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Abstract

Adequate pollination is fundamental to optimize reproduction and yield of most flowering plants, 
including many staple food crops. Plants depending on insect pollination rely heavily on many wild 
species of solitary and social bees, and declines or absence of bees often hampers crop productivity, 
prompting supplementation of pollination services with managed bees. Though honeybees are the 
most widely deployed managed pollinators, many high-value crops are pollinated more efficiently by 
bumblebees (Bombus spp.), prompting domestication and commercial rearing of several species. This 
led to a blooming international trade that translocated species outside their native range, where they 
escaped management and invaded the ecosystems around their deployment sites. Here, we briefly 
review the history of bumblebee invasions and their main impacts on invaded ecosystems, and close 
by discussing alternatives to the use of commercially reared bumblebees to enhance crop pollination. 
As evidence of widespread negative effects on local ecosystems of bumblebee invasions builds up, 
bumblebee trade adds to the list of examples of “biological” strategies devised to solve agricultural 
problems that ended up being far from the “green,” eco-friendly solutions they were expected to be.
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Review methodology: To write this review, we drafted the main sections based on the different aspects of bumblebee trade and 
translocation, loosely using [1] as a starting point that needed updating. Then, each author was assigned a section/topic, using Google 
Scholar as a search engine with keywords related to the topic to complement the list of literature already known to us, and incorporating 
relevant articles. We also checked the reference lists of all consulted articles to look for relevant works not revealed by our search strategy.

Introduction

“…(The) history of evolution is that life escapes all 
barriers.

Life breaks free.
Life expands to new territories.

Painfully, perhaps even dangerously.”
Michael Crichton, Jurassic Park [2]

Insufficient or inadequate pollination services translate 
into lower seed set and poorer fruit yields. Although this 
fact has been known since humans started translocating 

crop species beyond their native ranges or growing crops 
at densities or conditions with which their natural pollinators 
could not cope, commercial pollinator supplementation is 
a relatively new agricultural strategy. By far, the most 
common managed pollinator is the European honeybee 
Apis mellifera, which has been moved all over the world 
from its native African and Eurasian range, becoming 
naturalized (and sometimes invasive, see below) in all areas 
it was introduced to [3, 4]; however, honeybees do not 
work well in enclosed spaces (like greenhouses) and are 
less efficient pollinating specialized flowers with deeper 
corollas or requiring buzz pollination. This prompted 
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attempts to domesticate bumblebees (genus Bombus); it 
took over 60 years to achieve this goal, but in 1987, 
commercial rearing began, and since then, production and 
sale of millions of colonies of several species have been the 
basis for a blooming business [5].

Marketed as a “biological” solution to an agricultural 
need (i.e., an ecosystem-friendly, “green” alternative to 
technological solutions), farmers across the world embraced 
the use of commercial bumblebee colonies and their 
breeding and trade became a profitable market [6]. Even 
though the risks of translocating species have always been 
well known, not all species of Bombus are equally easy or 
profitable to domesticate for commercial breeding; this 
resulted in both pressures from farmers of regions lacking 
commercial rearing of native species to import colonies of 
foreign species and an eagerness from companies producing 
them to sell them [5]. Despite some early assertions that 
commercial colonies were unlikely to genetically pollute 
their wild conspecifics or become invasive (based on 
commercial colonies being “out of sync” with natural 
populations, outside their climatic niches or prevented 
from releasing reproductive individuals through devices 
like queen excluders), as Jurassic Park’s Dr. Ian Malcolm 
wisely said, “life finds a way”: commercial bumblebees quickly 
escaped, established feral populations, and became invasive 
(defined as explosively expanding in abundance and 
geographic range and negatively interfering with ecosystems) 
almost everywhere they were deployed, leading to 
disruption of natural habitats and driving some native bee 
species near extinction [1, 3, 7]. In this article, we review 
evidence for the impacts on native ecosystems of 
commercial bumblebee deployment, escape, establishment, 
and invasion. We discuss impacts associated with competition 
for resources, pathogen co-introduction, genetic introgression 
and hybridization, and changes in pollination networks by 
the three species with best documented invasions (Bombus 
impatiens, Bombus ruderatus, and Bombus terrestris). We then 
briefly discuss the main drivers of invasion and finalize by 
discussing the ecological cost/benefit of supplementing 
pollination services with commercial bumblebee colonies 
and the main alternatives to their use.

Invasive bumblebee species and invasion events

Several of the approximately 250 described species of 
Bombus bumblebees [8] have been translocated through 
history, but only three have shown enough range expansion 
outside of their native distribution to be considered 
invasive [1]: the North American Bombus impatiens and the 
European Bombus ruderatus and Bombus terrestris. While B. 
ruderatus was translocated only through wild-caught 
fertilized queens released to form feral colonies, most 
invasion events for B. impatiens and B. terrestris were driven 
by trading of commercially reared queens and colonies.

Bombus (Pyrobombus) impatiens is a species native to 
eastern North America, where it is the most frequently 

found bumblebee. After commercial breeding of captive 
B. terrestris started in Europe in the late 1980s, both Canada 
and the US banned its import, prompting the development 
of the native B. impatiens instead [1]. Commercial production 
of B. impatiens from wild queens started in eastern Canada 
in 1990; later, queens of B. impatiens were translocated to 
Europe between 1992 and 1994 to develop this species for 
commercial rearing in the same facilities used to develop 
B. terrestris, and the resulting colonies were brought back 
to the US [9]. During the 1990’s, deployment of commercial 
colonies of this species was restricted to areas within its 
native distribution; in western North America, Bombus 
(Bombus) occidentalis, a species native to that region, had 
been developed instead. However, commercial colonies of 
this species crashed in 1999, likely due to Nosema bombi 
infections; in response, importation of B. impatiens colonies 
was permitted to western Canada first and soon to western 
US states [10] (Fig. 1A). Presumptively, feral individuals of B. 
impatiens were found in British Columbia in 2003 [12] and 
have since then been expanding in the Pacific Northwest 
[10]. Starting in the mid-90s, commercial colonies have also 
been imported to Mexico in large numbers for exclusive 
greenhouse use [5,  13]; escaped individuals have been 
observed from Baja California to Querétaro [11] (Fig. 1A). 
Habitat suitability modeling for the species suggests it has a 
low chance of establishing feral populations in northern 
México (including Baja California) [10]; however, some 
invasive species have been known to expand their ecological 
niches upon arrival to new habitats [14–16].

Bombus (Megabombus) ruderatus is a species native to 
Western and Central Europe, and is declining in parts of its 
native range, but abundant where it was introduced [1, 17]. 
Although B. ruderatus has never been commercially reared, 
it was translocated from its European range to two 
separate continents in the Southern Hemisphere (Fig. 1B) 
to enhance the reproduction of another introduced 
European species, the red clover Trifolium repens: first to 
New Zealand over 130 years ago and more recently to 
southern South America. In both cases, invasion required 
just a few introductory events [5]. In New Zealand, UK-
caught B. ruderatus queens were introduced in 1885 and 
1906, along with at least six other bumblebee species 
[18,  19]. By 1960, B. ruderatus had already spread over 
large areas of the Southern Island—concurrently with 
B.  terrestris and B. hortorum [20]—and by 1995, it had 
become, along with B. terrestris, ubiquitous throughout 
New Zealand [21]. In South America, about 300 B. ruderatus 
queens brought from New Zealand were released in 
December 1982 and November 1983 in two regions of 
south-central Chile, representing the first introduction of 
European bumblebees into South America [22]. Bombus 
ruderatus rapidly spread and invaded southward at both 
sides of the Andes. Although in some areas of New Zealand 
and Argentina B. ruderatus seems to have declined 
compared to the initial invasion stage (especially after 
B.  terrestris introduction, see below), this species is still 
abundant in its non-native ranges [23, 24].



Josefina Lohrmann et al. 3

http://www.cabi.org/cabireviews

Bombus (Bombus) terrestris is a species native to 
temperate Eurasia [25] that is a matter of concern 
worldwide due to its invasiveness and impacts [26] 
(Fig. 1C). Besides its rearing within its native range, it has 
been exported to Israel, New Zealand, Tasmania, China, 
South Korea, Japan, México and Chile [27]. In Europe, 
commercial rearing of B. terrestris began in the late 80’s for 
pollination of many crops (particularly tomato), replacing 
manual pollination and faring even better than honeybee 
pollination [28]. The species comprises several subspecies 
with distinct distribution across the continent, and 
commercial rearing is somewhat customized to different 

regions [5]: while in continental Europe mostly B. terrestris 
terrestris, B. t. sassaricus and B. t. dalmatinus are used for 
pollination efforts, only the local subspecies B. terrestris 
audax in the United Kingdom and B. terrestris canariensis in 
the Canary Islands are allowed for outdoor pollination. 
Despite these practices, among European countries, only 
Norway, Turkey, and the Canary Islands (Spain) have 
actually imposed restrictions on the import of exotic 
bumblebees [5]. B. terrestris has also shown invasive 
behavior in Israel, but whether this resulted from early 
introduction of commercial colonies [27] or range 
expansion is unclear, since this region is at the margins of 

Figure 1. Global distribution of the three main invasive bumblebee species. Occurrences of each species were downloaded 
from GBIF [11], projected on a global grid of approximately 520-km radius hexagonal cells, and each cell was color-coded 
according to the year of the earliest reported occurrence within the cell; cells within invaded ranges have red outlines. 
Red arrows indicate the approximate origin and date of the initial translocation event (the “?” indicates a non-confirmed 
translocation of Bombus terrestris to Tasmania from New Zealand). Only cells with more than five records were retained; 
some reports of B. terrestris in Canada were removed since they actually refer to Bombus terricola records. (A) Bombus 
impatiens. (B) Bombus ruderatus. (C) Bombus terrestris.
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the natural distribution of the species [29]: although a local 
subspecies was present as early as 1930 at northern 
Galilee, its distribution has been expanding south since 
then, probably fueled by the expansion of irrigated land 
[30]. Agricultural use of B. terrestris dalmatinus started in 
the country in 1991 [5], and 10 years later it was the 
predominant species in Mt. Carmel, where it was previously 
absent [30]. Importing of B. terrestris to the country is 
presently prohibited, and commercial rearing is based on 
local populations of the subspecies B. t. dalmatinus [5].

B. terrestris was imported to New Zealand in 1881 for 
pollination of red clover, and five years later, feral 
populations could already be found in the wild [5,  31]. 
Since then, it became naturalized, rapidly expanding its 
range at maximum rates of approximately 90 km/yr [18] 
and replacing previously introduced Bombus species as the 
main pollinating bumblebees. It is currently reared 
commercially for tomato pollination. After being introduced 
in 1990 likely in Hobart, Tasmania, B. terrestris became feral 
and expanded its range at a rate of up to 25 km/yr [32]. 
Import of B. terrestris is banned in Australia and alternative 
native buzz-pollinating bees are being explored [26]. In 
Japan, B. terrestris was introduced in 1992 for greenhouse 
crop pollination with almost immediate ecological impacts 
[33–37]. Therefore, after the Japanese government enacted 
its Invasive Alien Species Act in 2004 [38], B. terrestris was 
categorized as an invasive species and its introduction was 
banned in the country nearly 20 years later [39]. In North 
America, B. terrestris import has been prohibited in the 
USA and Canada, but was briefly allowed into Jalisco, 
Mexico, in 1995 and 1996; detection of the pathogen 
Nosema bombi in a batch of colonies intended for shipment 
to that locality led to the destruction of the batch and 
removal of import permits, stopping further introductions 
of this European species and prompting importation of 
Bombus impatiens (see above) instead [40]. Feral colonies 
of B. terrestris have not been reported in Mexico to date. In 
South America, import of colonies of B. terrestris from 
Belgium and Israel began in central Chile in 1997; by 2006, 
they had been already detected across the Andes on the 
Argentinian side, where its range continues to expand 
South and East [7]. Although in neighboring countries 
import of B. terrestris is forbidden, it remains legal in Chile 
in spite of efforts to impose a ban [41]; consequently, 
thousands of queens are imported yearly to this day.

Impacts of invasive bumblebees due to 
competition with native bees

When resources are limited, competition between species 
sharing these resources is likely. Negative effects of 
introducing exotic bees on native bee fauna can be mediated 
by competition for floral resources and competition for 
nesting sites [1, 3].

The main approach to assess potential competition for 
floral resources is the analysis of the foraging habits of 

each species to determine the extent of overlap in flower 
visitation. In Patagonia, both Bombus ruderatus and Bombus 
terrestris show a significant overlap with the native 
bumblebee Bombus dahlbomii in visited plant species: 17 
out of 20 plant species for B. ruderatus [42] and 15 out of 
20 plant species for B. terrestris [24]. In Japan, Inoue and 
Yokoyama [37] found significant foraging overlap between 
B. terrestris with Bombus hypocrita sapporoensis and Bombus 
pseudobaicalensis. Besides overlap, foraging efficiency and 
mechanical interference also contribute to competition 
for floral resources: a study in the UK found that imported 
B. terrestris dalmatinus can collect more nectar per hour 
and achieve higher reproductive success than the native 
subspecies B. terrestris audax [43], and Hingston and 
McQuillan [44] found in Tasmania that when B. terrestris 
foraged concurrently with native bees, these native bees 
spent less time at each flower. Demonstrating niche 
overlap is necessary but not sufficient to prove competition 
[1]; even in extreme cases, like the precipitous decline of 
the native species B. dahlbomii concomitant to the arrival 
of introduced B. terrestris to Patagonia [24], the role of 
interspecific competition for floral resources remains a 
hypothesis.

Competition for nesting sites with native bees is even 
harder to demonstrate, since Bombus nests are notoriously 
hard to locate [3]; thus, less evidence for it is currently 
available. Studies in Japan—where native bumblebees have 
declined coincidently with B. terrestris invasion—found 
overlap in nest site preferences between B. terrestris and 
Japan’s native bumblebee species [34,  36]. Evidence of 
more direct competition for sites came from laboratory 
experiments that found that queens of B. terrestris 
succeeded in usurping the nests of native bumblebees 
within artificial nest boxes [45], and reports of dead 
queens of native bumblebee species found in and around B. 
terrestris nests in the field in Japan [37]. Differences in 
phenology can also impose an asymmetry to competition: 
Bombus terrestris not only benefits from an earlier 
emergence from hibernation in comparison with its native 
competition [34], but is also more flexible regarding 
nesting selection, thriving on artificial nests, rodent cavities, 
and even anthropic debris [34, 46] .

Impacts of invasive bumblebees due to pathogen 
co-introduction

There is strong evidence that introduced bumblebees 
bring with them a significant array of pathogenic parasites 
with large potential to spill over to native bee species 
[1,  47]. On the one hand, introduced bumblebees can 
harbor pathogenic species or strains that are novel to 
native species populations and for which they lack adequate 
immune defenses; on the other hand, the high demographic 
densities implied by commercial scale rearing often 
promote both high levels of parasite infection and 
promotes selection of highly parasite-tolerant genotypes 
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[48,  49]. Native populations can be exposed to novel 
pathogens as a result of contact with introduced exotic 
species [13, 50–52], or by contact with conspecific colonies 
that have been translocated to rearing facilities outside 
their native range, infected there by pathogens, and taken 
back to their native range [5, 9, 49, 53]. The susceptibility 
to decline is phylogenetically structured within the Bombus 
genus, with some clades more prone to decline than 
others, with non-declining species harboring internal 
parasites with rather small fitness costs, probably because 
highly lethal parasites act as strong ecological filters [54]. 
The impact of each pathogen on different species is still 
under investigation, but it is clear that pathogens can have 
synergistic impacts on bumblebee health [6].

Pathogens have been shown to regulate, to a large 
extent, the fate of bumblebee colonies [55]. To understand 
their impact on colony development, it is important to 
understand their roles, their routes of infection, how 
infection affects each individual bee, and which stages in 
the colony cycle are most affected by the pathogen. Most 
species of Bombus native to cold and temperate regions 
are univoltine (i.e., produce a single colony cycle per 
season), although recent observations suggest that climate 
change-driven warmer and longer summers might be 
resulting in bivoltine populations [56, 57]. The colony cycle 
begins as fertilized queens that have been overwintering 
emerge, feed, and start looking for suitable nesting sites to 
found a new colony. Once a site is found, the queen lays 
the eggs for the first workers and looks after them until 
they emerge from the pupal case. Until this point, the 
queen is the only foraging member of the new colony, but 
after the first workers emerge, they take over foraging 
first and then start helping with brooding the next batch 
of eggs and larvae. As the season proceeds, the number of 
workers increases, until the colony begins to generate 
reproductive individuals: gynes (future queens) and males, 
which will leave the nest to mate. Past this point, the 
colony enters into a senescent phase, in which the 
dominance of the queen over the workers debilitates as 
the founder queen ages and eventually dies, and the colony 
degenerates quickly as parasites and commensals take 
over the nest [1].

Emergence from hibernation and nest initiation is 
probably the most critical stage of the bumblebee life cycle: 
finding a suitable place for colony foundation, including 
wax production and egg laying, finding flowers to feed, and 
gathering pollen to supply brood [1, 25]. Several pathogens 
strongly impact queens at this stage. The nematode 
Sphaerularia bombi induces complex changes in bumblebee’s 
gene expression and behavior, described as mixed and 
disorientated, with characteristic flight behavior and sound 
production [58, 59]. Infected new emerging queens search 
for overwintering sites instead of seeking for a suitable 
place for nesting, after which the nematode reproduces, 
killing the host and leaving infective progeny waiting for the 
next generation of new fertilized queens that are looking 
for hibernation sites [58]. The apicomplexan Apicystis bombi 

and the microsporidian Nosema bombi also can preclude 
infected queens from founding a colony [60]. The effects of 
infection by the trypanosomatid Crithidia bombi on 
hibernation are less clear: studies showed that hibernating 
infected queens lost more body mass and were less likely 
to initiate a colony than control ones, but there was no 
difference in survival of each group; survival varies strongly 
among families, and evidence of reduction in hibernation 
success is only indirect [61–63].

After finding a nesting site, founder queens lay the first 
batch of eggs and brood them. Nosema bombi can travel 
through ovaries to the offspring and cause their death; 
healthy B. terrestris colonies can also be infected from 
outside sources, with younger bees showing higher 
susceptibility to infection [60, 64, 65]. Crithidia bombi has 
lethal and sublethal effects on different Bombus species. 
They are not vertically transmitted, but acquired from 
spore-contaminated flowers by foragers, which can pass 
spores to larvae and in turn infect brooding workers. The 
impact of this parasite is very context-dependent, 
particularly with diet, and includes behavioral and cognitive 
impairments (e.g., reduced ability to learn the color of 
rewarding flowers) [62, 66, 67]. Single infections with the 
neogregarine Apicystis bombi cause moderate mortality 
(<20% of queens), but reduce fat reserves, which might 
hamper overwintering [68]. Viruses also affect colony 
startup: infection with Kashmir bee virus (KBV) and Israeli 
acute paralysis virus (IAPV) causes slower offspring 
production and/or delayed colony startup [69]. In contrast 
to the previous pathogens, viral infections by KBV and 
IAPV seem to be sourced from honeybee colonies, with 
little evidence for secondary propagation within the 
bumblebee community [70, 71].

A final point for impact is at the reproductive stage of 
the colony; most pathogens affect reproductive output 
indirectly, by causing the colony to produce lower-quality 
reproductive individuals or fewer of them. Nosema bombi 
lowers colony fitness mainly through lower male life span 
and fertility [55, 72]. Colonies infected with Crithidia bombi 
produced fewer males and thus had lower fitness than 
healthy colonies [62, 63]. Viral infections by KBV and IAPV 
also reduce the production of males [69].

Impacts of invasive bumblebees due to 
introgression and hybridization

Bumblebee males are prone to rather indiscriminate 
mating behaviors and in laboratory settings will readily 
mate females of other subspecies or even distantly related 
species [3]; although natural settings might alleviate these 
tendencies, there are numerous anecdotal reports of 
interspecific mating attempts in the wild. Thus, bumblebee 
trade and translocation that create new areas of contact 
between geographically distant and genetically different 
populations imply a risk of hybridization and genetic 
introgression.
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Even though nine Bombus terrestris subspecies, differing 
in morphology, genetics, behavior, resistance to pathogens, 
and/or phenology, have been described throughout Europe, 
commercial lines traded within and outside the continent 
are mainly derived from two: B. terrestris terrestris and 
B. terrestris dalmatinus [5, 73–75]. This reduced representation 
promotes genetic homogenization and introgression of 
non-local (and probably non-adaptive) alleles into endemic 
populations [76]. Evidence of interbreeding between the 
native B. terrestris lusitanicus and the commercial B. terrestris 
strains has been reported throughout the entire Iberian 
Peninsula [77–79]. In Spain, only 19% of wild-caught 
bumblebees were identified as genetically pure individuals, 
while more than 45% showed signs of interbreeding with 
commercial bumblebees; introgressing alleles were found 
at distances greater than 60 km from managed colonies 
[79]. In Poland, commercial bumblebees frequently escape 
and mate with wild B. terrestris populations [80]. In contrast, 
in England no signs of introgression from commercial 
B.  terrestris lusitanicus into native B. terrestris audax were 
found [81]. Interestingly, population genetic studies on 
eastern North American Bombus impatiens (for which no 
subspecies are described) found no widespread introgression 
from commercial to wild individuals [82].

While the consequences of genetic introgression within 
species are difficult to measure and predict, the impact of 
hybridization among species is more evident. Both in the 
field and in the laboratory, reproductive individuals from 
commercial Bombus terrestris and the native Japanese and 
Korean species Bombus ignitus and Bombus hypocrita 
(hypocrita and sapporoensis subspecies) mate readily 
[35, 83, 84]. About 20% of B. h. hypocrita and 30% of B. h. 
sapporoensis wild queens had sperm from B. terrestris males 
in their spermathecas [84], and 70% of the B. ignitus queens 
copulated with B. terrestris males in laboratory conditions 
[35]. Viability of diploid (worker) hybrid eggs between 
native bumblebee queens and B. terrestris males after 
experimental mating gave variable results, and hybrid 
genetic background of the workers was not confirmed 
for apparently successful crosses [35, 83, 85, 86]. However, 
reduced fecundity due to the high frequency of nonviable 
diploid hybrid eggs could be a significant threat to these 
native bumblebee species [35,  84,  87]. Although 
bumblebees are generally monandrous (queens mate 
once in their life) [88–90], B. terrestris males in some 
regions of Japan outnumber native males by a factor of 
more than 50 to 1 [36] and might have evolved a higher 
mating frequency [87]. Thus, the mating opportunities of 
local bumblebees with their conspecifics are substantially 
diminished. Interestingly, recent studies found that B. h. 
sapporoensis and B. terrestris queens were more likely to 
show polyandry in regions of Japan where the latter are 
more abundant (unpublished data in [35]). Polyandry in 
both bumblebee species (which increases the probability 
of mating with their conspecifics) could thus be an 
adaptive response to among-species reproductive 
interference [35, 87].

Impacts of invasive bumblebees due to changes in 
pollination networks

Plant-pollinator interactions established during or after a 
bee invasion can range from beneficial to detrimental to 
native plant communities and even for cultivated plants 
[91]. For example, although the native Patagonian 
bumblebee Bombus dahlbomii is the most efficient pollinator 
of Alstroemeria aurea in terms of pollen quantity and quality 
deposited per visit, the high-visit frequency of invasive 
Bombus ruderatus compensates for this lack and outperforms 
B. dahlbomii when cumulative visits per flower are 
considered [92, 93]. Similarly, after the drastic decline of 
B. dahlbomii, invasive B. terrestris and B. ruderatus became 
the main pollinators of two Andean orchids [94]. In an 
experimental setup, when seven Japanese native plant 
species were exposed only to B. terrestris pollination, five 
species whose flowers the invasive bumblebees could only 
access through nectar robbing showed decreased fruit set 
or fruit quality or both, but when the same plants were 
exposed to a mix of B. terrestris and native bumblebees, 
pollination success varied unpredictably [95–97]. This 
difference in pollination success suggests that native plants 
are relatively specialized to native bumblebees, and 
therefore, invasive bumblebees could be poor substitutes 
for local ones, and that even at medium invasion densities, 
the fertility of native plants is compromised. Invasive 
bumblebees also show patterns of pollen transport 
different to those of native pollinators, potentially altering 
the genetic structure of plant populations—as it was 
reported in pollination networks invaded by honeybees 
[98–100]. For raspberry crops in northwestern Patagonia, 
disproportionate abundance of invasive B. terrestris relative 
to flowers altered the historical cost-benefit balance of 
pollination interactions and drove this mutualism toward 
antagonism by decreasing fruit yields [101, 102]. Overall, 
current data show that impacts of invasive pollinators on 
plants are predominantly negative for native species, mixed 
for crops, and positive for invasive species [91].

Drivers and facilitators of bumblebee invasions

While most arthropod biological invasions are usually 
related to undesirable species, like pests or disease vectors, 
that are accidentally translocated out of their home range, 
there are no known reports of unintentional bumblebee 
translocations across continents. Instead, the main driver 
of Bombus invasions has been the provision of pollination 
services—whether needed or unneeded—to augment 
yield of plant species of economic value, like crops. Climate 
change might also be driving invasions within continents 
through ecological niche range shifts of native species, and 
facilitating establishment and range expansion of 
intentionally translocated species. Introduction of species 
happen most often as a single translocation event in which 
only a few members of a given species are brought into a 
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novel environment. Feral populations resulting from such 
events will inevitably have a reduced genetic pool and will 
be particularly vulnerable to stochastic events [103, 104]. 
Thus, most introduction events fail to establish naturalized 
populations, and the relatively few that achieve critical 
numbers can take decades to become invasive. Despite 
this difficulty, even a single introduction event can result in 
successful invasion, as shown by the point release of 
fertilized queens that primed the invasion of Patagonia by 
Bombus ruderatus [22]. However, in most recent pollinator 
invasions, driven by commercial provision of pollination 
services, the foreign species is introduced in great numbers 
over a prolonged period of time. Each year, hundreds of 
thousands of bumblebee hives are brought into new 
environments to provide pollination services for crops 
[5,  7]. Because of this, alien bumblebees are mostly safe 
from stochastic forces, harbor more genetic diversity, and 
are also actively catered by human care [105, 106]. Such 
constant subsidies ensure that if a species has any invasive 
potential at all, then it will eventually become established. 
Even without invasive potential, introduced pollinators can 
impact native ecosystems if sustained through human care. 
For example, honeybees can outcompete local pollinators 
within environments in which they would not thrive on its 
own [107]. As long as the pollinator is domestically bred, it 
might not matter if a natural ecosystem acts as a population 
sink: the foreign species could exploit resources, displace 
local species, and spread diseases, as an invasive species 
would.

Climate change is a driving force of many ecological 
invasions since climate is one of the main factors defining 
species distribution [108, 109]. As the thermal landscape of 
the world is altered, species can venture into previously 
inaccessible ecosystems where they might become invasive. 
Climate change can also displace species from their original 
habitats, liberating niches that foreign species can exploit 
and, even when not displaced, species can experience a 
loss of fitness as a result of suboptimal climatic conditions, 
which can allow low-fitness foreign species to outcompete 
the native ones, leading to invasion events. The Brazilian 
bumblebee Bombus bellicosus, for example, is slowly being 
displaced toward colder latitudes to the southernmost 
regions of Brazil and further into Argentina as a 
consequence of heat stress suffered in its historical range 
[110]; this southern shift could potentially make it invasive 
within the novel range, while facilitating invasions from 
other species after abandoning parts of its historical range. 
Other examples of potential invasion driven by climate 
change are the spread of Bombus terrestris and Bombus 
lapidarius above the Arctic Circle [111], the expansion of 
B. terrestris over northern Israel [30], or the arrival to the 
British islands of Bombus hypnorum from mainland Europe 
[112,  113]. Climate change can also worsen ongoing 
invasion events, by introducing additional stress on native 
species and enabling invaders to advance further and faster.

Since organisms are not passive subjects to their 
environment, but instead regulate their development and 

behavior in response to climate change and other external 
challenges [114], it is fundamental to incorporate 
perspectives that take into account the differential ability 
of bumblebees to adapt and respond through both 
phenotypic plasticity and adaptive evolution [115]. This can 
result in complex interactions with other drivers, like 
changes in land use: in North America, average bumblebee 
worker size, measured from museum specimens of four 
Bombus species, decreased from historical (1897–1926) to 
recent (1978–2016) collections, a change associated with 
increasingly unfavorable environmental conditions [116]. In 
contrast, studies in Belgium and Germany have found 
trends toward an increasing body size of queens and 
workers [117, 118]; such increase in size does not seem to 
be a direct response to warmer temperatures, but is 
instead associated with changes in land use such as 
agricultural intensification and urbanization. The direction 
and intensity of these documented trends of size change 
are species-specific [116–118] and thus can potentially 
impact overall pollination networks by altering size-
dependent plant-pollinator interactions and changing the 
composition of local pollinator communities. Additionally, 
invasive species have been shown to shift and expand their 
climatic niches within their invaded ranges [119], as 
described for example for the Asian giant resin bee 
Megachile sculpturalis [120, 121] or the bull-headed dung 
beetle Onthophagus taurus [15]. Such examples demonstrate 
the plasticity and adaptability of invasive species in the face 
of environmental challenges, and the complex network of 
interactions between environmental drivers and biological 
capabilities that need to be traced to be able to predict 
species invasive potential and introduction and invasion 
outcomes. In other words, our current state of knowledge 
is often still insufficient to fully and confidently ascertain 
the risks of species translocation.

Concluding remarks: do we really need to keep 
importing bumblebees?

Deployment of commercially reared bumblebee colonies 
is often portrayed as a biological, or “green,” eco-friendly 
solution to missing or deficient pollination services for 
crops. However, worldwide implementation has repeatedly 
resulted in biological invasions that are now near impossible 
to revert. As we summarized above, these invasions are 
taking a heavy toll on native ecosystems. Just as it happened 
with other examples of “biological” solutions (e.g., the 
worldwide importation of the Asian harlequin ladybeetle 
Harmonia axyridis for pest control [122]), translocation of 
bumblebees has proven to be far from environmentally 
friendly. Some countries, like Australia, have thus chosen to 
ban the importation of bumblebees, despite discontent 
from the agricultural sector [26]. But what are the 
alternatives?

A first answer would be the local rearing of native 
species. Commercial rearing of Bombus impatiens, Bombus 
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vosnesenskii, and Bombus huntii in North America, and 
Bombus ignitus in Japan is ongoing [5, 123, 124]. In South 
America, commercial rearing of Bombus pauloensis (= B. 
atratus) and/or Bombus bellicosus is ongoing or being 
developed in Colombia, Argentina, and Uruguay [125–130]. 
In Pakistan, Bombus haemorrhoidalis is being explored as an 
option to replace B. terrestris [131]. However, rearing 
conditions favor the growth of Bombus pathogens and 
select for a small fraction of genotypes, leading to potential 
erosion of genetic diversity of wild populations and 
pathogen spillover, as mentioned above. Other buzz-
pollinating bee species have been explored as viable 
options in crops that require this specific type of pollination 
(like tomatoes). For example, a number of native species 
such as Examalopsis spp. and Augochloropsis spp. have been 
explored in Mexico to avoid import of B. impatiens [132]. 
In Brazil, breeding of two stingless bee species (Tetragonisca 
angustula and Melipona fasciculata) is widely established but 
not at the scale needed for crop pollination [133]. Import 
of Melipona quadrifasciata from Brazil to Japan has been 
suggested, given the very low risk of this tropical species 
becoming invasive in temperate and cold environments 
[134]. In Australia, potential native crop pollinators such as 
Xylocopa lestis, Amegilla spp., Austroplebeia australis, 
Tetragonula carbonaria, and even the introduced syrphid 
hoverfly Eristalis tenax have been explored [135–141]. 
However, in many cases, the biology of native pollinator 
species does not allow for cost-efficient, profitable rearing 
at commercial scale [5].

The well-proven risks of commercial-scale deployment 
of managed pollinators have prompted a search for 
technological rather than biological alternatives [142]. 
Asian engineers developed a proof-of-concept pollination 
system based on flying drones blowing pollen-laden soap 
bubbles over flowers [143]. In Israel, two companies (Edete 
and Arugga) are developing robotic arrays that use optic 
sensing and artificial intelligence to deliver automated 
pollen collection and pollination (https://www.edetepta.
com, https://www.arugga.com); these technologies are 
being marketed as eco-friendly alternatives to managed 
pollinators when wild pollination services are insufficient, 
although they still need to be benchmarked against them 
for efficiency and cost-effectiveness. There is always a low-
tech fallback: hand-pollination by humans is still widespread 
[144], especially when labor costs are low [145]. Although 
this approach is largely unsustainable in the long term, it 
provides an alternative to ameliorate losses of wild or 
managed pollination services, or sudden changes in the 
cost-benefit balance of certain crops [144].

A last and probably best alternative is increasing local 
pollinator diversity (especially native wild pollinators) 
instead of (or, at least, in addition to) import of 
commercially reared bees. In an assemblage of pollinators, 
behavioral and physiological differences between species 
can provide a more complete pollination service, covering 
more hours of the day of flower visitation or providing the 
crop with a collection of functional traits that can not only 

increase pollination in some crops such as pumpkin or 
tomatoes, but also create crops more capable to endure 
future threats such as climate change and land-use 
transformations [146–148]. Besides actions and measures 
to protect overall landscape integrity and species 
conservation, visitation and pollination by wild species can 
be locally boosted through a variety of strategies [149]. 
Boosting pollinator diversity is a necessary move toward 
ecological intensification of agricultural production and 
will positively challenge not only the business-as-usual of 
food production stakeholders but also the current low 
diversity of crops [150].

Any alternative solutions to importing managed 
pollinators are meaningless if they never reach the 
stakeholders requesting them. In many cases, established 
invasive species are so abundant that deploying commercial 
colonies might lower rather than enhance crop yields. 
Since farming stakeholders are often prone to follow advice 
from their peers, or biased consulting from producers of 
commercial pollinators, expecting a bottom-up approach 
to change might result in a change too slow to avoid 
irreversible ecosystem damage. Therefore, we suggest 
encouraging a top-down approach in which national and 
regional regulators take action to stop importation and 
promote development of alternative approaches, while 
demanding that trade regulations are fair and reciprocal, 
unlike the current unbalanced scenario in which countries 
that would not authorize importation of invasive exotic 
species to their own territory have no problem exporting 
native species with invasive potential to other countries 
[7]. Moreover, it will be of great importance to keep sharing 
information with stakeholders on the real environmental 
costs of some apparently “green” eco-friendly solutions 
and setting an example by asking for (and heeding) expert 
advice.
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