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In the present work, an interatomic potential in the framework of the embedded atom method (EAM) is
developed for the Al–U binary system. A methodology is detailed to fit the U potential, that reproduces
the stability of the a phase at low temperatures and the c phase at high ones. The thermal stability of
both phases, thermal expansion and vacancy driven self diffusion are studied. The Al–U potential is fit
to first principles calculated formation energies of the experimentally observed intermetallic phases,
Al2U (cubic C15), Al3U (cubic L12) and Al4U (orthorhombic D1b). As a first validation the potentials are
tested against available experimental measurements.
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1. Introduction

In recent years, aluminum-based alloys containing U–Mo in
gamma phase are proposed as the new nuclear fuels for research
and test reactors. These fuel elements allow fulfillment of require-
ments to use low enriched U [1–3].

A dispersion fuel element consists of a ‘‘meat’’ by mixture of
powders of an U(Mo) alloy and Al, cladded with an Al alloy. During
the fabrication and/or irradiation the fuel particles react with the
surrounding Al matrix. Post-irradiation experiments have shown
a significant interaction layer producing a considerable swelling
and unacceptable porosity [4]. This interaction layer is formed by
new phases whose composition ranges between those of the limit-
ing components, and is responsible for changes in the specific vol-
ume and in the thermomechanical properties [5,6].

Predicting these effects that degrade the material, requires
knowledge of phenomena operating at the atomic level, which
are difficult to access by experiment. In recent years atomistic sim-
ulation methods are becoming increasingly important as a tool in
support of experiments, since they are able to separate the effects
of various components of the evolution of the microstructure and
thus reveal fundamental physical mechanisms of degradation. First
principles methods have proven to be very accurate tools in
describing various material properties, but are only applicable to
a small-scale atomic system. To overcome this limitation, atomic
interactions are described by many-body central-force potentials,
in particular the ‘‘embedded atom method’’ (EAM) [7] which is
ll rights reserved.
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widely used to describe metals and their alloys. Qian et al. [8] have
built a Morse potential for the UCu5TAl6 (T = Cr, Mn and Fe) inter-
metallics to calculate structure and thermodynamic properties.
This potential, however, is not appropriate for simulations in the
Al–U system because, for example, the pure metals are not de-
scribed properly. It is very desirable that an interatomic potential
is able to reproduce as closely as possible the stability of the phases
that can appear at least in the concentration range of interest.

Pure U undergoes different allotropic transformations as tem-
perature increases. At low temperatures the a phase (strukturbe-
richt A20) is stable for T < 940 K. It consists of a c-face centered
orthorhombic structure with two atoms per primitive cell at posi-
tions (±y, �y, �1/4), expressed in units of the primitive vectors (a/
2,�b/2,0), (a/2,b/2,0) and (0,0,c), as illustrated in Fig. 1. At inter-
mediate temperatures (940 K < T < 1045 K) the b phase occurs,
which has a complex tetragonal structure containing 30 atoms
per unit cell (Ab) [9]. Finally, the bcc c phase (A2) is stable up to
the melting point (Tm = 1405 K).

Regarding the Al–U binary alloy, a re-evaluation of the phase
diagram made by Kassner et al. [5] shows the formation of three
low temperature intermetallic phases: Al2U, a cubic C15 Laves
phase; Al3U, cubic of type L12; and Al4U, orthorhombic of type
D1b. The authors treat these phases as line compounds with the
exception of Al4U, for which a polymorphic transformation has
been considered to occur at 919 K due to rearrangement of consti-
tutive vacancies. In view of the newer results of Tougait and Noël
[10] for Al4U, all three intermetallics will here be considered as
stoichiometric compounds.

In the present work, interatomic many-body potentials of EAM-
type for the Al–U binary system are developed. Section 2 recalls the
EAM formalism and describes the fitting methodology. In Section 3
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Fig. 1. Orthorhombic unit cell and lattice parameters in aU.

Table 2
Embedding function FU (eV) for pure uranium (q0 is the equilibrium electron density).

q/q0 FU(q) q/q0 FU(q)

0.1190000 �2.4167961500 1.1533390 �4.3714970334
0.1348548 �2.5729759879 1.2776855 �4.3119240988
0.1526138 �2.7084626124 1.4141300 �4.2130266732
0.1724811 �2.8203485935 1.5637241 �4.0692865503
0.1946800 �2.9264460029 1.7276000 �3.8748425732
0.2194549 �3.0408691210 1.9069757 �3.6230940042
0.2470725 �3.1646882471 2.1031613 �3.3039896933
0.2778241 �3.2965407012 2.3175643 �2.9048866720
0.3120271 �3.4348807875 2.5516962 �2.4136512582
0.3500274 �3.5778867660 2.8071792 �1.8007480135
0.3922015 �3.7233857207 3.0857533 �1.0346501921
0.4389586 �3.8663495600 3.3892835 �0.1242394267
0.4907434 �3.9947098947 3.7197678 0.9099228254
0.5480388 �4.0993027890 4.0793453 2.0697281153
0.6113684 �4.1851315237 4.4703050 3.3686297584
0.6812997 �4.2589671080 4.8950949 4.8229243450
0.7584475 �4.3208380330 5.3563314 6.4418219341
0.8434768 �4.3672273121 5.8568095 8.2260257695
0.9371067 �4.3941422056 6.3995134 10.1985264864
1.0401144 �4.3971689958 6.9876277 12.3979426971
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the potential’s performance is assessed by calculating different
properties which are compared with available results from the lit-
erature. The paper is finalized by a discussion about the range of
applicability of the potential.

2. Potential formalism and fitting procedure

In the EAM framework, the total energy is a sum of atomic/site
contributions, expressed as [7],

Ei ¼
1
2
P
j–i

Vðtitj; rijÞ þ Fðti;qiÞ; ð1Þ

where ti(tj) stands for the chemical species at the site i(j), V is the
pair potential, rij is the distance between atoms i and j, and F is
the so called ‘‘embedding function’’. The local electron density qi

at site i in turn results from the superposition of electronic poten-
tials, /, given as,

qi ¼
P
j–i

/ðtitj; rijÞ: ð2Þ

To fully describe all interactions in the Al–U binary system, the
following seven functions are needed: VAl, VU, /Al, /U, FAl and FU,
which correspond to interactions in the pure elements, and the
cross potential VAlU. The pure Al potential developed by Zope and
Mishin [11] is used in this work, which reproduces the experimen-
tally observed lattice parameters, cohesive energy, elastic con-
stants, stability of fcc lattice against other simple structures, and
vacancy formation and migration energies. The pure U potential
and Al–U cross interaction on the other hand are developed in
the present work.

The pair potentials for VU and VAlU are expressed as a piecewise
cubic spline of the form,

VðrÞ ¼
Pm
k¼1

Akðr � RkÞ3HðRk � rÞ; ð3Þ

where H is the Heaviside unit step function, Rk are the knot points
and Ak the fitting coefficients. The electronic density /U is chosen
as the Thomas–Fermi screening function, smoothly matched to zero
at the cut off range,

/ðvÞ ¼
e�bv=v v 6 v1

ðv� v2Þðh1v2 þ h2vþ h3Þ v1 6 v 6 v2;

0 v2 6 v

8><
>: ð4Þ
Table 1
Optimized parameters Rk (Å), Ak (eV/Å3) and F 000 (eV) for the pair potentials VU an

Potential parameters for pure U

R1 4.50 b 5.0
R2 4.35 v1 1.75
R3 4.20 v2 2.1
A1 �2.6217703 h1 �0.035708982
A2 5.5043693 h2 0.118645639
A3 �2.8225308 h3 �0.100383042
F 000 2.4692407
where v = r/a0 and a0 the equilibrium lattice parameter of aU phase
along the [100] direction (see Fig. 1). The values for the parameters
b, v1, v2, h1, h2 and h3 are given in Table 1. The embedding function
on the other hand has no analytic function, but a tabulation con-
taining knot points for cubic interpolation is provided (Table 2).

The potential for pure U is fitted to reproduce as close as possi-
ble the lattice parameters, cohesive energy, bulk modulus, and va-
cancy formation and migration energies corresponding to
orthorhombic aU. It has been found that m = 3 in Eq. (3) is the min-
imum value that satisfies the constraints deduced from all these
properties.

Firstly, equilibrium lattice parameters impose null atomic
forces and stresses on the orthorhombic unit cell. Without loss of
generality F(q) is imposed to have null first derivative at the equi-
librium lattice density, F0(q0) = 0, which makes V(r) an ‘‘effective
pair potential’’ [11]. Taking this into account, the null atomic force
condition on a generic atom 0 is expressed as,

P3
k¼1

Ak
P
m

ðRk � rmÞ2

rm
HðRk � rmÞ

P
j2m

x0j

 !" #
¼ 0; ð5Þ

here x0j is the x � [100] component of the position vector r0j from a
reference atom 0 to atom j, and the sum in square brackets extends
over all neighbor shells m around the reference atom. Similar
expressions hold for y � [010] and z � [001] directions. Due to mir-
ror symmetries of the aU lattice, all conditions are identically zero
except for the one corresponding to the [010] direction. Regarding
null stresses, only normal components survive due to the same lat-
tice symmetries, so that the next must hold for the x direction,

P3
k¼1

Ak
P
m

ðRk � rmÞ2

rm
HðRk � rmÞ

P
j2m

x2
0j

" #
¼ 0: ð6Þ
d VAlU and b, vi, hi for electronic density /U.

Potential parameters for Al–U

R1 6.0 A1 �0.01126
R2 3.5 A2 0.62769



Table 3
Number of atoms nm and distance rm for each shell m in a perfect aU lattice.

Shell m nm r2
m

1 2 (2yb)2 + (c/2)2

2 2 a2

3 4 (a/2)2 + (b/2)2

4 4 (a/2)2 + (b/2 � 2yb)2 + (c/2)2

5 4 a2 + (2yb)2 + (c/2)2

6 2 c2

Table 4
Calculated, first principles [16], and experimental values of lattice parameters, atomic
volume and energy differences between fcc, bcc, hcp and aU.

EAM (this work) F.P. Exp

a (Å) 2.775 2.845 2.836a

b (Å) 6.072 5.818 5.866a

c (Å) 4.936 4.996 4.935a

y 0.1044 0.1025 0.1017a

DEfcc-a (eV) 0.169 0.260 0.052b

DEbcc-a (eV) 0.007 0.223 0.079b

DEhcp-a (eV) 0.169 0.241 0.131b

a Ref [16].
b Extrapolated to low temperatures from [23].
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Similar expressions are obtained for y and z directions. If in
addition the knot values Rk are all restricted to lie between fifth
and sixth neighbor distances, r5 < Rk < r6, and the first and second
as well as the third and fourth neighbor distances are forced to
be equal, i.e., r1 = r2 and r3 = r4 (see Table 3), then, the following
relationships hold for the lattice parameters,

b
a
¼ 1ffiffiffiffiffiffi

2y
p ;

c
a
¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2y

p
: ð7Þ

In this case, all Eq. (6) are linearly dependent and only one of
the three equations remain. Although these assumptions may
sound very restrictive, they allow a reasonable short-range interac-
tion with the fewest number of adjustable parameters.

Secondly, cohesive energy and bulk modulus are imposed by
forcing the embedding function F to reproduce Rose’s universal
equation of state [12], in a similar way as explained in [13,14].
The value of the cohesive energy has been estimated adding up
first principles results for the cohesive energy of the c phase [15]
and the energy difference between c and a [16], giving
Ec = 5.773 eV. This value compares reasonably well with the exper-
imental one, 5.55 eV [17].

Thirdly, the unrelaxed vacancy formation energy is fitted (esti-
mated as Ef

UR ¼ 1:4 eV). If no lattice relaxation is allowed, this en-
ergy results [14]:

Ef
UR � �

1
2
P
m

nm½VðrmÞ � F 000/
2ðrmÞ�; ð8Þ

where nm is the number of atoms in neighbor shell m and
F 000 ¼ d2F=dq2 is evaluated at the equilibrium lattice density. By
substituting Eq. (3), this condition becomes

P3
k¼1

Ak
P
m

nmðRk � rmÞ3HðRk � rmÞ
� �

¼
P
m

nm/
2ðrmÞF 000 � 2Ef

UR: ð9Þ

Eqs. (5), (6), and (9) form a set of three equations in the three un-
knowns Ak. It should be noted that this set is not linear in Ak, since
F 000 in Eq. (9) depends implicitly on Ak. To solve it, the system is first
linearized by taking an initial guess for the values of Ak from which
F 000 can be calculated. Then the problem is solved iteratively until the
difference between successive values of Ak are less than 10�7 eV/Å3.

Lattice stability against other simple lattices, like simple hexag-
onal, hcp, bcc and fcc, is possible by choosing appropriate values of
Rk and by playing with the balance between the fully relaxed va-
cancy formation and migration energies Ef and Em (taking into ac-
count that the only experimental magnitude known is the
activation energy Q = Ef + Em) [18,19].

The optimized potential parameters resulting for pure U from
the above procedure are reported in Table 1. The embedding func-
tion F(q) is tabulated in 40 non-equidistant points and tabulated in
Table 2. A cubic spline interpolation through these points gives
F(q) with an error of at most 10�3 eV. Tables containing more
points for these potentials are available on-line [20].

The presently fitted pure U potential and the Al potential –
taken from Zope and Mishin [11] – are combined to determine
the cross interaction for the Al–U system. This requires the VAlU
cross potential and the scaling factor between the equilibrium
electronic densities qAl/qU [11] to be fitted. The latter relationship
is estimated from the work of Miedema [21] as qAl/qU = 2. For the
VAlU potential a similar functional form as in Eq. (3) is chosen. In
this case, the new fitting parameters Ak are optimized by minimiz-
ing an objective function,

SðAkÞ ¼
P3
i¼1
ðDEf

0i � DEf
i Þ

2
; ð10Þ

where the sum i extends over the three experimentally observed
low temperature intermetallic compounds (see Section 1), DEf

0i

and DEf
i are the reference and calculated formation energies of com-

pound i, respectively. The minimization of S is performed under the
constraints of minimum stresses in each of the considered com-
pounds. First principles values of lattice parameters and formation
energies [22] are used to fit the potential parameters. It was found
that the minimization of S can be achieved by taking m = 2 in Eq.
(3). The optimized parameters describing the cross potential are
summarized in Table 1.
3. Results and discussion

3.1. Pure U

Table 4 summarizes the lattice parameters for aU obtained with
the present interatomic potential. They are in reasonable agree-
ment with both first principles [16] and experimental values
[16,23].

The thermal behavior of the experimentally observed phases is
also studied. Molecular dynamics (MD) simulations of a cubic box
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composed of 9 � 4 � 5 orthorhombic unit cells (N = 720 atoms) are
performed in (N,P,T) ensemble in the range 0 < T < 1500 K and
P = 0 Pa in steps of 50 K, starting from equilibrium atomic positions
at 0 K. Periodic boundary conditions are chosen for all simulation.
The average atomic volume resulting from the simulations is plot-
ted as a function of temperature in Fig. 2. Two discontinuities are
observed at 	650 K and 1250 K corresponding to phase transitions,
which are identified as the aU ? cU and cU ? U(liquid) transi-
tions. As bU is not observed with this procedure, it is simulated
separately starting from its ideal tetragonal structure at 0 K [9].
The results show that the bU structure is metastable from 0 to
550 K and then transforms into cU. Despite the fact that these
transformations occur at much lower temperatures than observed
in experiment, it is striking that a relatively simple EAM potential
is able to capture this non-trivial temperature behavior.

From the same set of simulations it is possible to calculate the
thermal linear expansion coefficients of aU, shown in Fig. 3. It is
seen that, while the lattice expands in the [100] and [001] direc-
tions, there is an anomalous lattice contraction along the [010]
direction, in general agreement with experimental results [24,25].

Next, the vacancy’s static and dynamic properties are studied.
Its formation energy and jump barriers to nearest positions are cal-
culated at 0 K by means of molecular statics (MS), using the same
simulation crystal already described. The vacancy formation en-
ergy is then defined as,

Ef ¼ EDL � EPL � Ec; ð11Þ

where EDL is the energy of the lattice with N � 1 atoms and the va-
cancy, EPL the energy of the perfect lattice with N atoms, and Ec is
the cohesive energy. After full relaxation of the atomic forces, the
resultant value is Ef = 1.36 eV. The temperature dependence of Ef

is then studied using MD. In this case, an atom is extracted from
a crystal of the same size used in our previous bulk studies and
run for the same temperatures and under the same simulation con-
ditions. The two simulation sets, with and without defect, allow to
use a similar expression as in Eq. (11) to calculate the vacancy for-
mation energy at each temperature. A clear temperature behavior
could not be established due to the large scatter. Therefore we only
report the average values for both aU (1.4 ± 0.2 eV) and cU
(1.7 ± 0.9 eV) phases. From first principles calculations, Taylor [26]
have obtained 1.95 eV and Beeler et al. [27] 1.86 eV for aU. Using
the same computation technique, Xiang et al. [28] have obtained
1.08 eV and Beeler et al. 1.32–1.38 eV [27] for cU. From positron
annihilation spectroscopy, Matter et al. [29] have measured
1.2 ± 0.25 eV for cU.

Energy barriers for jumps to nearest lattice positions in aU are
calculated using the drag method [30] under the same simulation
conditions. Values obtained for these jumps are depicted in Fig. 4.
The two lowest values correspond to vacancy movements along
[100] and the zig-zag [001] directions while higher values are ob-
tained for jumps lying mainly along [010].

The values of the energy barriers obtained by MS are introduced
as an input into a kinetic Monte Carlo (MC) code to calculate the
diffusivity in aU [31]. In MC simulations, atoms are located in a ri-
gid lattice and the system evolves through exchanges between
atoms and a vacancy, simulating diffusion processes [32]. The en-
ergy barriers for the vacancy jumps are used to assess the jump
probability and choose the event according to the Metropolis
[33] scheme, thereby setting the rate of time employing the resi-
dence time algorithm [34]. Calculations are made by assuming all
attempt frequencies are equal to the Debye frequency (1013 s�1).
Averages are taken from one hundred different simulations at each
temperature in the range 400 K 6 T 6 600 K.

For comparison, MD simulations in a crystal box of similar size
are also performed for the same temperature range. After equili-
bration at each temperature in the (N,P,T) ensemble for 100 ps,
mean square displacements are calculated by running in the
(N,V,E) ensemble for 60 ns. Fig. 5 compares the obtained results
for both MC and MD techniques in an Arrhenius plot. The results
show that the diffusion is faster in the [100] direction compared



Table 5
Migration Em and activation Q = Ef + Em energies obtained by MD and MC. Experi-
mental values are reported in parentheses.

Phase Direction Em (eV) Q (eV)

MD MC MD MC

[100] 0.11 0.17 1.51 1.53
Ua [010] 0.34 0.60 1.74 1.96

[001] 0.32 0.31 1.72 1.67
(1.74–1.91a)

Uc 0.68 – 2.38 –
(1.15–1.24a)

a Ref. [19].

Table 7
Calculated, first principles (italic) [22], and experimental (parenthesis) values for the
bulk modulus B and its pressure derivative B0 for each of the pure elements and
intermetallics in the Al–U system.

B (GPa) B0
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to the [010] and [001] directions. The apparent disagreement be-
tween MC and MD techniques can be partly attributed to an effect
of the attempt frequency used: while MD simulations implicitly
take into account the full influence of cooperative jumps, MC as-
sumes that the attempt frequency is constant.

These results are in agreement with the vacancy diffusion mod-
el proposed by Seigle and Opinsky [35]. They proposed that self-
diffusion by vacancies in aU should be essentially anisotropic, be-
cause the jump frequencies should be higher for neighbors lying on
the corrugated (010) planes, where covalent bonds are stronger.
Thus, one should expect a much lower diffusion coefficient along
the [010] direction compared to the other orthogonal directions.
Resnick and Seigle [36] did not find large diffusion anisotropy in
single crystals at 913 K, although they acknowledged that the
radiographic technique used had poor accuracy. On the other hand,
Rothman et al. [37,38] found that D½100� � D½001� � D½010� using the
sectioning method.

Diffusivity by vacancy mechanism is also obtained for cU using
the MD technique for a simulation box of approximately the same
size for the temperature range 800 K 6 T 6 1200 K under the same
simulation conditions. As the bcc lattice is unstable under the pres-
ence of a vacancy at T = 0 K, it was not possible to obtain an energy
barrier for the vacancy jump in cU by using the MS technique and,
therefore, no MC simulations were done.

From the diffusivity, migration energies are obtained as,
D
 ¼ D
0 expð�Em=kTÞ. Table 5 compares the activation energies
for both simulation techniques, calculated as Q = Ef + Em, and
experiment. The obtained values are in rather good agreement
with the self diffusion activation energies reported in the literature
for aU but are overestimated for the case of cU [19].

3.2. Al–U

The formation energies and lattice parameters of the interme-
tallics obtained with the potential are shown in Table 6 and com-
pared to first principles and experimental values. It is worth to
Table 6
Calculated, first principles (italic) [22], and experimental (parentheses) values of
lattice parameters and formation energies for intermetallics.

Phase a (Å) b (Å) c (Å) DEf
0 (eV/at.)

UAl2 (C15) 7.585 – – �0.115
7.635 �0.127
(7.760a) (�0.319 ± 0.03a)

UAl3 (L12) 4.166 – – �0.104
4.238 �0.096
(4.265a) (�0.281 ± 0.03a)

UAl4 (D1b) 4.128 6.470 13.691 �0.038
4.356 6.197 13.671 �0.039
(4.410a) (6.270a) (13.710a) (�0.258 ± 0.03a)

a Ref. [5].
note that the obtained formation energies, as well as the fitted first
principles values, fall short of the experimental values.

The elastic properties for each intermetallic structure are calcu-
lated by using the MS technique, taking into account relaxation of
internal atomic coordinates. Table 7 reports the obtained values of
bulk modulus B and its derivative with respect to pressure B0. It is
seen that the predicted values of B are in rather good agreement to
first principles values but somewhat in excess from experimental
ones, although they seem to show a large scattering [39,40].

Next, MD simulations of bulk Al with U impurities are made to
calculate the mobility of the different species at different temper-
atures. A simulation box of 5 � 5 � 5 fcc cubic cells containing
N = 500 Al atoms is used and then one Al atom is picked at random
and extracted to generate a vacancy. Subsequently, five U substitu-
tional atoms are added at random positions so as to reach 	1%at.U
composition. As mentioned above in the case of aU vacancy diffu-
sion, the configurations are thermalized for 100 ps under zero
pressure in (N,P,T) ensemble. The temperatures are chosen in the
range 600 K 6 T 6 850 K. The output configuration from each
equilibration run is subsequently used for longer runs of 6 ns in
(N,V,E) ensemble, in which the mobility D
 is calculated through
mean square displacements of each species. Similar simulations
are performed in a U–1%at.Al system by adding a vacancy and 7
Al atoms to the block of N = 720 U atoms but in a lower tempera-
ture range, 400 K 6 T 6 600 K. As shown in Fig. 6, the U diffusivity
is faster in Al than viceversa.

Present diffusivity results are obtained in dilute alloys and they
are not directly comparable to experimental values from the liter-
ature, which are based on measurements on diffusion couples [41].
On the other hand, experimental results are somewhat controver-
sial and difficult to assess due to phase decomposition and forma-
tion of intermetallics. Diffusion couples have been studied by a
number of authors [42–47]. Most of them observe the formation
of Al3U only. The reason for this could be attributed to the slower
growth kinetics of Al2U and Al4U as compared to that of Al3U [48].
In diffusion couples of Al and stabilized c(U,Mo) alloys, Mirandou
et al. [49] show that when there is no cU ? aU decomposition the
interface is smooth and uniform and no Al is detected into the c
phase. When decomposition takes place, the width of the interac-
tion layer increases and the interface is irregular on the U end,
attributed to a faster growth rate of Al3U into aU. There seems to
be some controversy in the literature regarding the fastest diffuser.
Le Claire and Bear [50] performed diffusion experiments in Al/U
Al 79 4.10
78
(75.2a)

U 132 4.46
136
(133–135.5a)

Al2U 117 4.22
111
(82.39 ± 8.99b) (9.29 ± 3.55 b)

Al3U 112 3.90
94
(66.55 ± 6.65 b) (12.58 ± 2.48 b)

Al4U 76 3.01
94
(71.35 ± 4.77 b) (6.60 ± 0.80 b)

a Ref. [17].
b Ref. [39].
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couples and found that U penetrates deeper into Al 2.25 times fas-
ter than Al into U. Perez et al. [51] have studied diffusion couples of
U–Mo vs. Al and Al–Si and suggest that the formation of interme-
tallics in the diffusion layer requires that Al diffuses intrinsically
much faster than the other species. More experimental research
is needed to shed some light into these problems.

4. Concluding remarks

In the present work, an EAM interatomic potential has been
developed to model Al–U alloys. First, pure U potential has been
obtained following the methodology explained. It reproduces the
stability of orthorhombic aU at low temperatures and the transfor-
mation to bcc cU at higher temperatures, as observed experimen-
tally. Thermal behavior, thermal linear expansion and vacancy
properties are in agreement with experiments. The atomic trans-
port, predicted by the present simulations, shows faster diffusivity
along the [100] and [001] axis than along [010] with some differ-
ences depending on the simulation technique used. The obtained
activation energies show good agreement with the experimental
values for aU, and a clear overestimation for cU. These results sug-
gest that only the qualitative behavior of the metal can be studied
at high temperatures with the present potential.

Regarding Al–U alloys, the cross potential has been fitted taking
into account the available first principles data. Lattice parameters,
formation energies and bulk modulus for each intermetallic com-
pound are reasonably well reproduced. Simulations on dilute al-
loys suggest a faster diffusivity of U in Al than viseversa. More
detailed studies are being performed to take into account the role
of intermetallics in the interdiffusion process.
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