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Application of agrochemicals and mechanization enabled increasing agricultural

productivity yet caused various environmental and soil health-related problems.

Agricultural practices affect soil microorganisms, which are the key players of many

ecosystem processes. However, less is known about whether this effect differs between

time points. Therefore, soil was sampled in winter (without crop) and in summer (in

the presence of maize) from a long-term field experiment (LTE) in Bernburg (Germany)

managed either under cultivator tillage (CT) or moldboard plow (MP) in combination

with either intensive nitrogen (N)-fertilization and pesticides (Int) or extensive reduced

N-fertilization without fungicides (Ext), respectively. High-throughput sequencing of 16S

rRNA gene and fungal ITS2 amplicons showed that changes in the microbial community

composition were correlated to differences in soil chemical properties caused by tillage

practice. Microbial communities of soils sampled in winter differed only depending on

the tillage practice while, in summer, also a strong effect of the fertilization intensity was

observed. A small proportion of microbial taxa was shared between soils from the two

sampling times, suggesting the existence of a stable core microbiota at the LTE. In

general, taxa associated with organic matter decomposition (such as Actinobacteria,

Bacteroidetes, Rhizopus, and Exophiala) had a higher relative abundance under CT.

Among the taxa with significant changes in relative abundances due to different long-term

agricultural practices were putative pathogenic (e.g., Gibellulopsis and Gibberella) and

beneficial microbial genera (e.g., Chitinophagaceae, Ferruginibacter, and Minimedusa).

In summary, this study suggests that the effects of long-term agricultural management

practices on the soil microbiota are influenced by the soil sampling time, and this needs

to be kept in mind in future studies for the interpretation of field data.
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INTRODUCTION

Agricultural production has been intensified globally through
the use of irrigation, fertilizers, biocides, and mechanization
to meet the growing demands for food, feed, and fiber (1).
However, intensive agricultural management contributes to soil
erosion, salinization, nutrient depletion, and imbalance and
a decline in water-holding capacity and soil structure (2).
Furthermore, loss of soil biodiversity as well as increases of soil-
borne plant pathogens are reported as principal consequences of
conventional intensive agriculture (3, 4). Applying a sustainable
cropmanagement, e.g., highly diverse crop rotations and reduced
tillage coupled with lower agrochemical input, is suggested to
conserve soil quality and health as well as biodiversity (5, 6).

Soil properties in agricultural systems are affected by multiple
environmental and anthropogenic factors, resulting in temporal
variability, i.e., variability between years and within growing
seasons (7, 8). In particular, biological soil properties are highly
spatiotemporally variable. For instance, temporal dynamics
of soil microbial communities and fluctuations in microbial
(relative) abundances during the growing season of a crop
have been reported (9–12). In contrast, other features, such
as soil pH, texture, and porosity, are considered to be rather
static (8).

Soil microorganisms are involved in nutrient cycling,
organic matter (OM) decomposition, pathogen suppression,
and maintenance of the soil structure (13). Therefore, the soil
microbiota is essential for soil ecosystem functioning and for
plant growth and health (14). There is increasing evidence
that agricultural management practices affect the soil microbial
community structure and composition (12, 15–18). Previous
studies show that the type of tillage is one of the main drivers
of the microbial community composition (19–21), leading to
changes in the relative abundance of certain taxa. For instance,
actinobacterial taxa (e.g., Nocardioides, Rubrobacter), known
to contribute to OM decomposition (22), exhibited a higher
relative abundance in soils under cultivator tillage (CT), whereas
acidobacterial taxa (such as order Gp4) were higher under
conventional moldboard plow (MP) tillage (21). Regarding
putative plant pathogens, tillage practices exert different effects
on soil microbial communities. For instance, Fusarium or
Phoma were shown to be enhanced under CT or MP practices,
respectively (20). Fertilizer quantity and quality as well as
pesticide input also shape the soil microbiota (20, 21, 23,
24). Nitrogen (N) fertilization intensity was shown to increase
the relative abundance and community structure of bacteria
and fungi (25) as well as of plant beneficial microorganisms,
such as arbuscular mycorrhizal fungi (AMF) (20). Many
studies usually focus on the soil microbiota of one growing
season disregarding temporal variability between years. This
is of particular concern as an improved understanding of the
temporal dependency of the farming practice effect on the soil
microbiota under field conditions could also help to understand
the mechanism behind plant–soil feedback and agricultural
legacies (26, 27). This could make a critical contribution to
the development of microbial-based solutions for sustainable
farming practices.

In the present study, we used a long-term field experiment
(LTE) established in Bernburg (Saxony-Anhalt, Germany) in
1992. This LTE facilitates comparing two different tillage
practices, i.e., CT vs. MP. Additionally, two different intensities
of N-fertilization and pesticide use, i.e., standard N-fertilization
with pesticide application (Int) vs. reduced N-fertilization
without growth regulators/fungicides (Ext), are applied per tillage
practice. The effects of these agricultural managements on the
LTE soil microbiota have already been well described (18, 20,
21), but previous studies lack information on the temporal
variability of the soil microbiota. Therefore, the objectives of
the present study are a) to determine the effect of tillage and
N-fertilization intensity on the soil microbiota (here: bacteria,
archaea, and fungi) depending on the soil sampling time and
b) to evaluate whether soils under different management and
sampling time share commonmicroorganisms (coremicrobiota).
We hypothesized that (i) tillage practice is the main driver of the
soil microbiota in winter while, in summer, also the fertilization
intensity exerts a strong effect. Moreover, we hypothesized that
(ii) long-term conservation practices (CT, Ext) exhibit a higher
microbial diversity and more potentially beneficial microbes
compared with the conventional practices (MP, Int) independent
of the sampling time.

MATERIALS AND METHODS

Site Description and Soil Sampling
The LTE is located at the Anhalt University of Applied Sciences,
Bernburg, Saxony-Anhalt, Germany, and it was established in
1992 to evaluate an annual rotation system consisting of winter
wheat (Triticum aestivum L.) / maize (Zea mays L.) / winter
wheat / winter barley (Hordeum vulgare L.) / winter rapeseed
(Brassica napus L.) under two different tillage practices and
fertilization intensities. The LTE consists of five plots (1.2 ha
each, divided into four subplots [replicates]). The experimental
station (51.82◦N and 11.70◦E, 511mm mean annual rainfall,
9.7◦C mean temperature [1981–2010], 80m above sea level) was
previously described (28). Briefly, the soil is a loess chernozem
over limestone (22% clay, 70% silt, and 8% sand) in the plowed
upper horizon (20).

Two different tillage practices [CT (12–15 cm depth) vs.
MP (20–30 cm depth)] are applied in combination with two
intensities of N-fertilization (Int vs. Ext). This results in four
treatments (CT.Ext, CT.Int, MP.Ext, and MP.Int), each with four
replicates (Table 1).

Soil sampling was carried out in the season 2018/2019 in the
field used for maize cultivation. The preceding crop was winter
wheat (after rapeseed), which was harvested in July 2018. Soil
management with CT or MP was applied on 5 November and
soil samples were collected on 28 November 2018, from the
fallow field (in the following referred to as winter sampling).
Maize (cv. Benedictio) was sown on 23 April 2019, with a single-
grain seed drill. After sowing, 100 or 40N kg ha−1 in a water
solution of urea and ammonium nitrate (UAN 28; 14% N as
carbamide, 7% N as NH+

4 , 7% N as NO−

3 ) were applied as Int
or Ext treatment, respectively. As postemergence herbicides, S-
metolachlor, atrazine with mesotrione, and prosulfuron were
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TABLE 1 | Overview of long-term agricultural practices (treatments; n = 4 replicates) studied at LTE Bernburg.

Acronym Sampling time Tillage practice N-fertilization intensity

W.CT.Ext Winter (W) Cultivator tillage (CT) 50% reduced N-fertilization without use of fungicides/growth regulators (Ext)

W.CT.Int Winter (W) Cultivator tillage (CT) Standard N-fertilization with use of pesticides/growth regulators (Int)

W.MP.Ext Winter (W) Moldboard plow (MP) 50% reduced N-fertilization without use of fungicides/growth regulators (Ext)

W.MP.Int Winter (W) Moldboard plow (MP) Standard N-fertilization with use of pesticides/growth regulators (Int)

S.CT.Ext Summer (S) Cultivator tillage (CT) 50% reduced N-fertilization without use of fungicides/growth regulators (Ext)

S.CT.Int Summer (S) Cultivator tillage (CT) Standard N-fertilization with use of pesticides/growth regulators (Int)

S.MP.Ext Summer (S) Moldboard plow (MP) 50% reduced N-fertilization without use of fungicides/growth regulators (Ext)

S.MP.Int Summer (S) Moldboard plow (MP) Standard N-fertilization with use of pesticides/growth regulators (Int)

applied two months before soil sampling in both Int and Ext
treatments. The second soil sampling was carried out on 2
July 2019, at the vegetative stage of maize [stem elongation
31–34 BBCH scale (29)], in the following referred to as
summer sampling.

For each sampling and treatment, 20 random subsamples per
replicate (n = 4) were taken with a soil corer (5 cm diameter)
from 0 to 20 cm depth in winter. In order to reduce the effect
of the standing crop in summer, the soil loosely adhering to
maize roots was sampled which was obtained by digging out and
shaking nine plants per replicate. Soil subsamples were combined
per replicate and homogenized by sieving (mesh size 2mm).
Thus, a total number of 16 samples (four treatments, each four
replicates) for each sampling time were collected and stored at
−20◦C until total community-DNA (TC-DNA) extraction.

Soil Chemical Properties
Total N (TN), total C (TC), OM (for soils sampled in
summer), total organic C (TOC), K2O, P2O5, and pH were
analyzed according to standard protocols of VDLUFA and DIN
(Association of German Agricultural Analytic and Research
Institutes e. V. and German Institute for Standardization,
respectively). Soil OM was converted to TOC using a conversion
factor of 1.724 (30). K2O and P2O5 were converted into K and P,
respectively, according to their molecular mass.

Total Community-DNA Extraction
The TC-DNAwas extracted from 0.5 g of soil (fresh weight) from
each replicate by harsh lysis using a FastPrep-24 bead-beating
system and the FastDNA Spin Kit for Soil and then purified
using GeneClean Spin Kit according to the manufacturer’s
instructions (both MP Biomedicals, Santa Ana, California, USA).
The TC-DNA quality and yields were checked by 1% agarose gel
electrophoresis using 0.5X TBE buffer and stained with 0.005%
ethidium bromide. The extracted and purified TC-DNA was
stored at−20◦C.

Quantification of Bacterial 16S rRNA Gene
and Fungal ITS Fragment Copies by
Quantitative Real-Time PCR (qPCR)
Quantification of the bacterial 16S rRNA gene was
carried out using the primer pair Bact1369F (5’-
CGGTGAATACGTTCYCGG-3’) and Prok1492R (5’-
GGWTACCTTGTTACGACTT-3’) (31). The detection

of bacterial genes was based on the release of a
fluorescence signal from the TaqMan-probe TM1389F [5’-
CTTGTACACACCGCCCGTC-3’; (31)] containing the FAM
fluorophore attached to the 5’-end and a TAMRA quencher at the
3’-end. Amplifications were performed in 50 µL reaction volume
as described in Vogel et al. (32) with the modification of using
1.25U Hot Start Taq Polymerase (New England BioLabs, Inc.,
Ipswich, Massachusetts, USA). Serial dilutions of the gel-purified
16S rRNA gene from Escherichia coli (1,467 bp) cloned into
pGEM-T vector (Promega, Fitchburg, Wisconsin, USA; optical
density OD260 = 0.513) were used for the generation of standard
curves (average efficiency= 112.3%; R2 = 0.982).

Fungal ITS fragments were quantified according to the
protocol established by Gschwendtner et al. (33) with the
primers ITS1 (5’-TCCGTAGGTGAACCTGCGG-3’) and ITS4
(5’-TCCTCGCTTATTGATATGC-3’) (34). The detection
of fungal fragments was carried out with the fluorescent
dye EvaGreen (Biotium, San Francisco, California, USA).
Amplifications were performed in 50 µL reaction volume as
described in Vogel et al. (32) with the modification of 4% DMSO.
The serially diluted gel-purified ITS fragment from Phomopsis
sp. cloned into pGEM-T vector was used for generating standard
curves (technical triplicates; average efficiency = 81.4%; R2

= 0.998). The specificity of EvaGreen detection was checked
by melting curve analysis. Amplifications and detections
were performed in the Thermocycler CFX96 Real Time PCR
System (Bio-Rad Laboratories, Inc., Hercules, California, USA).
Logarithmic transformed data was related to the soil dry weight.

16S rRNA Gene and ITS2 Fragment
Amplicon Sequencing
As described in Fernandez-Gnecco et al. (12), amplicon
sequencing libraries were prepared using a two-step PCR
targeting the V3-V4 region of the bacterial and archaeal 16S
rRNA gene or the ITS2 region for fungal community profiling.
Briefly, the V3-V4 region of the 16S rRNA gene was amplified
using primers Uni341F (5’-CCTAYGGGRBGCASCAG-3’) and
Uni806R (5’- GGACTACHVGGGTWTCTAAT-3’) (35–37) with
PCR conditions as described in Babin et al. (21). The
first ITS2 PCR was performed with the primers gITS7 (5’-
GTGARTCATCGARTCTTTG-3’) and ITS4 (5’-TCC TCC GCT
TAT TGA TAT GC-3’) (38) with PCR conditions as described
in Fernandez-Gnecco et al. (12). PCR products were checked by
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1% agarose gel electrophoresis using 0.5X TBE buffer and stained
with 0.005% ethidium bromide.

Illumina sequencing adapters and sample-specific dual
indexes (IDT Integrated DNA Technologies, Coralville, Iowa,
USA) were added in a second PCR using PCRBIO HiFi (PCR
Biosystems Ltd., London, UK) for 15 amplification cycles. As
for the first PCR, amplification products were purified using
HighPrep PCR clean-up (MagBio Genomics, Gaithersburg, USA,
ratio 0.65:1). SequalPrep Normalization Plate (96) Kits were used
to normalize sample concentrations (Thermo Fisher Scientific,
Waltham, Massachusetts, USA). The libraries were then pooled
and concentrated using DNA Clean and Concentrator-5 Kit
(Zymo Research, Irvine, California, USA). After determining 16S
rRNA gene and ITS2 pool concentrations using the Quant-iT
High-Sensitivity DNA Assay Kit (Life Technologies, Carlsbad,
California, USA), the libraries were denatured and diluted to 8
pM. Sequencing was performed on an Illumina MiSeq platform
using Reagent Kit v2 (2 × 250 cycles; Illumina, San Diego,
California, USA) following the manufacturer’s instructions.

Sequence Analysis
Cutadapt version 2.3 (39) was used to remove primer sequences
from first PCR, and only read pairs containing both primer
sequences were kept. Reads were further processed for error
correction, merging, and generation of amplicon sequence
variants (ASVs) using DADA2 version 1.10.0 (40) plugin for
QIIME2 (41) with the following parameters: truncL = 0,
truncR = 0; trimL = 8, trimR = 8, a minimum overlap of
five nucleotides, and otherwise default parameters. Each ASV
was taxonomically annotated using q2-feature-classifier classify-
sklearn module trained with SILVA SSU rel. 132 database
(42), trimmed for the V3-V4 region for bacterial and archaeal
community analysis or with the untrimmedUNITE database v7.2
dynamic (43) for fungal community analysis.

Singletons, potential contaminants based on the negative
control, and non-target reads (chloroplasts and mitochondria
for 16S rRNA gene data) were removed. Additionally, to
account for PCR and sequencing artifacts, microbial ASVs
with fewer than five reads across the full data set were
excluded from further analyses. For 16S sequencing data,
curation consisted of ambiguous taxonomy renaming. Decontam
R package (44) was used to filter ASVs identified as PCR
contaminants using the “prevalence” method. Only for ITS data,
a potential contaminant ASV, identified as Penicillium sp., was
found and removed in winter samples, which represented up
to 51% of reads. The resulting final number of ASVs and
quality-filtered reads per sample and treatment can be found
in Supplementary Tables 1–3. For 16S rRNA gene data, the
cleaning resulted in a final number of 3,814 ASVs and 421,991
high-quality reads for the winter sampling and 4,970 ASVs and
519,482 reads for the summer sampling. For ITS data, a total of
175 ASVs and 85,081 reads for the winter sampling and 885 ASVs
and 1,516,993 reads for the summer sampling were obtained.

Statistical Data Analysis
According to the experimental design, tillage practice and N-
fertilization intensity were treated as fixed factors while sampling

time was considered random. Therefore, for each sampling time
separately, a two-factorial model was used for the statistical
analysis of soil chemical characteristics, microbial gene copy
numbers, and alpha- and beta-diversity metrics. Soil chemical
characteristics, alpha-diversity indices and qPCR results were
subjected to analysis of variance (ANOVA) after checking
whether data meets ANOVA assumptions (Shapiro-Wilk’s
and Levene’s tests). When ANOVA assumptions failed, data
was log10 transformed to achieve a Gaussian distribution. To
conduct comparison between two individual treatments (CT.Ext
vs. CT.Int, MP.Ext vs. MP.Int, CT.Ext vs. MP.Ext, and CT.Int vs.
MP.Int), Student’s t-test was performed. Alpha-diversity indices
(Species richness, Shannon diversity, and Pielou’s evenness)
were calculated per sample based on 100 times randomly to the
least number of sequences per data set (bacterial and archaeal
community: winter n = 13,905 or summer n = 3,962 reads;
fungal community: winter n = 3,460 or summer n = 65,376
reads) subsampled read count data. In order to test the effect of
tillage and N-fertilization intensity on the microbial community
composition (beta-diversity), a permutational multivariate
analysis of variance [PERMANOVA; (45)] was used. The
PERMANOVA analysis was based on Bray–Curtis dissimilarity
matrices using 10,000 permutations calculated from logarithmic
transformed data. Differences among community compositions
were visualized using non-metric multidimensional scaling
(NMDS) and constrained analysis of principal coordinates
(CAP). Both methods were based on Bray–Curtis dissimilarities
and were performed with logarithmic transformed data.
To correlate microbial community composition with soil
chemical parameters, the function envfit (package vegan)
was used.

To test formicrobial genera with significantly different relative
abundance between CT vs. MP or Int vs. Ext, respectively, a
likelihood ratio test under negative binomial distribution and
generalized linear models (FDR-corrected p < 0.05) was carried
out separately per sampling time and for each N-fertilization
intensity or tillage type, respectively. The normalization of
count data was performed using correction factors for the
library size as recommended by the developers (edgeR), and
only genera present in more than three samples across the
data set were considered (relative abundance > 0.5%). To
graphically display the relative abundance distribution of the
most abundant genera affected by agricultural practices, a heat
map based on relative abundances for each taxon was drawn
(horizontal clustering based on Euclidean distance). For each
sampling time, a Venn diagram was generated to compare
the presence of ASVs in the different agricultural practices
and to identify the core microbiota, i.e., ASVs present in all
treatments. Fungal trophic modes at genus level were predicted
using the software tool FUNGuild following developers’
recommendations (46).

All analyses were carried out with RStudio version 3.6.1
(https://www.r-project.org/) using the following R packages:
vegan (47), agricolae (48), rcompanion (49), car (50), edgeR
(51), ggplot2 (52), rioja (53), phyloseq (54), labdsv (55),
mvabund (56), pheatmap (57), BiocManager (58), and
VennDiagram (59).
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TABLE 2 | Chemical properties in soils under different long-term tillage practices (cultivator tillage vs. moldboard plow) and N-fertilization intensities (intensive vs.

extensive) in LTE Bernburg.

Soil chemical properties Season Cultivator tillage Moldboard plow

Extensive Intensive Extensive Intensive

TN (%) Winter 0.2 ± 0 aA 0.2 ± 0 aA 0.1 ± 0 aB 0.1 ± 0 aB

Summer 0.2 ± 0.0 aA 0.2 ± 0 aA 0.1 ± 0 aB 0.1 ± 0 aB

TC (%) Winter 2.2 ± 0 aA 2.1 ± 0 aA 1.8 ± 0.1 aB 1.9 ± 0.1 aB

Summer 2.2 ± 0.1 aA 2.3 ± 0.0 aA 1.7 ± 0.0 bB 1.9 ± 0.0 aB

TOC (%) Winter 2.0 ± 0 aA 1.9 ± 0 aA 1.4 ± 0 aB 1.4 ± 0.1 aB

Summer 2.0 ± 0.1 aA 2.2 ± 0 aA 1.4 ± 0 aB 1.5 ± 0 aB

Available K (mg kg−1) Winter 483.4 ± 21.49 aA 388.7 ± 12.68 bA 164.6 ± 6.48 aB 148.3 ± 6.21 aB

Summer 411.7 ± 6.19 aA 397.9 ± 8.01 aA 153.9 ± 1.91 aB 147.4 ± 2.05 aB

Available P (mg kg−1) Winter 115.9 ± 12.4 aA 126.4 ± 16 aA 84.3 ± 3.8 aB 76.7 ± 4.1 aB

Summer 168.3 ± 8.4 aA 196.6 ± 9.7 aA 103.6 ± 7 aB 78.2 ± 4.5 bB

pH Winter 7.3 ± 0.1 aB 7.3 ± 0.1 aB 7.5 ± 0.0 aA 7.5 ± 0.0 aA

Summer 7.3 ± 0.1 aB 7.3 ± 0.1 aB 7.5 ± 0.0 aA 7.6 ± 0.0 aA

TN, total nitrogen; TC, total carbon; TOC, total organic carbon; available potassium (K) and phosphorus (P) content. Means (n = 4) are displayed ± standard error. Different lowercase

letters indicate significant differences among N-fertilization intensities tested separately per tillage practice. Different uppercase letters indicate significant differences among tillage

practices tested separately per N-fertilization intensity (paired t-test, p < 0.05).

RESULTS

Soil Chemical Properties
Observed effects of tillage practice on soil chemical properties
were independent of the sampling time. Two-way ANOVA
showed that TN, TC, TOC, and available K and P as well as
pH (all p < 0.001) were significantly affected by the tillage
practice. Pairwise comparisons showed that the amount of TN,
TC, TOC, and available K and P were significantly higher in CT
compared with MP irrespective of the N-fertilization intensity
while pH showed the opposite trend (7.5 or 7.3 for MP or
CT, respectively; Table 2). Regarding N-fertilization intensity,
effects on soil chemical properties depended on the sampling
time. Two-way ANOVA showed that the N-fertilization intensity
significantly affected the amount of available K (p = 0.001) in
soils sampled in winter while TC content and available P levels
(both p < 0.001) were affected by N-fertilization intensity in
soils sampled in summer. Pairwise comparisons indicated higher
levels of available K in CT.Ext vs. CT.Int in soils sampled in
winter and higher TC content in MP.Int vs. MP.Ext and higher
available P levels in MP.Ext vs. MP.Int in soils sampled in
summer. Other parameters (pH, TOC, TN) were not affected by
N-fertilization intensity.

Quantification of Bacterial and Fungal
Markers
Two-way ANOVA showed that the 16S rRNA gene copy numbers
were in both sampling times affected by neither tillage practice
nor N-fertilization intensity. Bacterial 16S rRNA gene copy
numbers ranged in winter from 9 × 108 to 1 × 109 and
in summer from 7 × 108 to 1 × 109 per gram of dry soil
(Supplementary Figure 1A).

In contrast, two-way ANOVA showed that ITS fragment copy
numbers were significantly affected by the tillage practice in

winter (p = 0.001) and summer (p = 0.004) but not by N-
fertilization intensity. Fungal ITS copy numbers ranged in winter
from 1 × 107 to 1 × 108 and in summer from 6 × 106 to 1 ×

107 per gram of dry soil (Supplementary Figure 1B). Pairwise
comparisons showed that soils from CT exhibited higher ITS
copy numbers compared with MP under both N-fertilization
intensities (Ext and Int) in winter, whereas in summer, this
observation was only made in Int.

Soil Microbial Alpha-Diversity Patterns
Rarefaction curves (Supplementary Figure 2) showed that the
sequencing depth was sufficient to cover the microbial diversity
present in each sample.

Two-way ANOVA revealed that both tillage practice and N-
fertilization intensity significantly affected the alpha-diversity
of bacterial and archaeal communities in soils sampled in
winter (Species richness and Shannon diversity, all p < 0.001;
Figures 1A,B). Diversity estimators showed higher diversity in
MP vs. CT and in Int vs. Ext. Pielou’s evenness did not differ
between Int vs. Ext in winter but was significantly higher in CT
vs. MP (p < 0.001). Bacterial and archaeal Species richness and
Shannon diversity in soils sampled in winter were significantly
higher in MP.Int compared with CT.Int (Figures 1A,B) but
the opposite was observed for Pielou’s diversity (Figure 1C).
In soils sampled in summer, two-way ANOVA revealed that
both, tillage practice and N-fertilization intensity, affected the
alpha-diversity of bacterial and archaeal communities (Species
richness and Shannon diversity, all p < 0.01), resulting in higher
bacterial/archaeal diversity in CT vs. MP. Pielou’s evenness was
only affected by tillage practice (p = 0.02), resulting in higher
bacterial/archaeal diversity in Ext vs. Int. Contrary to winter,
diversity estimators (Species richness, Shannon diversity) for
bacterial and archaeal communities in soils sampled in summer
from CT.Int had a significantly higher alpha-diversity compared
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FIGURE 1 | Diversity indices of bacterial/archaeal (A–C) and fungal (D–F) communities in soils sampled in LTE Bernburg in winter or summer under different

long-term tillage practices (CT, Cultivator Tillage vs. MP, Moldboard Plow) and N-fertilization intensities (Int, intensive vs. Ext, extensive). Boxplots show the mean

(yellow dot), min./max. (whiskers), and replicates per sample (n = 4; black dots). Asterisk indicates significant differences between treatments (paired t-test, p < 0.05).

with MP.Int, while no significant differences among individual
treatments were observed for Pielou’s evenness (Figure 1C).

Regarding the alpha-diversity of fungal communities in soils
sampled in winter, two-way ANOVA revealed that diversity
estimators (Species richness, Shannon diversity, and Pielou’s
evenness) were affected by neither tillage practice nor N-
fertilization intensity. In soils sampled in summer, two-way
ANOVA revealed a significant interaction between tillage
practice and N-fertilization intensity on fungal Shannon diversity
and Pielou’s evenness (both p = 0.04), resulting in higher
indices in CT.Ext vs. MP.Ext and MP.Int vs. CT.Int treatments.
Pairwise comparisons showed that the Pielou estimator was
higher in MP.Int than in MP.Ext in soils sampled in summer
(Figures 1D–F).

Soil Microbial Beta-Diversity Patterns
Soil microbial communities under different tillage practice and
N-fertilization intensity were analyzed by PERMANOVA, which
showed that both the bacterial/archaeal and fungal community
composition in soils sampled in winter were significantly affected
by tillage practice but not by N-fertilization intensity (Table 3).
In summer, both factors significantly affected the microbial
community composition with tillage being a stronger driver than
N-fertilization intensity.

NMDS ordination showed a clear tillage-dependent
clustering at both sampling times for bacterial/archaeal
communities (Supplementary Figures 3A,B). Fungal
communities were grouped by tillage practice with subclusters
corresponding to the N-fertilization intensity in summer, but
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TABLE 3 | Effect of long-term tillage practice and N-fertilization intensity on soil microbial communities in LTE Bernburg.

Bacterial/archaeal communities Fungal communities

Winter Summer Winter Summer

Factors Explained

variance (%)

p-value Explained

variance (%)

p-value Explained

variance (%)

p-value Explained

variance (%)

p-value

Tillage 16.81 9.99e-05* 16.60 9.99e-05* 11.03 0.01* 28.81 9.99e-05*

N-Fertilization intensity 7.47 0.08 13.79 0.001* 5.75 0.63 10.52 0.01*

Tillage: N-Fertilization intensity 6.18 0.24 6.85 0.13 4.94 0.80 6.15 0.14

Residuals 69.52 62.68 78.27 54.5

Asterisk indicates significant influence of the factor analyzed (p < 0.05).

no treatment-dependent clustering was observed in winter
(Supplementary Figures 3C,D).

CAP analysis confirmed PERMANOVA results for both 16S
rRNA gene (Figures 2A,B) and ITS data (Figures 2C,D). Tillage
practice shaped the microbial community composition, resulting
in a distinct clustering of MP and CT samples at both sampling
times. Microbial communities in CT soils were significantly
positively correlated with P (except for ITS data in winter), K,
TOC, TN, and TC content, whereas microbial communities in
MP soils were significantly positively correlated with the soil pH
(all p < 0.01), independently of the sampling time.

Effects of Tillage and N-Fertilization
Intensity on Soil Bacterial/Archaeal Taxa
The taxonomic composition at phylum level
(Supplementary Figure 4A) was dominated by Bacteroidetes
(9 or 37%, winter or summer, respectively), Proteobacteria
(25 or 26%), Acidobacteria (17 or 8%), Actinobacteria (23
or 0.5%), Thaumarchaeota (12 or 9%), and Firmicutes (3 or
7%). In winter, most of the differences in phylum relative
abundance among the treatments were due to the tillage
practice, resulting in a significantly higher relative abundance
of Actinobacteria (p = 0.002) in CT compared with MP.
In summer, in contrast, the phylum Firmicutes exhibited
a significantly higher relative abundance (p = 0.01) in MP
soils compared with CT. Furthermore, also the N-fertilization
intensity affected the bacterial/archaeal phylum composition in
summer. For instance, Proteobacteria (p= 0.007), Acidobacteria
(p = 0.04), Actinobacteria (p = 0.01), and Thaumarchaeota
(p = 0.005) exhibited higher relative abundances in Int vs.
Ext treatments, whereas Bacteroidetes showed the opposite
trend (p= 0.01).

At the genus level, in total, 592 bacterial/archaeal genera
were detected, and sequences with closest affiliation to
Nitrososphaeraceae (Thaumarchaeota; 11 or 9%, winter or
summer, respectively), Microscillaceae (Bacteroidetes; 1 or
8%), Chitinophagaceae (Bacteroidetes; 1 or 7%), Bacillus
(Firmicutes; 2 or 5%), and Sphingomonas (Proteobacteria; 3 or
4%) were predominant.

In winter, several bacterial (but not archaeal) genera with
significantly different relative abundances in MP vs. CT
were identified (Supplementary Table 4; Figure 3), whereas

no N-fertilization intensity-dependent genera were detected
(Supplementary Table 5; Figure 3). For instance, acidobacterial
taxa (RB41 and Subgroup 7) had significantly higher relative
abundances in MP treatments and actinobacterial genera
(Rubrobacter and Nocardioides) in CT treatments, irrespective
of the N-fertilization intensity. Additionally, Microvirga
(Proteobacteria) had a higher relative abundance in CT.Int
compared with MP.Int, and sequences with the closest affiliation
to Gemmatimonadaceae (Gemmatimonadetes) were higher in
MP.Ext compared with CT.Ext indicating interaction effects
between tillage and N-fertilization intensity.

In contrast, in summer, many genera with significantly
different relative abundances between N-fertilization intensities
were detected, and only a few genera (under 1% of relative
abundance) were found to differ in relative abundance depending
on tillage practice (Figure 3; Supplementary Tables 4, 5). For
instance, Ferruginibacter and sequences with the closest
affiliation to Chitinophagaceae (both belonging to the phylum
Bacteroidetes) were significantly enriched under Ext compared
with Int independent of the tillage practice. In MP soils, a
significantly higher relative abundance of sequences with the
closest affiliation to Saccharimonadales (Patescibacteria) was
observed in Ext compared with Int.

Effects of Tillage and N-Fertilization
Intensity on Soil Fungal Taxa
The taxonomic composition at the phylum level
(Supplementary Figure 4B) was dominated by the phylum
Ascomycota (51 or 57%, winter or summer, respectively),
Basidiomycota (33 or 12%), Mucoromycota (1 or 22%),
Mortierellomycota (13 or 6%), Chytridiomycota (0.8 or 1%),
and Glomeromycota (0.05 or 0.3%). At both sampling times, the
phylum Mucoromycota exhibited a significantly higher relative
abundance in CT compared with MP while Glomeromycota
showed the opposite trend (both p < 0.02). In summer,
Basidiomycota had a higher relative abundance in MP compared
with CT (p= 0.01).

At genus level, 241 fungal genera were detected, among
which Exophiala (Ascomycota, 11 or 16%, winter or
summer, respectively), Rhizopus (Mucoromycota, 2 or 22%),
Bolbitius (Basidiomycota, 20 or 0.05%), and Mortierella
(Mortierellomycota, 13 or 6%) were the most abundant.
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FIGURE 2 | Constrained analysis of principal coordinates (CAP) using Bray–Curtis distance of bacterial/archaeal (A,B) and fungal (C,D) communities in soils sampled

in LTE Bernburg in winter (W) or summer (S) under different long-term tillage practices (CT, Cultivator Tillage vs. MP, Moldboard Plow) and N-fertilization intensities (Int,

intensive vs. Ext, extensive). Asterisks indicate a significant correlation of the chemical parameter with the community composition (p < 0.05). Soil chemical

parameters: total nitrogen (TN), total carbon (TC), total organic carbon (TOC), available potassium (K), and phosphorus (P) content and pH.

In order to obtain further insights into the ecological
assignment of detected fungal genera, a tentative classification
into pathotrophic, saprotrophic or symbiotrophic, or
multiple trophic modes was made using FUNGuild
(Supplementary Figure 5). Circa 77% of fungal reads could
be classified at the genus level. In soils sampled in winter,
fungal trophic modes were affected by tillage practice and
the interaction with N-fertilization intensity, resulting in the
highest relative abundance of saprotrophic fungi in CT.Ext
(p = 0.03). In soils sampled in summer, the fungal trophic
assignment was influenced by N-fertilization intensity and the
interaction with tillage practice, resulting in the lowest relative

abundance of genera classified as pathotroph-saprotroph in
MP.Int (p= 0.03).

The analysis of differentially abundant fungal genera
among treatments showed that, in soils sampled in winter,
the genus Rhizopus (classified as pathotroph-saprotroph-
symbiotroph, Mucoromycota) was most strongly affected
by tillage practice, displaying higher relative abundances in
CT than MP (Figure 4; Supplementary Table 6). No fungal
genera significantly responding to N-fertilization intensity
were detected in winter (Supplementary Table 7). In soils
sampled in summer, differentially abundant fungal taxa were
found to be affected by tillage practice and N-fertilization
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FIGURE 3 | Heatmap displaying the relative abundance distribution of bacterial genera (responder) significantly affected (FDR < 0.05) by different long-term

management practices (CT, Cultivator Tillage vs. MP, Moldboard Plow; Int, intensive vs. Ext, extensive) in soils sampled in LTE Bernburg in winter (W) or summer (S).

Most abundant responders with average (n = 4) relative abundance per treatment >0.5% are shown. Pairwise comparisons between treatments are presented in

Supplementary Tables 4, 5.

intensity. For instance, the genus Gibberella (pathotroph;
Ascomycota) showed a significantly higher relative abundance in
CT compared with MP. Metarhizium (pathotroph-symbiotroph;
Ascomycota) was enriched under CT.Ext compared with
MP.Ext (Supplementary Table 6). Minimedusa (no trophic
mode assigned; Basidiomycota) and Gibellulopsis (pathotroph;
Ascomycota) were significantly enriched under Int compared
with Ext. Soils under MP.Int exhibited a higher relative
abundance of the genus Exophiala (pathotroph-symbiotroph;
Ascomycota) compared with MP.Ext, whereas Penicillium (no
trophic mode assigned; Ascomycota) showed the opposite trend.
Genus Rhizopus showed different responses to N-fertilization
intensity depending on the tillage type (higher relative abundance
in CT.Int vs. CT.Ext but higher in MP.Ext vs. MP.Int; Figure 4;
Supplementary Table 7).

Soil Bacterial/Archaeal Core Microbiota in
the LTE Across Different Agricultural
Practices
Regardless of tillage practice or N-fertilization intensity, a
soil core microbiota, defined here as ASVs present in soils
of all four investigated treatments (CT.Ext, CT.Int, MP.Ext,
and MP.Int), was detected at each sampling time. The winter
bacterial/archaeal core microbiota consisted of 484 ASVs
(Figure 5A), representing 13% of the total ASVs detected
in all soils. Most of these bacterial/archaeal core ASVs
were affiliated to the phyla Actinobacteria, Proteobacteria,
and Acidobacteria (all ca. 25%; Figure 5C). Classification
at lower taxonomic levels revealed RB41 (Acidobacteria;
2%) and unclassified genera of Micrococcaceae (3%) and
Deltaproteobacteria (3%) as major core bacteria. The summer
core microbiota consisted of 555 ASVs (Figure 5B), representing

12% of the total ASVs. Among all summer core ASVs,
35% were affiliated to the phylum Bacteroidetes, 29% to
Proteobacteria and 10% to Acidobacteria (Figure 5D).
Most of these ASVs belonged to unclassified genera of the
families Microscillaceae (8%), Methylophilaceae (1%), and
Blastocatellaceae (3%).

The core microbiota shared between winter and
summer comprised 177 ASVs (data not shown). These
sampling time-independent ASVs were mainly affiliated to
Chitinophagaceae (13%), Acidobacteria_subgrp_6 (7%), and
Sphingomonadaceae (5%).

Soil Fungal Core Microbiota in the LTE
Across Different Agricultural Practices
Regardless of tillage practice or N-fertilization intensity, a winter
fungal core microbiota consisting of 45 ASVs was identified
(Figure 6A), representing 26% of the total ASVs. Most of
the core ASVs belonged to the phyla Ascomycota (58%) and
Basidiomycota (29%) (Figure 6C). At lower taxonomic levels,
fungal core ASVs at the winter sampling were classified mainly
as genera Bolbitius (20%) and Exophiala (10%). The summer
core microbiota consisted of 125 ASVs (Figure 6B), representing
15% of the total ASVs. The phyla Ascomycota (63%) and
Basidiomycota (21%) were again most represented among the
core ASVs (Figure 6D). At lower taxonomic levels, most of the
fungal core ASVs at the summer sampling were affiliated to the
genera Exophiala (16%) and Solicoccozyma (3%).

The comparison between fungal coremicrobiota in winter and
summer showed 21 common ASVs (data not shown), which were
mainly affiliated to the genera Mortierella (15%), Bolbitius (5%),
and Exophiala (5%).
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FIGURE 4 | Heatmap displaying the relative abundance distribution of fungal genera (responder) significantly affected (FDR < 0.05) by different long-term

management practices (CT, Cultivator Tillage vs. MP, Moldboard Plow; Int, intensive vs. Ext, extensive) in soils sampled in LTE Bernburg in winter (W) or summer (S).

Most abundant responders with average (n = 4) relative abundance >0.5% are shown. Pairwise comparisons between treatments with assignment into functional

guilds are presented in Supplementary Tables 6, 7.

FIGURE 5 | Venn Diagrams (A,B) showing unique and shared bacterial/archaeal ASVs among soils sampled in LTE Bernburg in winter (W) or summer (S) under

different long-term tillage practices (CT, Cultivator Tillage vs. MP, Moldboard Plow) and N-fertilization intensities (Int, intensive vs. Ext, extensive). Taxonomic

classification (C,D) at the phylum level of ASVs shared among all four treatments in winter or summer, respectively.
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FIGURE 6 | Venn Diagrams (A,B) showing unique and shared fungal ASVs among treatments in soils sampled in LTE Bernburg in winter (W) or summer (S) under

different long-term tillage practices (CT, Cultivator Tillage vs. MP, Moldboard Plow) and N-fertilization intensities (Int, intensive vs. Ext, extensive). Taxonomic

classification (C,D) at phylum level of shared ASVs in winter or summer, respectively.

DISCUSSION

In this study, we aimed to determine to what extent long-
term intensive and conserved agricultural management practices
(tillage practice and N-fertilization intensity) affect soil chemical
and microbial parameters depending on the sampling time. Soil
samples were taken in absence of plants in November (winter;
two weeks after tillage) and in the following growing season
in July in presence of maize (summer; one month after N-
fertilization).

We observed that agricultural management shaped the
soil microbiota, but the effects detected were sampling time-
dependent. Tillage practice was the main driver of the soil
microbiota in winter while, in summer, also the N-fertilization
intensity exerted a strong effect (alpha- and beta-diversity,
responder analysis). This confirms our first hypothesis and is
likely a direct short-term response to the applied agricultural
management. The studied model crop was maize, which does
not require vernalization. Therefore, the winter sampling was
carried out in fallow soils shortly after soil tillage while the
summer sampling took place in presence of maize under the
influence of respective fertilization/plant protection measures.
Agricultural practices such as crop rotation, periodic fertilization,
and pesticide use result in temporal and spatial changes

in soil chemical properties and, therefore, in differences in
nutrient availability for microorganisms (60). It has been shown
previously that different long-term tillage practices shape the soil
microbial community structure (20, 21, 61). Tillage is known
to make protected OM available for microbial degradation (62).
Furthermore, tillage results in a destruction and transformation
of microhabitats by mechanical breakup of soil aggregates (niche
condition homogenization) and dislocation of the soil microbiota
along the soil profile (63).

Apart from these short-term responses, our results support a
legacymanagement effect in summer (several months afterMP or
CT application) suggesting that the soil disturbance had a long-
lasting influence contrary to N-fertilization intensity. Schlüter
et al. (64) showed for the same LTE that tillage changed the
soil structure and hydraulic properties in the long term. This
legacy likely promotes different conditions for microbial survival
and growth and, therefore, resulted in the observed long-lasting
effect on the soil microbiota. Therefore, the legacy of agricultural
practices needs to be considered as an additional variable in
plant-soil feedback loops (26, 27).

Contrary to our results obtained from the summer sampling,
previous studies in the LTE show that N-fertilization intensity
had little or no effect on the soil microbial community (18, 20,
21). In the LTE, mineral N-fertilization is performed when the
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crop starts growing (for maize: in spring). In comparison to
Sommermann et al. (20) and Babin et al. (21), who sampled
soils from winter wheat fields in the late generative phase at
harvest (July), where roots are largely inactive, we analyzed an
earlier time point of the maize growing cycle during vegetative
growth, characterized by high root activity and nutrient uptake
(65). Particularly, during vegetative growth with intense nutrient
uptake, different fertilization intensity can influence the type and
extension of root-induced changes in the nearby soil chemistry
and the composition and quantity of rhizodeposits with potential
feedback loops on rhizosphere microbial communities. However,
it should be kept in mind that the observed N-fertilization
intensity effect on the soil microbiota at the summer sampling
could be caused by the different levels of N-fertilization or long-
term fungicide use. Mineral N fertilizer (urea and ammonia) are
known to affect soil pH (66). Although no differences in soil pH
in Int vs. Ext were detected here, temporal effects shortly after
fertilizer application cannot be excluded. Furthermore, the high
N inputs in Int could have inhibited some soil microorganisms
(66). The long-term fungicide use in Int might have had direct
negative effects on the fungal communities in these soils.

Only a small proportion of the detected ASVs was
permanently detected in the soils, i.e., independent
of the sampling time and management. This core
microbiota was constituted of taxa typically associated with
agricultural soils (e.g., Sphingomonadaceae, Chitinophagaceae,
Mortierella, Bolbitius, and Exophiala). Sphingomonadaceae,
Chitinophagaceae, and Mortierella were previously detected in
the LTE soils (20, 21). This indicates that these taxa are specific
for the soil site and are not responding to physicochemical
changes caused by the agricultural management. At the different
sampling times, a different core microbiota was detected. This
shows that, besides dynamics in the soil microbial community
compositions due to agricultural practices, there is also a
season-dependent succession in the composition of the soil
microbial communities.

For both sampling times, distinct soil microbial communities
were observed in CT and MP. This was in concordance with
previous studies in the LTE (18, 20, 21). Differences in the
microbiota are likely linked to the observed tillage-dependent
differences in soil chemical parameters. In this study, we could
show that the soil microbial community composition under CT
was strongly positively correlated with soil nutrients (e.g., K,
P, TOC, and TC) but negatively correlated with pH. In fact, it
was shown previously that CT changes the labile carbon pool
in the soil (67). Soils under long-term reduced tillage with
residues remaining on the soil surface promote soil stratification
as observed for CT in the LTE, e.g., in terms of available P
and K (28). Our data suggest that the higher TOC content
in CT compared with MP in the topsoil layer (0–20 cm)
promoted fungal growth and the enrichment of saprotrophs.
Consistently, we observed higher fungal ITS fragment copy
numbers in CT vs. MP. Soils under CT.Ext exhibited also a
higher relative abundance of predicted saprotrophs in winter
in comparison with MP.Ext. The saprotrophic fungus Rhizopus
(Mucoromycota) had a higher relative abundance in soils under
CT practice independent of the sampling time. Members of this

fungal genus produce a variety of enzymes that enable them to
utilize a wide range of nutrients and, therefore, to play a key
role in the decomposition of organic materials (68, 69). Since
plant residues are accumulated in the topsoil under CT, we,
therefore, suggest that Rhizopus had a competitive advantage
over other saprotrophs and established in the long term. This
is in agreement with Srour et al. (61) who show that the
accumulation of crop residues on the surface resulted in an
increase in soil OM in the top layer promoting the proliferation
of obligate saprotrophic fungi. In agreement with Babin et al.
(21), acidobacterial taxa (such as RB41, Subgroup 7) had higher
relative abundances in the MP treatment in comparison with CT.
It is reported that a high relative abundance of Acidobacteria is
indicative for oligotrophic soils with lower C and nutrient levels
(70). The enrichment of actinobacterial genera, which are able
to degrade complex organic compounds (22) in CT treatments
in comparison with conventional MP tillage was likely related to
the decomposition of crop residues remaining on the soil surface.
As the decomposition of OM plays a critical role in the supply of
crops with nutrients (13), we propose that CT fosters soil fertility.

Furthermore, CT and MP soils differed in the relative
abundance of potential plant beneficial and pathogenic
microorganisms. For instance, the relative abundance of the
putative beneficial pathotroph-symbiotroph fungi Metarhizium
(phylum Ascomycota) was significantly increased under CT
tillage practice. Members of the genus Metarhizium are reported
to have plant growth-promoting traits as well as biological
control activity against insect pathogens (71, 72). The fact that
the plant beneficial symbiotic AMF exhibited highest relative
abundance in soils under MP tillage could be linked with the
lower available P level found in these treatments in comparison
with CT. This is in accordance with previous reports that
stated that AMF are negatively affected (soil diversity and root
colonization) by high available P levels in soils (73, 74). In
addition, plow tillage can influence AMF activity by disrupting
hyphal networks causing dispersion of propagules (75). Soils
under CT practice also showed a high relative abundance of
Gibberella in summer irrespective of the N-fertilization intensity.
Sommermann et al. (20) reported that the relative abundance
of Gibberella/Fusarium was enriched in CT.Int soils cultivated
with wheat after maize in the LTE. Members of Gibberella are
known plant pathogens, such as Gibberella zeae (anamorph =

Fusarium graminearum Schwabe), which causes a mycotoxin
contamination in maize, the so-called “ear rot” disease. The
pathogen has the ability to survive in crop residues on the soil
surface (76, 77), which presents a risk of managing soils by CT.

Irrespective of tillage practice, soils under Ext fertilization
exhibited high relative abundances of sequences with the closest
affiliation to Chitinophagaceae and the genus Ferruginibacter
(both phylum Bacteroidetes). Members of the Bacteroidetes
phylum were reported to have plant-beneficial characteristics
(78). Additionally, Bacteroidetes species have the ability to
degrade complex organic compounds, such as fungal cell walls
(79), which means that they can act as antagonists toward
fungal pathogens. Soils under Int fertilization showed a high
relative abundance of Gibellulopsis in summer irrespective
of the tillage practice. This genus contains saprophytes and
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opportunistic plant pathogens, such as Gibellulopsis nigrescens
[basionym: Verticillium nigrescens Pethybridge (80)], which
causes vascular wilt diseases in numerous hosts and can survive
in soil or on dead plant material (81). However, also the
potential beneficial genus Minimedusa, which was reported
as antagonistic toward Fusarium sp. (82), was higher under
Int fertilization practice. Based on metagenomic analysis,
Srour et al. (61) revealed that long-term plow tillage and
intensive N-fertilization management shifted soil microbial
communities toward fast-growing competitors (such as
pathogenic species). In the present study, the cosmopolitan
fungi Exophiala (predicted as pathotroph-symbiotroph;
phylum Ascomycota) showed higher relative abundance in
MP.Int vs. MP.Ext. Exophiala has been recently reported in
similarly high relative abundance (10–15%) in agricultural
soils under intensive management in the Argentinean Humid
Pampas (12).

Intensive mineral N-fertilization is reported to be one
of the main factors that decreases microbial diversity and
number of genera (83). We could confirm this in the
present study only for the bacterial/archaeal alpha-diversity
in MP.Int soils sampled in summer compared to MP.Ext
and contrarily even showed that fungal evenness increased in
MP.Int compared to MP.Ext. This suggests that other factors,
such as studied organism group, combination with agricultural
practices (e.g., long-term fungicide use, tillage practice), and the
sampling time point play a role when evaluating the effect of
fertilization on the microbial diversity. Therefore, further studies
are needed to validate these observations and elucidate the
underlying mechanisms.

At the summer sampling time point, significant
differences in maize shoot dry mass were recorded (see
Supplementary Table 8) with higher dry masses in Ext than
Int. This could be due to the abovementioned higher relative
abundance of taxa with plant-beneficial characteristics in
soils under Ext fertilization. However, this did not influence
average grain yields at harvest, which were similarly low in
all treatments [4.5 t ha−1 (MT.Ext); 4.6 t ha−1 (CT.Ext); 4.9 t
ha−1 (CT.Int); 5.1 t ha−1 (MP.Int)]. The very low maize yields
recorded in the growing season under study (2019) compared
with previous years was likely due to the low temperature and
water deficit that plants faced during early growth (data not
shown) resulting in a deficiency of P in plants of all treatments
(Supplementary Table 9).

Finally, whether the conserved agricultural practices of CT
and Ext have positive effects on soil microbial communities and
consequently on soil quality and plant performance depends on
various factors. Therefore, further studies under field conditions
are needed that consider additional aspects such as local weather,
soil type, and the combination with other agricultural practices
(e.g., crop rotation).

CONCLUDING REMARKS

For the LTE Bernburg, we showed here that the observed
responses of the soil microbiota to tillage practices

and N-fertilization intensity (with or without growth
regulator/fungicide use) differed according to the sampling
time. Cultivator tillage (CT) promoted taxa associated with
organic matter decomposition resulting in higher nutrient
contents, which could foster soil fertility. Moldboard plow
(MP) promoted taxa typically associated with oligotrophic
environments. Putative beneficial (such as Chitinophagaceae,
Ferruginibacter, Minimedusa, and Exophiala) or pathogenic
(such as Gibellulopsis and Gibberella) microbial genera were
detected responding differently to the agricultural practices.
However, further studies considering, e.g., different soil types,
crops, and climatic conditions are needed to obtain more
insights into how conserved agricultural practices affect
plant beneficials and pathogens in soil. Understanding how
agricultural management influences soil microbial communities
will help to steer the soil microbiota to a desired beneficial state,
which can be harnessed for the development of more sustainable
agricultural practices and an improved plant performance.
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