
����������
�������

Citation: Ovando-Leon, G.;

Veas-Castillo, L.; Gil-Costa, V.; Marin,

M. Bot-Based Emergency Software

Applications for Natural Disaster

Situations. Future Internet 2022, 14, 81.

https://doi.org/10.3390/fi14030081

Academic Editor: Vijayakumar

Varadarajan

Received: 29 December 2021

Accepted: 29 January 2022

Published: 9 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

future internet

Article

Bot-Based Emergency Software Applications for Natural
Disaster Situations
Gabriel Ovando-Leon 1,*, Luis Veas-Castillo 1, Veronica Gil-Costa 2 and Mauricio Marin 1,3

1 CITIAPS, Universidad de Santiago de Chile, Santiago 9170020, Chile; luis.veasc@usach.cl (L.V.-C.);
mauricio.marin@usach.cl (M.M.)

2 CONICET, Universidad Nacional de San Luis, San Luis 5700, Argentina; gvcosta@unsl.edu.ar
3 CeBiB, Center for Biotechnology and Bioengineering, Santiago 9170020, Chile
* Correspondence: juan.ovando@usach.cl

Abstract: Upon a serious emergency situation such as a natural disaster, people quickly try to call
their friends and family with the software they use every day. On the other hand, people also tend
to participate as a volunteer for rescue purposes. It is unlikely and impractical for these people to
download and learn to use an application specially designed for aid processes. In this work, we
investigate the feasibility of including bots, which provide a mechanism to get inside the software
that people use daily, to develop emergency software applications designed to be used by victims
and volunteers during stressful situations. In such situations, it is necessary to achieve efficiency,
scalability, fault tolerance, elasticity, and mobility between data centers. We evaluate three bot-based
applications. The first one, named Jayma, sends information about affected people during the natural
disaster to a network of contacts. The second bot-based application, Ayni, manages and assigns
tasks to volunteers. The third bot-based application named Rimay registers volunteers and manages
campaigns and emergency tasks. The applications are built using common practice for distributed
software architecture design. Most of the components forming the architecture are from existing
public domain software, and some components are even consumed as an external service as in
the case of Telegram. Moreover, the applications are executed on commodity hardware usually
available from universities. We evaluate the applications to detect critical tasks, bottlenecks, and
the most critical resource. Results show that Ayni and Rimay tend to saturate the CPU faster than
other resources. Meanwhile, the RAM memory tends to reach the highest utilization level in the
Jayma application.

Keywords: natural hazards; applications for natural disasters; risk management; bots

1. Introduction

During the last few years, there has been a special interest in the development of
software applications focused on providing help during and after the occurrence of natural
disasters of great magnitude [1–3]. The normal life of people is destabilized, there is chaos
and the need for help, rescue, and relief to the victims of the catastrophe. All of this can
cause human, structural, and economic losses that can rise incalculably if not managed
properly. In this crisis context, emergency response teams composed of spontaneous
volunteer and experts have a key role in helping reduce the impact of the natural disasters.
They are typically coordinated by social, public, and national organizations responsible
for sending the appropriate resources to the most affected areas and also for reporting the
news. Emergency response teams need to work fast, and the decision makers must base
their decision on the collected data from different sources as soon as possible [4].

Nowadays, technology such as mobile devices and smartphones have driven the
development of applications devised for large-scale natural disasters to aid victims and
also to facilitate the collaboration between spontaneous volunteers [5,6]. However, in a
serious emergency situation, people will always turn to the software they use every day,

Future Internet 2022, 14, 81. https://doi.org/10.3390/fi14030081 https://www.mdpi.com/journal/futureinternet

https://doi.org/10.3390/fi14030081
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0000-0003-0662-7149
https://doi.org/10.3390/fi14030081
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi14030081?type=check_update&version=1


Future Internet 2022, 14, 81 2 of 22

the software that is most familiar to them. It is unlikely that a person who can potentially
participate as a spontaneous volunteer in the face of a serious emergency remembers in
advance to install and learn how to use a large-scale disaster application. Especially in a
stressful situation, either as an affected person or as a person in charge of volunteer work
or being part of an emergency team, people will tend to turn to the software they know
best and have available on their smartphones [7,8]. Social media has also been successfully
used to rapidly evaluate the impacts of disasters in real time [9,10].

1.1. Research Objectives

In this paper, we analyze the feasibility of using bot-based software applications for
emergencies devised to assist social organizations that are activated upon the occurrence
of large-scale natural disasters. The applications are executed on commodity hardware
usually available from public organizations, such as universities, during the emergency
situation. Most components forming the architecture are from existing public domain
software, and some of them are consumed as an external service as in the case of Messenger
or Telegram.

This problem is challenging, since we need to understand how the application behaves
under high rates of workloads, which components can became bottlenecks, and which
are the saturation points of the applications to then efficiently deploy them to support
unexpected peaks of user requests. We investigate how the communication affects the
performance of each task of the applications, which resources (CPU, RAM, network)
saturate faster, and how can we use replicas to support higher workload. We analyze the
capability of bot-based software to achieve efficiency, scalability, fault tolerance, elasticity,
and mobility in commodity data centers by using container technology.

1.2. Contribution

We present and evaluate three bot-based applications that can help organizations help
citizens who suffered from natural disasters. Bots have been previously used for medical
purposes [11], for communication and training [12], and also for crisis communication
and management [13]. However, to the best of our knowledge, there is no previous work
evaluating the performance of bot-based applications to show that those applications are
able to cope with critical mission requirements. In particular, we focus on critical resources
and critical tasks when stressing the systems to unexpected peaks of user requests in natural
disasters situations.

The three bot-based applications are named Jayma, Ayni, and Rimay. Jayma gives
supports to people who are in dangerous situations during a natural disaster. For example,
it informs a group of predefined contacts whether the person is in danger or not and the
location where he/she is. Ayni coordinates teams (small and large) of volunteers in the field.
Ayni assigns tasks to volunteers and receives status reports and additional information.
Rimay coordinates tasks assigned to organizations that provide support in a natural disaster
situation. Users access these applications through bots of Telegram and Messenger. This is
relevant because bots are a mechanism to integrate into the software that people use as part
of their lives. These bot-based applications can be used by victims and also by volunteers
to coordinate relief work.

We deploy the applications on a computational platform based on container technol-
ogy, container orchestration, and virtual machines. Containers allow the deployment of
applications independently of the operating system, since it encapsulates the applications
and their dependencies in portable modules that run under the same operating system
kernel. Containers facilitate the deployment of applications in a wide range of operating
systems such as Linux, Windows, or Mac. This container orchestration technology guar-
antees application mobility and also ensures fault tolerance through data replication and
volatile applications where data do not need to be recovered after a failure.

We present a comprehensive performance evaluation study on a single processor and
on multiple processors with different workloads. For each application, we detect the most



Future Internet 2022, 14, 81 3 of 22

critical tasks, meaning the tasks that saturate faster supporting fewer requests per unit of
time. We also evaluate the utilization levels of the CPU, RAM, and communication network.
This information can be used by the engineer in charge of the data center to efficiently
deploy the applications. The results show that the CPU is the most critical resource in Ayni
and Rimay reporting utilization levels close to 60–70%. Meanwhile, the Jayma application
tends to saturate faster the RAM memory than other resources.

1.3. Outline

The remaining of this paper is organized as follows. Section 2 describes the compu-
tational platform and the technologies used to deploy the applications. Section 3 present
the bot-based applications: Ayni, Rimay, and Jayma. Section 4 presents the experimental
results. Section 5 presents related work and summarizes the features of our applications.
Section 6 presents a discussion about the limitations of our work. Section 7 concludes and
present future work.

2. Platform Design

The design of our platform includes four main components: (1) a Front-end, (2) a
Back-end, (3) a Bot Back-end which is an API REST that responds to user requests from the
Messenger chat of Facebook and/or Telegram, and (4) a Data Repository like MongoDB [14].
Each component can be replicated, distributed, and partitioned based on the workload
and communication requirements. Users connect to the Front-end using a smartphone, a
tablet, or a computer. The Back-end hosts the applications and communicates with the data
repository component. The Back-end performs data searches and executes transactions.
The Data Repository stores the data in non-relational databases such as MongoDB [14] or
Cassandra [15]. Both the Back-end and the Data Repository can be deployed on different
servers. Our platform uses a container [16] and container technology [17], which allow
the deployment of applications based on microservices, to achieve auto-scalable, fault-
tolerant, and stateless systems, making the configuration of the infrastructure transparent
for the programmer. In particular, we use Kubernetes [18] and Docker [19] due to their
wide dissemination in the technology community and the support available in the software
communities. In Figure 1, we show the general scheme of the architecture, where Nginx [20]
is the access point, which is the application server and works as a proxy. The container
orchestrator manages and redirects requests to a container. Finally, the figure shows the
interaction between different Back-ends and different Data Repositories such as MongoDB,
Cassandra, MariaDB, etc. The orchestrator also starts new instances of the applications
running in the containers. New instances are started when failures occur or when more
resources are needed to support user demand. To this end, ImageRepo maintains an
undeployed image of all orchestrated containers. As a particular example, Figure 2 shows
the deployment of the complete platform distributed among a cluster of servers coordinated
by a container orchestrator.

Figure 1. General scheme of the proposed architecture.



Future Internet 2022, 14, 81 4 of 22

Figure 2. Example of a distributed platform.

Figure 3 summarizes the technologies used to implement the bot-based application
on the platform. Our platform supports different types of configurations: unshared,
virtual machine monitor (VMM), cloud computing, and container. In the non-sharing
configuration, we install the operating system (OS) that manages the resources, the run-
time libraries, and then, we deploy the applications. Another possibility is to connect the
hardware directly to the VMM (hypervisor) independent of the operating system. The star
(∗) symbol shows this configuration in Figure 3. Cloud computing provides tools to manage
virtual machines and their resources, which facilitates tasks such as self-scaling (elastic),
live migration, and resizing a virtual machine based on workload. Similarly, container
technology and orchestrator provide tools to create container-based, self-scaling (elastic)
microservices. It automatically manages the containers using a load-balancing algorithm.
Using containers without orchestrator requires manual intervention (on the host VM) to
manage the containers.

Figure 3. Virtualization technology used in our proposed platform.

3. Bot-Based Applications for Natural Disasters

In this section, we describe the design of the bot-based applications evaluated in this
work: that is, the Jayma, Ayni, and Rimay applications.

3.1. Jayma Application

After a natural disaster strikes, Jayma (https://citiaps.usach.cl/portafolio/jayma,
accessed on 28 January 2022) gives information about safe places and meeting points,
recommends routes to follow, and spreads information through the Messenger bot. For
the Messenger bot, the app creates a network of the user’s contacts. These contacts are
included in the Jayma network after they agree to participate by using the Jayma app.

The Back-end of the application supports a website for the administrator. The admin-
istrator can send disaster alerts to users. When the administrator sends an alert message,

https://citiaps.usach.cl/portafolio/jayma


Future Internet 2022, 14, 81 5 of 22

users receive a notification (Facebook Messenger message) indicating that a natural dis-
aster has occurred. The administrator can also submit relevant information such as safe
points. Figure 4 shows some screenshots of the Jayma bot. The application supports the
following tasks:

1. Send alerts: The administrator sends alert messages to the users included in the
Jayma network.

2. Access to the main menu: Lists all the application options (Figure 4a).
3. Information: Provides information on meeting points or safe areas. These are safe

geographic locations (latitude and longitude) and are activated by the administrator.
Upon accessing the link, the bot delivers a Google Maps map with the last known
location and the route to the closest meeting point (Figure 4b–d).

4. Report user status: The bot asks the user for the location. Once the bot receives the
location, it asks the user if they are well. The bot notifies the user’s contacts of their
status and location. In case the user is unwell, the bot asks what is the problem
(panic/injured/infrastructure problems/needs supplies). See Figure 4e,f.

5. Contact management: Adds new contacts to the Jayma network. It also allows deleting
a contact and listing current contacts. To include a person as a new contact, the app
sends a message to that person with a link to the bot.

(a) (b) (c)

(d) (e) (f)

Figure 4. Screenshots of different tasks provided by the Jayma bot. (a) Main menu, (b) user status
information, (c) meeting points, (d) evacuation route, (e,f) reports user problems.



Future Internet 2022, 14, 81 6 of 22

3.2. Rimay Application

Rimay (https://citiaps.usach.cl/portafolio/rimay, accessed on 28 January 2022) man-
ages and coordinates groups of volunteers using the Telegram bot. Each group of volunteers
has a leader who receives tasks from one or more coordinators or administrators. Coor-
dinators can use a web page to easily manage tasks and collect statistics. Figures 5 and 6
show some screenshots of the Rimay bot.

(a)

(b)

Figure 5. Screenshots of Rimay’s Front-end application: (a) login web page, (b) information about users.

(a)

(b)

Figure 6. Screenshots of Rimay’s Front-end application: (a) statistics report on events and (b) reports.

https://citiaps.usach.cl/portafolio/rimay


Future Internet 2022, 14, 81 7 of 22

The application supports the following tasks:

1. Enrollment: Users request to register as volunteers. When the coordinator accepts the
request, the data associated with the volunteer are stored in the system. In addition,
the coordinator can assign the coordinator role to new users (Figure 5a,b).

2. Create event: The coordinator creates an event such as a forest fire. In addition, the
coordinator can create tasks for each event, such as distributing face masks. Tasks have
information such as where the face masks are stored and a job description. Volunteers
can accept or decline assignments. Volunteers can also finish assignments when
they are completed. The coordinator can also finish the event when it is complete.
(Figure 6a).

3. Delete user: The coordinator can delete users from the system.
4. Send file: The coordinator can send a file to the volunteers.
5. Help/Status: Reports the status of volunteers.
6. Send report: Volunteers can send a report (attached file) to the coordinator. See

Figure 6b.

Figure 7 shows the steps executed during the execution of different tasks on the Rimay
application. In particular, in this example, the coordinator sends the command “newTask”
to the Telegram bot to create a new task. The bot asks for the name of the task. After
the coordinator answers, the bot asks if he/she wants to upload a file. The coordinator
uploads an image file. Then, the bot asks if he/she want to add a GPS location and the
coordinator responds by sharing a geolocation. The bot displays a menu showing the
existing volunteers. Then, the coordinator selects a volunteer who will receive the new task.
Finally, the coordinator sends a request to the Back-end component to verify the information
and to store it in a database. The boxes Si with i = 1, 2, 3, 4, 5 represent the time it takes
for the person to respond. The boxes Tboti with i = 1, 2, 3, 4, 5 represent the processing
times of the bot. Tbe1 represents the processing time of the Back-end. Notice that during
the execution time Tbe1, the bot thread is free until it gets the response. Figure 5 shows
screenshots of the login web page and the information provided the Rimay application
running on the Front-end.

Figure 7. Steps executed by different tasks on the Rimay app. The coordinator and the volunteers
talk through the Telegram bot.

3.3. Ayni Application

The Ayni application (https://citiaps.usach.cl/portafolio/ayni, accessed on 28 January
2022) manages groups of volunteers through a bot of Telegram. These volunteers sign
up for the current emergency and they inform about their characteristics (physics, skills,
knowledge, etc.). Volunteers can participate in tasks created for a particular emergency.

https://citiaps.usach.cl/portafolio/ayni


Future Internet 2022, 14, 81 8 of 22

Figure 8 shows the general scheme of the application. We use a cache because the bot needs
to be stateless for replication and also needs to store information of a given task as the
execution of the task advances in different components of the platform. The application
supports the following tasks:

1. Create emergency: The coordinator creates a specific emergency and selects volunteers
to participate in it.

2. View emergency details: Displays the specifications of an emergency.
3. Create Task: The coordinator creates tasks assigned to the emergency. In turn, it

chooses volunteers who are asked if they want to participate in the assigned task.
4. Create volunteer: People register into the system.
5. Task details: Displays the task specifications.
6. Volunteer details: Displays the volunteers characteristics.
7. Volunteers agree to participate: A volunteer agrees to participate in an emergency.
8. Tasks per emergency: Displays the tasks for each emergency.
9. Active tasks for emergencies: Only active tasks assigned to emergencies are displayed.
10. Tasks completed by emergency: Only tasks completed by emergencies are displayed.
11. Volunteer accepts task: A volunteer accepts the task.
12. Volunteer completes task: A volunteer informs that the assigned task has been completed.

Figure 8. General scheme of the Ayni application.

4. Experiments
4.1. Platform Configuration

We evaluate the performance of the applications on a processor with 32 Cores, a RAM
of 64 GB, HDD of 1.8TB, CPU MHz 1298. We deploy the applications on a single processor
using Dockers. Figure 9 shows the configuration for a single processor. We use one VM
to run the nginx, one for the back-end, and one virtual machine for the data repository.
In particular, we use MongoDB as the data repository component. Each virtual machine
has two cores, 4 GB of RAM, and 100 GB of hard disk. To detect bottlenecks and measure
resource utilization, we use Jmeter 5.3 [21], which is a free software implemented in java.

Figure 9. Deployment of the applications on a single processor.

We also evaluate the performance of the application on two processors with the same
characteristics as described above. The bandwidth between both processors reported by



Future Internet 2022, 14, 81 9 of 22

iperf (https://iperf.fr/, accessed on 28 January 2022) is 17 Gbits/s. Figure 10 shows the
deployment of the apps in one of those processors. The Bot-back-end and the Back-end are
worker components. Each worker has a virtual machine with 3 cores and 4 GB of RAM.
Other components are executed on VM with two cores and 4 GB of RAM. The Master
component executes Kubernetes. Only for the Ayni app, we use REDIS as a cache service
to store the current state of the flow of each process. That is, if the task has a single action
(such as help), only the first state of the task is saved and then deleted at the end of the flow
of the task. However, if the task is longer, the flow of sub-tasks is saved until the complete
flow is finished. The repoimage component is used by Kubernetes (it is the container image
repository) when the deployment of the first container is performed. The applications are
replicated on three workers, and to support fault tolerance when a worker fails, Kubernetes
uses RepoImages to look for the corresponding image and deploy it in the selected worker.
The validation of the tasks executed by the applications was based on expert consensus.

Figure 10. Deployment of the applications on two processors.

4.2. Bottlenecks and Performance Evaluation for Ayni

In this section, we evaluate the saturation points reported by different tasks executed
in Ayni. To stress the app, we do not include the communication via the Telegram api
because it limits the number of requests per second that we can send to the application to 30.
In the following experiments, we send 600, 900, 1200, and 1500 requests to the application
every 30 s. We deploy the application on a single processor according to Figure 9. We also
show results of the Ayni application running on two processors according to Figure 10.

In Table 1, we show the tasks executed by the Ayni application and the number of
requests per second supported by each task before it fails. We show that there are two
critical tasks: “03—Create volunteers” and “06—Volunteer details”. Both tasks support
a maximum of 60 requests per second on a single processor and 100 requests when the
Ayni application is deployed on two processors. With more requests, the tasks became
unstable, and some requests are not completed. Other tasks support a larger number of
requests, as in the case of “05—Task details”, “07—Volunteers agree to participate” and
“13—Volunteers accept tasks”.

Figure 11 shows the requests processed successfully in a single processor (red line) and
requests not completed (green line). We show the results obtained by the task “10—Tasks
Completed by Emergency”. The x-axis shows the advance of time in seconds. We divide the
x-axis into segments of 30 s each. We start with 600 requests in the first time segment. Then,
in the following segments, we increase by 300 the total number of requests. The results
show that not all requests are completed in the fourth segment. That is, with an incoming
rate of 40 requests per second (1200 request in 30 s), the system begins to saturate, and some
requests are discarded. The system reports that 11.78% of the requests are not processed.

https://iperf.fr/


Future Internet 2022, 14, 81 10 of 22

Table 1. Maximum number of requests supported by each task of the Ayni application on a single
processor and with a distributed configuration.

Task #Requests (Single) #Requests (Distributed)

01 Create Emergency 100 180
02 Create Task 200 360

03 Create Volunteer 60 100
04 View Emergency Details 400 770

05 Task Details 400 760
06 Volunteer Details 60 100

07 Volunteers Agree to Participate 400 750
08 Tasks per Emergency 400 750

09 Active Tasks for Emergencies 400 750
10 Tasks Completed by Emergency 200 380

11 Volunteer Accepts Tasks 400 770
12 Volunteer Completes Tasks 200 380

Figure 11. Single processor: Results obtained by the task “10—Tasks Completed by Emergency” on a
single processor. The red line represents requests successfully completed. The green line represents
requests not completed.

Figure 12 shows results obtained with a distributed deployment. In particular, we plot
the utilization of different resources used by MongoDB (top) and the workers (bottom).
Figure 12a shows that the CPU utilization reported by MongoDB reached peaks close to
60% in the last time interval. Similarly, Figure 12b shows the resource utilization reported
by the workers. In this case, the CPU tends to be more demanding, reaching almost 100% of
utilization in the last interval of time. On the other hand, the disk and memory utilization
remains almost constant in both components (MongoDB and worker). Therefore, the CPU
is the most critical resource for the Ayni application. We obtain a similar behavior with
other tasks.

Figure 13 shows the communication cost reported by each of the components deployed
to run Ayni in a distributed manner. The x-axis shows the time advance and the y-axis
shows the communication cost in bytes. The blue line represents the component worker
(an Ayni instance), which reports the highest load on the network, followed by the Master
(brown line) and in third place is MongoDB (light blue line). These results show how the
communication rate tends to increase every 30 s. This is because every 30 s, the number of
requests entered into the system increases. Notice that the peaks in red color and dark blue



Future Internet 2022, 14, 81 11 of 22

color are scaled ×100 for a better representation. Therefore, these peaks do not represent a
high communication cost.

(a)

(b)

Figure 12. Distributed deployment: Resource utilization reported by (a) MongoDB and (b) the
workers for the task: “10—Tasks Completed by Emergency”.

Figure 13. Network costs reported by the Ayni application deployed on two processors.

4.3. Bottlenecks and Performance Evaluation for Rimay

In this section, we present the performance evaluation of the Rimay application as
the number of users increases every 30 s. Each user is a thread in the application and
consecutively executes 10 requests. We set an interval of time of 3 s between requests.
Different users can send requests in parallel.

In Table 2, we show results for an experiment with four time intervals of 30 s each.
In the first time interval, we process requests of 100 users; in the second time interval, we



Future Internet 2022, 14, 81 12 of 22

process requests of 200 users, and in the last time interval, we process requests of 600 users.
In the second column of the table, we show the average response time in milliseconds (ms.)
reported by each task. The average response time is computed as the average of the results
obtained in each time interval. We also show the number of tasks processed per second (s.)
and the execution time in seconds required to process all the requests injected in each time
interval. As expected, as the number of simultaneous users increases, the response time
increases due to requests accumulated.

Table 2. Single processor: Execution time reported by different tasks executed by the Rimay application.

Task Avg. Time (ms.) # Tasks per s. Exec. Time (s.)

Enrollment 88.93

2.72 132.28
2.94 204.33
3.03 276.49
3.09 348.68

Create event 7.38

1.89 94.99
2.1 143.2
2.2 191.24
2.25 239.28

Send report 112.03

3.85 109.03
4.23 165.29
4.42 221.4
4.52 278.4

Help/Status 7.32

1.63 36.9
2.22 45.05
2.64 53.07
2.95 61.09

We also deploy the Rimay application on two processors as described in Figure 10. We
use three cores for the workers and two cores for other components.

Figure 14 shows Rimay’s performance when running the “Enrollment” task with a
distributed deployment. The x-axis shows the time advance in seconds. The y-axis shows
the utilization of resources (CPU, memory, and disk). During the first 30 s, the application
processes 100 requests from users. In the next 30 s, the system processes 300 requirements.
In the last time interval, from x = 60 s, the system processes 600 requests. Figure 14a shows
that the resource utilization reported by MongoDB is below 50%. On the other hand, in
Figure 14b, we show that the CPU and memory utilization in the workers are similar. The
memory utilization slightly increases in each time interval, and the CPU reports peaks close
to 70%.

Figure 14b presents down peaks, which are due to the execution of a new group
of threads. For example, at the beginning of the second interval of 30 s, we change the
configuration of the application from a group of 100 threads to a group of 300 threads. All
the threads are executed in a time window of 30 s to avoid saturating the system with
additional threads. This parameter is called the ramp-up period. Therefore, when a thread
pool is started, T threads are running per second. In other words, in the first time interval,
we use T = 100 threads to process the incoming requests. In the second time interval,
we use T = 300 threads, and so on. Notice that in the second time interval, when the
application processes 10 requests per second (300/30 s), the CPU become a critical resource.
Therefore, this figure shows that the CPU tends to saturate in the Rimay application,
reaching utilization levels of 90% of utilization. Others tasks report similar behavior.



Future Internet 2022, 14, 81 13 of 22

(a)

(b)

Figure 14. Distributed deployment: Resource utilization reported by (a) MongoDB and (b) to workers
for the task “Enrollment”.

Figure 15 shows the number of bytes transferred through the network by each one
of the components deployed to execute Rimay in a distributed manner. These results
show how the communication rate tends to increase in stages every 30 s. This is because
every 30 s, the number of requests increases. The Master component reports the highest
communication costs because it has to periodically check for the status of other components.
Note that the pink line is scaled ×1000 for a better illustration of the graph.

Figure 15. Communication cost in bytes reported by Rimay.

4.4. Bottlenecks and Performance Evaluation for Jayma

In this section, we show the performance of the Jayma application as we increase the
number of users and therefore the number of simultaneous requests. In the distributed case,
we deploy the workers that actually execute Jayma on virtual machines with three cores.
MongoDB and the Master that executes components such as nginx use virtual machines
with two cores.

In Table 3, we show the number of requests per second supported by each task before
it fails. We show that the task “Contact management” supports a maximum of 120 requests
per second on a single processor. However, when the application is deployed on two
processors, the task supports up to 1100 requests. With more requests, the tasks become
unstable, and some requests are not completed. Other tasks support a larger number
of requests.

Figure 16 shows the utilization achieved by the CPU and the RAM memory for the
task “Send alert” when the application is deployed on a single processor. At the beginning
of the experiment, we process 600 requests. Then, for each interval of 30 s, we increase
the number of requests to 900, 1200, and 1500 requests. The graph shows that the CPU
remains below 50% of utilization. Only at the end of the experiment when the number of



Future Internet 2022, 14, 81 14 of 22

requests tends to saturate the system, the CPU reaches utilization levels close to 100%. On
the other hand, the utilization of the RAM memory tends to increase faster, reaching also
100% during the last interval of time.

Table 3. Number of requests supported by each task of Jayma on a single processor and in a
distributed manner with two processors.

Task #Requests (Single) #Requests (Distributed)

Send alert <1200 <1680

Access to the main menu >1500 >1500

Information >1500 >1500

Report user status >1500 >1500

Contact management <120 <1100

Figure 16. Single processor: CPU and RAM memory utilization reported by the “Send alert” task.

In Figure 17a, we show the resource utilization reported by Jayma with a distributed
deployment. MongoDB presents average utilization levels of 40%. There are two CPU peaks
close to 70% during the last time interval due to the increasing workload. In Figure 17b, we
show that Jayma requires a larger amount of RAM memory, reaching utilization levels close
to 100% in the last time interval. The CPU also reports high levels of utilization above 90%.
Therefore, in the Jayma application, both resources (CPU and memory) tend to be critical
when the application is overloaded. Finally, Figure 18 shows the communication cost for
the task “Report User Status”. As expected, the communication cost tends to increase as
we increase the number of requests to be processed every 30 s.

(a)

Figure 17. Cont.



Future Internet 2022, 14, 81 15 of 22

(b)

Figure 17. Distributed deployment: Resource utilization reported by (a) MongoDB and (b) the
workers for the task “Send alert”.

Figure 18. Communication cost in bytes reported by the Jayma application.

5. Related Work

In this section, we first present some discussion about software applications used to
help, assist affected people, and manage resources after a natural disaster occurs. Then, we
discuss previous work using bot systems aimed to inform and to aid people.

The evaluation and prediction of the outcome of natural disasters have been exten-
sively studied in the technical literature. The studies presented in [22–25] use agent-based
simulation tools for population modeling, infrastructure development planning, country
reconstruction humanitarian support operations, and simulation of rivers and overflows,
among others. These studies can be used by people involved in planning rescue activities.

A study performed after the tsunami in Tailandia 2004 [26] presents the problems
detected in the public management of natural disasters such as logistic problems for
distributing goods for emergency relief; lack of effective collaboration among institutions
in different levels; lack of encouragement for participation of local and international non-
governmental organizations (NGOs); lack of education and knowledge for tsunami in
potential disaster-affected communities and lack of information management or database
system. The authors present the use cases of an application to solve logistic problems for
distributing goods for emergency relief and to coordinate help between different institutions
and NGOs. They conclude that NGOs must coordinate the tasks during a disaster in addition
to sharing vital information with each other during effective communication channels.

As communication networks are a critical resource during a natural disaster, the
work in [27] provides guidelines to support fault tolerance with different communication
networks such as wifi, SDR, Satellite Telephony, etc., using information obtained during
Hurricane Katrina. The authors propose using a relational database and a front-end
deployed on a grid computing to support a high load of requests in a short time. The



Future Internet 2022, 14, 81 16 of 22

author shows that the fastest recovering network is in data networks. This supports our
proposal of using bot-based applications.

Different software applications—without bots running on social platforms such as Mes-
senger of Facebook or Telegram—have been presented in the technical literature [28–33].
The system presented in [28] was initially developed in 2–3 weeks in response to the
tsunami in Sri Lanka (2004) by volunteer developers. Today, it has a series of libraries and
APIs: Location API, GIS API, generic Reporting API, DataBase, and Synchronization API,
among others. It supports different operations such as the registration of organizations, the
request management system, and the register of persons. However, the system is deployed
on a single processor, and the authors do not present a performance evaluation. Therefore,
its proper deployment during a natural disaster requires engineers who are experts in fault
tolerance, saturated systems, and managing peaks of requests.

A mobile application presented in [29] takes advantage of probabilistic geosocial
information collected before the event to guide an earthquake victim and rescuers during
and after the earthquake. It has four operation modes. The standby mode is used to collect
data about users, their regularly visited locations, and their social relationships. Another
mode, alert mode, warns of an imminent earthquake based on data collected from a variety
of sensors and government alert systems. In disaster mode, it helps users cope with their
tasks, such as the evacuation and rescue of victims buried under the rubble of collapsed
buildings. In recovery mode, it facilitates family reunification, provides information on
help centers, and sends warnings about the spread of disease. The authors present the use
cases for the application without validation. Moreover, they do not provide detail about
the architecture, the components, or the performance of the application. The work in [30]
presents a prototype of a spontaneous voluntary coordination app. It uses PostgreSQL
as the webserver. However, it has not been tested on a large scale. The authors present
results based on the simulation of 200,000 agents, but they do not report information about
how the application behaves under a high load of user requests, fault-tolerant deployment,
scalability, or possible bottlenecks. Similar to [30], the authors in [31] present an application
to organize pre-qualified volunteers (e.g., volunteers with medical skills). The application
allows enrolling and characterizing volunteers, and through a survey, the application
predicts the willingness of users to participate in a rescue of which they are notified by a
smartphone application. As in the previous case, the paper does not give information about
the architecture of the application, implementation, or about the performance evaluation.

There are applications for emergency management designed for P2P networks [4,32].
However, managing a P2P network requires implementing a distributed hash table (DHT)
and communication protocols such as Pastry or Chord. Moreover, high peaks of work-
loads are difficult to manage, tending to saturate not only computation resources but also
communication channels as messages travel from one peer to another until they reach
their destination.

A classification model is used in [33] as part of a conceptual framework for the
development of emergency applications. The authors evaluate the proposal using a model
to select, classify, and prioritize tweet messages obtained from the Mexico 2017 earthquake
for rescue operations. The authors do not report about the training time and about the
execution time of the model. Moreover, the ability of the model to fit other datasets is
not discussed.

Some applications collect data from real-time sensors and drones [34,35]. Sensors have
been used in fixed [36–38] and mobile sensor networks [39,40] for environmental moni-
toring and for planning rescue operations. In particular, drones have been proven to be a
useful tool to obtain a map to support searching in a post-disaster scenario [41]. In the same
line, the work presented in [42] simulates disaster scenarios and analyzes data by using the
unmanned aerial vehicle technology +BIM model’s monomer and visual information query.
The authors propose using these technologies to look at the disaster data for planning and
early warning. However, these kinds of applications do not include the participation of
volunteers, the managing of rescue tasks, or the communication with victims.



Future Internet 2022, 14, 81 17 of 22

Nowadays, bot-based software applications have been widely used in different areas
such as journalism [43], where bots are used to personalize the information given to users. A
user interacts with the bots, which delivers increasingly specific information through the use
of questionnaires and machine learning techniques. These bots are typically implemented
on Twitter, Facebook, and Telegram platforms. Bots are also used in the supply chain
process [44] to analyze the user queries and provide information on the queried orders
and supplies; they are also used in e-commerce and retail companies [45,46] where users
can register, and then the bot shows catalogs, guides, shopping carts, reviews, tracks the
purchases, and generates purchase orders; for medical assistance [11,47], virtual robots
represented in a bot are used to communicate with patients and assist them in their routine
needs; and they are also used for data collection [13,48,49]. In particular, the bot presented
in [48] is designed to collect and validate real-time crowd-sourced flood users reports via
social media (Messenger of Facebook bot or Twitter) to enhance the city’s resilience to
extreme weather events. The system is deployed on Amazon Web Server (AWS) to support
fault tolerance and scalability. However, none of these applications require processing a
large amount of user requests as fast as possible without saturating the available resources.

As we explained before, bots are typically used to collect data from different users.
In the context of crisis and disaster management, the authors in [13] present a framework
for a disaster-related information retrieval system and immediate notifications to support
the execution of mine safety procedures. The system utilizes instant messaging (IM)
applications as the user interface to look up information and send messages to announce
the occurrence of disaster events. Following the same idea of using bots to collect data, the
authors in [49] present their experience of applying a bot-based system for the government
of Taiwan for disaster response operations. In particular, they describe a framework
for implementing a bot as the data management system. The bot is designed to answer
questions containing keywords from a given list. If the user forgets the keywords, the
application will not allow them to advance or give correct information. The paper evaluates
the usability of the application by checking if people were able to finish the tasks. Bots can
be also used to provide information after a natural disaster strikes. This is the case of the
work presented in [50], which allows sharing videos with subtitles and sign language for
deaf people to help them during the evacuations. The authors report a usability satisfaction
level of 95% in deaf people and 60% in hearing people. In addition, the authors in [51]
present a bot using Telegram to provide emergency information to foreign people in Japan.
It includes evacuation information and real-time disaster information, and the real-time
disaster information is based on the user’s current location. People can also share disaster-
related pictures via the proposed application. People can share images of the disaster;
however, it does not take into account, for example, whether the photos are real or if they
are analyzed by experts.

In Table 4, we compare the main features presented by Ayni, Rimay, Jayma, and other
bot-based applications designed for crisis situations such as natural disasters. The table
summarizes which applications support fault tolerance (Fault Tol.), scalability (Scal.), if
the authors present a performance evaluation taking into account botlenecks, critical tasks,
and hardware resources (Perf.) and a usability evaluation (Usab.) of applications. The
column Validation shows (A) if the experiments were performed on a real system, (B) with
simulations and/or (D) with synthetic data. (C) indicates whether the application was
validated by experts. In the column named Type, we use the number (1) for previous work
presenting a guideline, (2) for applications or simulators that have been implemented, and
(3) for previous work presenting a model or proposal not actually implemented. Finally, the
column Deployment indicates if the applications can be executed sequentially, in parallel,
and/or distributed or if it is not specified.

Notice that most of the previous works describe the application proposed, but they do
not present experiments to evaluate their features. Moreover, previous works are typically
focused on specific natural disasters and are not re-used later. In this paper, we evaluate
the performance achieved by Ayni, Rimay, and Jayma, which also support fault tolerance,



Future Internet 2022, 14, 81 18 of 22

scalability, and can be executed in parallel and distributed data centers due to being built
using common practice for distributed software architecture design. In particular, we use
Dockers and Kubernetes technologies. Additionally, we execute the experiments on real
systems, and we validate the tasks executed by each application based on expert consensus.
To the best of our knowledge, no previous work studies the behavior and performance
achieved by applications designed for natural disasters situations running on commodity
hardware usually available from public organizations such as universities.

Table 4. Main features presented by Ayni, Rimay, Jayma, and other applications presented in the
technical literature. In the column Validation, we use the letter (A) if the experiments were performed
on a real system, (B) with simulations and/or (D) with synthetic data. (C) indicates whether the
application was validated by experts. In the column Type, we use the number (1) to indicate that a
guideline is presented, (2) for applications or simulators that have been implemented, and (3) for
papers presenting a model or proposal not actually implemented.

App/Ref. Perf. Usab. Scal. Fault Tol. Validation Type Deployment

Rimay Yes − Yes Yes (A), (C) (2) Parall./Distrib.

Ayni Yes − Yes Yes (A), (C) (2) Parall./Distrib.

Jayma Yes − Yes Yes (A), (C) (2) Parall./Distrib.

[13] − − − Yes (A) (2) Distrib.

[22–24] − − − − (B), (C) (2) Sequential

[25] − − − − (B), (D) (2) Sequential

[27] − − − Yes − (3) Distrib.

[28] − − − − (C) (2) Sequential

[29] − − − − − (3) Not Specified

[30] Yes Yes − − (B) (2) Not Specified

[31] − − − − − (3) Sequential

[32] − − − − − (2) Distrib.

[33] − − − − (B) (1), (2) Not Specified

[48] − − Yes Yes − (2) Sequential

[49] − Yes − − (C) (1), (2) Sequential

[50] − Yes − − (C) (2) Sequential

[51] − − − − − (2) Sequential

6. Discussion

The bots designed for Jayma, Ayni, and Rimay run on third-party platforms such
as Messenger of Facebook and Telegram. These platforms apply some restrictions to pre-
vent malicious uses and an inefficient user experience. In other words, they restrict the
development and the execution of our applications as follows.

The bots of Ayni and Rimay, which use Telegram (https://core.telegram.org/bots/faq,
accessed on 28 January 2022), are implemented with https. Telegram supports the upload
of files up to 50 Mb each, and the maximum download of each file is 20 Mb. Additionally,
we can send up to 30 messages per second to different users and 20 messages per second to
the same group. This is a very strong restriction, as it limits the number of users we can
reach per second during an emergency situation.

The bot of Jayma uses the Messenger (https://developers.facebook.com/docs/graph-
api/overview/rate-limiting, accessed on 28 January 2022) of Facebook, which allows each
user to send up to 250 messages per second to different recipients. However, it limits the
number messages a given user can send to a given recipient per hour to 200. It supports a
maximum upload of 25 Mb per file and a maximum of 2000 characters per message.

Therefore, the applications presented in this work are designed to meet the restrictions
and recommendations of the external platform. However, if Messenger or Telegram fail,

https://core.telegram.org/bots/faq
https://developers.facebook.com/docs/graph-api/overview/rate-limiting
https://developers.facebook.com/docs/graph-api/overview/rate-limiting


Future Internet 2022, 14, 81 19 of 22

our applications will not be able to run. On the other hand, we choose to rely on these
platforms because in case of emergency situations, people tend to use applications they are
familiar with rather than to download, install, and learn how to use new applications, as
shown in [7,8]. A comparative analysis of the use of applications for communication via
messages compares WhatsApp, Viber, and Telegram in [8]. Despite the fact that Viber and
Telegram presented better security properties, WhatsApp widely exceeds the number of
users worldwide with at least 60% of users, this due to its popularity, ease of use, and its
current support of Facebook. A study [7] with 4000 people showed that 70% use Facebook
and 24% use Twitter. Facebook seems to be especially attractive to mobile users. Internet
skills turn out to not be significant for the choice of use of Facebook, but it is only the mere
choice of wanting to use it. Facebook use is influenced by age and gender. For Twitter, age
and income influence its use but not gender and education.

7. Conclusions and Future Work

In this work, we evaluate the feasibility of using bots in three applications to collect
the information of affected people and also to register spontaneous volunteers and to
coordinate the tasks executed in different missions. In particular, we present a performance
evaluation to detect the critical tasks and saturation points of the bot-based software
applications. The first application called Jayma is designed to send a message to the
contacts of the affected people with information about their status and location. The second
application is designed to manage a set of events and tasks created by administrators and to
coordinate volunteers who want to help. The third application, Ayni, is aimed at registering
volunteers and managing emergency campaigns and tasks. The bots of these applications
run on third-party platforms such as Messenger of Facebook and Telegram. This limits the
number of messages we can send per second to the users. In addition, if these platforms
fail, our applications will not be available. However, these are well-known platforms, and
a person who can potentially participate as a spontaneous volunteer will be familiar with
them and will not need to install any additional software.

We implement the applications as stateless and deploy them on a microservices-based
platform with Kubernetes and Docker technologies. Therefore, the applications can be
deployed and executed in parallel due to its replication capabilities and also on distributed
environments. The platform architecture contains a front-end, a back-end, a bot-back-end,
and a repository (database). We instrument the codes to obtain benchmarks of the tasks
executed in each application that run on different resources.

We show that the applications are able to cope with critical mission requirements.
This fact is shown throughout a comprehensive performance evaluation study on actual
commodity hardware. To this end, we conduct experiments to analyze and evaluate
potential bottlenecks and determine capacity in terms of the number of requests served per
second in each of the applications. The validation of the tasks executed by the applications
was based on expert consensus. The experiments on a single processor showed that the
Ayni application supports less than 60 requests per second without crashing. With a higher
number of requests per second, some tasks became unstable, and some requests did not
complete. In this application, the CPU tends to saturate faster than other resources. In the
Rimay application, the CPU is also a critical resource showing utilization levels close to
70%. Meanwhile, in the Jayma application, the RAM memory is the most critical resource,
showing utilization levels close to 100%.

The results show that it is possible to build a software stack designed to support
the execution of software applications that have properties for emergencies such as high
availability, elasticity, fault tolerance, scalability, mobility (change data center dynamically),
and multi-environment. All these features have not been included and evaluated in pre-
vious bot-based software applications. The multi-environment is satisfied by using bots
of social media applications commonly used by people plus the use of Dockers that allow
deployment on different operating systems and facilitate deployment in the cloud. Mobility
is achieved by using Dockers and Kubernetes for application management and monitoring.



Future Internet 2022, 14, 81 20 of 22

Fault tolerance is achieved by using Kubernetes and Docker registry (Container Database),
data replication, and volatile applications where data do not need to be recovered after a
failure. Scalability is achieved by using Kubernetes. A configuration file allows generating
replicas of the application and also stateless applications design.

As future work, we plan to include new communication channels between the users
and other agents rather than friends or family to prevent disaster events that can propagate
to other cities or communities such as blackouts or floods. We also plan to re-design
the bots of the applications so they can be executed without third-party platforms such
as Telegram. However, this will require disseminating the applications and training the
population so that they will be prepared to use them. Finally, we plan to develop a
capacity-planning methodology to automatically determine the number of replicas of each
component of the applications to then efficiently deploy them in data centers provided by
public organizations.

Author Contributions: Investigation, G.O.-L., L.V.-C., V.G.-C. and M.M. All authors have read and
agreed to the published version of the manuscript.

Funding: This work has been partially funded by the Chilean Agency for Research and Development
(ANID) under grant Basal Centre CeBiB code FB0001. Gabriel Ovando-Leon was funded by the
National Agency for Research and Development (ANID), Scholarship Program, Doctorado Becas
Chile 2017-21171745.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable, the study does not report any data.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References
1. Wang, C.; Du, W.; Chen, Z.; Chen, N.; Wang, W. An Event Modeling Software for Natural Disasters: Design and Implementation.

In Proceedings of the International Conference on Geoinformatics, Kunming, China, 28–30 June 2018; pp. 1–4.
2. Segura, A.; Olmedo, G.; Acosta, F.; Santillán, M. Designing a system for monitoring and broadcasting early warning signs of

natural disasters for Digital Terrestrial Television. In Proceedings of the IEEE Latin-American Conference on Communications
(LATINCOM), Arequipa, Peru, 4–6 November 2015; pp. 1–6.

3. Mas Machuca, C.; Secci, S.; Vizarreta, P.; Kuipers, F.; Gouglidis, A.; Hutchison, D.; Jouet, S.; Pezaros, D.; Elmokashfi, A.; Heegaard,
P.; et al. Technology-related disasters: A survey towards disaster-resilient Software Defined Networks. In Proceedings of
the International Workshop on Resilient Networks Design and Modeling (RNDM), Halmstad, Sweden, 13–15 September 2016,
pp. 35–42.

4. Loor, F.; Manriquez, M.; Gil-Costa, V.; Marin, M. Feasibility of P2P-STB based crowdsourcing to speed-up photo classification for
natural disasters. Cluster Comput. 2021, 25, 279–302. [CrossRef]

5. Wu, X.; Mazurowski, M.; Chen, Z.; Meratnia, N. Emergency message dissemination system for smartphones during natural
disasters. In Proceedings of the International Conference on ITS Telecommunications, St. Petersburg, Russia, 23–25 August 2011,
pp. 258–263.

6. Erdelj, M.; Natalizio, E. Drones, smartphones and sensors to face natural disasters. In Proceedings of the ACM Workshop on
Micro Aerial Vehicle Networks, Systems, and Applications, Munich, Germany, 10–15 June 2018; pp. 75–86.

7. Blank, G.; Lutz, C. Representativeness of Social Media in Great Britain: Investigating Facebook, LinkedIn, Twitter, Pinterest,
Google+, and Instagram. Am. Behav. Sci. 2017, 61, 741–756. [CrossRef]

8. Sutikno, T.; Handayani, L.; Stiawan, D.; Riyadi, M.A.; Subroto, I.M.I. WhatsApp, viber and telegram: Which is the best for instant
messaging? Int. J. Electr. Comput. Eng. 2016, 6, 909.

9. Kryvasheyeu, Y.; Chen, H.; Obradovich, N.; Moro, E.; Van Hentenryck, P.; Fowler, J.; Cebrian, M. Rapid assessment of disaster
damage using social media activity. Sci. Adv. 2016, 2, e1500779. [CrossRef]

10. Lu, Y.; Hu, X.; Wang, F.; Kumar, S.; Liu, H.; Maciejewski, R. Visualizing social media sentiment in disaster scenarios. In
Proceedings of the International Conference on World Wide Web, Florence, Italy, 18–22 May 2015; pp. 1211–1215.

11. Battineni, G.; Chintalapudi, N.; Amenta, F. AI Chatbot Design during an Epidemic like the Novel Coronavirus. Healthcare 2020, 8, 154.
[CrossRef]

12. Syed, H.A.; Schorch, M.; Pipek, V. Disaster Learning Aid: A Chatbot Centric Approach for Improved Organizational Disaster
Resilience. In Information Systems for Crisis Response and Management Conference; Virginia Tech: Blacksburg, VA, USA, 2020;
pp. 448–457.

http://doi.org/10.1007/s10586-021-03381-6
http://dx.doi.org/10.1177/0002764217717559
http://dx.doi.org/10.1126/sciadv.1500779
http://dx.doi.org/10.3390/healthcare8020154


Future Internet 2022, 14, 81 21 of 22

13. Tsai, M.H.; Chan, H.Y.; Chan, Y.L.; Shen, H.K.; Lin, P.Y.; Hsu, C.W. A Chatbot System to Support Mine Safety Procedures during
Natural Disasters. Sustainability 2021, 13, 654. [CrossRef]

14. Bradshaw, S.; Brazil, E.; Chodorow, K. Mongodb: The Definitive Guide: Powerful and Scalable Data Storage; O’Reilly Media: Sebastopol,
CA, USA, 2019.

15. Lakshman, A.; Malik, P. Cassandra: A decentralized structured storage system. Oper. Syst. Rev. 2010, 44, 35–40. [CrossRef]
16. Osborne, G.; Weninger, T. Ozy: A General Orchestration Container. In Proceedings of the International Conference on Web

Services (ICWS), San Francisco, CA, USA, 27 June–2 July 2016; pp. 609–616.
17. Adufu, T.; Choi, J.; Kim, Y. Is container-based technology a winner for high performance scientific applications? In Proceedings of

the Asia-Pacific Network Operations and Management Symposium (APNOMS), Busan, Korea, 19–21 August 2015; pp. 507–510.
18. Burns, B.; Beda, J.; Hightower, K. Kubernetes: Up and Running: Dive into the Future of Infrastructure; O’Reilly Media: Sebastopol,

CA, USA, 2019.
19. Merkel, D. Docker: Lightweight Linux Containers for Consistent Development and Deployment. Linux 2014, 2014, 2.
20. DeJonghe, D. Nginx CookBook; O’Reilly Media: Sebastopol, CA, USA, 2020.
21. Erinle, B. Performance Testing with JMeter 2.9; Packt Ltd.: Birmingham, UK, 2013.
22. Massei, M.; Poggi, S.; Agresta, M.; Ferrando, A. Development planning based on interoperable agent driven simulation. Comput.

Sci. 2014, 5, 395–407. [CrossRef]
23. Merkuryeva, G.; Merkuryev, Y.; Sokolov, B.V.; Potryasaev, S.; Zelentsov, V.A.; Lektauers, A. Advanced river flood monitoring,

modelling and forecasting. Comput. Sci. 2015, 10, 77–85. [CrossRef]
24. Barnes, B.; Dunn, S.; Pearson, C.; Wilkinson, S. Improving human behaviour in macroscale city evacuation agent-based simulation.

Disaster Risk Reduct. 2021, 60, 102289. [CrossRef]
25. Wang, Z.; Jia, G. A novel agent-based model for tsunami evacuation simulation and risk assessment. Nat. Hazards 2021,

105, 2045–2071. [CrossRef]
26. Moe, T.L.; Pathranarakul, P. An integrated approach to natural disaster management. Disaster Prev. Manag. 2006, 15, 396–413.
27. Banipal, K. Strategic approach to disaster management: Lessons learned from Hurricane Katrina. Disaster Prev. Manag. 2006,

15, 484–494. [CrossRef]
28. Careem, M.; De Silva, C.; De Silva, R.; Raschid, L.; Weerawarana, S. Sahana: Overview of a Disaster Management System. In

Proceedings of the 2006 International Conference on Information and Automation, Colombo, Sri Lanka, 15–17 December 2006;
pp. 361–366.

29. Bekhor, S.; Cohen, S.; Doytsher, Y.; Kanza, Y.; Sagiv, Y. A Personalized GeoSocial App for Surviving an Earthquake. In
Proceedings of the ACM SIGSPATIAL International Workshop on the Use of GIS in Emergency Management, Bellevue, WC, USA,
3–6 November 2015; pp. 1–6.

30. Betke, H. A Volunteer Coordination System Approach for Crisis Committees. In Proceedings of the International Conference on
Information Systems for Crisis Response and Management, Rochester, NY, USA, 20–23 May 2018; pp. 786–795.

31. Horstmann, A.C.; Winter, S.; Rösner, L.; Krämer, N.C. S.O.S. on my phone: An analysis of motives and incentives for participation
in smartphone-based volunteering. Contingencies Crisis Manag. 2018, 26, 193–199. [CrossRef]

32. Catarci, T.; de Rosa, F.; de Leoni, M.; Mecella, M.; Angelaccio, M.; Dustdar, S.; Gonzalvez, B.; Iiritano, G.; Krek, A.; Vetere, G.;
et al. WORKPAD: 2-Layered Peer-to-Peer for Emergency Management through Adaptive Processes. In Proceedings of the
Collaborative Computing: Networking, Applications and Worksharing, Atlanta, GA, USA, 17–20 November 2006; pp. 1–9.

33. Freitas, D.P.; Borges, M.R.S.; de Carvalho, P.V.R. A conceptual framework for developing solutions that organise social media
information for emergency response teams. Behav. Inf. Technol. 2020, 39, 360–378. [CrossRef]

34. Qian, K.; Claudel, C. Real-time mobile sensor management framework for city-scale environmental monitoring. Comput. Sci.
2020, 45, 101205. [CrossRef]

35. Alfeo, A.L.; Cimino, M.G.; De Francesco, N.; Lega, M.; Vaglini, G. Design and simulation of the emergent behavior of small
drones swarming for distributed target localization. Comput. Sci. 2018, 29, 19–33. [CrossRef]

36. Kerkez, B.; Glaser, S.D.; Bales, R.C.; Meadows, M.W. Design and performance of a wireless sensor network for catchment-scale
snow and soil moisture measurements. Water Resour. Res. 2012, 48. [CrossRef]

37. Weimer, J.E.; Sinopoli, B.; Krogh, B.H. A relaxation approach to dynamic sensor selection in large-scale wireless networks. In
Proceedings of the International Conference on Distributed Computing Systems Workshops, Beijing, China, 17–20 June 2008;
pp. 501–506.

38. Krause, A.; Singh, A.; Guestrin, C. Near-optimal sensor placements in Gaussian processes: Theory, efficient algorithms and
empirical studies. Mach. Learn. Res. 2008, 9, 235–284.

39. Tokekar, P.; Branson, E.; Vander Hook, J.; Isler, V. Tracking aquatic invaders: Autonomous robots for monitoring invasive fish.
IEEE Robot. Autom. Mag. 2013, 20, 33–41. [CrossRef]

40. Tokekar, P.; Vander Hook, J.; Mulla, D.; Isler, V. Sensor planning for a symbiotic UAV and UGV system for precision agriculture.
IEEE Trans. Robot. 2016, 32, 1498–1511. [CrossRef]

41. Whitehead, K.; Hugenholtz, C.H. Remote sensing of the environment with small unmanned aircraft systems (UASs), part 1: A
review of progress and challenges. Unmanned Veh. Syst. 2014, 2, 69–85. [CrossRef]

42. Wu, B.; Fu, R.; Chen, J.; Zhu, J.; Gao, R. Research on Natural Disaster Early Warning System Based on UAV Technology. In IOP
Conference Series: Earth and Environmental Science; IOP Publishing: Chengdu, China, 2021; Volume 787, pp. 1–8.

http://dx.doi.org/10.3390/su13020654
http://dx.doi.org/10.1145/1773912.1773922
http://dx.doi.org/10.1016/j.jocs.2014.01.004
http://dx.doi.org/10.1016/j.jocs.2014.10.004
http://dx.doi.org/10.1016/j.ijdrr.2021.102289
http://dx.doi.org/10.1007/s11069-020-04389-8
http://dx.doi.org/10.1108/09653560610669945
http://dx.doi.org/10.1111/1468-5973.12174
http://dx.doi.org/10.1080/0144929X.2019.1621933
http://dx.doi.org/10.1016/j.jocs.2020.101205
http://dx.doi.org/10.1016/j.jocs.2018.09.014
http://dx.doi.org/10.1029/2011WR011214
http://dx.doi.org/10.1109/MRA.2012.2220506
http://dx.doi.org/10.1109/TRO.2016.2603528
http://dx.doi.org/10.1139/juvs-2014-0006


Future Internet 2022, 14, 81 22 of 22

43. Jones, B.; Jones, R. Public service chatbots: Automating conversation with BBC News. Digit. J. 2019, 7, 1032–1053. [CrossRef]
44. Angelov, S.; Lazarova, M. E-Commerce Distributed Chatbot System. In Proceedings of the Balkan Conference on Informatics,

Sofia, Bulgaria, 26–28 September 2019; pp. 1–8.
45. Licapa-Rodriguez, R.; Gomez-Ramos, J.; Mauricio, D. EcoBot: Virtual assistant for e-commerce of ecological bricks based on

Facebook Messenger. In Proceedings of the IEEE Engineering International Research Conference (EIRCON), Lima, Peru, 27–29
October 2021; pp. 1–4.

46. Tran, A.D.; Pallant, J.I.; Johnson, L.W. Exploring the impact of chatbots on consumer sentiment and expectations in retail. Retail.
Consum. Serv. 2021, 63, 102718. [CrossRef]

47. Fadhlallah, G.M. A Deep Learning-Based Approach for Chatbot: Medical Assistance a Case Study. Master’s Thesis, Facultédes
Lettres et des Langues FLL, Biskra, Argelia, 2021.

48. Dharmapuri Sridhar, M.P. Real-Time Flood Mapping for Disaster Management Decision Support in Chennai. Master’s Thesis,
System Design and Management Program, MIT, Cambridge, MA, USA, 2017.

49. Tsai, M.H.; Yang, C.H.; Chen, J.Y.; Kang, S.C. Four-Stage Framework for Implementing a Chatbot System in Disaster Emergency
Operation Data Management: A Flood Disaster Management Case Study. KSCE Civ. Eng. 2021, 25, 503–515. [CrossRef]

50. Rotondi, L.; Zuddas, M.; Marsella, P.; Rosati, P. A Facebook Page Created Soon After the Amatrice Earthquake for Deaf Adults
and Children, Families, and Caregivers Provides an Easy Communication Tool and Social Satisfaction in Maxi-Emergencies.
Prehosp. Disaster Med. 2019, 34, 137–141. [CrossRef]

51. Ahmady, S.E.; Uchida, O. Telegram-Based Chatbot Application for Foreign People in Japan to Share Disaster-Related Information
in Real-Time. In Proceedings of the Conference on Computer and Communication Systems (ICCCS), Shanghai, China, 15–18 May
2020; pp. 177–181.

http://dx.doi.org/10.1080/21670811.2019.1609371
http://dx.doi.org/10.1016/j.jretconser.2021.102718
http://dx.doi.org/10.1007/s12205-020-2044-4
http://dx.doi.org/10.1017/S1049023X19000086

	Introduction
	Research Objectives
	Contribution
	Outline

	Platform Design
	Bot-Based Applications for Natural Disasters
	Jayma Application
	Rimay Application
	Ayni Application

	Experiments
	Platform Configuration
	Bottlenecks and Performance Evaluation for Ayni
	Bottlenecks and Performance Evaluation for Rimay
	Bottlenecks and Performance Evaluation for Jayma

	Related Work
	Discussion
	Conclusions and Future Work
	References

