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Abstract—In this paper two mechanical sensorless strategies
to control the rotor speed in permanent magnet synchronous
motors (PMSMs) are introduced and compared. Both strategies
are based on the same full feedback linearization nonlinear
control strategy for the motor model formulated by using the
instantaneous complex power theory. However, this strategy is
transformed into mechanical sensorless in a different way. In a
first case, a nonlinear reduced order observer is designed for
estimating rotor position and speed, whereas in the other case a
full order observer is used to obtain the rotor position and speed
estimates. In a first approach, it is assumed that the load power
is a known function of the mechanical variables. In the second
approach, the load is assumed unknown and both observers are
extended to calculate a load power estimate. In this way, two
different extended observers result. The performance of both
mechanical sensorless strategies are compared via simulation
results.

Index Terms—PMSM, Speed Control, Instantaneous Complex
Power, Feedback Linearization, Nonlinear Observer

I. INTRODUCTION

The use of Permanent Magnet Synchronous Motors
(PMSMs) in electric drives is increasing in many industry
applications. Among others, this motor can be found in home
appliances, electric transportation and pump drivers [1], [2].
In order to obtain a high-performance electric drive, rotor
position must be known with high precision [3]. For this
reason, many times a position sensor is coupled to the motor
axis. However, it must be noted that this sensor increases the
cost and diminishes the reliability of the drive. For this reason,
many researchers have proposed to use different techniques for
designing mechanical sensorless controllers [4].

These model-based controllers are often designed by using a
phenomenological model representing the motor. To this end,
several modeling tools have been proposed. A state variables
nonlinear model represented by rotor position, rotor speed and
real stator currents is useful for controller design purposes. Via
a nonlinear change of variables, this model can be transformed
into an instantaneous power description [5]. Another technique
proposes to model the motor via a complex vector theory,
where stator currents and voltages are assumed to be complex
variables [6], [7].
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However, as mentioned above, many times it is useful to de-
sign control strategies when the measurements of mechanical
variables are not available. In such a case, the control strategies
are based on an algorithm which estimates the mechanical
variables (rotor position and speed) from the measurement of
electric variables. This approach has two main advantages:
the number of sensors is reduced and the system depends
only on the more reliable electrical sensors. Since 30 years
ago, several methods have been used for estimating rotor
position and speed. High-gain observers based on Taylor
linearization design, nonlinear high-gain observers [8] and
sliding mode observers [9] can be found in the literature. It
must be mentioned that full or reduced observers are used
[10]. To select a full or a reduced order observer for estimating
mechanical variables is an important step in PMSM sensorless
controllers.

This work focuses on different issues of designing sensor-
less controllers for PMSMs. First, a nonlinear control strategy
based on the instantaneous complex power formulation is
designed. Then, this strategy is transformed into mechanical
sensorless by including a nonlinear observer. The perfor-
mances obtained when using two different observer algorithms
are compared, first assuming the load is a known function
of the mechanical variables, and latter, with unknown load
power. An algorithm uses an extended nonlinear reduced
order observer and the other an extended nonlinear full order
observer. This comparison is used to draw some conclusions
on the advantages and disadvantages of each one.

II. COMPLEX SPACE VECTOR MODEL OF THE PMSM

A. Stationary Reference Frame Model

Using complex space vector formulation, the dynamic be-
havior of the PMSM is described by the following set of
equations:

L~̇iαβ = −R~iαβ − ~eαβ + ~vαβ , (1)

Jω̇ =
<{~e ′αβ~iαβ}

ω
− τL, (2)

where R is the stator resistance, L is the stator inductance and
J is the moment of inertia of the PMSM, ~vαβ = vα + jvβ
and ~iαβ = iα + jiβ are complex variables (denoted by
the over arrow) obtained using the power invariant Clarke



transform, representing the stator voltage and current of the
PMSM, respectively. The load torque is denoted by τL, and
~eαβ = eα + jeβ is the back Electro Motive Force (EMF).
Additionally, throughout the paper <{} and ={} are used to
denote real part and imaginary part of a complex quantity,
respectively, and ′ stands for complex conjugate of the variable
(complex conjugate transpose in case of a vector).

The back EMF is related to the rotor position θ and rotor
speed ω through:

~eαβ = jΦωejθ, (3)

where Φ is also a parameter of the PMSM, representing the
rotor flux magnitude. If the back EMF is known, then the rotor
position and speed can be obtained from (3) using:

ω = |~eαβ |/Φ, (4)
θ = −j ln(−j~eαβ/|~eαβ |). (5)

B. Complex Power formulation

Using Park transformation e−jθ on (1)-(2), the dynamic
model of the PMSM can be transformed to a rotating reference
frame, synchronous with the rotor position:

L~̇i = −(R+ jLω)~i− ~e+ ~v, (6)

Jω̇ =
<{~e ′~i }
ω

− τL, (7)

where ~i = e−jθ~iαβ , ~e = e−jθ~eαβ and ~v = e−jθ~vαβ . Now,
defining the complex power as

~s = ~e ′~i = p+ jq, (8)

differentiating (8) with respect to time and using (6)-(7), the
dynamics of the system in terms of complex power s results:

~̇s=

(
p−pL
Jω2

−R
L
−jω

)
~s+

~e ′~v−|~e |2

L
, (9)

Jω̇ =
p− pL
ω

, (10)

where pL = τLω is the load power.

III. PROPOSED CONTROLLER

A. Full Feedback Linearization

The control scheme proposed in this paper is based in
full feedback linearization. To perform the full feedback
linearization, a complex flat output is chosen, which prevents
the appearance of zero dynamics. In this case, this output is
the instantaneous complex energy of the system, defined as:

~ξ1 =
1

2
Jω2︸ ︷︷ ︸
ξ1r

+jξ1i, (11)

where the imaginary energy, ξ1i, has the following dynamics:

ξ̇1i = q. (12)

Since (9)-(10) is a second order complex variable system,
~ξ1 is a flat output if control action ~v appears only after

differentiating (11) with respect to time two times. Performing
the first time derivative, it results:

~̇ξ1 = Jωω̇ + jξ̇1i = p− pL︸ ︷︷ ︸
ξ2r

+j q︸︷︷︸
ξ2i

= s− pL = ~ξ2, (13)

where (10) and (12) were used. As it can be seen, ~v (the
control variable) is not present in this result. Differentiating
once more with respect to time, it results:

~̇ξ2 =

(
p−pL
Jω2

−R
L
−jω

)
~s+

~e ′~v−|~e |2

L
−ṗL=~r, (14)

where (9) was used, and the auxiliary complex control action
of the linearized system, ~r = rr+jri, was defined. As it can be
seen, ~v only appears after the second time derivative, therefore
the output is indeed flat. From (13)-(14), the resulting linear
system is:

~̇ξ1 = ~ξ2, (15)

~̇ξ2 = ~r, (16)

which has its real and imaginary parts decoupled. Therefore,
two independent control loops for this system are defined the
sections III-B and III-C.

Once control action ~r of the linearized system is computed,
from (14), control action ~v is computed through:

~v= L
~e

|~e |2

[
~r + ṗL−

(
p−pL
Jω2

−R
L
−jω

)
~s

]
+~e. (17)

The implementation of this linearization scheme requires
knowledge of the back EMF ~e, the rotor angular speed ω
and position θ (to perform the Park transform), and the load
power pL and its first time derivative. Instead of measuring
these variables, they will be estimated using observers. If the
load power is a known function of the mechanical variables,
only rotor position and speed need to be estimated, then the
observers defined in section IV can be used. If the load power
must also be estimated, then the observers of section V are
recommended. The main goal in this work is to compare the
observer based controllers when the load power is unknown.
However, the section IV is developed to obtain some useful
previous conclusions.

B. Kinetic Energy Control Loop

To control the kinetic energy, the following full state feed-
back controller is defined:

ξ̇1r = ξ2r, (18)

ξ̇2r = −k1(ξ1r − ξ∗1r)− k2(ξ2r − ξ∗2r)− k3ξ3r = rr, (19)

ξ̇3r = ξ1r − ξ∗1r, (20)

where k1-k3 ∈ R are the gains of the controller, and ξ∗1r
and ξ∗2r are the references. Additionally, ξ3r is the state of an
integrator, which is added to compensate steady state errors



due to model uncertainties or disturbances. The references are
set to:

ξ∗1r =
1

2
Jω∗2, (21)

ξ∗2r = 0, (22)

where ω∗ is the angular speed reference, and ξ∗2r is obtained
from (13), considering that in steady state p − pL = 0. The
gains of this linear system are chosen using pole placement to
obtain the desired dynamic response.

C. Reactive Power Control Loop

The control the reactive power, the following full state
feedback controller is defined:

ξ̇2i = −k4(q − q∗)− k5ξ3i = ri, (23)

ξ̇3i = q − q∗, (24)

where k4-k5 ∈ R are the gains of the controller and q∗ is
the reactive power reference. As in the energy control loop,
an integrator is also added to compensate steady state errors.
This is represented by state ξ3i. The gains of this linear system
are chosen using pole placement to obtain the desired dynamic
response.

IV. BACK EMF, ROTOR SPEED AND POSITION
ESTIMATION

In this section two observers, a reduced order observer and
a full order observer, are defined to estimate the back EMF,
and the rotor speed and position, assuming the load power is
a known function of the mechanical variables. They both have
advantages and disadvantages, and it is up to the designer to
use one or the other, depending on the available hardware.

A. Reduced Order Observer

The reduced order observer is the best option when the
measured signals do not have significant high frequency noise.
Features:
• It has one less state than the full order observer, and

therefore it can have faster convergence.
Drawbacks:
• It amplifies high frequency noise.
1) Proposed Observer: The dynamics of ~eαβ are obtained

deriving (3) with respect to time:

~̇eαβ =

(
jω+

<{~e ′αβ~iαβ}
Jω2

)
~eαβ︸ ︷︷ ︸

~a

+

(
−~eαβ
Jω2

)
︸ ︷︷ ︸

~b

pL. (25)

From (4), (5) and (25) the following observer is proposed:

˙̂
~eαβ = ~̂a+ ~̂b p̂L + g1~εαβ , (26)

ω̂ = |~̂eαβ |/Φ, (27)

θ̂ = −j ln(−j~̂eαβ/|~̂eαβ |), (28)

where ~εαβ = ~eαβ − ~̂eαβ ,

~̂a =

(
jω̂+

<{~̂e ′αβ~iαβ}
Jω̂2

)̂
~eαβ , (29)

~̂b =
−~̂eαβ
Jω̂2

, (30)

g1 ∈ R is a gain, and p̂L is the estimated load power, which is
obtained evaluating a known function of the mechanical vari-
ables using the estimated mechanical variables (for example,
p̂L = Bω̂2, with B a constant, or if the load torque τL is
constant and known then p̂L = τLω̂). Through Lyapunov it
can be found that convergence is guaranteed if g1 > 0 is large
enough. The demonstration is not included for space reasons,
but is similar to (45)-(46) in the next section.

2) Computation of the Back EMF Estimation Error ~εαβ:
The actual back EMF ~eαβ is not a measurable variable,
therefore, ~εαβ cannot be directly computed. Instead, from (1)
the estimated current is defined using measured variables:

L˙̂iαβ = −Riαβ − êαβ + vαβ . (31)

Now ~εαβ can be computed subtracting (1) and (31):

~εαβ = ~eαβ − ~̂eαβ = −L(~̇iαβ −
˙̂
~iαβ). (32)

To avoid computing differentiating ~iαβ with respect to time,
we first replace (31) in (32) and the resulting equation in (26).
Then, the following auxiliary variable is defined:

~̇η =
˙̂
~eαβ+g1L~̇iαβ=~̂a+~̂b p̂L−g1(−Riαβ−êαβ+vαβ). (33)

Notice that solving this differential equation does not require
knowledge of the time derivative of the current. Then, actual
estimated back EMF is computed from:

~̂eαβ = ~η − g1L~iαβ . (34)

B. Full Order Observer

1) Features and Drawbacks: The full order observer is the
best option when the measured signals are contaminated with
high frequency noise.
Features:
• It filters out high frequency noise that can be present in

the measured signals.
Drawbacks:
• It has one more state than the reduced order observer,

and the maximum convergence speed is slower than that
of the reduced order observer.

2) Proposed Observer: From (1) and (25), the following
observer is proposed:

L
˙̂
~iαβ = −R~̂iαβ − ~̂eαβ + ~vαβ + g1L~εαβ , (35)
˙̂
~eαβ = ~̂a+ ~̂bp̂L + g2~εαβ , (36)

where g1, g2 ∈ R are gains, and ~εαβ =~iαβ −~̂iαβ .



V. BACK EMF, ROTOR SPEED AND POSITION AND LOAD
POWER ESTIMATION

In this section two observers are defined to estimate the
back EMF, the rotor speed and position, and the load power:
a reduced order observer and a full order observer. They both
have advantages and disadvantages, and it is up to the designer
to use one or the other, depending on the available hardware.

A. Reduced Order Observer

1) Proposed Observer: In what follows, the model will be
extended. This extension includes a model for the unknown
load power. It will be assumed that the power is slow varying.
However, other assumptions can be used if needed and more
states for representing the load power in the extended model
can be added [11]. Under the above assumption, and from
(25), the system to be observed is modeled by:

~̇eαβ = ~a+~b pL, (37)
ṗL = 0. (38)

From (4), (5), (37) and (38) the following observer is proposed:

˙̂
~eαβ = ~̂a+ ~̂b p̂L + g1~εαβ , (39)

˙̂pL = −al, (40)

ω̂ = |~̂eαβ |/Φ, (41)

θ̂ = −j ln(−j~̂eαβ/|~̂eαβ |), (42)

where ~εαβ = ~eαβ − ~̂eαβ , ~̂a is defined in (29) and ~̂b in (30),
g1 ∈ R is a gain and al is an adaptation law to be defined.
From (37)-(40) the error dynamics can be written as follows:

~̇εαβ = 4~a+4~b pL + ~̂b εpL − g1~εαβ , (43)
ε̇pL = al, (44)

where εpL = pL− p̂L, 4~a = ~a−~̂a and 4~b = ~b−~̂b. To find the
adaptation law al, the following candidate Lyapunov function
is proposed:

V = ~ε ′αβ~εαβ +
1

2
g−12 ε2pL , (45)

which is positive definite, where g2 ∈ R is a positive gain.
The adaptation law must guarantee that V̇ < 0, therefore,
differentiating with respect to time it results:

V̇ = 2<{[4~a+4~b pL]~ε ′αβ}−2g1|~εαβ |2

+ (2<{~̂b ′~εαβ}+g−12 al)εpL . (46)

For a bound estimation error, making gain g1 large enough
guarantees that (46) is negative, as long as the term that
multiplies εpL is eliminated. To do so, the following adaptation

law is defined al = −2g2<{~̂b ′~εαβ}. Therefore, from (40), the
estimated load power results:

˙̂pL = 2g2<{~̂b ′~εαβ}. (47)

2) Computation of the Back EMF Estimation Error ~εαβ:
The actual back EMF ~eαβ is not a measurable variable,
therefore, ~εαβ must be computed using (32). However, because
of the nonlinearity of (47), the method used in section IV-A2
to avoid computing the time derivative of the current cannot be
applied here. Instead, a high gain estimator is used. Assuming
the current is sinusoidal, with frequency ω, its dynamics is
modeled by:

~̇iαβ = jω~iαβ . (48)

Using this model, the following high gain estimator is pro-
posed:

˙̂
~ihgαβ = jω̂~̂ihgαβ + γ(~iαβ −~̂ihgαβ), (49)

where γ ∈ R is a gain and ω̂ is defined in (41). Then,

using (31) in (32) and replacing
˙̂
~iαβ with (49), the back EMF

estimation error can be computed through:

~εαβ = L(γ − jω̂)~̂ihgαβ − (Lγ +R)iαβ − êαβ + vαβ . (50)

3) Summary: The reduced order observer is summarized
here

ω̂ = |~̂eαβ |/Φ, (51)

θ̂ = −j ln(−j~̂eαβ/|~̂eαβ |), (52)

~εαβ = L(γ − jω̂)~̂ihgαβ − (Lγ +R)iαβ − êαβ + vαβ , (53)
˙̂
~eαβ = ~̂a+ ~̂b p̂L + g1~εαβ , (54)

˙̂pL = 2g2<{~̂b ′~εαβ}, (55)
˙̂
~ihgαβ = jω̂~̂ihgαβ + γ(~iαβ −~̂ihgαβ), (56)

where ~̂a and ~̂b are defined in (29) and (30), respectively.

B. Full Order Observer

1) Proposed Observer: From (1) and (37), the following
observer is proposed:

L
˙̂
~iαβ = −R~̂iαβ − ~̂eαβ + ~vαβ + g1L~εαβ , (57)
˙̂
~eαβ = ~̂a+ ~̂bp̂L + g2~εαβ , (58)

˙̂pL = −al, (59)

where g1, g2 ∈ R are gains, ~εαβ = ~iαβ − ~̂iαβ and al is the
adaptation law to be found. Subtracting (57) from (1), (58)
from (37) and (59) from (38), the error dynamics results:

~̇εαβ = −R
L
~εαβ −

1

L
~εαβ − g1~εαβ , (60)

~̇εαβ = 4~a+4~b pL + ~̂b εpL − g2~εαβ , (61)
ε̇pL = al. (62)

To find the adaptation law al, the following candidate Lya-
punov function is proposed:

V = η′Pη +
1

2
g−13 ε2PL

, (63)



where g3 ∈ R is a gain, η = [~ε ′αβ ~ε
′
αβ ]′, and P is a positive

definite matrix:

P =

[
p1 −p2
−p2 p1

]
, (64)

where p1, p2 ∈ R, p1 > 0, p2 > 0 and p21−p22 > 0. With these
V is positive definite, and can also be written in the following
form:

V = p1(~ε ′αβ~εαβ+~ε ′αβ~εαβ)−2p2<{~ε ′αβ~εαβ}+
g−13

2
ε2pL . (65)

The adaptation law must guarantee that V̇ < 0, therefore,
differentiating with respect to time it results:

V̇=<{2(4~a ′+4~b ′pL)(p1~εαβ−p2~εαβ)−γ1~ε ′αβ~εαβ}−γ2|~εαβ |2

+
2p2
L
|~εαβ |2+(<{2p1~̂b ′~εαβ−2p2~̂b

′~εαβ}+g−13 al)εpL , (66)

where γ1 = 2p1(g2 + 1
L ) − 2p2(RL + g1) and γ2 = 2p1(g1 +

R
L ) − 2p2g2. For a bound estimation error, making gain γ2
large enough guarantees that (66) is negative, as long as the
term that multiplies εpL is eliminated. Since ~εαβ is unknown,
only part of this term can be eliminated, but this is enough for
convergence [12]. To do so, the following adaptation law is
defined al = 2p2g3<{~̂b ′~εαβ}, then, the estimated load power
results:

˙̂pL = −2g3<{~̂b ′~εαβ}, (67)

where p2 = 1 is set, since any positive value can be chosen.
2) Summary: The full order observer is summarized here

ω̂ = |~̂eαβ |/Φ, (68)

θ̂ = −j ln(−j~̂eαβ/|~̂eαβ |), (69)

L
˙̂
~iαβ = −R~̂iαβ − ~̂eαβ + ~vαβ + g1L~εαβ , (70)
˙̂
~eαβ = ~̂a+ ~̂bp̂L + g2~εαβ , (71)

˙̂pL = −2g3<{~̂b ′~εαβ}, (72)

where ~̂a and ~̂b are defined in (29) and (30), respectively.

VI. SIMULATION RESULTS

In this section the proposed controller is simulated using
both the reduced and full order observers. For space reasons,
only the observers of section V are simulated. The parameters
of the PMSM are L = 20.5 mH, R = 1.55Ω, J = 2.21 ·
10−3 Kgm2, Φ = 0.22 Nm/A. Its nominal speed and nominal
load are 1500 rpm and 7 Nm, respectively. The nominal phase
current is 30 Arms.

Both control loops are designed with a settling time of
100ms and a damping of 0.707, which results in the following
gains: k1 = 25.393 · 103, k2 = 322, k3 = 973.654 · 103,
k4 = 92 and k5 = 4233. The gains of both observers are
obtained linearizing the observer and applying linear pole
placement techniques. For the reduced order observer, the
settling time is set to 40ms, the damping to 0.707, and the high
gain estimator settling time to 200µs. With these parameters,

Fig. 1. Simulation with reduced order observer. a) ω∗, ω̂ and ω (perfect
measurement). b) pL vs p̂L (perfect measurement). c) ω∗, ω̂ and ω (with
measurement noise). d) pL vs p̂L (with measurement noise).

Fig. 2. Simulation with full order observer. a) ω∗, ω̂ and ω (perfect
measurement). b) pL vs p̂L (perfect measurement). c) ω∗, ω̂ and ω (with
measurement noise). d) pL vs p̂L (with measurement noise).



the reduced order observer gains result: g1 = 230, g2 = 1.335
and γ = 23 · 103. For the full order observer the settling time
is also set to 40ms and the damping to 0.707. With p0 = 5
the gains result: g1 = 729.4, g2 = −3253.5 and g3 = 15.73.

Figure 1 shows the simulation results for the controller
with the reduced order observer. Two cases are analyzed: with
perfect measurements (Figs. 1a-b) and with measurement noise
of ±0.3A (Figs. 1c-d). The simulation starts with the PMSM
at 10% nominal speed and no load condition. At t = 0.02 s
the speed reference is increased to nominal speed within 40
ms. As can be seen in Figs. 1a and 1c the speed converges
to the reference after 100 ms in both cases, and the noise has
no noticeable effect on the speed. At t = 0.25 s a nominal
load step is introduced. As can be seen in Figs. 1b and 1d,
the estimated load power converges to the actual load power
within 40 ms, as expected. However, in the simulation with
noise, there is significant high frequency noise present in the
load power estimation. In this case, however, this does not
affect the performance of the system.

The same simulations are repeated using the controller with
the full order observer. Again, two cases are analyzed: with
perfect measurements (Figs. 2a-b) and with measurement noise
of ±0.3A (Figs. 2c-d). The results are shown in Fig. 2. As can
be seen, performance is similar, but when the measurements
are contaminated with noise, the full order observer is less
sensitive to this noise, as shown in the cleaner speed estimation
in Fig. 2a and load power estimation in Fig. 2b.

VII. FUTURE WORKS

Recently, multiphase electric machines [13], [14] and their
use in industry applications are being studied. Among others,
AC drives in electric propulsion systems are being developed.
Multiphase motors can be used in electric and hybrid vehicles,
locomotive and ships. They are also included for implementing
the concept of a hybrid electric powered or more electric
aircraft as a part of the more-electric aircraft initiative.

The main reason for using multiphase motors is that they
can generate a magnetomotive force with lower harmonic
content than that generated by threephase motors.

In future works, the authors will study the application of the
proposed control strategies in AC drives containing multiphase
motors.

In addition, as it is well-known EMF based observers
perform in a good way at medium and high speed. For this
reason, our observers will be combined with a low speed
estimator for obtaining good estimates at the whole state space
[4].

VIII. CONCLUSIONS

In our work two mechanical sensorless strategies for
PMSMs have been compared. Both strategies are based on
full feedback linearization for the motor modeled by using
the instantaneous complex power theory. The strategy was
implemented by using estimates of the rotor position and
speed. Two cases were studied. In one of them a reduced order
observer was used for estimating rotor position and speed. In

the other one, a full order observer was implemented with the
same purpose.

By assuming parameters and load are well-known, compu-
tational burden is diminished when the reduced order observer
is used. In addition, its sensitivity to low frequency uncertainty
in the measurement is lower. However, this strategy is more
sensible to noise added in the measurement.

When the load was assumed to be unknown, it was neces-
sary to include a high-gain observer for estimating the currents
time derivatives, then the advantage of lower computational
burden of the reduced order observer algorithm was missed.
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