play a

C) Paired-wedge stage

critical role during this stage, promoting the decollement of the lithospheric mantle (Schott and Schmeling, 1998).

Plateau stage: The orogenic lithosphere weakens as the crust thickens and gets hotter, implying great temporal variations of the lithospheric strength (Jamieson et al., 2013; Chen and Gerya, 2016). Crustal thickening and lithospheric thinning leads to changes in the dominant deformational mechanism, from frictional Coulomb plasticity to thermally-activated viscous flow in the upper-middle crust (Willett et al., 1993; Jamieson et al., 2013; Jaquet et al., 2018). Moreover, the high strength contrast at mid-crustal levels may disappear, and the viscous flow of the lower crust promotes a low surface slope (Willett et al., 1993). The absence of lithospheric roots beneath the Altiplano/Puna plateau and the thinning of the lithosphere beneath the 27.6°S transect indicate that delamination or other lithospheric erosion processes should have occurred during the crustal shortening and thickening.

During this stage, a thick crust (>60 km) with a widened crustril root (>400 km) promotes the destruction of the elastic core by the expansion of the ductile low-strength zone, and, as a consequence, the demise of the internal decollumer t as the entire lower and middle crust becomes ductile. This stage is only achieved in the Altiplano (22°S) and Puna (24°S) transects. In these areas, active deformation is mainly concentrated along the eastern side of the Andes, where the upper crust is under thrusted beneath the Sub Andean ranges and the Eastern Cordillera (Lyon-Caen at al., 1585; Isacks, 1988).

A fundamental feature of our model is that, although the low-strength ductile zones may extend throughout the entire width c_i the orogen, the decollement would vanish if there were no high contrast between a sincle w high-strength zone and a deeper low-strength zone (Fig. 22).

Flat-slab particular crise. A particular case occurs when the subduction angle substantially decreaces, where the cooling effect of the subducting plate inhibits the development of the upper low-strength zone. This explains the deactivation of the decollement located below the Precordillera, at 30°S. Another particularity along the flat-slab transect is the abnormally deep brittle-ductile transition beneath the foreland (~40 km depth; Ammirati et al., 2013) associated with a highly active seismic zone at both crustal and mantle depths (Smalley et al., 1997; Alvarado et al., 2009).

9. Conclusions

In this study we investigated the crustal-scale structural evolution of the Southern Central Andes (22 -35°S), by integrating diverse previous and new geological and geophysical data with the results from new thermomechanical-numerical modeling. Our analysis of this Andean segment is focused in the last 45 Myr, when two distinct contractional episodes took place: during the middle-late Eocene and during the Miocene. These compressive pulses were unevenly distributed in space and time along the strike of the orogen,

associated with different amounts of crustal shortening-thickening, uplift history, magmatism, and basin development.

Our approach consisted in the construction of seven cross sections perpendicularly to the strike of the orogen, whose deep and shallow crustal anatomy is constrained by a new thermomechanical model. Specifically, this model identifies sub-horizontal zones characterized by a high rheological contrast between crustal layers of low- and highstrength, where major decollements are most likely nucleated. This crustal arrangement was used as the final state of the structural forward modeling performed in these seven transects, from which we obtained new calculations of tectonic shortening and thickening. This coupled analysis indicates a clear reduction of the orogenic magnitude from the northern to southern ends of the Southern Central Andes (22 and 35°S), expressed as a sevenfold reduction of crustal shortening (from ~325 to 46 km) and a threefold reduction of crustal thickness (from ~526 to 170 km). This southward decrease of orogenic shortening and thickening is characterized by the presence of two independent decollements in the Altiplano-Puna plateau and only one decollement in the rescipal Cordillera to the south. We complemented these results with a new geodynamic model that computes the spatiotemporal evolution of major crustal shear zones and the location of low-viscosity zones where subhorizontal decollements are generated. This model shows an eastward migration of these parameters -toward the fore land during increasing tectonic shortening, consistently with the deformational events coscribed in the Southern Central Andes and the decollements constrained by the thr rmr mechanical model.

In this contribution, we propose a novel evolutionary path for the orogenic growth of the Southern Central Andes. The initial state (pre-wedge stage) is characterized by a uniform distribution of deformation within a narrow region, at the axial zone and hottest region of the orogenic system. This stage is followed by the formation of one (wedge stage) or two (paired-wedge stage) crustal wedges associated to individual decollements that expand the mountain belt both laterally and vertically. The final state (plateau stage) corresponds to a highly broadened and the controls a cratonward-directed tectonic transport.

Our results show a critical dependence between the localization of brittle deformation in the upper crust and the development of a mid-crustal, sub-horizontal decollement with a sharp contrast between low and high lithospheric strength. This structural arrangement can change during the formation of the crustal root and the asthenospheric thermal anti-root, with orogenic development and growth leading to the deactivation of the formerly active decollement and the generation of a new one toward the east.

Based in our integrated analysis, we identified the superposition of first-, second- and third-order controls over the evolution of the Southern Central Andes. The first-order controls correspond to subduction and sub-lithospheric dynamics correlated with the systematic decrease in the amounts of crustal shortening-thickening. Second-order controls are related to the convergence velocity and obliquity between the Nazca and South American plates. Third-order controls are associated with variations in the

geologically inherited crustal strength of the overriding plate and its mechanical weakening effect during mountain building.

Data availability

The data presented in this manuscript can be found in the Supplementary Material 1 and 2, and Tables 1 and 2. The geodynamic model was run using the open-source ASPECT v2.3.0 with all model input files found here: doi.org/10.5281/zenodo.5783270. The kinematic models made with MOVE are available at https://doi.org/10.5281/zenodo.6578074.

Acknowledgments

This work was supported by the Argentine ANPCyT (r 'C i-2016-0269; PICT-2019-0800), the Argentina/Germany GFZ-CONICET consortium (CraTeGy), the Argentine CONICET (PIP 11220200101409CO) and the Chilean ANID project Nucleo Milenio CYCLO (NCN19_167). We thank the Cranculational Infrastructure for Geodynamics (geodynamics.org) for supporting the development of ASPECT. The geodynamic computation was supported by the Control Supercomputing Alliance (HLRN). We acknowledge Midland Valley and Fotex for the Academic Licence of the program MOVE to the Universidad Nuclei al de Cuyo. This manuscript has benefited from very helpful reviews by David Whipp, Jonas Kley, Brian Horton and Carlo Doglioni, as well as two anonymous reviewers, who are gratefully acknowledged.

Declaration of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

Acocella, V., A. Gioncada, R. Omarini, U. Riller, R. Mazzuoli, and L. Vezzoli (2011), Tectonomagmatic characteristics of the back-arc portion of the Calama-Olacapato-El Toro fault zone, Central Andes, *Tectonics*, 30, TC3005, doi:10.1029/2010TC002854.

- Allmendinger, R.W., Gubbels, T., 1996. Pure and simple shear plateau uplift, Altiplano-Puna, Argentina and Bolivia. Tectonophys. 259, 1–13.
- Allmendinger, R.W., Judge, P., 2014. The Argentine Precordillera: A foreland thrust belt proximal to the subducted plate. Geosphere 10, doi:10.1130/GES01062.1
- Allmendinger, R.W., Zapata, T., 2000. The footwall ramp of the Subandean decollement, northernmost Argentina, from extended correlation of seismic reflection data. Tectonophys. 321, 37-55.
- Allmendinger, R.W., Ramos, V.A., Jordan, T.E., Palma, M., Isacks, B.L., 1983. Paleogeography and Andean structural geometry, northwest Argentina. Tectonics 2,: 1-16.
- Allmendinger, R.W., Figueroa, D., Snyder, D., Beer, J., Mpodozis, C., Isacks, B. L., 1990. Foreland shortening and crustal balancing in the Andes at 30°S latitude. Tectonics 9, 789– 809. doi.org/10.1029/TC009i004p00789
- Allmendinger, R.W., Jordan, T., Kay, S.M., Isacks, B., 1997. The Cyclution of the Altiplano-Puna plateau of the Central Andes. Annu. Rev. Earth Planet.Sci. 25 13:174.
- Allmendinger, R. W., Smalley, R., Bevis, M., Caprio, H., Brooks, B., 2005. Bending the Bolivian orocline in real time, Geology 33, 905 908, doi:10.1130/321019.1
- Alonso, R., 1992. Estratigrafía del Cenozoico de la cuence Fosto a Grandes (Puna Salteña) con énfasis en la Formación Sijes y sus boratos. Rev. Asoc. Geol. Argentina 47, 189-199.
- Alvarado, P., Beck, S., Zandt, G., Araujo, M., Triep, E 2005. Crustal deformation in the southcentral Andes backarc terranes as viewed from region of broad-band seismic waveform modelling. Geophys. J. Int. 163(2), 580-598.
- Alvarado, P., et al., 2009. Flat-slab subduction al c crustal models for the seismically active Sierras Pampeanas region of Argenting in Yay, S.M., Ramos, V.A., and Dickinson, W.R., eds., Backbone of the Americas: She low Subduction, Plateau Uplift, and Ridge and Terrane Collision: Geological The Geological Society of America, Memoir 204. doi: 10.1130/2009.1204(12). Amilibia, Y. Sàbat, F., McClay, K. R., Muñoz, J. A., Roca, E., Chong, G., 2008. The role of inh and tecton-sedimentary architecture in the development of the Central Andean mountain t elt. Insights from the Cordillera de Domeyko. J. Struct. Geol. 30, 1520-1539.
- Ammirati, J.-B., Alvarado, P., Pelornau, M. Saez, M., Monsalvo, G., 2013. Crustal structure of the Central Precordillera of Can Juan, Argentina (31°S) using teleseismic receiver functions. J. South Ame. Earth Cri. 45: 100-109.
- Ammirati, J.-B., Vene din, A., Alcacer, J. M., Alvarado, P., Miranda, S., Gilbert, H., 2018. New insights on regional tectonics and basement composition beneath the eastern Sierras Pampeanas (Arger ine back-arc region) from seismological and gravity data. Tectonophys. 740–741, 42–52. https://doi.org/10.1016/J.TECTO.2018.05.015.
- Ammirati, J.-B., Easton, G., Rebolledo, S., Abrahami, R., Potin, B., Leyton, F., Ruiz, S., 2019. The crustal seismicity of the Western Andean thrust (Central Chile, 33°34°S): Implications for regional tectonics and seismic hazard in the Santiago area. Bull. Seis. Soc. America 109(5):1985-1999. DOI: <u>10.1785/0120190082</u>
- Ammirati, J.-B. et al., 2022. Automated earthquake detection and local travel time tomography in the South-Central Andes (32-35°S): Implications for regional tectonics. J. Geoph. Res. Solid Earth, 127, e2022JB'24097.
- ANCORP-Working Group, 1999. Seismic reflection image revealing offset of Andean subduction-zone earthquake locations into oceanic mantle. Nature 397, 341–344
- ANCORP-Working Group, 2003. Seismic imaging of a convergent continental margin and plateau in the central Andes (Andean Continental Research Project 1996 (ANCORP'96)). J Geophys Res 108(B7): doi 10.1029/2002JB001771

- Anderson, M., Alvarado, P., Zandt, G., Beck., S., 2007. Geometry and brittle deformation of the subducting Nazca Plate, Central Chile and Argentina. Geophys. J. Int. 171, 419-434.
- Anderson, R.B., Long, S. P., Horton, B. K., Thomson, S. N., Calle, A. Z., Stockli, D. F., 2018. Orogenic wedge evolution of the central Andes, Bolivia (21°S): Implications for Cordilleran cyclicity. Tectonics 37, 3577–3609. https://doi.org/10.1029/ 2018TC005132.
- Andriessen, P. A. M., Reutter K.-J., 1994. K-Ar and fission-track mineral age determination of igneous rocks related to multiple magmatic arc systems along the 23 latitude of Chile and NW Argentina, in: Reutter, K., Scheuber, E., Wigger, P. (Eds.), Tectonics of the Southern Central Andes, pp. 141–153, Springer, New York.
- Arabasz, W.J.J., 1971. Geological and Geophysical studies of the Atacama fault zone in northern Chile. Geol. Planet. Sci. Department Ph.D, 264 pp..
- Arancibia, G., 2004. Mid-cretaceous crustal shortening: evidence from a regional-scale ductile shear zone in the Coastal Range of central Chile (32°S). J.Sou h Ame.Earth Sc. 17: 209-226.
- Armijo, R., Rauld, R., Thiele, R., Vargas, G., Campos, J., Lacassin, K., Kausel, E., 2010. The West Andean Thrust, the San Ramon Fault, and the seismic naze d for Santiago, Chile Tectonics 29, TC2007.
- Armijo, R., Lacassin, R., Coudurier-Curveur, A., Carrizo, D, 2015. Coupled tectonic evolution of Andean orogeny and global climate. Earth-Sci. Rev. 14, 1–35.
- Arriagada, C., Cobbold, P. R., Roperch P., 2006. Sale de , tacama basin: A record of compressional tectonics in the central Andes since the mid-Cretaceous. Tectonics 25, TC1008, doi:10.1029/ 2004TC001770.
- Asch, G., Schurr, B., Bohm, M., Yuan, X., Haber and C., Heit, B., Kind, R., Woelbern, I., Bataille, K., Comte, D., Pardo, M., Viramon, J., Rietbrock, A., Giese, P., 2006.
 Seismological studies of the central and southern Andes. In: Oncken, O., Chong, G., Franz, G., Giese, P., Goetze, H.-J., Ramos, V., Strecker, M.R., Wigger, P. (Eds.), The Andes: Active Subduction Orogeny. Springer, Berlin, pp. 443–457. ISBN: 978-3-662-51783-3
- Astini, R., Thomas, W., 1999. Origin and evolution of the Precordillera terrane of western Argentina: A drifted Laurentian or phan, in Ramos, V., and Keppie, J. eds. Laurentia-Gondwana Connections before Pangea. Geol. Soc. Ame. Spec. Paper 336: 1-20.
- Avdievitch, N. N., Ehlers, T. C., C. ntzbach, C., 2018. Slow long-term exhumation of the west central Andean plate boundary, Chile. Tectonics 37. doi.org/10.1029/2017TC004944 (2018).
- Avouac, J.-P., 2008. *Dynomic Processes in Extensional and Compressional Settings Mountain Building: From Ea thquakes to Geological Deformation, in*: Treatise on Geophysics. Vol.6. Elsevier, Amsterdar, p. 377-439. ISBN 978-0-444-52748-6. https://resolver.calu.ch.edu/CaltechAUTHORS:20110111-120419364
- Baby, P., Sempere, T., Oller, J., Barrios, L., Hérail, G., Marocco, R., 1990. Un bassin en compression d'age oligomiocene dans le Sud de l'Altiplano bolivien. C.R. Acad. Sci. Paris, 311 (Ser. II), 341-347.
- Baby, P., Herail, H., Salinas, R., Sempere, T., 1992. Geometry and kinematic evolution of passive roof duplexes deduced from crosssection balancing: Example from the foreland thrust system of the southern Bolivian Subandean Zone. Tectonics 11, 523–536.
- Baby, P., Moretti, I., Guillier, B., Limachi, R., Mendez, E., Oller, J., Specht, M., 1995. Petroleum system of the northern and central Bolivian sub-Andean zone. In: Tankard, A.J., Suarez, R., Welsink, H.J. (Eds.), Petroleum Basins of South America: Am. Assoc. Petrol. Geol. Memoir 62, 445–458.
- Baby, P., Rochat, P., Herail, H., Mascle, G., 1997. Neogene shortening contribution to crustal thickening in the back arc of the Central Andes. Geology 25, 883–886.
- Baker, M., Francis, P., 1978. Upper Cenozoic volcanism in the central Andes: ages and volumes. Earth Planet. Sci. Lett. 41, 175-187.

- Baldauf, P., 1997. Timing of the uplift of the Cordillera Principal, Mendoza Province, Argentina.M. Sc. Thesis, George Washington University, 356 p.
- Bally, A., Gordy, P., Stewart, G., 1966. Structure, seismic data, and orogenic evolution of southern Canadian Rocky Mountains. Bull. Can. Petrol. Geol. 14: 337-381.
- Bande, A., Boll, A., Fuentes, F., Horton, B., Stockli, D., 2020. Thermochronological constraints on the exhumation of the Malargüe fold-thrust belt, southern Central Andes. D. Kietzmann and A. Folguera (eds.), Opening and Closure of the Neuquén Basin in the Southern Andes, Springer Earth System Sciences, doi.org/10.1007/978-3-030-29680-315.
- Bangerth, W., Dannberg, J., Gassmoeller, R., Heister, T., 2019. ASPECT v2.1.0, *Zenodo*, https://doi.org/10.5281/zenodo.592692.
- Bao, X. W., Eaton, D., Guest, A., 2015. Plateau uplift in western Canada caused by lithosphere delamination along a craton edge, Nat. Geosci., 7, 830–833. channel flows: 1. Numerical models with applications to the tectonics of the Himalayan-Tibetan orogen. J. Geophys. Res: Solid Earth 109 (2004).
- Barrientos, S., Vera, E., Alvarado, P., Monfret, T., 2004. Crustal seis nicity in central Chile, *J. South Am. Earth Sci.*, **16**, 759–768, doi:<u>10.1016/j.jsames <u>10.3.12.001</u>.</u>
- Barrionuevo, M., Sibiao, L., Mescua, J., Yagupsky, D., Quinteros, J., Giambiagi, L., Sobolev, S., Strecker, M., Rodríguez Piceda, C., 2021. The influence of variations in crustal composition and lithospheric strength on the evolution of deformation processes in the southern Central Andes: Insights from geodynamic models. J. Int. Ean. Sci. https://doi.org/10.1007/s00531-021-01982-5
- Bascuñán, S., Arriagada, C., Le Roux, J., Decka.⁺ K. 2016. Unraveling the Peruvian Phase of the Central Andes: stratigraphy, sedimontology and geochronology of the Salar de Atacama Basin (22°30–23°S), northern Chile. (sasi) Res. 28, 365–392.
- Beck, S.L., Zandt, G., 2002. The nature of crogenic crust in the central Andes. J. Geophys. Res. Solid Earth 107, ESE 7-1-ESE 7-13
- Beer, J.A., Allmendinger, R.W., Figue na, D.E., Jordan, T.E., 1990. Seismic Stratigraphy of a Neogene Piggyback Basin, Arger (in a. Am. Assoc. Pet. Geol. Bull. 74, 1183–1202.
- Bello-González, J.P., Contreras Reges, E., Arriagada, C., 2018. Predicted path for hotspot tracks off South America since Paleocene times: Tectonic implications of ridge-trench collision along the Andeon margin. Gondwana Res., doi:10.1016/j.gr.2018.07.008
- Bevis, M., Kendrick, E.C., Smalley, R., Herring, T., Godoy, J., Galban, F., 1999. Crustal motion north and south of the Arica deflection: Comparing recent geodetic results from the central Andes. Geochem. Company. Geosyst. 1, doi.org/10.1029/1999GC000011.
- Bialas, J., & Kukowski, N. (2000). FS SONNE FAHRTBERICHT SO146/1&2/CRUISE REPORT SO146/1&2 GEOPECO: GEOphysical experiments at the PEruvian COntinental margin investigations of tectonics, mechanics, gashydrates, and fluid transport; Arica-Talcahuano, March 1-May 4, 2000.
- Bird, P., 1979. Continental delamination and the Colorado Plateau, J. Geophys. Res., 84(B13), 7561–7571, doi:10.1029/JB084iB13p07561.
- Blanco, N. 2008. Estratigrafía y evolución tectono-sedimentaria de la cuenca cenozoica de Calama (Chile, 22°S). Master s Thesis (unpublished), Universidad de Barcelona: 68 p.
- Blanco, N., Tomlinson, A.J., Mpodozis, C., Pérez d'Arce, C., Matthews, S., 2003. Formación Calama, Eoceno, II Región de Antofagasta: estratigrafía e implicancias tectónicas, in: proceedings of the 10th Congreso Geológico Chileno, Concepción.
- Boll A, Alonso, A., Fuentes, F., Vergara, M., Laffitte, G., & Villar, H. J., 2014. Factores controlantes |de las acumulaciones de hidrocarburos en el sector norte de la cuenca Neuquina, entre los ríos Diamante y Salado, Provincia de Mendoza, Argentina, in: proceedings of the 9th Congreso de Exploración y Desarrollo de Hidrocarburos, IAPG,

Mendoza.Bonali, F.L., Corazzato, C, Tibaldi, A., 2012. Elastic stress interaction between faulting and volcanism in the Olacapato-San Antonio de Los Cobres area (Puna plateau, Argentina), Global Planet. Change, 90-91, 104, 120.

- Bonini, R. A., Georgieff, S. M., Candela, A. M., 2017. Stratigraphy, geochronology, and paleoenvironments of Miocene-Pliocene boundary of San Fernando, Belén (Catamarca, northwest of Argentina). J. South Amer. Earth Sci. 79, 459–471. doi.org/10.1016/j.jsames.2017.08.020.
- Bossi, G.E., Muruaga, C., 2009. Estratigrafía e inversión tectónica del rift neógeno en el Campo del Arenal, Catamarca, NO Argentina. Andean Geol. 36, 311-341.
- Bossi, G.E., Georgieff, S., Gavriloff, I., Ibañez, L., Muruaga, C., 2001. Cenozoic evolution of the intramontane Santa María Basin, Pampean Ranges, northwestern Argentina. J. S. Am. Earth Sci. 14, 725-734.
- Boyce, D., Charrier, R., Farías, M., 2020. The first Andean compressive tectonic phase: Sedimentologic and structural analysis of Mid-Cretaceous deposite in the Coastal Cordillera, Central Chile (32°50´S). Tectonics doi.org/10.1029/2019TC0 1582 5.
- Brooks, B. et al., 2011. Orogenic-wedge deformation and potencian or great earthquakes in the central Andean backarc. Nature Geosci. 4(5), 1–4 https://doi.org/10.1038/ngeo1143.
- Buelow, E., Suriano, J., Mahoney, J. B., Kimbrough, D. L., Mescua, J. F., Giambiagi, L. B., Hoke, G. D., 2018. Sedimentologic and stratigraphine evolution of the Cacheuta Basin: Constraints on the development of the Miocene retroc. Storeland basin, South-Central Andes. Lithosphere. doi.org/10.1130/L709.1.
- Burchardt, S., Annen, C. J., Kavanagh, J. L., & H.¹ ni ¹ lazim, S. (2022). Developments in the study of volcanic and igneous plumbing ovs.oms: outstanding problems and new opportunities. Bulletin of Volcanology 84'3), 1-9.
- Burov, E.B., 2011. Rheology and strength c⁺ the lithosphere. Marine Petrol. Geol. 28, 1402–1443.
- Burov, E. B., Diament, M., 1995. The offective elastic thickness (Te) of continental lithosphere: what does it really mean?. J. Gec oh /s. Res. Solid Earth 100(B3), 3905-3927.
- Cahill, T., Isacks, B., 1992. Sei micity and Shape of the Subducted Nazca Plate. J. Geophys. Res. Solid Earth 97, 1750 3–1, 529.
- Canavan, R, Carrapa, B., C'emontz, M. T., Quade, J., DeCelles, P. G., Schoenbohm, L. M., 2014. Early Cenozoic colif of the Puna Plateau, Central Andes, based on stable isotope paleoaltimetry of hydra ed volcanic glass. Geology 42(5), 447–450. doi.org/10.1130/G35239.1.
- Capaldi, T. N., Horton, B. K., McKenzie, N. R., Mackaman- Lofland, C., Stockli, D. F., Ortiz, G., Alvarado, P., 2020. Neogene retroarc foreland basin evolution, sediment provenance, and magmatism in response to flat slab subduction, western Argentina. Tectonics 39, doi.org/10.1029/2019TC005958.
- Capitanio, F.A., Faccenna, C., Zlotnik, S. Stegman, D.R., 2011. Subduction dynamics and the origin of Andean orogeny and the Bolivian orocline. Nature Letters, doi:10.1038/nature10596.
- Carrapa, B., DeCelles, P.G., 2008. Eocene exhumation and basin development in the Puna of northwestern Argentina. Tectonics 27, TC1015. doi:10.1029/2007TC002127.
- Carrapa, B., Strecker, M.R., Sobel, E.R., 2006. Cenozoic orogenic growth in the Central Andes: evidence from sedimentary rock provenance and apatite fission track thermochronology in the Fiambalá Basin, southernmost Puna Plateau margin (NW Argentina). Earth Planet. Sci. Lett. 247, 82–100.
- Carrapa, B., Hauer, J., Schoenbohm, L., Strecker, M. R., Schmitt, A. K., Villanueva, A., Sosa Gomez, J., 2008. Dynamics of deformation and sedimentation in the northern sierras

Pampeanas: An integrated study of the Neogene Fiambalá basin, NW Argentina. Geol. Soc. Am. Bull. 120, 1518–1543 doi.org/10.1130/B26111.1.

- Carrapa, B., Trimble, J.D., Stockli, D.F., 2011. Patterns and timing of exhumation and deformation in the Eastern Cordillera of NW Argentina revealed by (U-Th)/He thermochronology. Tectonics 30(TC3003).
- Carrapa, B. et al., 2022. Estimates of paleo-crustal thickness at Cerro Aconcagua (Southern Central Andes) from detrital proxy-records: Implications for models of continental arc evolution. Earth Planet. Sci. Lett. 585, 11726.
- Cashman, K. V., Sparks, R. S. J., & Blundy, J. D. (2017). Vertically extensive and unstable magmatic systems: a unified view of igneous processes. Science, 355(6331), eaag3055.
- Cegarra, M., Ramos, V.A., 1996. La faja plegada y corrida del Aconcagua. In: Ramos VA (ed.) Geología de la región del Aconcagua, provincias de San Juan y Mendoza. SEGEMAR, Anales 24, 387–422.
- Cembrano, J., Lara, L., 2009. The link between volcanism and tectorisms in the southern volcanic zone of the Chilean Andes: A review. Tectonophys. 471, 96-13.
- Cembrano, J., Zentilli, M., Grist, A., Yáñez, G., 2003. Nuevas Lavaues De Trazas De Fisión Para Chile Central (30º-34ºS). Implicancias en el alzamiento y table mación de Los Andes desde el Cretácico, in: proceedings of the 10th Congreso Geológico Chileno, Concepción.
- Cembrano, J., Lavenu, A., Yañez, G., Riquelme, R., Garcia, M., González, G., Hérail, G., 2007. Neotectonics, in: Moreno, T., Gibbons W. (Eds.), The eology of Chile, Geological Society of London, pp. 231–261. https://doi.org/10.1144/CCCH
- Charrier, R., Baeza, O., Elgueta, S., Flynn, J. J. Cans, P., Kay, S. M., Munkoz, N., Wyss, A. R. Zurita, E., 2002. Evidence for Cenozoic extensional basin development and tectonic inversion south of the flat-slab segment, south rn Central Andes, Chile (33°–36°S). J. S. Am. Earth Sci. 15, 117–139.
- Charrier, R., Bustamante, M., Comte, D., Elgueta, S., Flynn, J. J., Iturra, N., Muñoz, N., Pardo, M., Thiele, R., Wyss, A. R., 2005. The Abanico Extensional Basin: Regional extension, chronology of tectonic inversion, and relation to shallow seismic activity and Andean uplift, Neues Jahrb. Geol. Palaeor tol. 16h., 236, 43–47.
- Charrier, R., Pinto, L., Rodrifuez, M. P., 2007,. Tectonostratigraphic evolution of the Andean Orogen in Chile, in: Moicho, T., Gibbons W. (Eds.), The geology of Chile, Geological Society of London, pp., 21–111
- Charrier, R., Farías, M., Naksaev, V., 2009. Evolución tectónica, paleogeográfica y metalogénica ou rai. a el cenozoico en los Andes de Chile Norte y Central e implicaciones para las regiones a lyacentes de Bolivia y Argentina: Rev. Asoc. Geol. Argentina 65, 5–35.
- Chen, L., Gerya, T.V., 2016. The role of lateral lithospheric strength heterogeneities in orogenic plateau growth: Insights from 3-D thermo-mechanical modeling, J. Geophys. Res. Solid Earth 121, 3118–3138, doi:10.1002/2016JB012872.
- Chen, J., Kufner, S-K., Yuan, X., Heit, B., Wu, H., Yang, D., Schurr, B., Kay, S., 2020. Lithospheric delamination benearth the Southern Puna plateau resolved by local earthquake tomography. J. Geophys. Res. Solid Earth *125*, <u>e2019JB019040</u>.

https://doi.org/10.1029/2019JB019040

- Choukroune, P., and ECORS Team, 1989, The ECORS Pyrenean deep seismic profile reflection data and the overall structure of an orogenic belt. Tectonics 8, 23– 89.
- Coblentz, D. D., & Richardson, R. M. (1996). Analysis of the South American intraplate stress field. Journal of Geophysical Research: Solid Earth, 101(B4), 8643-8657.
- Coira, B., Davidson, J., Mpodozis, C., Ramos V.A., 1982. Tectonic and magmatic evolution of the Andes of northern Argentina and Chile, Earth Sci. Rev. 18, 303-322.

- Collo, G., Ezpeleta, M., Dávila, F. M., Giménez, M., Soler, S., Martina, F., ... & Schiuma, M. (2018). Basin Thermal Structure in the Chilean-Pampean Flat Subduction Zone. In The Evolution of the Chilean-Argentinean Andes (pp. 537-564). Springer, Cham.
- Comínguez, A.H., Ramos, V.A., 1995. Geometry and seismic expression of the Cretaceous Salta rift system, northwestern Argentina, in: Tankard, A.J., Suárez, R.; Welsink H.J. (Eds.), Petroleum basins of South America. Am. Assoc. Petrol. Geol. Memoir 62, 325-340.
- Comte, D., Farías, M., Charrier, R., González, A., 2008. Active tectonics in the Central Chilean Andes: 3D tomography based on the aftershock sequence of the 28 August 2004 shallow crustal earthquake, in: proceedings of the 7º International Symposium on Andean Geodynamics (ISAG 2008, Nice), 160-163.
- Comte, D., Farías, M., Roecker, S., Russo, R., 2019. The nature of the subduction wedge in an erosive margin: Insights from the analysis of aftershocks of the 2015 Mw 8.3 illapel earthquake beneath the Chilean Coastal Range. Earth Planet. Sci. Lett. 520, 50-62.
- Cornejo, P., Mpodozic, C., Ramírez, C., Tomlinson, C.F., 1993. Estudio geológico de la región de El Salvador y Potrerillos. SERNAGEOMIN, Informe Regis rado IR-93-1: 1-258, Santiago, Chile.
- Cortés, J., 2000. Hoja Palestina, Región de Antofagasta. SE. NA GEOMIN, Mapas Geológicos 19, Santiago.
- Cortés, J.M., Vinciguerra, P., Yamín, M., Pasini, M., 1^c99. ⁻ectónica Cuaternaria de la Región Andina del Nuevo Cuyo (28°–38° LS), in: Caminos K. (Éd.), Geología Argentina, SEGEMAR. Anales, Buenos Aires, vol 29, 760–778.
- Costa, C., Diederix, H., Gardini, C., Cortés, J., 2CO. The Andean orogenic front at Sierra de Las Peñas-Las Higueras, Mendoza, Argentina. South Am. Earth Sci. 13, 287–292.
- Costa, C.H., Murillo, M.V., Sagripanti, C.L., Cardini, C.E., 2001. Quaternary intraplate deformation in the Southeastern Sierras Pampeanas, Argentina. J. Seismol. 5, 399–409.
- Costa, C., Ahumada, E., Vázquez, F., Kröhling, D., 2015. Holocene shortening rates of an Andean-front thrust, Southern Pietoru. Ilera, Argentina. Tectonophys. 664, 191–201.
- Costa, C. H., Schoenbohm, L. M., Brooks, B. A., Gardini, C. E., Richard, A. D., 2019. Assessing Quaternary shortening rates at an Andean frontal thrust (32° 30'S), Argentina. Tectonics 38, 3034–3051.
- Coughlin, T.J., O'Sullivan, P.B., Kohn, B.P., Holcombe, R.J., 1998. Apatite fission-track thermochronology of u e S erras Pampeanas, central western Argentina: Implications for the mechanism of plateau uplift in the Andes. Geology 26, 999. doi.org/10.1130/0091-7613(1998)026 3.00,2.
- Coutand, I., Cobbold, P., de Urreiztieta, M., Gautier, P., Chauvin, A., Gapais, D., Rossello, E., López Gamundi, O., 2001. Style and history of Andean deformation, Puna Plateau, northwestern Argentina. Tectonics 20, 210–234.
- Coutand, I., Carrapa, B., Deeken, A., Schmitt, A. K., Sobel, E., Strecker, M. R., 2006. Orogenic plateau formation and lateral growth of compressional basins and ranges: Insights from sandstone petrography and detrital apatite fission-track thermochronology in the Angastaco Basin, NW Argentina. Basin Res. 18, 1–26.
- Cowan A. M., Rech, J. A., Currie, B. S., 2004. Mid-Miocene hyperaridity in the Atacama Desert, Chile: evidence from the gypsic Barros Arana paleosol. Geol. Soc. Am. 36, 293-303.
- Coward, M.P., 1983. Thrust tectonics, thin skinned or thick skinned, and the continuation of thrusts to deep in the crust. J. Struct. Geol. 5: 113-123.
- Cristallini, E. O., Ramos V.A., 2000. Thick-skinned and thin-skinned thrusting in the La Ramada fold and thrust belt: Crustal evolution of the High Andes of San Juan, Argentina (32°S). Tectonophys. 317(3-4), 205–235.

- Cristallini, E. O., Comínguez, A. H., Ramos, V. A., Mercerat, E. D., 2004. Basement doublewedge thrusting in the northern Sierras Pampeanas of Argentina (27-28°S): Constraints from deep seismic reflection, in K. R. McClay, ed., Thrust tectonics and hydrocarbon systems: AAPG Memoir 82, 65–90.
- D'Annunzio, C., Rubinstein, N., Rabbia, O., 2018. Petrogenesis of the Gualcamayo Igneous Complex: Regional implications of Miocene magmatism in the Precordillera over the Pampean flat slab segment, Argentina. J. South Ame. Earth Sci. doi: 10.1016/j.jsames.2018.06.012
- Dahlen, F.A., Barr, T.D., 1989. Brittle frictional mountain building, 1. Deformation and mechanical energy budget. J. Geophys. Res. 94, 3906-3922.

Dahlen, F.A., Suppe, J., Davis, D., 1984. Mechanics of fold-and-thrust belts and accretionary wedges: Cohesive Coulomb theory. J. Geophys. Res. 89, 10,087–10,101, doi:10.1029/JB089iB12p10087.

- Dávila, F.M., 2010. Dynamics of deformation and sedimentation in the northern Sierras Pampeanas: An integrated study of the Neogene Fiambalá Easin. NW Argentina: Comment and Discussion. Geol. Soc. Am. Bull. 122, 946–949. doi:10.130/B30133.1.
- Davila, F.M., Astini, R.A., 2007. Cenozoic provenance history of cynorogenic conglomerates in western Argentina (Famatina belt): implications for Cenu al Andean foreland development. Geol. Soc. Am. Bull. 119, 609–622.
- Dávila, F., Giménez, M., Nóbile, J., Martínez, P., 2012 Revelution of the high-elevated depocenters of the northern Sierras Pampeanae (ca. 28° SL), Argentine broken foreland, South-Central Andes: The Pipanaco basin. Bergin Res. 24, 1-22.
- Davis, D., Suppe, J., Dahlen, F.A., 1983. Mochanics of fold-and-thrust belts and accretionary wedges. J. Geophys. Res. 1153–1172, doi:10.1029/JB088iB02p01153.
- De Silva, S. L., 1989. Geochronology and Stratigraphy of the ignimbrites from the 21 to 23° S portion of the central Andes of nothern Chile, J. Volcanol. Geotherm. Res. 37, 93–131.

De Silva, S.; Zandt, G.; Trumbull, P., Viramonte, J.G.; Salas, G.; Jiménez, N. 2006. Large ignimbrite eruptions and volcano- ectonic depressions in the Central Andes: A thermomechanical perspective. In Troise, C., et al., eds., Mechanisms of Activity and Unrest at Large Calderas: Geology of London, Special Publication 269: 47–63.

DeCelles, P.G., Horton, B.C. 2003. Early to middle Tertiary foreland basin development and the history of Andean cructal shortening in Bolivia. Geol. Soc. Am. Bull. 115, 58–77.

- DeCelles, P.G., Carrapa, 3., Horton, B.K., McNabb, J., Gehrels, E., Boyd, J., 2015a. The Miocene Arizaru bacin, central Andes hinterland: response to partial lithosphere removal? Geol. Soc. Am. Men. 212: 359-386.
- DeCelles, P.G., Ducea, M.N., Kapp, P., Zandt, G., 2015b. Cyclicity in Cordilleran orogenic systems. Nature Geosci., Doi:10.1038/NGEO469.
- Deckart, K., Godoy, E., Bertens, A., Jerez, D., Saeed, A., 2010. Barren Miocene granitoids in the central Andean metalogenic belt, Chile: geochemistry and Nd–Hf and U–Pb isotope systematic. Andean Geol. 37 (1), 1–31.
- Deeken, A., Sobel, E. R., Coutand, I., Haschke, M., Riller, U., Strecker, M. R., 2006. Development of the southern Eastern Cordillera, NW Argentina, constrained by apatite fission track thermochronology: From early Cretaceous extension to middle Miocene shortening. Tectonics 25, TC6003, doi:10.1029/2005TC001894.
- del Papa, C., 1999. Sedimentation on a ramp type lake margin: Paleocene-Eocene Maíz Gordo Formation, Northwestern Argentina. J. South Am. Earth Sci. 12, 389–400.
- del Papa, C. E., Petrinovic, I. A., 2017. The development of Miocene extensional and short-lived basin in the Andean broken foreland: The Conglomerado Los Patos, Northwestern Argentina. J. South Ame. Earth Sci. 73, 191–201.

- del Papa, C., Hongn, F., Powell, J., Payrola, P., Do Campo, M., Strecker, M., Petrinovic, I., Schmitt, A., Pereyra, R., 2013. Middle Eocene- Oligocene broken- foreland evolution in the Andean Calchaqui Valley, NW Argentina: insights from stratigraphic, structural and provenance studies. Basin Res. 25(5), 574–593.
- del Rey, Á., Deckart, K., Planavsky, N., Arriagada, C., Martínez, F., 2019. Tectonic evolution of the southwestern margin of Pangea and its global implications: evidence from the mid Permian–Triassic magmatism along the Chilean-Argentine border. *Gondwana Res. 76*, 303-321.
- De Silva, S. L., 1989. Altiplano-Puna volcanic complex of the Central Andes. Geology 17(12), 1102–1106. doi.org/10.1130/0091-7613.

 Deri, M., Ciccioli, P., Amidon, W., Marenssi, S., 2019. Estratigrafía y edad máxima de depositación de la Formación Tambería en el Bolsón de Fiambalá, Catamarca, in: Proceedings of the 5th Simposio del Mioceno Pleistoceno del Cantro y Norte de Argentina, 3.

- Dewey, J.F., Bird, J.M., 1970. Mountain belts and the new global tectinics. J. Geophys. Res. 75, 2625–2647. https://doi.org/10.1029/JB075i014p02625
- Díaz-Alvarado, J., Galaz, G., Oliveros, V., Creixell, C., Calde on, M., 2019. Fragments of the late Paleozoic accretionary complex in central and northern C.vile: similarities and differences as a key to decipher the complexity of the late Paleozoic to Triassic early Andean events, in: Horton, B., Folguera, A. (Eds.), Andean tectonics, ^r Isev er, pp. 509-530.
- Dunn, J. F., Hartshorn K. G., Hartshorn, P. W., 1995. Streatural styles and hydrocarbon potential of the Sub-Andean thrust belt of southern Bolicies in Tankard, A., Suarez Soruco, R., Welsink, H. (Eds.), Petroleum Basins of South Americe: Arn. Assoc. Petroleum Geol. Mem. 62, 523–543.

Echaurren, A., et al., 2022. Fore-to-retroarc orustal structure of the north Patagonian margin: How is shortening distributed in Andean type orogens? Global and Planetary Change 209: 103734.

Echavarria, R., Hernandez, R., Allmen dinger, R. W., Reynolds, J. H., 2003. Sub-Andean thrust and fold belt of northwest Argenti a: Geometry and timing of the Andean evolution, Am. Assoc. Petroleum Geol. Bu^{II} 87, 965–985, doi:10.1306/01200300196.

Ege, H., Sobel, E. R., Scheuller, J., Jacobshagen V., 2007. Exhumation history of the southern Altiplano plateau (southern Eplivia) constrained by apatite fission track thermochronology. Tectonics 26, TC1004, doi:10.1029/2005TC001869.

Eichelberger, N., McCuai, e, N., Ehlers, T.A., Enkelmann, E., Barnes, J.B., Lease, R.O., 2013. New constraints on the chronology, magnitude, and distribution of deformation within the central Andean oro line. Tectonics 32, 1432–1453. https://doi.org/10.1002/tect.20073.

- Elger, K., Oncken, O., Glodny, J., 2005. Plateau-style accumulation of deformation: Southern Altiplano. Tectonics 24, TC4020, doi:10.1029/ 2004TC001675.
- Emparan, C., Pineda, G., 1999. Área Condoriaco-Rivadavia, Región de Coquimbo: Mapas Geológicos, No12. SERNAGEOMIN. Mapa escala 1:100.000.

Emparan, C., Pineda, G., 2000. Área La Serena-La Higuera, región de Coquimbo. SERNAGEOMIN. Mapas Geológicos, No18. 1 Mapa escala 1:100.000.

- Emparan, C., Pineda, G., 2006. Geología del Área Andacollo-Puerto Aldea, Región de Coquimbo. SERNAGEOMIN, Cart. Geol. Chile. Geol. Básica 86, 85.
- England, P., Houseman, G., 1989. Extension during continental convergence, with application to the Tibetan Plateau. J. Geophys. Res. 94, doi:10.1029/JB094iB12p17561.
- Faccenna, C., Oncken, O., Holt, A.F., Becker, T.W., 2017. Initiation of the Andean orogeny by lower mantle subduction. Earth Planet. Sci. Lett. 463, 189–201.
- Farías, M., Charrier, R., Comte, D., Martinod J., Hérail G., 2005. Late Cenozoic deformation and uplift of the western flank of the Altiplano: Evidence from the depositional, tectonic, and

geomorphologic evolution and shallow seismic activity (northern Chile at 19°30´S). Tectonics 24, TC4001, doi: 10.1029/2004TC001667.

- Farías, M., Charrier, R., Carretier, S., Martinod, J., Fock, A., Campbell, D., Cáceres, J., Comte, D., 2008. Late Miocene high and rapid surface uplift and its erosional response in the Andes of central Chile (33°–35°S). Tectonics 27, TC1005. doi.org/10.1029/2006TC002046.
- Farías, M., Comte, D., Charrier, R., Martinod, J., David, C., Tassara, A., Tapia, F., Fock, A., 2010. Crustal-scale structural architecture in central Chile based on seismicity and surface geology: Implications for Andean mountain building. Tectonics 29, TC3006. doi.org/10.1029/2009TC002480.
- Fazzito. S., Cortés, J.M., Rapalini, A.E., Terrizzano, C. M., 2013. The geometry of the active strike-slip El Tigre Fault, Precordillera of San Juan, Central-Western Argentina: integrating resistivity surveys with structural and geomorphological data. Int. J. Earth. Sci. 102,1447–1466.
- Feng, M., Assumpçao, M., Van der Lee, S., 2004. Group-velocity ton. graphy and lithospheric S-velocity structure of the South American continent. Physics Ear h Planet. Interiors 147(4), 315-331.
- Feng, M., Van der Lee, S., & Assumpção, M. (2007). Upper mante structure of South America from joint inversion of waveforms and fundamental mode group velocities of Rayleigh waves. Journal of Geophysical Research: Solid Earth, 112(B4).
- Flesch, L. M., & Kreemer, C. (2010). Gravitational potential energy and regional stress and strain rate fields for continental plateaus: Examples from the central Andes and Colorado Plateau. Tectonophysics, 482(1-4), 182-192. Flint, S. Trinnere, P., Jolley, E., Hartley, A., 1993. Extensional tectonics in convergent margin casins: An example from the Salar de Atacama, Chilean Andes. Geol. Soc. Ame. Bull 10^f:603-617.
- Flueh, E. R., & Grevemeyer, I. (2005). RV Conne Fahrtbericht/Cruise Report SO181 TIPTEQ (from The Incoming Plate to mega Thrust EarthQuakes) 06.12. 2004.-26.02. 2005.
- Fock, A., Charrier, R., Marsaev, V. Tríac, M., Alvarez, P., 2006. Evolución cenozoica de los andes de chile central (33°-34°s) in proceedings of the 9th Congreso Geológico Chileno, Antofagasta, Chile, 2, 205-2)8.
- Fosdick, J. C., Carrapa, B., Crtiz, G., 2015. Faulting and erosion in the Argentine Precordillera during changes in subduction regime: Reconciling bedrock cooling and detrital records. Earth Planet. Sci. Lett. 432, 73 53.
- Fosdick, J.C., Reat, F.J., Carrapa, B., Ortiz, G., Alvarado, P.M., 2017. Retroarc basin reorganization and cricufication during Paleogene uplift of the southern central Andes. Tectonics 36, 493–514. doi.org/10.1002/2016TC004400.
- Fox-Maule, C., Purucker, M. E., Olsen, N., Mosegaard, K., 2005. Heat flux anomalies in Antarctica revealed by satellite magnetic data. Science 309(5733), 464-467.
- Froidevaux, C., Isacks, B., 1984. The mechanical state of the lithosphere in the Altiplano-Puna segment of the Andes. Earth Planet. Sci. Lett. 71, 305-314.
- Fromm, R., Zandt, G., Beck, S., 2004. Crustal thickness beneath the Andes and Sierras Pampeanas at 30°S inferred from Pn apparent phase velocities. Geophys. Res. Lett. 31, L06625, doi:10.1029/2003GL019231.
- Fuentes F., Horton, B. K., Starck, D., Boll, A., 2006. Structure and tectonic evolution of hybrid thick- and thin-skinned systems in the Malargüe fold-thrust belt, Neuquén basin, Argentina. Geol. Magaz. 153: 1066–1084.
- Furque, G. et al., 2003. Hoja Geológica 3169-II, San José de Jáchal. Provincias de San Juan y La Rioja., 259. SEGEMAR, Buenos Aires.

Gans, Ch., Beck, S. L., Zandt, G., Gilbert, H., Alvarado, P., Anderson, M., Linkimer, L., 2011. Continental and oceanic crustal structure of the Pampean flat slab region, western Argentina, using receiver function analysis: new high-resolution results. Geophys. J. Int. 186, 45-58.

- García, V., Casa, A., 2015. Quaternary tectonics and seismic potential of the Andean retrowedge at 33-34°S. In: Sepulveda, S. et al. (Eds), Geodynamic Processes in the Andes of Central Chile and Argentina. Geol. Soc. London, Special Publications, 399, doi.org/10.1144/SP399.11.
- Garzione, C. et al., 2017. Tectonic evolution of the Central Andean Plateau and implications for the growth of plateaus. Annu. Rev. Earth Planet. Sci. 2017. 45:529-59.
- Giambiagi, L., Ramos, V.A., 2002. Structural evolution of the Andes between 33°30' and 33°45'S, above the transition zone between the flat and normal subduction segment, Argentina and Chile. J. S. Am. Earth Sci. 15, 99–114.
- Giambiagi, L.B., Ramos, V.A., Godoy, E., Alvarez, P.P., Orts, S., 1003. Cenozoic deformation and tectonic style of the Andes, between 33° and 34° south latitud. Tectonics 22 doi.org/10.1029/2001tc001354.
- Giambiagi, L., Bechis F., García V., Clark A., 2008. Tempora' an patial relationship between thick- and thin-skinned deformation in the Malargüe fold' and thrust belt, southern Central Andes. Tectonophys. 459, 123-139.
- Giambiagi, L., Mescua, J., Bechis, F., Martínez, A., Fo gue, a, A., 2011. Pre-Andean deformation of the Precordillera southern sector, Southern Centra, Endes. Geosphere 7, 1-21.
- Giambiagi, L., Mescua, J., Bechis, F., Tassara, A, Hoke, G., 2012. Thrust belts of the Southern Central Andes: Along-strike variations in shor, cair g, topography, crustal geometry, and denudation. Geol. Soc. Ame. Bull. 124 (7-8), 1339-1351.
- Giambiagi, L. et al., 2014. Reactivation of Faleozoic structures during Cenozoic deformation in the Cordón del Plata and Southern F. cordillera ranges (Mendoza, Argentina). J. Iberian Geol. 40 (2), 309-320.
- Giambiagi, L. et al., 2015a. Evolution of challow and deep structures along the Maipo-Tunuyán transect (33°40'S): from the Parific coast to the Andean foreland, in: Sepúlveda, S. et al. (Eds), Geodynamic Processes in the Andes of Central Chile and Argentina, Geol. Soc. London, Special Publication 509, 63-82. Doi.org/10.1144/SP399.14.
- Giambiagi, L., Spagnotto, C. M. reiras, S. M., Gómez, G., Stahlschmidt, E., Mescua, J., 2015b. Three-dimensional approach to understanding the relationship between the Plio-Quaternary stress field and ter contrainversion in the Triassic Cuyo basin, Argentina. Solid Earth 6,1-17.
- Giambiagi, L., Alva. 2, D, Spagnotto, S., 2016. Temporal variation of the stress field during the construction of the Central Andes: Constrains from the volcanic arc region (22°-26°S), Western Cordillera, Chile, during the last 20 Ma. Tectonics 35, doi:10.1002/2016TC004201.
- Giambiagi, L., Giambiagi, L., Alvarez, P., Spagnotto, S., Godoy, E., Lossada, A., Mescua, J., Barrionuevo, M., Suriano, J., 2019. Geomechanical model for a seismically active geothermal field: Insights from the Tinguiririca volcanic-hydrothermal system. Geosci. Frontiers, 10.1016/j.gsf.2019.02.006.
- Giraudo, R., Limachi, R., 2001. Pre-Silurian control in the genesis of the central and southern Bolivian foldbelt. J. South Am. Earth Sci. 14, 665-680.
- Gleason G.C., Tullis J., 1995. A flow law for dislocation creep of quartz aggregates determined with the molten salt cell. Tectonophysics 247: 1-23.
- Godoy, E., Yáñez, G., Vera, E., 1999. Inversion of an Oligocene volcano-tectonic basin and uplift of its superimposed Miocene magmatic arc, Chilean Central Andes: first seismic and gravity evidence. Tectonophys. 306, 217–326.

- Gómez, J., Schobbenhaus, C., Montes, N.E., 2019. Geological Map of South America, scale 1:5 000 000. Commission for the Geological Map of the World (CGMW), Colombian Geological Survey and Geological Survey of Brazil, Paris.
- González, G., Niemeyer, H., 2005. Carta Antofagasta y Punta Tetas, Región de Antofagasta. SERNAGEOMIN. Carta No 89. 1 mapa escala 1:100.000. Santiago.
- González, G., Cembrano, J., Carrizo, D., Macci, A., Schneider, H., 2003. Link between forearc tectonics and Pliocene-Quaternary deformation of the Coastal Cordillera, Northern Chile. J. S. Am. Earth Sci. 16, 321–342.
- González, G., Dunai, T., Carrizo, D., Allmendinger, R., 2006. Young displacements on the Atacama fault system, northern Chile from field observations and cosmogenic 21Ne concentrations. Tectonics 25, 10.1029/2005TC001846.
- González, G., Cembrano, J., Aron, F., Veloso, E., Shyu, B., 2009. Coeval compressional deformation and volcanism in the central Andes, case studies (com northern Chile (23°-24°S), Tectonics 28, TC6003, doi:10.1029/2009TC002538.
- González, G., Salazar, P., Loveless, J., Allmendinger, R., Aron, F., Mahesh, S., 2015. Upper plate reverse fault reactivation and the unclamping of the metaurust during the 2014 northern Chile earthquake sequence. Geology 43, doi:10.113//G36703.1
- González, R., Espinoza, D., Robledo, F., Jeria, V., Espinozo M., Torres, P., Rogers, H., 2020. Evidence for two stages of back-arc compression in the 'ate Cretaceous fold-and-thrust belt in the Precordillera of northern Chile (24°30′S-25°30 C). J. South Am. Earth Sci. DOI: 10.1016/j.jsames.2020.102706.
- Goss, A., Kay, S.M., Mpodozis, C., 2013. And an add kite-like high-Mg and esites on the northern margin of the Chilean-Pampean flat-slab (2.1-28.5°S) associated with frontal arc migration and fore-arc subduction erosion. J. F +trol. 54: 2193-2234.
- Graeber, F and Asch, G 1999 Three-dimentional models of P wave velocity and P-to-S velocity ratio in the southern central Andes by simultaneous inversion of local earthquake data. Journal of Geophysical Researc', oi. 104, no. b9, pages 20,237-20,256, september 10, 1999
- Grevemeyer, I., Diaz-Naveas, J. L., Ranero, C. R., Villinger, H. W., & Leg, O. D. P. (2003). Heat flow over the descending Nazura plate in central Chile, 32 S to 41 S: Observations from ODP Leg 202 and the occurrence of natural gas hydrates. Earth and Planetary Science Letters, 213(3-4), 285-298.
- Grevemeyer, I., Kaul, N., Diaz-Naveas, J. L., Villinger, H. W., Ranero, C. R., & Reichert, C. (2005). Heat flour and Jending-related faulting at subduction trenches: Case studies offshore of Nicaragua and Central Chile. Earth and Planetary Science Letters, 236(1-2), 238-248.
- Grevemeyer, I., Kaui, N., & Diaz-Naveas, J. L. (2006). Geothermal evidence for fluid flow through the gas hydrate stability field off Central Chile—transient flow related to large subduction zone earthquakes?. Geophysical Journal International, 166(1), 461-468.
- Gubbels, T.L., Isacks, B.L., Farrar, E., 1993. High-level surfaces, plateau uplift, and foreland development, Bolivian central Andes. Geology 21, 695–698.
- Gutscher, M-A., Spakman, W., Bijwaard, H., Engdahl, R., 2000. Geodynamics of flat subduction: Seismicity and tomographic constraints from the Andean margin. Tectonics 9, 814-833.
- Haberland, Ch., Rietbrock, A., 2001. Attenuation tomography in the western central Andes: A detailed insight into the structure of a magmatic arc. J. Geophys. Res. Solid Earth, 106, 11,151-11,167.
- Haddon, A., Porter, R., 2018. S-Wave Receiver Function Analysis of the Pampean Flat-Slab Region: Evidence for a Torn Slab. Geochem. Geophys. Geosystems 19(10), 4021-4034.
- Halter, W.E. Bain N, Becker K, Heinrich CA, Landtwing M, VonQuadt A, Bissig T, Clark A. H, Sasso A. M, Tosdal R. M., 2004. From andesitic volcanism to the formation of a porphyry Cu-

Au mineralizing magma chamber: The Farallón Negro Volcanic Complex, NW Argentina. J. Volc. Geoth. Res. 136, 1-30.

- Hamza, V. M., & Muñoz, M. (1996). Heat flow map of South America. Geothermics, 25(6), 599-646.
- Hamza, V. M., Dias, F. J. S., Gomes, A. J., & Terceros, Z. G. D. (2005). Numerical and functional representations of regional heat flow in South America. Physics of the Earth and Planetary Interiors, 152(4), 223-256.
- Harris, A.C., Allen, C. M., Bryan, S. E., Campbell, I. H., Holcombe, R. J., Palin, J. M., 2004. ELA-ICP-MS U-Pb zircon geochronology of regional volcanism hosting the Bajo de la Alumbrera Cu-Au deposit: implications for porphyry-related mineralization. Miner. Depos. 39, 46-67.
- Harry, D.L., Oldow, J.S., Sawyer, D.S., 1995. The growth of orogenic belts and the role of crustal heterogeneities in decollement tectonics. Geol. Soc. Am. Bull. 107, 1411-1426.
- Haschke, M., Siebel, W., Gunther, A., Scheuber, E., 2002. Repeared crustal thickening and recycling during the Andean orogeny in north Chile (21°–26°S) J. Geophys. Res. 107, 2019. doi:10.1029/2001JB000328.
- Haschke, M., Gunther, A., 2003. Balancing crustal thickening in the by tectonic vs. magmatic means. Geology 31, 933–936.
- Haschke, M., Deeken, A., Insel, N., Sobel, E., Grove, M., Schmitt, A., 2005. Growth pattern of the Andean Puna plateau constrained by apatite fission 'rack, apatite (U-Th)/He, K-feldspar 40Ar/39Ar, and zircon U-Pb geochronology, in: proceedings of the 6th Int. Symposium Andean Geodyn, pp. 360-363.
- Henriquez, S., DeCelles, P. G., Carrapa, B., 201. Cr staceous to middle Cenozoic exhumation history of the Cordillera de Domeyko and Sc ar de Atacama basin, northern Chile. Tectonics 38, 395–416. doi.org/ 10.1029/2018 COC j203.
- Henriquez, S., DeCelles, P. G., Carrapa, b. Hughes, A. N., Davis, G. H., Alvarado, P., 2020. Deformation history of the Puna p. teau, Central Andes of northwestern Argentina. J. Struct. Geol. 140, doi.org/10.1016/j.jsg 2020.04133
- Henry, S. G., & Pollack, H. N. (1983) Terrestrial heat flow above the Andean subduction zone in Bolivia and Peru. Journal of Gec, hysical Research: Solid Earth, 93(B12), 15153-15162.
- Heredia, N., Rodriguez Fernande. L. R., Gallastegui, G., Busquets P., Colombo, F., 2002. Geological setting of the Argontine Frontal Cordillera in the flat-slab segment (30°00'–31°30'S latitude), J. South Am. Far n Sci. 15, 79–99.
- Heit, B., Koulakov, I., Asc., G., Yuan, X., Kind, R., Alcozer-Rodriguez, I., Tawackoli, S., Wilke, H., 2008. More constraints to determine the seismic structure beneath the Central Andes at 21°S using teleseis nic tomography analysis. J. South Am. Earth Sci. 25, 22–36.
- Herrera, C., Cassidy, J. F., Dosso, S. E., Dettmer, J., Bloch, W., Sippl, C., Salazar, P., 2021.
 The crustal stress field inferred from focal mechanisms in northern Chile. Geophys. Res. Lett.
 48, e2021GL092889. https://doi.org/10.1029/2021GL092889
- Hervé, M., Sillitoe, R.H., Wong, C., Fernández, P., Crignola, F., Ipinza, M., Urzúa, F., 2012. Geologic overview of the Escondidad porphyry copper district, northern Chile. Soc. Econ. Geol. Spec. Public. 16, 55-78.
- Heuret, A., Lallemand, S., 2005. Plate motions, slab dynamics and back-arc deformation. Phys. Earth Planet. Int., 149, 31–51, doi: 10.1016/j.pepi.2004.08.022.
- Hilairet, N., Reynard, B., Wang, Y., Daniel, I., Merkel, S., Nishiyama, N., Petitgirard, S., 2007. High-pressure creep of serpentine, interseismic deformation, and initiation of subduction. Science 318(5858), 1910-1913.
- Hindle, D., Kley, J., 2003. Displacements, strains and rotations in the Central Andean Plate Boundary Zone, in: S. Stein, J. Freymuller (Eds.), Plate Boundary Zones, AGU Geodynamics Series 30, American Geophysical Union, 135 – 144.

- Hirth G., Kohlstedt D. L., 2003. Rheology of the upper mantle and the mantle wedge: a view from the experimentalists. Geophys. Monogr. Ser. 138: 83-105.
- Hoke, G. D., Giambiagi, L., Garzione, C., Mahoney, B., Strecker, M., 2014. Neogene paleoelevation of intermontane basins in a narrow, compressional mountain range, southern Central Andes of Argentina, Earth Planet. Sci. Lett., 406, 153-164.
- Hoke, G. D., Graber, N. R., Mescua, J. F., Giambiagi, L. B., Fitzgerald, P. G., Metcalf, J. R., 2015. Near Pure Surface Uplift of the Argentine Frontal Cordillera: insights from (U–Th/ He) thermochronology and geomorphic analysis, in: Sepúlveda, S. et al. (Eds.), Geodynamic Processes in the Andes of Central Chile and Argentina. Geol. Soc. London, Spec. Publ 399, 383–399. doi.org/10.1144/SP399.4.
- Hongn, F., Sobel, E. R., Coutand, I., Haschke, M., Riller, U., Strecker, M. R., 2007. Middle Eocene deformation and sedimentation in the Puna-Eastern Cordillera transition (23–26°S): Control by preexisting heterogeneities on the pattern of initial *A* ndean shortening. Geology 35, 271–274, doi:10.1130/G23189A.1.
- Hongn, F., Mon, R., Petrinovic, I., del Papa, C., Powell, J., 2010 Inversión y reactivación tectónicas cretácico-cenozoicas en el noroeste argentino: influencia de las heterogeneidades del basamento Neoproterozoico-Paleozoico inferior. Rev. Aso siación Geol. Argentina 66, 38-53.
- Horton, B. K., 1998. Sediment accumulation on top of the Andean orogenic wedge: Oligocene to late Miocene basins of the Eastern Cordillera, southern Bolivia. Geol. Soc. Am. Bull. 110, 1174–1192.
- Horton, B. K., 2005. Revised deformation history of the central Andes: Inferences from Cenozoic foredeep and intermontane basins of the E. stern Cordillera, Bolivia. Tectonics 24, TC3011, doi:10.1029/2003TC001619.
- Horton, B., 2018. Tectonic regimes of the Antral and southern Andes: responses to variations in plate coupling during subduction. Tectonics 37, 402-429 (2018). doi.org/10.1002/2017TC004624
- Horton, B.K., DeCelles, P.G., 2001. No Jern and ancient fluvial megafans in the foreland basin systems of the central Ande J, Souriern Bolivia: implications for drainage network evolution fold-thrust belts. Basin Res. 13, 43–63.
- Horton, B.K., Fuentes, F., Poli, A., Starck, D., Ramirez, S. G., Stockli, D. F., 2016. Andean stratigraphic record of the pansition from backarc extension to orogenic shortening: a case study from the northe-provedue Basin, Argentina. J. S. Am. Earth Sci. 71:17–40.
- Houseman, G.A., Mcharz e, D.P., Molnar, P., 1981. Convective instability of a thickened boundary layer and its relevance for the thermal evolution of continental convergent belts. J. Geophys. Res. 8C, 6115-6132.
- Husson, L., Conrad, C., Faccenna, C. 2012. Plate motions, Andean orogeny, and volcanism above the South Atlantic convection cell. Earth Planet. Sci. Lett. 317–318, 126–135.
- laffaldano, G., Bunge, H.-P., Dixon, T. H., 2006. Feedback between mountain belt growth and plate convergence. Geology 34, 893–896.
- Ibarra F., S. Liu, C. Meeßen, C.B. Prezzi, J. Bott, M. Scheck-Wenderoth, S. Sobolev, M.R. Strecker, 2019. 3D data-derived lithospheric structure of the Central Andes and its implications for deformation: Insights from gravity and geodynamics modeling. Tectonophys. 766, 453-468.
- Ibarra, F., Prezzi, C. B., Bott, J., Scheck- Wenderoth, M., Strecker, M., 2021. Distribution of temperature and strength in the Central Andean lithosphere and its relationship to seismicity and active deformation. J. Geophys. Res. Solid Earth 126, e2020JB021231. <u>https://doi</u>. org/10.1029/2020JB021231

- Introcaso, A., Pacino, M.C., Fraga, H., 1992. Gravity, isostasy and Andean crustal shortening between latitudes 30 and 35°S. Tectonophys. 205, 31-48.
- Irigoyen, M.V., Buchan, K.L., Brown, R.L., 2000. Magnetostratigraphy of Neogene Andean foreland-basin strata, lat 33°S, Mendoza Province, Argentina. Geol. Soc. Am. Bull. 112, 803– 816.
- Isacks, B.L., 1988. Uplift of the Central Andean Plateau and bending of the Bolivian Orocline. J. Geophys. Res. 93, 3211–3231.

Isacks, B.L., Barazangi, M., 1977. Geometry of Benioff zones: Lateral segmentation and downward bending of the subducted lithosphere, in Island arcs, Deep Sea Trenches and Back arc basins, in: Talwani, M., Pitman, W. (Eds), AGU, pp. 99-114, Washington, D.C.

Jamieson, R.A., Beaumont, C., 2013. On the origin of orogens. Geol. Soc. Ame. Bull. 125, 1671-1702.

- Jammes, S., Huismans, R., 2012. Structural styles of mountain bullding: Controls of lithospheric rheologic stratification and extensional inheritance. J. Geophys. Rus. 117, B10403,doi:10.1029/2012JB009376.
- Jaquet, Y., Duretz, T., Grujic, D., Masson, H., Schmalholz, S. 2018. Formation of orogenic wedges and crustal shear zones by thermal softening, cs. ccir ted topographic evolution and application to natural orogens. Tectonophys. 746, 512–229.

Jara, P., Charrier, R., 2014. Nuevos antecedentes geoproroblógicos y estratigráficos en la Cordillera Principal de Chile central entre 32° y 32°30°5 Implicancias paleogeográficas y estructurales. Andean Geology 41(1). doi.org/10 5027/andgeoV41n1-a07.

Jensen, E., Cembrano, J., Faulkner, D., Veloso, E., Alancibia, G, 2011. Development of a selfsimilar strike-slip duplex system in the Ataccma fault system, Chile. J. Struct. Geol. 33, 1611-1626.

Johnson, N.M., Jordan, T.E., Johnsson, P., Naeser, C.W., 1986. Magnetic Polarity Stratigraphy, Age and Tectonic Secting of Fluvial Sediments in an Eastern Andean Foreland Basin, San Juan Province, Argern Pa, J.: Foreland Basins. Blackwell Publishing Ltd., Oxford, UK, pp. 63–75. doi.org/10.1002/978.444303810.ch3.

Jones, R. E., Kirstein, L. A., Kasenann, S. A., Litvak, V. D., Poma, S., Alonso, R. N., Hinton, R., 2016. The role of changinal geodynamics in the progressive contamination of Late Cretaceous to Late Miourne arc magmas in the southern Central Andes, Lithos 262, 169-191.

- Jordan, T. E., Isacks, B. L. Allmendinger, R. W., Brewer, J. A., Ramos, V. A., Ando, C. J., 1983, Andean tectonic related to geometry of subducted Nazca Plate. Geol. Soc. Am. Bull. 94(3), 341–361.
- Jordan, T. E., Allmendinger, R. W., 1986. The Sierras Pampeanas of Argentina: A modern analogue of Rocky Mountain foreland deformation. Amer. J. Sci. 286(10), 737–764. doi.org/10.2475/ajs.286.10.737.
- Jordan, T. E., Alonso, R. N., 1987. Cenozoic Stratigraphy and Basin Tectonics of the Andes Mountains, 20° -28° South Latitude. Am. Assoc. Petroleum Geol. Bull. 71, 49–64 doi.org/10.1306/94886D44 -1704 -11D7 - 8645000102C1865D.
- Jordan, T. E., Allmendinger, R. W., Damanti J. F., Drake, R. E., 1993. Chronology of motion in a complete thrust belt: The Precordillera, 30–31°S, Andes Mountains, J. Geol. 101(2), 135–156 (1993).
- Jordan, T.E., Schlunegger, F., Cardozo, N., 2001. Unsteady and spatially variable evolution of the Neogene Andean Bermejo foreland basin, Argentina. J. South Am. Earth Sci. 14, 775–798. doi.org/10.1016/S0895- 9811(01)00072-4.

- Jordan, T.E., Mpodozis, C., Munoz, N., Blanco, N., Pananont, P., Gardeweg, M., 2007. Cenozoic subsurface stratigraphy and structure of the Salar de Atacama Basin, northern Chile. J. South Ame. Earth Sci. 23, 122–146.
- Jordan, T.E., Kirk-Lawlor, N.E., Blanco, N.P., Rech, J.A., Cosentino, N.J., 2014. Landscape modification in response to repeated onset of hyperarid paleoclimate states since 14 Ma, Atacama Desert, Chile. Geol. Soc. Am. Bull. 126 (7–8), 1016–1046.Juez-Larré, J., Kukowski, N., Dunai, T., Hartley, A., Andriessen, P., 2010. Thermal and exhumation history of the Coastal Cordillera arc of northern Chile revealed by thermochronological dating. Tectonophysics 495:48-66.
- Kay, S.M., Coira, B., 2009. Shallowing and steepening subduction zones, continental lithosphere loss, magmatism and crustal flow under the central Andean Altiplano–Puna plateau, in: Backbone of the Americas: Shallow Subduction, Plateau and Ridge and Terrane Collisions. Geol. Soc. Ame., 204, pp. 229–260.
- Kay, R. W., Kay, S. M., 1993. Delamination and delamination macma. sm. Tectonophys. 219, 177–189.
- Kay, S., Kurtz, A., 1995. Magmatic and tectonic characterization on the El Teniente region: Internal report, Superintendencia de Geología, El Teniente CODELCO, 180 p.
- Kay, S.M., Mpodozis, C., 2001. Central Andean Ore Deposits Linked to Evolving Shallow Subduction Systems and Thickening Crust. GSA Today 11, 4. doi.org/10.1130/1052-5173(2001)0112.0.CO;2.
- Kay, S.M., Mpodozis, C., 2002. Magmatism as a probe to the Neogene shallowing of the Nazca plate beneath the modern Chilean flat-slab. J. South Am. Earth Sci. 15, 39–57.
- Kay, S., Maksaev, V., Moscoso, R., Mpodc~is, ∩., Nasi, C., Gordillo, C.E., 1988. Tertiary Andean magmatism in Chile and Arg antir a between 28°S and 33°S: Correlation of magmatic chemistry with a changing Benioff zone. I. South Ame. Earth Sci. 1, 21-38.
- Kay, S.M., Coira, B., Viramonte, J., 1094a. Young mafic back arc volcanic rocks as indicators of continental lithospheric delamin. In Deneath the Argentine Puna Plateau, Central Andes. J. Geophys. Res. 99, 24323–24339
- Kay, S. M., Mpodozis, C., Tittle , A., Cornejo, P., 1994b. Tertiary magmatic evolution of the Maricunga mineral belt in Chin International Geology Review, 36(12), 1079-1112.
- Kay, S.M., Mpodozis, C., Cria, B., 1999. Magmatism, tectonism, and mineral deposits of the central Andes (22°-35°S). n: Skinner, B., (Ed.), Geology and Ore Deposits of the Central Andes. Soc. Econom. Geol. Special Public. 7, 27-59.
- Kay, S.M., Godoy, E, Yur.z, A., 2005. Episodic arc migration, crustal thickening, subduction erosion, and magnatism in the south-central Andes. Geol. Soc. Am. Bull. 117, 67-88.
- Kay, S.M., Ramos, V.A., Dickinson, W., 2009. Backbone of the Americas: Shallow subduction, plateau uplift, and ridge and terrane collision.Geol. Soc. Am. Memoir 204, 279 pp.
- Kay, S.M., Mpodozis, C., Gardeweg, M., 2013. Magma sources and tectonic setting of Central Andean andesites (25.5 – 28°S) related to crustal thickening, forearc subduction erosion and delamination. Geol. Soc. London, Special Public. 385, doi:10.1144/SP385.11.
- Kelly, J.G., 1961. Geología de las sierras de Moquina y perspectivas petrolíferas, Dto. de Jáchal, Provincia de San Juan, YPF, Gerencia Exploración Buenos Aires.
- Kennan, L., Lamb, S., Rundle, C., 1995. K-Ar dates from the Altiplano and Cordillera Oriental of Bolivia: implications for Cenozoic stratigraphy and tectonics. J. South Am. Earth Sci. 8, 163-186.
- Kirby, S.H., Durham, W.B., Stern, L.A., 1991. Mantle phase changes and deep-earthquake faulting in subducting lithosphere. Science 252, 216-225.

 Kley, J., Reinhardt, M., 1994. Geothermal and tectonic evolution of the Eastern Cordillera and the Subandean ranges of southern Bolivia, in: Tectonics of the Southern Central Andes: Structure and evolution of an active continental margin. Berlin, Springer-Verlag, pp. 155-170.

- Kley, J., 1996. Transition from basement-involved to thin-skinned thrusting in the Cordillera Oriental of southern Bolivia. Tectonics 15, 763–775.
- Kley, J., Müller, J., Tawackoli, S., Jacobshagen, V., Manutsoglu, E., 1997. Pre-Andean and Andean age deformation in the eastern Cordillera of southern Bolivia, J. South Am. Earth Sci. 10, 1–19, doi:10.1016/S0895-9811(97)00001-1.
- Kley, J., Monaldi C. R., 1998. Tectonic shortening and crustal thickness in the central Andes: How good is the correlation? Geology 26, 723–726.
- Kley, J., 1999. Geologic and geometric constraints on a kinematic model of the Bolivian orocline. J. S. Am. Earth Sci. 12, 221-235.
- Kley, J., Monaldi C. R., 2002. Tectonic inversion in the Santa BarLara System of the central Andean foreland thrust belt, northwestern Argentina. Tectonics 21 doi:10.1029/2002TC902003.
- Kley, J., Rossello, E.A., Monaldi, C.R., Habighorst, B., 2005. Selective and field evidence for selective inversion of Cretaceous normal faults, Salta rift, port/lwest Argentina. Tectonophys. 399, 155-172.
- Kozlowski, E., Manceda, R., Ramos, V.A., 1993. Estructure In: Ramos VA (ed) Geología y Recursos Naturales de Mendoza. Asoc. Geol. Argenuea, Buenos Aires, pp 235–256.
- Krystopowicz, N.J., Currie, C.A., 2013. Crustal ecloritization and lithosphere delamination in orogens. Earth Plan. Sci. Lett. 361, 195–207, doi: rg/10.1016/j.epsl.2012.09.056.
- Kudrass, H. R., Delisle, G., Goergens, A., Heeren, F., von Huene, R., Jensen, A., ... & Marzan, I. (1995). Crustal investigations off-and uns iore, Nazca/Central Andes (CINCA), Bundesanstalt für Geowissenschaften und Rohstoffe Hunnover (Germany). Report Sonne-Cruise 104.
- Kurtz, A., Kay, S.M., Charrier, R., Farrar, E., 1997. Geochronology of Miocene plutons and exhumation history of the el Teniento region, Central Chile (34°–35°S). Rev. Geol. Chile 24 (1), 75–90.
- Lacombe, O., Bellahsen, N., 2015 Trick-skinned tectonics and basement-involved fold-thrust belts. Insights from selected Cenuzoic orogens. Geol. Magazine 1, 1-48. Doi:10.1017/S001675681.000078.
- Ladino, M., Tomlinson, A., Bonco, N., 1999. New constraints for the age of the Cretaceous compressional deformation in the Andes of northern Chile (Sierra de Moreno, 21°-22°10′S), in: proceedings of the 4th International Symposium on Andean Geodynamics, Göttingen, Germany, 407-4 Arraris.
- Lamb, S., Hoke, L., 19 J7. Origin of the high plateau in the central Andes, Bolivia, South America. Tectonics 16, 623–649.
- Lamb. S., Hoke, L., Kennan, L., Dewey, J., 1997. Cenozoic evolution of the Central Andes in Bolivia and northern Chile, in: Burg JP, Ford M (eds), Orogeny through time. Geol. Soc. Spec. Pub. 121, 237–264.
- Lanza, F., A. Tibaldi, F.L. Bonali, and C. Corazzato (2013), Space-time variations of stresses in the Miocene-Quaternary along the Calama-Olacapato-El Toro fault zone, Central Andes, *Tectonoph.* 593, 33,56.
- Levina, M., Horton, B. K., Fuentes, F., Stockli D. F., 2014. Cenozoic sedimentation and exhumation of the foreland basin system preserved in the Precordillera thrust belt (31–32°S), southern central Andes, Argentina. Tectonics 33, doi:10.1002/2013TC003424.
- Lindsay, D., Zentilli, M., Rojas de la Rivera, J., 1995. Evolution of an active ductile to brittle shear system controlling mineralization at the Cuquicamata porphyry copper deposits, northern Chile. Int. Geol. Rev. 37, 945-95.

Limarino, C. O., Fauqué, L. A., Cardó, R., Gagliardo, M. L., Escoteguy, L., 2002. La faja volcánica miocena de la Precordillera septentrional. Rev. Asoc. Geol. Argentina 57, 289-304.

- Litherland, M., Klinck, B.A. O'Connor, E.A, Pitfield, P., 1985. Andean-trending mobile belts in the Brazilian Shield. Nature 314, 345-348.
- Liu S., Currie C. A., 2016. Farallon plate dynamics prior to the Laramide orogeny: numerical models of flat subduction. Tectonophysics 666:33-47.
- Löbens, S., Sobel, E. R., Bense, F. A., Wemmer, K., Dunkl, I., Siegesmund, S., 2013. Refined thermochronological aspects of the Northern Sierras Pampeanas. Tectonics 32 (3), 453-472. doi.org/10.1002/tect.20038.
- López, C., Martínez, F., Del Ventisette, C., Bonini, M., Montanari, D., Muñoz, B., Riquelme, R., 2020. East-vergent thrusts and inversion structures: An updated tectonic model to understand the Domeyko Cordillera and the Salar de Atacama basin transition in the western Central Andes. J. South. Am. Earth Sci. 103, doi.org/10.1016/j isames.2020.102741.
- Lossada, A. C., Giambiagi, L., Hoke, G.D., Fitzgerald, P.G., Creixeu, C., Murillo, I., Mardonez, D., Velásquez, R., Suriano, J., 2017. Thermochronologic evic enc. for Late Eocene Andean mountain building at 30°S. Tectonics, 36, 2693–2713. doi crov 10.1002/2017TC004674.
- Lossada, A., Hoke, G. D., Giambiagi, L. B., Fitzgerald, P. G., Me: cua, J. F., Suriano, J., Aguilar, A., 2020. Detrital thermochronology reveals major midu a Miocene exhumation of the eastern flank of the Andes, predating the Pampean flat-slat (307-33.5°S). Tectonics Doi:10.1029/2019TC005764.
- Lunkenheimer, F. 1930. El terremoto submendocino del 30 de mayo de 1929. Observatorio Astronómico de La Plata. Contribuciones Ger fízic is Tomo III, Nº 2. La Plata
- Lynner, C., Beck, S., Zandt, G., Porritt, R., Lin, F-C., Eilon, Z., 2018. Midcrustal deformation in the Central Andes constrained by rad al a hisolopy. J. Geophys. Res. Solid Earth 123, 4798-4813, https://doi.org/10.1029/2017JB0: +936.
- Lyon-Caen, H., Molnar, P., Suárez, C. 1985. Gravity anomalies and flexure of the Brazilian Shield beneath the Bolivian Ander Earth Plan. Sci. Lett. 75: 81-92. Doi <u>10.1016/0012-</u> <u>821X(85)90053-6</u>
- Mackaman-Lofland, C., Horton, B., , ruentes, F., Constenius, K.N., Stockli, D.F., 2019.
 Mesozoic to Cenozoic retroare basin evolution during changes in tectonic regime, southern Central Andes (31–33°C): n sights from zircon U-Pb geochronology. J. South Am. Earth Sci. 89, 299–318. doi.org/10.1116/j.jsames.2018.10.004.
- Mackaman-Lofland, C. e. al., 2020. Andean mountain building and foreland basin evolution during thin- and the technical Neogene deformation (32–33°S). Tectonics 39,
 - e2019TC005838 + .tps://doi.org/10.1029/2019TC005838.
- Maggi, A., Jackson, J., McKenzie, D., Priestley, K., 2000. Earthquake focal depths, effective elastic thickness, and the strength of the continental lithosphere. Geology 28, 495-498.
- Maksaev, V., Marinovic, N., 1980. Cuadrángulos Cerro de la Mica, Quillagua, Cerro Posada y Oficina Prosperidad, Región de Antofagasta. Instituto de Investigaciones Geológicas, Carta Geológica de Chile 45-48: 63 pp.
- Maksaev, V., Zentilli, M., 1988. Marco metalogénico regional de los megadepósitos de tipo pórfido cuprífero del norte grande de Chile, in: proceedings of the 5th Congreso Geológico Chileno, 1, B181-B212.
- Maksaev, V., Zentilli, M., 1999. Fission track thermochronology of the Domeyko Cordillera, Northern Chile: Implications for Andean tectonics and porphyry copper metallogenesis. Exploration and Mining Geology 8: 65-89.

- Maksaev, V., Moscoso, R., Mpodozis, C., Nasi, C., 1984. Las unidades volcánicas y plutónicas del Cenozoico superior en la alta Cordillera del Norte Chico (29°-31°S): Geología, alteración hidrotermal y mineralización, Rev. Geol. Chile 21, 11-51.
- Maksaev, V., Munizaga, F., McWilliams, M., Fanning, M., Mathur, R., Ruiz, J., Zentilli, M., 2004. New chronology for El Teniente, Chilean Andes, from U/Pb, 40Ar/39Ar, Re-Os and fission track dating: Implications for the evolution of a supergiant porphyry Cu-Mo deposit. In Andean Metallogeny: New Discoveries, Concepts and Updates (Sillitoe, R.H.; Perelló, J.; Vidal, C.E.; editors). Soc. Econom. Geol., Special Public. 11, 15-5.
- Mardones, V., Peña, M., Pairoa, S., Ammirati, J.-B., Leisen, M., 2021. Architecture, kinematics, and tectonic evolution of the principal cordillera of the Andes in central Chile (~33.5°S): Insights from detrital zircon U-Pb geochronology and seismotectonics implications. Tectonics 40, e2020TC006499. <u>https://doi.org/10.1029/2020TC006499</u>
- Mardonez, D., 2020. Relación entre estructuras profundas y some a lo largo de la transecta La Serena-Jáchal (30°S), Andes Centrales Sur. PhD thesis. Universidad Nacional de Córdoba, Argentina.
- Mardonez, D., Suriano, J., Giambiagi, L. B., Mescua, J. F., Lossoa, A. C., Creixell, C., Murillo, I., 2020. Cenozoic structural evolution of the 30°S trans 3c between the Frontal Cordillera and the Western Sierras Pampeanas, Argentina. J. South Am. Earth Sci. 104, doi.org/10.1016/j.jsames.2020.102838.
- Marinovic, N.; Lahsen, A. 1984. Hoja Calama, Región de Antofagasta. Servicio Nacional de Geología y Minería, Carta Geológica de Chile 50: 140 p., 1 mapa escala 1:250.000. Santiago.
- Marinovic, N., 2007. Carta Oficina Domeyto Angión de Antofagasta. SERNAGEOMIN. Carta Geológica de Chile, Serie Geología Cásir a 105, p 41 (1: 100.000).
- Marquillas, R. A., del Papa, C., Sabino I. F., 2005. Sedimentary aspects and paleoenvironmental evolution of a rift basin: Salta Group (Cretaceous-Paleogene), northwestern Argentina, Int. J. Earth Sci. 94(1), 94–113, doi:10.107/300531-004-0443-2.
- Martin, M.W., Clavero, J. Mpodozis, C. Cuitiño, L., 1995. Estudio geológico de la franja El Indio, Cordillera de Coquimbo. SF RNAGEOMIN, Informe Registrado IR-95-6, pp. 1-238, Santiago.
- Martin, M.W., Clavero, J., Mr odo, is, C., 1997. Eccene to late Miccene structural development of Chile's El Indio gold bei, ~ວີ°S, in: proceedings of the 8th Congreso Geológico Chileno 1, 144-148, Antofagasta, Chile.
- Martínez, C., Soria, E., Urbe, H., Escoba, A., Hinajosa, A., 1994. Estructura y evolución del Altiplano sur ocuide. In el sistema de cabalgamientos de Uyuni-Khenayani y su relación con la sedimentación terciaria. Revista Técnica de YPFB 15 (3-4): 245-264.
- Martínez, F., Arriagada, C., Peña, M., Deckart, K., Charrier, R., 2016. Tectonic styles and crustal shortening of the Central Andes "Pampean" flat-slab segment in northern Chile (27–29°S). Tectonophysics 667(23), 144–162. doi.org/10.1016/j.tecto.2015.11.019.
- Martínez, F., López, C., Parra, M., Espinoza, D., 2019. Testing the occurrence of thick-skinned triangle zones in the Central Andes forearc: Example from the Salar de Punta Negra Basin in northern Chile. J. Struct. Geol. 120, 14-28 10.1016/j.jsg.2018.12.009.
- Martínez, F., López, C., Parra, M., 2020. Effects of Pre-Orogenic Tectonic Structures On The Cenozoic Evolution Of Andean Deformed Belts: Evidence From The Salar De Punta Negra Basin In The Central Andes Of Northern Chile. Basin Res. doi.org/10.1111/bre.12436.
- Martínez, F., Peña, M., Parra, M., López, C., 2021. Contraction and exhumation of the western Central Andes induced by basin inversion: New evidence from "Pampean" subduction segment. Basin Res. 33(5), 2706-2724.

- Martinod, J., Gérault, M., Husson, L., Regards, V., 2020. Widening of the Andes: an interplay between subduction dynamics and crustal wedge tectonics. Earth Sci. Rev. doi:10.1016/j.earscirev.2020.103170.
- Martos, F.E., et al., 2022. Neogene evolution of the Aconcagua fold-and-thrust belt: linking structural, sedimentary analyses and provenance U-Pb detrital zircon data for the Penitentes basin. Tectonophysics 825, 229233.
- Massoli, D., Koyi, H., Barchi, M., 2006. Structural evolution of a fold and thrust belt generated by multiple decollements: analogue models and natural examples from the Northern Apennines (Italy). J. Struct. Geol. 28, 185-199.
- Matteini, M., Mazzuoli, R., Omarini, R., Cas, R. A., Maas, R., 2002. Geodynamical evolution of the Central Andes at 24°S as inferred by magma composition along the Calama-Olacapato-El Toro transversal volcanic belt. J. Volcanol. Geotherm. Res. 118, 205-228.
- McFarland, P. K., Bennett, R. A., Alvarado, P., DeCelles, P. G., 2(17. Rapid geodetic shortening across the Eastern Cordillera of NW Argentina observed by the Puna-Andes GPS Array. J. Geophys. Res. 122, 8600–8623. doi.org/ 10.1002/2017JB01 (739)
- McGlashan, N., Brown, L., Kay, S., 2008. Crustal thickness in une central Andes from teleseismically recorded depth phase precursors. Geophym. J. Int. 175, 1013-1022.
- McQuarrie, N., 2002. The kinematic history of the central A. dean fold-thrust belt, Bolivia: Implications for building a high plateau, Geol. Soc. Am. 3ull., 114, 950 –963, doi:10.1130/0016-7606.
- McQuarrie, N., Davis, G.H., 2002. Crossing the scaral scales of strain-accomplishing mechanisms in the hinterland of the central Acces fold-thrust belt, Bolivia. J. Struct. Geol. 24, 1587-1602.
- McQuarrie, N., DeCelles, P.G., 2001. G om try and structural evolution of the central Andean. Tectonics 20, 669–692. doi.org/10.1025. 2000TC001232.
- McQuarrie, N., Horton, B., Zandt, G. Lock, S., DeCelles, P., 2005. Lithospheric evolution of the Andean fold-thrust belt, Bolivia, and the origin of the Central Andean Plateau. Tectonophys., 399, 15–37, doi:10.1016/j.tecto.2/10/.12.013.
- Meigs, A.J., Nabelek, J., 2010. Cructal-scale pure shear foreland deformation of western Argentina. Geophys. Res Lewrs 37, L11304, doi:10.1029/2010GL043220.
- Mescua, J.F., Giambiagi, L., Ramos, V.A., 2013. Late Cretaceous uplift in the Malargüe foldand-thrust belt (35° S₁, soumern central Andes of Argentina and Chile. Andean Geol. 40, 102–116.
- Mescua, J., Giamb. qi, ', Tassara, A., Gimenez, M., Ramos, V.A., 2014. Influence of pre-Andean history ove Cenozoic foreland deformation: structural styles in the Malargüe foldand-thrust belt at 35°S, Andes of Argentina. Geosphere 10(3), 585-609.
- Mingramm, A., Russo, A., Pozzo, A., Cazau, L., 1979. Sierras Subandinas. In: Turner, J. (Ed.), Geología Regional Argentina, Academia Nacional de Ciencias, Córdoba, pp. 95-138 (1979).
- Molnar, P., England, P., 1990. Temperatures, heat flux, and frictional stress near major thrust faults. J. Geophys. Res. Solid Earth 95(B4), 4833-4856.
- Mon, R., Hongn, F., 1991. The structure of the Precambrian and lower Paleozoic basement of the Central Andes between 22° and 32°S. Latin Geologische Rundschau 80, 745–758.
- Mon, R., Salfity, J. A., 1995. Tectonic evolution of the Andes of northern Argentina, in Petroleum Basins of South America, edited by A. J. Tankard et al., Ame. Assoc. Petr. Geol. Mem., 62, 269–283.
- Montero-López, C., del Papa, C. E., Hongn, F. D., Strecker, M. R., Aramayo, A., 2016. Synsedimentary broken foreland tectonics during the Paleogene in the Andes of NW Argentine: new evidence from regional to centimetre-scale deformation features. Basin Research, 1–18. doi.org/10.1111/bre.12212.

Montero-López, C. et al., 2020. Development of an incipient Paleogene topography between the present-day Eastern Andean Plateau (Puna) and the Eastern Cordillera, southern Central Andes, NW Argentina. Basin Res. 33(2), 1194-1217.

- Morency, C., Doin M. P., 2004. Numerical simulations of the mantle lithosphere delamination, J. Geophys. Res., 109, B03410, doi:10.1029/ 2003JB002414
- Mortimer, E., Carrapa, B., Coutand, I., Schoenbohm, L., Sobel, E. R., Sosa Gomez, J., Strecker, M. R., 2007. Fragmentation of a foreland basin in response to out-ofsequence basement uplifts and structural reactivation; El Cajon-Campo del Arenal Basin, NW Argentina. Geol. Soc. Am. Bull. 119, 637-653. doi.org/10.1130/B25884.1.
- Moscoso, R., Mpodozis, C., 1988. Estilos estructurales en el Norte Chico de Chile (28°-31°S), Regiones de Atacama y Coquimbo, Rev. Geol., de Chile 25, 151-166.
- Mouthereau, F., Lacomb, O., and Meyer, B., 2006. The Zagros folded belt (Fars, Iran): constrains from topography and critical wedge modelling. Geo_L ^L vs. J. Int. 165: 336-356.
- Mouthereau, F. et al. 2007. Placing limits to shortening evolution in the Pyrenees: Role of margin architecture and implications for the Iberia/Europe convergence. J ectonics 26, doi:10.1002/2014TC003663
- Mpodozis, C., Cornejo, P., 1986. Hoja Pisco-Elqui. SERN/.G.O.IIN, Carta No. 68.
- Mpodozis, C., Cornejo, P., 2012. Cenozoic tectonics and outphyry copper systems of the Chilean Andes. Soc. Econom. Geol., Special Publit 16, 329-360.
- Mpodozis, C., Kay, S. M., 2009. Evolution of less than 10 v/a Valle Ancho region lavas, southern end of the Central Andean Volcanic Zone (27 50 3), in: proceedings of the 12th Congreso Geologico Chileno, Santiago, S7 019.
- Mpodozis C, Ramos, V. A., 1989. The Anderson Chile and Argentina. In: Ericksen G E, Cañas Pinochet M T, Rieinemud J A (eds) Coold gy of the Andes and its Relation to Hydrocarbon and Mineral Resources. Circumpacific Council for Energy and Mineral Resources, Earth Science Series, 11:59–90
- Mpodozic, C., Marinovic, N., Smoje, I., Cuitiño, L., 1993. Estudio geológico-estructural de la Cordillera de Domeyko entre Siel a Limón Verge y Sierra Mariposas, Región de Antofagasta. Sernageomin-Codelco, 282 pp., Cantiago.
- Mpodozis, C., Cornejo, P., K. v, S., Tittler, A., 1995. La Franja de Maricunga: síntesis de la evolución del frente volcúnico oligocenomioceno de la zona sur de los Andes Centrales. Rev. Geol. Chile 22, 273-313
- Mpodozis, C., Kay, S., Ga deweg, M., Coira, B., 1997. Geología de la región de Valle Ancho-Laguna Verde (Catamarca, Argentina): Una ventana al basamento del extremo sur de la zona volcánica de i os Andes Centrales, in: proceedings of the 8th Congreso Geológico Chileno, Antofagasta, 3, 1689-1693.
- Mpodozis, C., Arriagada, C., Basso, M., Roperch, P., Cobbold, P., Reich, M., 2005. Late Mesozoic to Paleogene stratigraphy of the Salar de Atacama Basin, Antofagasta, Northern Chile: Implications for the tectonics evolution of the central Andes. Tectonophys. 399, 125 – 154, doi:10.1016/j.tecto.2004.12.019.
- Mpodozis, C., Clavero, J., Quiroga, R., Droguett, B., Arcos, R., 2018. Geología del área Cerro Cadillal-Cerro Jotabeche, región de Atacama. SERNAGEOMIN, Carta Geológica de Chile, Serie Geología Básica 200, 1 mapa escala 1:100.000. Santiago.
- Mukhopadhyay, S., Sharma, J., 2010. Crustal scale detachment in the Himalayas: a reappraisal. Geophys. J. Int.I 183, 850-860.
- Müller, J.P., Kley, J., Jacobshagen, V., 2002. Structure and Cenozoic kinematics of the Eastern Cordillera, southern Bolivia (21°S). Tectonics 21, doi 10.1029/2001TC001340.
- Müller, R. D. et al., 2016. Ocean basin evolution and global-scale plate reorganization events since Pangea breakup. Annu. Rev. Earth Planet. Sci. 44, 107-138.

- Muñoz, N., Charrier, R., Jordan, T., 2002. Interactions between basement and cover during the evolution of the Salar de Atacama basin, northern Chile. Andean Geol. 29, 55-80.
- Muñoz, M., Fuentes, F., Vergara, M., Aguirr, L., Olov Nyström, J., Féraud, G., Demant, A., 2006. Abanico East Formation: petrology and geochemistry of volcanic rocks behind the Cenozoic arc front in the Andean Cordillera, central Chile (33°50´S). Rev. Geol. Chile 33, 109-140.
- Muñoz, N., Blanco, N., Pananont, P., Gardeweg, M., 2007. Cenozoic subsurface stratigraphy and structure of the Salar de Atacama basin, northern Chile. J.South Am.Earth Sci. 23: 122-146.
- Muñoz, M., & Hamza, V. (1993). Heat flow and temperature gradients in Chile. Studia geophysica et geodaetica, 37(3), 315-348.
- Murillo, I., Velasquez, R., Creixell, C., 2017. Geología del área Guanta-Los Cuartitos y Paso de Vacas Heladas, escala 1:100.000. SERNAGEOMIN Carta Geológica de Chile, Serie Geología Básica.
- Muruaga, C.M., 1998. Estratigrafía y Sedimentología del Terciario Su, erior de la Sierra de Hualfín, entre las localidades de Villavil y San Fernando, Provincia de Catamarca. Ph. D. Thesis. Universidad Nacional de Tucuman, Facultad de Ciercaes Naturales e Instituto M. Lillo, 270 pp.
- Nacif, S., Lupari, M., Triep, E., Nacif, A., Alvarez, O., Folguera, A., Gimenez, M., 2017. Change in the pattern of cristal seismicity at the southern Central Andes from a local seismic network. Tectonophys. 708: 56-69.
- Nacif, S, Triep, E, Spagnotto, S, Aragon, E, Furlaci, K y Álvarez, O. 2015 The flat to normal subduction transition study to obtain the nazc. pla.e morphology using high resolution seismicity data from the nazca plate in control chile. Tectonophysics. 10.1016/j.tecto.2015.06.027. Volume 1657, Pag. 102–112.
- Niemeyer, H., Urrutia, C., 2009. Transcurrencia a lo largo de la Falla Sierra de Varas (Sistema de fallas de la Cordillera de Dome, 'ko), norte de Chile. Andean Geol. 36, 37-49.
- Niemeyer, H., 2013. Geología del é. Corro Lila-Peine, Región de Antofagasta. SERNAGEOMIN, Serio Geología Bésica 147, 39p, Santiago.
- Norabuena, E. O., Dixon, T. H. Stein, S., Harrison, C. G., 1999. Decelerating Nazca- South America and Nazca- Pacific pinte motions. Geophys. Res. Lett. 26, 3405–3408.,
- Nyström, J.O., Vergara, M., Mo. ata. D., Levi, B., 2003. Tertiary volcanism in central Chile (33°15′-33°45′S): a cc se c) Andean Magmatism. Geol. Soc. Am. Bull. 115, 1523-1537.
- Oncken, O., Sobolev, S., Stiller, M., Luschen, E., 2003. Seismic imaging of a convergent continental margin and plateau in the central Andes (Andean Continental Research Project 1996 ANCORP' 96). J. Geophys. Res. Solid Earth 108, 2328. Doi:10.1029/2002JB001771.
- Oncken O, Hindle D, Kley J, Elger K, Victor P, Schemmann, K., 2006. Deformation of the Central Andean Upper Plate System — Facts, Fiction, and Constraints for Plateau Models, in: The Andes. Springer Berlin Heidelberg, pp. 3–27. https://doi.org/10.1007/978-3-540-48684-8_1
- Oncken, O., Boutelier, D., Dresen, G., Schemmann, K., 2012. Strain accumulation controls failure of a plate boundary zone: Linking deformation of the Central Andes and lithosphere mechanics. Geochem. Geophys. Geosyst. 13, Q12007, doi:10.1029/2012GC004280.
- Ord, A., Hobbs, B.E., 1989. The strength of the continental crust, detachment zones and the development of plastic instabilities. Tectonophysics 158: 269-289.

- Ortiz, G., Alvarado, P., Fosdick, J. C., Perucca, L., Saez, M., Venerdini, A., 2015. Active deformation in the northern Sierra de Valle Fertil, Sierras Pampeanas, Argentina. J. South Am. Earth Sci. 64, 339–350. doi.org/10.1016/j.jsames.2015.08.015 (2015).
- Ortiz, G., Goddard, A. L. S., Fosdick, J. C., Alvarado, P., Carrapa, B., Cristofolini, E., 2021. Fault reactivation in the Sierras Pampeanas resolved across Andean extensional and compressional regimes using thermocrhonologic modeling. J. South Am. Earth Sci. 112 (6):103533
- Pardo, M., Comte, D., Monfret, T., 2002. Seismotectonic and stress distribution in the central Chile subduction zone. J. South Am. Earth Sci. 15, 11-22.
- Pardo-Casas, F., Molnar, P., 1987. Relative motions of the Nazca (Farallon) and South American plates since late Cretaceous time. Tectonics 6, 233-248.
- Payrola, P., Powell, J., del Papa, C., Hongn, F., 2009. Middle Eocene deformationsedimentation in the Luracatao Valley: Tracking the beginning of the foreland basin of northwestern Argentina. J. South Am. Earth Sci. 28, 142-154.
- Pearson, D. et al., 2012. Major Miocene exhumation by fault-probagation folding within a metamorphosed, early Paleozoic thrust belt: Northwesterr. C. Deutina. Tectonics 31(4), 1–24. http://doi.org/10.1029/2011TC003043.
- Pearson, D., Kapp, P., DeCelles, P. G., Reiners, P. W., Gerrels, G. E., Ducea, M. N., Pullen, A., 2013. Influence of pre-Andean crustal structure on Cenc zoic thrust belt kinematics and shortening magnitude: Northwestern Argentina. Geos, Ciere 9(6), 1766–1782. http://doi.org/10.1130/GES00923.S2.
- Perarnau, M., Gilbert, H., Alvarado P., Martino K. Ar derson, M., 2012. Crustal structure of the Eastern Sierras Pampeanas of Argenting using high frequency local receiver functions. Tectonophys. 580, 208-217.
- Pérez-Peña, J.V., Al-Awabdeh, M., Azañón, J.M., Galve, G., Booth-Rea, J.P., Notti, D., 2017. SwathProfiler and NProfiler: Two new ArcGIS Add-ins for the automatic extraction of swath and normalized river profiles. Computers & Geosciences 104,135-150, https://doi.org/10.1016/j.cageo.2016/08.008.
- Perucca, L.P., Martos, L.M., 2012. Ceomorphology, tectonism and Quaternary landscape evolution of the central Ar des of San Juan (30°S–69°W), Argentina. Quat. Int. 253, 80–90. https://doi.org/10.1016/j.org/10.1016/j.cua.org/10.1018.009.
- Perucca, L.P., Vargas, N., 20 4. Neotectónica de la provincia de San Juan, centro-oeste de Argentina. Bol. la Soc. Geológica Mex. 66, 291–304.
- Perucca, L. P., Espric, K, Angillieri, M. Y. E., Rothis, M., Tejada, F., Vargas, M., 2018. Neotectonic controls and stream piracy on the evolution of a river catchment: a case study in the Agua de la Pena River basin, Western Pampean Ranges, Argentina. J. Iber. Geol. 44, 207–224. doi.org/10.1007/s41513-018-0052-8.
- Petrinovic I., Martí, J., Aguirre-Diaz, G. J., Guzmán, S., Geyer, A., Paz, N. S., 2010. The Cerro Aguas Calientes caldera, NW Argentina: An example of a tectonically controlled, polygenetic collapse caldera, and its regional significance. J. Volcanol. Geotherm. Res. 194, 15 –26. doi.org/10.1016/j.jvolgeores.2010.04.012.
- Petrinovic I., Hernando, I.; Guzmán, S.R., 2021. Miocene to Recent collapse calderas of the southern and central volcanic zones of the Andes and their tectonic constraints. Int. . Earth Sci. 110, 2399-2434.
- Pilger, R., 1981. Plate Reconstructions, Aseismic Ridges, and Low-Angle Subduction Beneath the Andes. Geol. Soc. Am. Bull. 92, 448–456.
- Pineda, G., Emparán, C., 2006. Geología del área Vicuña-Pichasca, Región de Coquimbo. SERNAGEOMIN Carta Geológica de Chile, Serie Geología Básica, v. 97, p. 40.

- Pingel, H., Alonso, R., Altenberger, U., Cottle, J., Strecker, M., 2019. Miocene to Quaternary basin evolution at the southeastern Andean Plateau (Puna) margin (ca. 24°S lat, Northwestern Argentina). Basin Res. doi.org/10.1111/bre.12346.
- Piquer, J.; Berry, R.F.; Scott, R.J., Cooke, D.R., 2016. Arc-oblique fault systems: their role in the Cenozoic structural evolution and metallogenesis of the Andes of central Chile. J. Struct. Geol, 89, 101-117.
- Piquer, J., Hollings, P., Rivera, O., Cooke, D. R., Baker, M., Testa, F., 2017. Along-strike segmentation of the Abanico Basin, central Chile: New chronological, geochemical and structural constraints. Lithos 268–271, 174–197.
- Poma, S., Ramos, A. M., Litvak, V. D., Quenardelle, S. M., Maisonnave, E. B., Díaz, I., 2017.
 Southern Central Andes Neogene magmatism over the Pampean flat slab: implications on crustal and slab melts contribution to magma generation in Precordillera, Western Argentina.
 Andean Geol. 44, 249-274.
- Pope, D., Willett, S.D., 1996. Thermal-mechanical model for crustal trickening in the central Andes driven by ablative subduction. Geology 26: 511-514.
- Porras, H., Pinto, L., Tunik, M., Giambiagi, L., Deckart, K., 2010. Frovenance of the Miocene Alto Tunuyán Basin (33°40'S, Argentina) and its implications for the evolution of the Andean Range: Insights from petrography and U–Pb LA–ICPMs rircon ages. Tectonophys. 690, 298–317. doi.org/10.1016/j.tecto.2016.09.034.
- Porth, R. A., 2000. Strain-rate-dependent force model on Conspheric strength. Geophys. J. Int. 141(3), 647-660.
- Prezzi, C. B., Alonso, R. N., 2002. New paleoma tet a data from the northern Argentine Puna: Central Andes rotation pattern reanalyzed, a Geophys. Res., 107(B2), 2041, doi:10.1029/ 2001JB000225.
- Prezzi, C., Götze, H.-J., Schmidt, S., 2009. ³D density model of the Central Andes. Phys. Earth Planet. Inter. 177, 217–234. http://.⁴x.doi.org/10.1016/j.pepi.2009.09.004.
- Prezzi, C., Iglesia Llanos, M. P., Gö , F. J., Schmidt, S. 2014. Thermal and geody-namic contributions to the elevation of the Altiplano-Puna plateau. Physics Earth Planet. Interiors 237, 51-64.
- Price, R., 1981. The Cordille an creland thrust and fold belt in the southern Canadian Rocky Mountains. Geol. Soc. Lon., Spec. Pub. 9: 427-448.
- Quade, J. et al., 2015. The growth of the central Andes, 22°S-26°S. In: DeCelles et al. (Eds), Geodynamics of *a* Confilleran Orogenic System: The Central Andes of Argentina and Northern Chile: Sect Soc. Am. Memoir, pp. 277-308.
- Quiero, F., Tassara, A laffaldano, G., Rabbia, O., 2022. Growth of Neogene Andes linked to changes in plate convergence using high-resolution kinematic models. Nature Communications 13, 1339.
- Quinteros, J., Sobolev, S., 2013. Why has the Nazca plate slowed since the Neogene? Geology 41, 31–34.
- Quiroga, R. et al., 2021. Spatio-temporal variations of the strain field in the southern Central Andes broken-foreland (27°30'S) during the Late Cenozoic. J. South Ame. Earth Sci., doi.org/10.1016/j.jsames.2020.102981.
- Ramirez, C.F., Gardeweg, M., 1982. Hoja Toconao, Region de Antofagasta. SERNAGEOMIN Carta Geol de Chile. 54, p 122.
- Ramos, V.A., Godoy, E., Godoy, V., Pángaro, F., 1996a. Evolución tectónica de la cordillera principal Argentino–Chilena a la latitud del Paso de Piuquenes (33°30'S) in: proceedings of the 13th Congreso Geológico Argentino, Buenos Aires, pp. 337–352 (1996a).

- Ramos, V.A., Cegarra, M., Cristallini, E., 1996b. Cenozoic tectonics of the high Andes of westcentral Argentina (30-36°S latitude). Tectonophys. 259, 185–200. doi.org/10.1016/0040-1951(95)00064-x.
- Ramos, V.A., Cristallini, E., Pérez, D., 2002. The Pampean flat-slab of the Central Andes, J. South. Am. Earth Sci. 15, 59-78.
- Ramos, V.A., Zapata, T.R., Cristallini, E.O., Introcaso, A., 2004. The Andean Thrust System— Latitudinal Variations in Structural Styles and Orogenic Shortening, in: McClay, K.R. (Ed.), Thrust Tectonics and Hydrocarbon Systems. Am. Assoc. Petroleum Geol. Memoir, 30–50 doi.org/10.1306/M82813C3.
- Ramos, V. A., 2018. Tectonic evolution of the central Andes: From terrane accretion to crustal delamination, in G. Zamora, K. M. McClay, and V.A. Ramos, eds. Petroleum basins and hydrocarbon potential of the Andes of Peru and Bolivia. Am. Assoc. Petroleum Geol. Memoir 117, pp. 1–34.
- Re, G., Jordan, T., Kelley, S., 2003. Cronología y paleogeografía del Terciario de la cuenca intermontana de Iglesia septentrional, Andes de San Juan, Argen ina. Rev. Asoc. Geol. Argentina 58, 31-48.
- Reat, E.J., Fosdick, J.C., 2018. Basin evolution during Cretal 9013-Oligocene changes in sediment routing in the Eastern Precordillera, Argentina. I. South Am. Earth Sci. 84, 422–443. doi.org/10.1016/j.jsames.2018.02.010.
- Reiners, P., et al., 2015. Low-temperature thermochronology trends across the Central Andes, 21°S-28°S. Geol. Soc. Am. Mem. 212, doi:10.1130/2015.1212(12).
- Reutter, K.J., Scheuber, E., Wigger, P., 1994. Terion cs of the Southern Central Andes: structure and evolution of an active continential margin. Springer-Verlag, Berlin. 335 pp.
- Reutter, K., Scheuber, E., Chong, G., 1^c 96. The Precordillera fault system of Chuquicamata, northern Chile: Evidence for reversal along arc-parallel strike-slip faults. Tectonophys. 259, 213–228.
- Reynolds, J.H., Jordan, T.E., Johnson, N.M., Damanti, J.F., Tabbutt, K., 1990. Neogene deformation of the flatsubduction sergment of the Argentine-Chilean Andes:
 Magnetostratigraphic constraints from Las Juntas, La Rioja province, Argentina. Geol. Soc. Am. Bull. 102, 1607–162⁻ doi: org/10.1130/0016-7606(1990)1022.3.CO;2.
- Reynolds, J. H., Galli, C. I., Yei, Sández, R. M., Idleman, B. D., Kotila, J. M., Hilliard, R. V., Naeser, C. W., 2000. Mide e Miocene tectonic development of the Transition Zone, Salta Province, northwest As rentina: Magnetic stratigraphy from the Metan Subgroup, Sierra de Gonzalez, Geo. Scontom. Bull. 112(11), 1736–1751.
- Richard, A.D., 2020. Nodelado cinemático aplicado a neotectónica en el frente orogénico andino entre 32°10′S 32°40′S, provincias de Mendoza y San Juan. PhD thesis, Universidad Nacional de San Luis, 189 pp.
- Richard, A.D., Costa, C., Giambiagi, L., Moreno Marcó, C., Ahumada, E., Vázquez, F., 2019. Neotectónica del extremo austral de la falla La Rinconada, Precordillera oriental, provincia de San Juan. Rev. Asoc. Geo. Argentina 76(1), 24-39.
- Richardson, T., Gilbert, H., Anderson, M., Ridgway, K., 2012. Seismicity within the actively deforming Eastern Sierras Pampeanas, Argentina. Geophys. J. Int. 188, 408-420.
- Riesner, M., Lacassin, R., Simoes, M., Carrizo, D., Armijo, R., 2018. Revisiting the crustal structure and kinematics of the Central Andes at 33.5°S: Implications for the mechanics of Andean mountain building. Tectonics, 37, 1347–1375. <u>https://doi.org/10.1002/2017TC004513</u>
- Riesner, M., Simoes, M., Carrizo, D., Lacassin, R., 2019. Early exhumation of the Frontal Cordillera (Southern Central Andes) and implications for Andean mountain-building at~ 33.5°
 S. Scientific reports, 9(1), 1-10.
- Riller, U., Petrinovic, I., Ramelow, J., Strecker, M. R., Oncken, O., 2001. Late Cenozoic tectonism, collapse caldera and plateau formation in the central Andes, Earth Planet. Sci. Lett. 188, 299–311, doi:10.1016/S0012-821X(01)00333-8.
- Riller, U., Cruden, A.R, Boutelier, D., Schrank, C., 2012. The causes of sinuous crustal-scale deformation patterns in hot orogens: Evidence from scaled analogue experiments and the southern Central Andes. J. Struct. Geol., 37, 65-74.
- Rimando, J., Schoenbohm, L. M., Costa, C. H., Owen, L. A., Cesta, J. M., Richard, A. D., Gardini, C. E., 2019. Late Quaternary Activity of the La Rinconada Fault Zone, San Juan, Argentina. Tectonics 38, 916–940. doi.org/10.1029/2018TC005321.
- Riquelme, R., Martinod, J., Hérail, G., Darrozes, J., Charrier, R., 2003. A geomorphological approach to determining the Neogene to Recent tectonic deformation in the Coastal Cordillera of northern Chile (Atacama). Tectonophys. 361, 255–275.
- Rivas, C., Ortiz, G., Alvarado, P., Podesta, M., Martin, A., 2019. Nodern cristal seismicity in the northern Andean Precordillera, Argentina. Tectonophys. 762: 144-158.
- Rodríguez, M.P., Pinto, L., Encinas, A., 2012. Cenozoic erosion in the Andean forearc in Central Chile (33°–34°S): Sediment provenance inferred by heaven in the all studies, in: Rasbury, E.T., Hemming, S.R., and Riggs, N.R. (Eds.), Mineralogical and Geochemical Approaches to Provenance. Geol. Soc. Am. Special Paper 487, 141–102, doi:10.1130/2012.2487(09).
- Rodríguez, M. P., Charrier, R., Brichau, S., Carretier, S., F. rías, M., de Parseval, P., Ketcham, R. A., 2018. Latitudinal and Longitudinal Patterns of Enumation in the Andes of North-Central Chile. Tectonics 37, 2863–2886. doi.org/10.1029/2018TC004997.
- Rodríguez Fernández, L.R., Heredia, N., Espina, K., Cegarra, M., 1999. Estratigrafía y estructura de los Andes Centrales Argentinos entre los 30° y 31°S de Latitud Sur. Acta Geol. Hisp. 32, 51-75.
- Roeder, D., 1988. Andean-age structure or Fastern Cordillera (Province of La Paz, Bolivia). Tectonics 7, 23–39.
- Rojas Vera, E., Giampaoli, P., Gob¹₂₀ E., Rocha, E., Olivieri, G., Figueroa, D., 2019. Structure and tectonic evolution of the Inter in Jean and Subandean zones of the central Andean foldand-thrust belt of Bolivia. Ar dea. Tectonics, doi.org/10.1016/B978-0-12-816009-1.00016-2.
- Royden, L., 1996. Coupling and chroupling of crust and mantle in convergent orogens: Implications for strain partitioning in the crust. J. Geophys. Res. 101, 17,679-17,705.
- Ruskin, B., Jordan, T., 2007. Ulimate change across continental sequence boundaries: paleopedology and litrofacies of Iglesia basin, northwestern Argentina. J. Sed. Res. 77, 661-679.
- Safipour, R., Carrapa, 3., DeCelles, P.G., Thomson, S.N., 2015. Exhumation of the Precordillera and northern Sierras Pampeanas and along-strike correlation of the Andean orogenic front, northwestern Argentina, in: DeCelles, P.G., Ducea, M.N., Carrapa, B., and Kapp, P.A. (Eds.), Geodynamics of a Cordilleran Orogenic System: The Central Andes of Argentina and Northern Chile. Geol. Soc. Am. Memoir 212, 181–199, doi:10.1130/2015.1212(10).
- Salazar, P., Kummerow, J., Wigger, P., Shapiro, S., Asch, G., 2017. State of stress and crustal fluid migration related to west-dipping structures in the slab-forearc system in the northern Chilean subduction zone. Geophys. J. Int. 208: 1403-1413. doi: 10.1093/gji/ggw463
- Salfity, J. A., Marquillas, R. A., 1994. Tectonic and sedimentary evolution of the Cretaceous-Eocene Salta Group Basin, Argentina, in: Salfity, J. (Ed.), Cretaceous Tectonics of the Andes, Vieweg, Brunswick, pp. 266 –315, Germany.
- Santibáñez, I., Cembrano, J., García-Pérez, T., Costa, C., Yáñez, G., Marquardt, C., Arancibia, G., González, G., 2019. Crustal faults in the Chilean Andes: geological constraints and seismic potential. Andean Geol. 46(1): 32-65. doi: 10.5027/andgeoV46n1-3067

- Sasso, A.M., 1997. Geological evolution and metallogenetic relationships of the Farallon Negro Volcanic Complex, NW Argentina. PhD Thesis, Queen University, 842 p., Kingston.
- Saylor, J.E., Horton, B.K., 2014. Nonuniform surface uplift of the Andean plateau revealed by deuterium isotopes in Miocene volcanic glass from southern Peru. Earth Planet. Sci. Lett. 387, 120–131. doi.org/10.1016/j.epsl.2013.11.015.
- Schellart, W.P., 2017. Andean mountain building and magmatic arc migration driven by subduction-induced whole mantle flow. Nature Communications 8:2010, DOI: 10.1038/s41467-017-01847-z
- Schellart, W. P., Freeman, J., Stegman, D. R., Moresi, L., May, D., 2007. Evolution and diversity of subduction zones controlled by slab width. Nature 446, 308–311.
- Scheuber, E., Giese, P., 1999. Architecture of the Central Andes: a compilation of geoscientific data along a transect at 21°S. J. South Am. Earth Sci. 12, 103–107.
- Scheuber, E., Mertmann, D., Ege, H., Silva-González, P., Heubec C., Reutter, K. J., Jacobshagen, V., 2006. Exhumation and basin development related to formation of the Central Andean plateau, 21°S, in: The Andes 10.1007/978-3 540- 18684-8 13.
- Schmeling H, Babeyko AY, Enns A, et al. (2008). A benchman comparison of spontaneous subduction models-Towards a free surface. Phys Earth Plane' Inter 171:198–223. https://doi.org/10.1016/j.pepi.2008.06.028
- Schmitz, M. A., 1994. balanced model of the Southern Cen ral Andes. Tectonics 13, 484-492.
- Schmitz, M., Kley, J., 1997. The geometry of the Central Andean backarc crust: Joint interpretation of cross-section balancing and scientic refraction data. J. South Am. Earth Sci. 10, 99-110.
- Schoenbohm, L.M., Strecker, M.R., 2009. Mon. al faulting along the southern margin of the Puna Plateau, northwest Argentina. Tector cs 7.8, TC5008, doi:10.1029/2008TC002341.
- Scholz, C. H., 1990. Mechanics of Faulting and Earthquakes. Cambridge University Press, Cambridge, 484 pp.
- Schott, B., Schmeling, H., 1998. Delamin.tion and detachment of a lithospheric root. Tectonophys. 296: 225-247. https://coi.org/10.1016/S0040-1951(98)00154-1
- Schurr, B., Asch, G., Rietbrock, A., Yind, R., Pardo, M., Heit, B., Monfret, T., 1999. Seismicity and average velocity bens ath the Argentine Puna. Geophys. Res. Lett. 26, 3015-3028.
- Schurr, B., Asch, G., Rietbicck, A., Trumbull, R., Haberland, C., 2003. Complex patterns of fluid and melt transport in the contral Andean subduction zone revealed by attenuation tomography. Earth Planet. Sci. Lett. 215, 105-119.
- Seeber, L., Armbruster, J., Quittmeyer, R., 1981. Seismicity and continental subduction in the Himalayan arc, in 2 agros, Hindu Kush, Himalaya, Geodynamic evolution, pp. 215-242, eds Gupta H.K. and Delany, F.M., American Geophysical Unions, Geodynamic Series 3, Washington DC.
- Seggiaro, R.E. et al., 1998. Estudio geológico integrado de la Quebrada de Humahuaca. Servicio Geológico Nacional, Argentina, pp 88.
- Seggiaro, R.E. et al., 2014. evolución tectónica Andina entre las Sierras de Hualfin, Capillitas y extremo sur de Aconquija, Provincia de Catamarca. Rev. la Asoc. Argent., 71(4), 500-512.
- Sempere, T., Herail, G., Oller, J., Bonhomme, M. G., 1990. Late Oligocene-early Miocene major tectonic crisis and related basins in Bolivia. Geology 18, 946 – 949.
- Sempere, T., Butler, R. F., Richards, D. R., Marshall, L. G., Sharp, W., Swisher Iii, C. C., 1997. Stratigraphy and chronology of Upper Cretaceous-lower Paleogene strata in Bolivia and northwest Argentina. Bull. Geol. Soc. Am. 109, 709–727. doi.org/10. 1130/0016-7606(1997)1092.3.CO;2.
- Sheffels, B.M., 1990. Lower bound on the amount of crustal shortening in the central Bolivian Andes. Geology 18, 812–815. doi.org/10.1130/0091-7613(1990)0182.3.CO;2.

- Siame, L.L., Bellier, O., Sébrier, M., Araujo, M., 2005. Deformation partitioning in flat subduction setting: case of the Andean foreland of western Argentina (28°S-33°S). Tectonics 24, doi.10.1029/2005TC001787.
- Silva-González, P., 2004. Der südliche Altiplano im Tertiär: Sedimentáre Entwicklung und tektonische Implikationen, Ph.D. thesis, Freie Univ., Berlin, Germany.
- Silvestro, J., Kraemer, P., Achilli, F., Brinkworth, W., 2005. Evolución de las cuencas sinorogénicas de la Cordillera Principal entre 35°-36° S, Malargüe. Rev. Asoc. Geol. Argentina 60(4), 627-643.
- Siks, B., Horton, B., 2011. Growth and fragmentation of the Andean foreland basin during eastward advance of fold-thrust deformation, Puna plateau and Eastern Cordillera, northern Argentina. Tectonics 30, TC6017, doi:10.1029/2011TC002944.
- Smalley, R., Isacks, B., 1990. Seismotectonics of thin- and thick-skinned deformation in the Andean foreland from local network data: Evidence for a seism orgenic lower crust. J. Geophys. Res. 95, 12,487-12,497.
- Smalley, R.F., et al., 1993, Basement seismicity beneath the An Jean Precordillera thinskinned thrust belt and implications for crustal and lithospheric behavior. Tectonics 12,63–76, Sobel, E.R., Strecker, M.R., 2003. Uplift, exhumation and precipitation: tectonic and climatic control of Late Cenozoic landscape evolution in the northern Sterras Pampeanas, Argentina. Basin Res. 15, 431–451.
- Sobolev, S., Babeyko, A., 2005. What drives orogeny in the Andes? Geology 33: 617–620; doi: 10.1130/G21557.1.
- Somoza, R., 1998. Updated Nazca (Farallon)-Sc '.n / merica relative motions during the last 40 Ma: Implications for mountain building in the Central Andean region. J. South Am. Earth Sci. 11, 211-215.
- Somoza, R., Singer, S., Coira, B., 1996. Pathomagnetism of upper Miocene ignimbrites at the Puna: An analysis of vertical-axis intrations in the Central Andes. J. Geophys. Res. 101 (B5), 11387±11400.
- Soto, R., Martinod, J., Riquelme, R., Hérail, G., Audin, L., 2005. Using geomorphological markers to discriminate Neogene tectonic activity in the Precordillera of North Chilean forearc (24-25°S). Tectonophys. 41, 41-55.
- Spagnotto, S., Triep, E., Giemelagi, L., Lupari, M., 2015. Triggered seismicity in the Andean arc region via static stress variation by the Mw=8.8, February 27, 2010, Maule Earthquake. J. South Am. Earth Sci. C3, 36-47.
- Springer, M. (1995, Interpretation of heat-flow density in the Central Andes. Tectonophysics, 306(3-4), 377-395.
- Springer, M., & Förster, A. (1998). Heat-flow density across the Central Andean subduction zone. Tectonophysics, 291(1-4), 123-139.
- Stalder, N.F., Herman, F., Fellin, G. M., Coutand, I., Aguilar, G., Reiners, P. W., Fox, M., 2020.
 The relationships between tectonics, climate and exhumation in the Central Andes (18–36°S): Evidence from low-temperature thermochronology. Earth Sci. Rev. doi.org/ 10.1016/j.earscirev.2020.103276.
- Stern, Ch., 2020. The role of subduction erosion in the generation of Andean and other convergent plate boundary arc magmas, the continental crust and mantle. Gondwana Research 88, 220-249.
- Strecker, M. R., Cerveny, P., Arthur, L., Malizia, D., 1989. Late Cenozoic tectonism and landscape development in the foreland of the Andes: Northern Sierras Pampeanas (26°– 28°S), Argentina. Tectonics 8, 517–534, doi:10.1029/TC008i003p00517.

Strecker, M. R., Alonso, R. N., Bookhagen, B., Carrapa, B., Hilley, G. E., Sobel, E. R., Trauth, M. H., 2007. Tectonics and climate of the southern central Andes. Annu. Rev. Earth Planet. Sci. 35, 747–787 doi.org/10.1146/annurev.earth.35.031306.140158.

Suppe, J., 1981. Mechanics of mountain building and metamorphism in Taiwan. Geol. Soc. China Mem., 4: 67-89.

Suriano, J., Limarino, C.O., Tedesco, A.M., Alonso, M.S., 2015. Sedimentation model of piggyback basins: Cenozoic examples of San Juan Precordillera, Argentina, in: Sepulveda et al. (eds), Geodynamic Processes in the Andes of Central Chile and Argentina. Geol. Soc., London, Spec. Pub. 399, http://dx.doi.org/10.1144/SP399.17.

- Suriano, J., Mardonez, D., Mahoney, J. B., Mescua, J. F., Giambiagi, L. B., Kimbrough, D.,
 Lossada, A., 2017. Uplift sequence of the Andes at 30°S: insights from sedimentology and
 U/Pb dating of synorogenic deposits J. South. Am. Earth Sci. 75, 11-34.
- Tao, W. C., O'Connell, R. J., 1992. Ablative subduction: A two-sid vd alternative to the conventional subduction model. J. Geophys. Res. 97: 8877-8904.
- Tassara, A. (2005). Interaction between the Nazca and South A neric an plates and formation of the Altiplano–Puna plateau: Review of a flexural analysis arcing the Andean margin (15–34 S). Tectonophysics, 399(1-4), 39-57.
- Tassara, A., Echaurren, A., 2012. Anatomy of the Andean Subduction zone: three-dimensional density model upgraded and compared against global-scale models. Geophys. J. Int. 189, 161-168, doi:10.1111/j.1365-246X.2012.05397x.
- Tassara, A., Swain, C., Hackney, R., Kirby, J., 2007 Elastic thickness structure of South America estimated using wavelets and satellice derived gravity data, Earth planet. Sci. Lett., 253, 17–36.
- Tomlinson, A.J., Mpodozis, C., Cornejo, P.C., Ramirez, C.F., 1993. Structural Geology of the Sierra Castillo–Agua Amarga Fault System, Precordillera of Chile, El Salvador-Potrerillos. Second ISAG, Oxford (K), pp. 255–262.
- Tomlinson, A., Mpodozis, C., Cornejo, P., Ramirez, C., Dumitru, T., 1994. El sistema de fallas Sierra Castillo – Agua Amarga: T ar spresió sinestral eocena en la Precordillera de Potrerillos, El Salvador, in: r rocerdings of the 7th Congreso Geológico Chileno, 1459-1463.
- Tomlinson, A., Blanco, N., Maksarv, V., Dilles, J., Grunder, A. L., Ladino, M., 2001. Geología de la Precordillera andina de Geología Blanca – Chuquicamata, Regiones I y II (20°30´-22°30´S). Servicio Naciona de Geología y Minería, Chile, Informe registrado IR-01-20, 2, 444 pp, 20 maps (1:50 J00', Santiago.
- Tomlinson, A. J., Elanca N., Dilles, J.H., 2010. Carta Calama, Región de Antofagasta, CartaGeológica de Chile, Serie Preliminar 8, Servicio Nacional de Geología y Minería, Santiago 1:50000.
- Tomlinson A.; Blanco, N.; Dilles J.; Maksaev V.; Ladino M. 2018. Carta Calama, región de Antofagasta. Servicio Nacional de Geología y Minería, Carta Geológica de Chile, Serie Geología Básica 199: 213 p. Santiago.
- Tunik, M., Folguera, A., Naipauer, M., Pimentel, M., Ramos, V. A., 2010. Early uplift and orogenic deformation in the Neuquén Basin: Constraints on the Andean uplift from U–Pb and Hf isotopic data of detrital zircons. Tectonophys. 489, 258–273.
- Turcotte, D. L., Schubert, G., 2014. Geodynamics 3rd ed. Cambridge University Press. doi.org/10.1017/CBO9780511843877.

Uba, C.E., Heubeck, C., Hulka, C., 2005. Facies analysis and basin architecture of theNeogene Subandean synorogenic wedge, southern Bolivia. Sediment. Geol. 180, 91–123.

Uba, C.E., Heubeck, C., Hulka, C., 2006. Evolution of the late Cenozoic Chaco foreland basin, Southern Bolivia. Basin Res. 18, 145-170, doi:10/1111/j.1365-2117.2006.00291.x.

- Uba, C.E., Kley, J., Strecker, M.R., Schmitt, A.K., 2009. Unsteady evolution of the Bolivian Subandean thrust belt: The role of enhanced erosion and clastic wedge progradation: Earth Planet. Sci. Lett. 281, 134–146, doi: 10.1016 /j.epsl.2009.02.010.
- Uyeda, S., Kanamori, H., 1979. Back-arc opening and the mode of subduction. J. Geophis. Res. 84, 1049-1061.
- Uyeda, S., & Watanabe, T. (1982). Terrestrial heat flow in western South America. Tectonophysics, 83(1-2), 63-70.
- Vanderhaeghe, O., Medvede, S., Fullsack, P., Beaumont, C., Jamieson, R., 2001. Evolution of orogenic wedges and continental plateaux: Insights from crustal thermal-mechanical models overlying subducting mantle lithosphere. *Geophys. J. Int.*, **153**, 27–51.
- Vargas, G. et al., 2014. Probing large intraplate earthquakes at the west flank of the Andes. Geology 42, 1083-1086.
- Vergara, M., Morata, D., Villarroel, R., Nyström, J., Aguirre, L., 1995 A./Ar ages, very low-grade metamorphism and geochemistry of the volcanic rocks from "Counto El Abanico", Santiago Andean Cordillera (33°30´S-70°30´-70°25´W)., in: proclectings of the 4° International Symposium on Andean Geodynamics, Göttingen, Gournal y, 785-788.
- Victor, P., Oncken, O., Glodny, J., 2004. Uplift of the western Altiplano plateau: evidence from the Precordillera between 20° and 21°S (northers Chile). Tectonics 23, doi 10.1029/2003TC001519.
- Villegas, A., Raquel, J., Zahradnik, J., N².cif, S., Spagnotto, S., Winocur, D., Flavia Leiva, M., 2016. Waveform inversion and focal n. 2 hanisms of two weak earthquakes in Cordillera Principal (Argentina) between 35 regrees and 35.5 degrees S. J. South Am. Earth Sci. 71, 359-369.
- Watts, A.B., Lamb, S.H., Fairhead, J.J. Dewey, J.F., 1995. Lithospheric flexure and bending of the Central Andes. Earth Plan. Scie. Let. 134, 9–21.
- Wdowinski, S., Bock, Y., 1991. The evolution of deformation and topography of high elevated plateaus, 2. Application to the central Andes. J. Geophys. Res. 99: 7121–7130.
- Wdowinski, S., O'Conne" R. 1, 1991. Deformation of the central Andes (15-27S)
- derived from a flow mr. or subduction zones. J. Geophys. Res. 96, 12245-12255.
- Wigger P.J. et al., 1954. Variation in the crustal structure of the southern central Andes deduced from seismic refraction investigations, in: Reutter, K.J., Scheuber, E., Wigger, P.J. (Eds.), Tectonics of the Couthern Central Andes. Springer-Verlag, Berlin, pp. 23–48.
- Willett, S., Beaumont, C., Fullsack, P., 1993. Mechanical Model for the Tectonics of Doubly Vergent Compressional Orogens. Geology 21, 371–374.
- Winocur, D. A., Litvak, V. D., Ramos, V. A., 2015. Magmatic and tectonic evolution of the Oligocene Valle del Cura Basin, Main Andes of Argentina and Chile: Evidence for generalized extension, in: Geodynamic processes in the Andes of central Chile and Argentina. Geol. Soc. Special Publ. 399, 109–130.
- Yamano, M., & Uyeda, S. (1990). Heat-flow studies in the Peru Trench subduction zone. In Proc. Ocean Drill. Program, Sci. Results (Vol. 112, pp. 653-661).
- Yáñez, G., Cembrano, J., 2004. Role of viscous plate coupling in the late Tertiary Andean tectonics. J. Geophys. Res. 109, B02407, doi:10.1029/2003JB002494.
- Yáñez, G., Perez-Estay, N., Araya-Vargas, J., Sanhueza, J., Figueroa, R., Maringue, J., Rojas, T., 2020. Shallow anatomy of the San Ramón Fault (Chile), constrained by geophysical

methods: Implications for its role in the Andean deformation. Tectonics 39, e2020TC006294. https://doi.org/10.1029/2020TC006294

- Yonkee, A., Weil, A., 2010. Reconstructing the kinematic evolution of curved mountain belts: linternal strain patterns in the Wyoming salient, Sevier thrust belt, USA. Geol. Soc. Am. Bull. 122, 24-49.
- Yuan, X. et al., 2000. Subduction and collision processes in the Central Andes constrained by converted seismic phases. Nature 408, 958-961.
- Yuan, X., Sobolev, S.V., Kind, R., 2002. Moho topography in the central Andes and its geodynamic implications. Earth Planet. Sci. Lett. 199, 389–402.
- Zapata, T. R., Allmendinger, R. W., 1996. Thrust-front zone of the Precordillera, Argentina: A thick-skinned triangle zone. Am. Assoc. Petroleum Geol. Bull. 80(3), 359–381.
- Zapata, S., Sobel, E. R., del Papa, C., Jelinek, A. R., Glodny, J., 2019. Using a paleosurface to constrain low-temperature thermochronological data: Tectonic volution of the Cuevas range, Central Andes. Tectonics 38 doi.org/10.1029/2019TC005887.
- Zapata, S., Sobel, E., del Papa, C., Glodny, J., 2020. Upper place controls on the formation of broken foreland basins in the Andean retro-arc between 25 and 28°S: from Cretaceous rifting to Paleogene and Miocene broken foreland basins. Geochem. Geophys. Geosyst. 21, https://doi.org/10.1029/2019GC008876.
- Zhou, R., Schoenbohm, L., Sobel, E., Davis, D., Glodny, J., 2017. New constraints on orogenic models of the southern Central Andean Plateau: Concroic basin evolution and bedrock exhumation. Geol. Soc. Am. Bull. 129, 152-172. Doi.org/10.1130/B31384.1