Comput Syst Sci & Eng (2005) 1: 61-72
© 2005 CRL Publishing Ltd

International Journal of
Computer Systems
Science & Engineering

Farly requirements validation

with 3D worlds

Alfredo Raul Teyseyre and Marcelo Campo*

ISISTAN Research Institute, UNICEN University, Campus Universitario, B7001BBO Tandil, Argentina. Email:{teyseyre, mcampo}@ exa.unicen.edu.ar

It is a well-known fact the real significance of correctly determining requirements of a system at the very beginning of the development process.
Indeed, experience demonstrates that the incorrect definition of requirements leads to development of deficient systems, increases the cost of its
development or even causes projects to fail. Thus, it is crucial for clients to verify that the planned system satisfies their needs. In order to help users
in the process of requirements understanding and validation this work proposes using 3D visualization techniques. The use of these techniques can
reduce the communication gap between clients and developers resulting in a much more effective process of requirements validation. The approach
tries to take advantage of the benefits of the 3D visualization, complementing this with the advantages of formal specifications. The approach pro-
poses the use of formal specifications in a lighter way. This means that no formal reasoning (theorem proving) is carried out to check the properties
of the specified system and the emphasis is focused on the execution and animation of the specification for early validation. A prototype tool that
materializes the proposal was developed. The tool allows specifying the requirements in the formal language Z, defining a graphical representation

of them and creating a 3D animated visualization of their execution through which the users can validate them.

Keywords: Requirements, Visualization, Requirements Visualization, 3D Graphics, Formal Specifications, Lightweight Formal Methods

1. INTRODUCTION

Meeting user requirements of a software system is a major
challenge to software developers. The experience gained in
several large projects reveals that a very large percentage of
errors were consequence of the imprecision in the earlier
stages of the development process [27]. Therefore, it is a
well-accepted fact that it is crucial to express user require-
ments as completely, correctly and unambiguously as possi-
ble. Indeed, forgoing requirements completely would be like
trying to navigate a complex route without a road map [3].
In consequence, it is vital for the customers to be able to
confirm that the planned system meets their needs, and this
means that the system must be described in a way that they
can understand it [28]. In fact, users when asked to specify

*Also at CONICET

vol 20 no 1 january 2005

requirements generally claim, “I don’t know how to tell you,
but I’ll know it when I see it” [3].

Many conventional approaches have been applied to vali-
date requirements, but most of them, fail in detecting errors
[18]. In contrast, formal approaches give precision at specifi-
cation time. In that sense, formal specifications enable us to
denote unambiguously the meaning of a requirements speci-
fication document due to their formal syntax and semantics.
However, except in safety-critical work, the cost of full veri-
fication is prohibitive [15]. Besides, formal specifications
often fail in the user validation process since they are based
on formal notations not always understandable by users.
Therefore, in order to overcome these difficulties visualiza-
tion techniques appear as an interesting alternative to
explore.

Visualization is a method to comprehend information
by the use of diagrams to represent it. Data are transformed
into geometric representations that help wusers in the

61

A R TEYSEYRE AND M CAMPO

understanding process. In general, graphical representations
provide a closer match to the mental model of users than tex-
tual representations and take advantage of their perception
capabilities.

In spite of their success in numerous computing areas, lit-
tle research has been reported in the area of requirements
visualization. The previous approaches enable developers to
validate visually the specification of a system with the user,
but their poor expressive graphics make difficult the valida-
tion. Moreover, neither of the works makes use of current 3D
graphics capabilities in order to present animations that are
more realistic. However, 3D visualization techniques can be
a powerful tool to help in the analysis and understanding of
requirements. The use of visualization techniques could
reduce the communication gap between the customer and
developer resulting in a more effective requirements valida-
tion process [26]. In this context, the main objective of this
work is using 3D visualization and animation techniques to
validate requirements with the user.

A tool, called REQVIZ3D that materializes the proposal
was developed. This tool allows specifying the requirements
in the formal language Z [34], defining a graphical represen-
tation of them and creating a 3D animated visualization of
their execution through which the users can validate them, as
Figure 1 shows. For instance, this figure shows a visual pro-
totype of a lift system, developed with REQVIZ3D, which
enables the client to experience the system as formally speci-
fied.

This paper is organized as follows. Section 2 surveys cur-
rent efforts towards requirements validation. Section 3
describes the approach and section 4 presents a case study.
Section 5 presents a brief description of the prototype tool
ReqViZ3D. Finally, section 6 outlines some preliminary
conclusions and future work.

2. RELATED WORK

Clearly, the straightforward choice to capture requirements
of a software system is natural language. However, natural
languages specifications have been one of the main sources
of ambiguity due to its rich vocabulary and its expressive-
ness [24]. As an alternative formal specification languages
have been proposed. Formal specification languages have a
formal syntax and semantics, which make it possible to
denote unambiguously the meaning of the requirements. The
best-known formal specifications languages are Z [34], B

Requirements B

Lift movements between floors | Specification
Openings and closings doors
llumination of indicator lights

User's requests for travel

Z Specification |\
— Lift
position: ?
direction: DIRECTION
state: STATE
door: DOOR

requests: ? ?
n 0? position ? Max_Level
Visual £ £
Validation -~

Figure 1 Requirements validation

62

[20] and VDM [16] among others.

Even though formal specification languages are precise,
concise and unambiguous, they fail in the validation process
with a customer: it is difficult for a customer to understand
formal specifications because they are based on mathemati-
cal foundations and notations. However, having formalized a
system, automated support is available for validating the
model by execution.

Many have proposed the use of executable formal specifi-
cations for the construction of prototypes to validate soft-
ware requirements with users at an early stage through
feedback [9]. Techniques like execution have been intro-
duced to overcome the difficulty of using a non-executable
specification language, allowing the specifier to either test or
rapidly implement his/her specification document. Several
researchers have reported success in executing subsets of Z
translating them to languages such as PROLOG or LISP [26,
12].

Although specification execution can provide direct feed-
back during the process of making a specification and
decrease errors made at earlier stages of the development
process, it seems to be more helpful to developers rather than
to users. This is mainly because the execution is still based
on the underlying specification notations and the system is
still described in a way that users cannot understand.

Visualization techniques have been used in many comput-
ing areas. However, in spite of their success, little research
has been reported in the area of requirements visualization.
Most of the reported works are oriented towards the valida-
tion of requirements on specific domains, as for example
real-time systems (IPTES [29] and ENVISAGER [10]), and
do not address a wide range of problems as formal specifica-
tion methods do. Moreover, there is only one fixed graphic
representation of requirements, for example nets, limiting in
consequence the expressive power of the visual presenta-
tions. This could lead to poor expressive presentations that
make difficult understanding.

Among the few works reported, two of them can be
remarked: VIZ [26] and POSSUM [12]. Both systems enable
the developer to visually validate specifications in Z. Tech-
nology provided by VIZ allows software developers to
choose an appropriate representation of objects used in an
executable formal specification and create animations of
these objects in an interactive fashion. However, the system
only supports the construction of simple presentations. On
the other side, POSSUM facilitates the construction of com-
plex presentations using TCL/TK, but it does not provide
assistance in the construction of the presentations. Moreover,
both systems only support 2D presentations and do not take
advantage of current 3D graphics technologies. Table 1 pre-
sents a brief comparison of the two systems.

Table 1 VIZ and POSSUM compared

Tools ViZ Possum
Formal Specification Language Z SUM (Z
extension)
Execution Language Lisp Mercury
Based on States Z states Z states

Construction Interactive | Scripts (Tcl/Tk)

Visualization

Construction degree of Simple Tcl/Tk Knowledge
complexity

Kind of Visualizations Simple Complex

3D No No

computer systems science & engineering

3. THE APPROACH

Our main objective is the visualization and animation of
requirements to achieve a more effective requirements vali-
dation process. The approach proposes the use of visualiza-
tion, as well as, of formal specifications. Before describing
the approach lets state, what a validation means [20]:

“Validation of a description D against a description C
means checking that D satisfies the properties specified in C,
where C is the informal or semi-formal description.”

In the context of requirements validation, the check con-
sists of ensuring that the specified system (D) is the system
that the client wants, where C is an informal set of the client
expectations. Figure 2 resumes the key ideas behind this pro-
ject. After writing an informal specification, we express
requirements formally in Z. A formal specification makes it
possible to denote unambiguously the meaning of the system
requirements. In parallel, we build a graphic presentation
suitable for validating specification concepts with the user. It
may be possible to present abstract visual forms of the sys-
tem to be designed or even to build a visual prototype of the
actual system, displaying the physical properties and behav-
ior of the main system aspects. After linking the graphic
objects with the specification objects, requirements are vali-
dated by means of visualizations. Therefore, knowing that
the requirements specification conforms to the user needs, it
is a much more reliable base for developing the system.
However, if problems are detected, specifications must be
corrected.

The formal approach adopted can be classified as a light
one, in the sense, that no formal reasoning (correctness
proofs!) is carried out to check if the properties of the speci-
fied system respond to the informal requirements and the
emphasis is focused on the execution of the specification
[17, 13]. Using formal methods in a lighter way is both a key
to using them on large-scale applications and a way of pene-
trating fields outside the safety-critical area, where formal
methods are mainly used and a detailed application can be
justified because of the danger of loss of life [17].

We have decided to formalize requirements in Z. This is
mainly because the experience gained in the past years from
case studies has proven that a large variety of specification
problems may be successfully addressed in Z and set theory
forms an adequate basis for building the more complex data
structures which are needed in specifications [27]. However,
it should be noted that also other formal specification lan-
guages could have been selected.

In order to present an animated presentation, to validate
requirements, formal specifications are executed. The execu-
tion of the specification allows the user to walk through a
specification using different scenarios that are shown by
visual presentations. The animation displays the behavior of
the specified system and provides a means of dynamic test-
ing. As a result of this approach, it is intended that:

e Misunderstandings between clients and developers are
detected.

1 A proof consists of the sequence of well-defined formulae F,, F,,..., F, in
the language in which each formula F, is either an axiom or derivable by an
inference rule from previous formulae in the sequence. The last formula F;
in the sequence is said to be proven

vol 20 no 1 january 2005

EARLY REQUIREMENTS VALIDATION WITH 3D WORLDS

Write Formal

Specification)
—

ik N
> Visualization)
Build
Visualiz:(ion/

C‘N;odify\' Visualize &
Informal y, (Validate)
Specification Requirements
[Problems in

Validation Process]

[Requirements
Specification OK]

- —
C Write Informal
Specificati
pectlication _J
start

I
@
End

Figure 2 Requirements validation process

e New services arise and obscure ones are clarified.

* Inconsistencies in specifications are detected.

* The developed system is much closer to the needed sys-
tem.

¢ The development effort is reduced.

The approach is in part similar to prototyping [32], where an
experimental system is developed as a basis for formulating
requirements. A prototype is an initial version of a system,
used to demonstrate concepts and try out design options. A
prototype can be used in the requirements engineering pro-
cess to help with requirements elicitation and validation. The
executable model of the system is used to check require-
ments and then is usually thrown away when the system
specification has been agreed.

In the next subsections, each aspect of the approach is dis-
cussed in more detail: from execution of specifications to
visualization and validation of requirements using a simple
example.

3.1 Execution of formal specifications

Formal specification languages, such as Z, have been devel-
oped to define precisely and concisely the characteristics and
specifications of a software system. However, formal speci-
fication languages fail in establishing a very important prop-
erty for an immediate reflection of the consequences of the
specifications and for an early validation: the executability
of a specification [9].

Z was not conceived for execution, since its aim is to
define the abstract properties of the system being built and
not the design decisions or the implementation details of the
system. Z specifications are declarative and the developer
can declare non-computational entities, such as infinite sets
or non-computable functions and specify properties and
operations on them.

Therefore, in order to execute a formal specification in Z,
the notation of Z must be restricted to a subset almost direct-
ly executable. This means that Z is restricted forbidding the
declaration of non-computational entities and adapting it to
the capacities of executable languages that, on the other side,
are less expressive than non-executable ones, because their
functions must be computable and their domains must be
finite.

63

A R TEYSEYRE AND M CAMPO

Several problems arise according to the chosen method of
translation and the target language. Usually these problems
derive from trying to match different levels of abstraction.
Any acceptable solution has to balance declarativeness ver-
sus efficiency in the sense that we want not only an exe-
cutable form of a very high-level specification, but also a
reasonable efficient execution to test the specification [4].

Due to mathematical and logical foundations of formal
languages, declarative or functional languages seem to be the
most suitable ones. A logic programming language is a very
interesting choice for translating a specification language as
Z, which is based on first order logic. The conceptual gap
between a logic programming language (which is a subset of
a first order logic) and a specification based on logic is signi-
ficatively less than the gap between a specification based on
logic and an imperative language. For instance, a straightfor-
ward way to animate Z documents seems to be mapping Z
specifications into PROLOG because practice shows that
most Z predicates are easily implemented in terms of PRO-
LOG clauses. Figure 3 illustrates the translation and execu-
tion of Z specifications: the Z specification document is
translated to PROLOG and then executed by a PROLOG
interpreter using a library of basic Z predicates in PROLOG.
In addition, this figure shows for instance the implementa-
tion of a PROLOG predicate mem, which defines de mem-
bership of an element to a given set.

In fact, it is possible to take a subset of Z for generating
PROLOG code. This point of view is compatible with the
assertion that a considerable part of Z has executable seman-
tics [4]. In particular, the approach we adopted is similar to
the approach proposed by Sterling [36]:

* The semantics of the subset of Z is clear.

e The translation of the subset to PROLOG is practically
direct.

e The power of the subset is sufficient for many applica-
tions.

Although these claims need a deeper argument they will not
be discussed, as the focus, is the application of logic pro-
gramming in requirements engineering. Instead, we show
how the transformation can be done by using an example.

3.1.1. Translating Z to Prolog

The main construction in Z is the schema. A schema enables
us to decompose a specification into small pieces. In Z,
schemas are used to describe both static and dynamic aspects

Executable h
Specification(Prolog)

—

Z Specification | ™.
Document

—

Translate
Z to Prolog

Z Predicates
Library (Prolog)

;;;;em(_, [1):-! fail.
mem(E,[E|_]).
mem(E,[_|L]):-mem(E,L).

Results j

>

Execute
Specification

Figure 3 Translation and execution of Z specifications

64

of systems. In order to show the transformation a simple and
widely discussed LIFT SYSTEM [8] example is presented:
“A lift controller system has to service requests coming from
the buttons placed on the floors of a building. The lift is
moved by the controller in a direction satisfying the pending
requests until no more requests are found; in this case, the
lift changes direction to service other new or pending
requests.”

First, we introduce a schema to describe the system state,
which corresponds, to the static part of the system. The static
aspects include the states it can occupy and the invariant
relationships that are maintained as the system moves from
state to state.

- Lift MaxLevel == 5
position : N
direction : DIRECTION
state : STATE
door : DOOR
requests : PN

DIRECTION ::=up | down

STATE ::= moving | stopped

0 < position < MazLevel DOOR ::= open | closed

The lift can be defined by its position, direction, state, door
state and pending requests. The direction of the lift can be up
or down, while the state indicates if the lift is moving or
stopped. The lift door opens when the lift arrives at a floor
and it is closed while the lift is moving. Possible requests are
up or down requests. The invariant states that the movement
of the lift is restricted to an interval of valid floors.

In order to translate a state schema, a PROLOG clause is
created, whose name is the same of the schema, the argu-
ments of the clause are the state variables and the invariant
of the schema is the body of the clause. An additional argu-
ment is also added for storing global declarations of the spec-
ification. For example, Figure 4 shows the translation of the
Lift schema. The clause getContain, which is used to access
values of global declarations, enables us to obtain the value
of the constant Max_Level.

We can now start defining the system operations, that is,
the dynamic aspects of the system. The dynamic aspects
include operations that are possible, relationship between
their inputs and outputs and changes of state that happen. In
an operation schema, we can identify a declaration part and a
predicate part. The declaration part defines the inputs and the
outputs of the operation as well the system state schemas
over which it operates:

— MakeReq —MoveUpUp
ALift ALift
floor?: N

3f:N ‘f € requests o f > position)
direction = up

position’ = position + 1

direction’ = up

state’ = moving

requests’ = requests U { floor?}

— OpenDoor
ALift

door = closed

(3f : N e f € requests A f = position)
state’ = stopped

door’ = open

requests’ = requests \ {F}

MakeRequests schema adds a new request to the requests set.
The declaration (Lift alerts us to the fact that the schema is
describing a state change in Lift schema. The declaration
floor? defines the input of the schema, by convention names
of inputs end in a question mark. The part of the schema

computer systems science & engineering

below the line is the predicate part. The other operation
schema MoveUpUp defines the operation of moving the lift
up if up requests are present above the lift (in addition, simi-
lar operations are defined for the other directions and for
closing the door, not reported for conciseness).

For translating an operation schema a PROLOG clause is
created, whose name, is the same name of the schema, and
the inputs and outputs of the operations are the arguments of
the clause (Figure 5 shows the translation procedure). Also,
two additional parameters are needed (PROLOG structures)
for holding the state of the system before and after the exe-
cution of the operation. Other two parameters are included
for maintaining global declarations, logging and tracing the
execution of the operations (information used to animate
visualizations). Finally, the body of the clause is composed
by the assertions of the Z schema, that is, pre and post condi-
tions of the schema operations. Also, after the execution of
an operation schema the invariant must still remain true, so
in order to verify that fact a call to the PROLOG clause of
the state schema is done. Figure 5 illustrates the translation
procedure of the schema MakeRequests. The operation add-
ChangeOp registers in the global state that the operation was
executed.

3.1.2. Object based extension

Z makes use of schemas to structure specifications. Howev-
er, this is not sufficient for structuring large specifications.
Many researchers remark the need for better structuring in
specifications to improve readability and allow modular ver-
ification and refinement. In that sense, many different
approaches proposed providing Z with an object-oriented
structuring mechanism [35]. These approaches have
involved the extension of Z with object-oriented concepts
[7,1,21] or attempts to use Z in a more object-oriented style
[11,38].

~ ZSpecification

Translation Procedure
= open | closed

DOOR
DIRECTION ::= up| down Schema(GlobalDec,Dect, Dec2,...DecN) -

STATE ::= stopped | moving invariant.
M i s
position: N

direction: DIRECTION
state: STATE
door: DOOR Prolog

requests: PN

2z_Lif(Z_GState.Z_position, Z_direction,Z_state.Z_door, Z_requests):-
0< position < Max_Level

getContain(Z_Gstate, Root', Z_Max_Level'.Z_Max_Level),

0 <=Z_position, Z_position <= Z_Max_Level

Figure 4 Z state schema and its translation procedure

Translation Procedure

Schema(globalState(GlobalDec,GlobalDec") ,
state(before),state(after) Arg1,... ArgN):-
predicates....,
J call invariant.

requests’ = requests U {floor? }

Z Specification
— MakeRequest
ALift

floor?: N

Prolog

z _GState.Z_)
2_Lift(Z_position.Z_direction Z_state, Z_door.Z_requests),

2_Lift(Z_position Z_direction Z_state Z_door,Z_requests').Z_floor)--

uni(Z_requests [Z_floor] Z_requests’),
2_Lift(Z_GState.Z_position,Z_direction,Z_state,Z_door,Z_requests’),

addChangeOp(Z_GState z_MakeRequests Z_GNewState).

Figure 5 Translation of an operation schema

vol 20 no 1 january 2005

EARLY REQUIREMENTS VALIDATION WITH 3D WORLDS

In consequence, the approach adopted, makes use of Z in
an object-oriented style. The operations on a particular state
are grouped together. Consequently, the schema can be
viewed as a class, that is a template, from which objects may
be created by ‘new’ operations:

lift = new Lift

Objects of the same class have common operations and
therefore uniform behavior. A message is sent to an object in
order to execute a schema operation:

lift. MakeRequests(4)

However, the extension proposed just support objects, that
is, the approach is not object-oriented, it is just object-based
because it does not support class hierarchies defined by an
inheritance mechanism [37].

In order to support the object-based extension the execu-
tion core for animating specifications chosen was JAVAL-
OG [2]. JAVALOG is a PROLOG interpreter written in
JAVA designed to allow easy integration between JAVA
and PROLOG mixing LOGIC/OO paradigms. Each object of
the specification is instantiated as Z-Executor JAVA object,
that encapsulates PROLOG clauses.

JAVALOG enables the creation and usage of JAVA
objects in PROLOG programs, mixing LOGIC/OO
paradigms and preprocesses JAVA methods with embedded
PROLOG enabling the common use of local variables in
both paradigms. In JAVALOG, the elements manipulated by
the logic paradigm are mapped to modules. Logic modules
are defined as a set of HORN clauses.

The class diagram presented in figure 6 shows the core
classes that support the execution of Z specifications. JAVA-
LOG defines an object KnowledgeLogic for representing
logic modules and a simple object called PIEngine that acts
as a logic language interpreter:

PIEngine engine=new PIEngine();
engine.answerQuery(“append([1,2,3],[4,5],Res)”);

In addition, we have defined a class SharedPIEngine that
encapsulates an instance of PIEngine and enables us to share
the interpreter between several clients. The class ZExecutor
adds all the behavior needed for executing Z specifications
and uses a SharedPlEngine object. As well, a pool class
PIEnginePool was defined, which is useful for minimizing

SharedPIEngine i
i g PIEnginePool
PIEngine
+engine
+ acquire(): void <+ instance(): PIEnginePool
+ release() : void + get(): SharedPIEngine
+ isFree(): boolean + release(SharedFIEngine) : void
+ answerQuery(String,Object) : boolean
+plDB
JavaLog engine
LogicModule

ZExecutor

command(String, PIObject) : void
state() : PIObject

oldState() : PlObject
iVar(String) : PlObject
setiVar(String, Object) : void
execute(String) : boolean

o+ o+ o+ o+ 4

Figure 6 Class diagram

65

A R TEYSEYRE AND M CAMPO

PROLOG engines creation overhead.

The translation of the Z specification uses the JAVALOG
new clause for creating objects and the send clause for send-
ing messages to an object. The following example illustrates
the translation:

ALift = new Lift
ALift. MakeRequests(4)
!/
newlnstance(‘ZExecutor’,[‘Lift’], ALift),
send(ALift,execute,[makeRequests,[4]],_)

An instance of ZExecutor is created. The argument Lift
indicates the specification to be instantiated. After the cre-
ation of this instance, a message is sent to it in order to exe-
cute the schema operation makeRequests with four as
argument.

3.2 3D visualization

Let us first state the notion of visualization, which is defined
by Card [6] as follows: “the use of computer-supported,
interactive, visual representations of data to amplify cogni-
tion”, where cognition is the acquisition or use of knowl-
edge. Visualization is a powerful tool to facilitate the
analysis and understanding of complex information such as
software requirements. This is mainly because it provides a
closer match to the mental model of the users than textual
representations and also reduces the communication gap
between customers and developers.

At the beginning most of visualization systems display 2D
graphics, but nowadays, more and more applications use 3D
graphics in their visual presentations. Using this kind of pre-
sentations provides a greater information density than two-
dimensional presentations, as a consequence, of a bigger
physical space [30]. Also, an additional dimension helps to
have a clear perception of relations between objects by inte-
gration of local views with global views [22] and composi-
tion of multiples 2D views in a single 3D view [19]. Besides,
their similitude with the real world enables us to represent it
in a more natural way. This means that the representation of
the objects can be done according to its associated real

Pressed
Button

Floor

Button

Lift

Figure 7 Lift system visualization

66

concept, the interactions can be more powerful (ranging from
immersive navigation to different manipulation techniques)
and the animations can be even more realistic.

On the other hand, several problems arise, such as inten-
sive computation and more complex implementation than
two-dimensional interfaces. These problems can be lighted
using powerful and specialized hardware and several tools
like 3D toolkits as JAVA3D [33] or 3D modeling languages
such as VRML [14].

Therefore, in order to make the construction of the 3D
graphics presentations easier, REQVIZ3D provides a graph-
ics specification language for defining the geometry and
behavior of the 3D graphics objects, which is described in
the following section.

3.2.1. Building visualizations
Once the system is specified in Z, the developer defines the
graphical representation of the requirements for visualizing
and animating the specification concepts in a 3D world (as
Figure 7 shows), and so validated by the users. In this exam-
ple, the user can press the buttons of each floor and see how
the lift services user requests going up or down. When the
user presses a button, it is lighted on and when the lift ser-
vices the request, it is lighted off. For building the visualiza-
tion, REQVIZ3D provides a graphical specification
language. A graphical object specification is composed by
three main parts: geometry definition, actions and recognized
events.

The geometry section defines the different shapes that can
be used to present a graphic object. For example, the next
script defines the lift graphic object:

geometry([def(open,file(‘models/DOOROPEN.3DS’)),
def(closed,file(‘models/DOORCLOSED.3DS))]).

This example defines the geometries of the lift, that is one
when the lift is closed and another when it is opened. In
addition, each geometry can be named in order to be identi-
fied and accessed.

The next section defines the behavior of the lift (open,
close and goto). These actions are defined in terms of a set of
predefined actions (translate, move...). For instance, the
action open calls the switch action in order to show a graphic
of the lift opened:

action(open, [switch(open)]).

action(close,[switch(closed)]).

action(goto(Floor,From), [call(Time is abs((From-Floor))),
moveTo(time(0,Time),[point3d(0.0,Floor,0.0)])]).

Finally, the events section defines the reactions of the lift in
response to changes in the execution of a Z specification,
using a change-propagation mechanism that ensures consis-
tency between the specifications and visualizations based on
implicit invocation [5]. The mechanism maintains a registry
of the dependent components. The Z model takes the role of
a publisher. The visualizations, that are the components that
depend on changes of the publisher, are its subscribers.
Changes in the state of the model trigger events that are
propagated to the visualizations. Using this mechanism, the
Z executor object announces different events about the

computer systems science & engineering

EARLY REQUIREMENTS VALIDATION WITH 3D WORLDS

Z Executor Button Lift

Visualization Visualization

| execute(openDoor) P

notify(startOperation)

execute(Command) {
notify(startOperation);
if (prologEngine.answerQuery(Command)) {
if (prologEngine.stateChanged()) notify(stateChanged) ;
notify(endOperation);
} else notify(failOperation) ;}

1

notify(Event) {

for(Enumeration e=dependents.elements();
e.hasMoreElements();)
e.nextElement().update(Event); }

Figure 8 Events

execution state of the specification, as the method execute of
figure 8 shows. The first event that is propagated when an
operation is executed is the start operation event. It may be
possible that the execution of the operation fails, so the fail
operation event is announced. In contrast, if the operation is
successfully executed an end operation event is propagated.
At last, if the operation changes the state of the system a
state changed event is triggered. In order to announce any
change the ZExecutor invokes the notify operation which
sends the update message to all dependent visualizations.

For example, Figure 8 shows the messages propagated
when the Z operation openDoor is executed. When the door
is opened, the presentation of the lift must be updated and
the button switched off:

event(stateChanged,va(position), [value(position,Pos),
oldValue(position,OPos),goto(Pos,OPos)]).

event(stateChanged,op(openDoor),[open]).

event(stateChanged,op(closeDoor),[close]).

The following code defines the look and feel of the buttons
used to call the lift from each floor. A button is represented
by a box:

geometry([def(file(‘examples/lift/box.bsh’))]).

Two actions define the behavior of the buttons, lightOn and
lightOff, that switch on or off the light of the button indicat-
ing that exists or not a request from that floor:

action(lighton,[colorFromTo(time(0,1000.0),
color3f(0,0,0),color3f(1,0,0))]).

action(lightoff,[colorFromTo(time(0.0,1000.0),
color3f(1,0,0),color3f(0,0,0))]).

Finally, the last section defines the events processed by a
button. When the lift process a request the light of the button
is turned off, and when the user clicks a button the light is
turned on and a request is made by calling the schema opera-
tion MakeRequests:

event(stateChanged,op(openDoor),[getval(floor,Pos),

vol 20 no 1 january 2005

update(startOperation)

notify(stateChanged)

update(stateChanged(OpenDoor)

.

lightOff

! open

update(stateChanged(openDoor)))

value(lift,position,Pos),lightoff]).
event(oneShot,none,[getval(floor,Pos),
callZ(z_MakeRequests(Pos)),lighton]).

We have described some of the graphics elements of the
visualization; however, in order to make a complete scene,
they must be composed and linked with a Z Executor object.
For doing so BEANSHELL [25] was used. BEANSHELL is
a small, free, embeddable, JAVA source interpreter with
object scripting language features, written in JAVA. BEAN-
SHELL executes standard JAVA statements and expres-
sions, in addition to obvious scripting commands.
BEANSHELL supports scripted objects as simple method
closures like those in PERL and JAVASCRIPT. You can
call BEANSHELL from your JAVA applications to execute
JAVA code dynamically at run-time or to provide scripting
extensibility for your applications:

* Creates a Z executor object for the lift specification:
ZAnimat z= new ZExecutor(“lift.tex.pl”);
e Composes the graphic objects making a 3D scene:

J3DCompositeComponent world=
new J3DCompositeComponent();

J3DComponent lift=Factory3D.instance().
createViewForZ(“lift.scr”,z);

world.addComponent(lift);

for(int i=0; i < 5; i++) { /ICreates each floor

J3DComponent button=Factory3D.instance().
createViewForZ(“button.scr”,z);

J3DComponent floor=new J3DSimpleComponent();
floor.builder(newBeanBuild3D(“floor.bsh”));
world.addComponent(button);
world.addComponent(floor);

}

return world;

In consequence, each scripting language is useful for dif-
ferent tasks. The graphics specification language is helpful

67

A R TEYSEYRE AND M CAMPO

Table 2 Scripting commands

Operation Command Description

Type

geomeltry(geometries) Defines different graphics representations for an
Geometry object

Operations | switch(geometry) Changes actual representation
morphFromTo(time(Begin, Duration), Morphs from a shape to another one

geomeltries)
X.Y,Z) Translates (X,Y,Z) points from actual position

rotate(X,Y,Z,A) Rotates an angle A based on vector (X,Y,Z)

Basic scale(X,Y,Z) Scales an object by a factor (X,Y,Z) in each
Operations dimension

scale(S) Scales an object by a factor S

moveFromTo(time(Begin, Duration), Moves an object following a path

Points)

Moves an object following a path from the
actual position
colorFromTo(time(Begin,Duration),Colors) | Changes the color to another one
value(Variable, Value) Returns the value of a variable of a Z State

Z Related Schema

Operations | oldvalue(Variable, Value) Returns the previous value of a variable of a Z
State

Executes a schema operation

moveTo(time(Begin,Duration), Points)

callZ(Operation)

for defining, at a high level of abstraction, the look and feel
of the graphics objects and it provides a simple way to inte-
grate visualizations with Z execution. Table 2 resumes the
main commands of this language. On the other side, a lan-
guage as BEANSHELL, is useful for interactively experi-
menting building general-purpose JAVA scripts.

3.3 Requirements validation

For example, as a consequence of visualizing the lift system,
the following problem was detected: the lift door was still
opened while the lift was moving. Although the modeled
system was very simple, it seems to be easier to detect this
problem in the visualization than on the textual specification
itself.

In order to correct this problem, the invariant now addi-
tionally asserts that while the lift is moving the door must be
closed. Moreover, the operation schemas that move the lift
now verify before moving the lift if the door is closed:

—Lift —MoveUpUp
position : N ALift
direction : DIRECTION
state : STATE
door : DOOR
requests : PN

door = closed

(3f :N | f € requests o f > position)
direction = up

position’ = position + 1

direction’ = up

state’ = moving

door’ = closed

0 < position < MazLevel
state = moving = door = closed

4. A CASE STUDY: AN AUTOMATIC
TELLER MACHINE

This section presents a brief description of a case study
developed with REQVIZ3D. An automatic teller machine
which provides these basic services: deposit, withdraw,
transfer, balance and user authentication.

In order to use the ATM machine, the user inserts its card
and is prompted for a password. The password is validated
and if it is correct, the client can make transactions by touch-
ing the screen buttons and entering values using a keyboard.
The user receives a ticket for each operation and, in the case
of extracting money, takes it.

The state of the system is defined by two functions (bal
and pass) that hold the balance and the password of each

68

account respectively, the state variable log that registers all
the account transactions, and the variable user that repre-
sents the current user of the machine:

ATM
bal : N+ R

pass : N+ N

log : P(Nx TRANSACTION x R)
user : N

init_BankServer = [B’n,n,kSemmr’ ‘ bal' = {1+ 25,2+ 5} Apass’ = {1 — 1111,2 2222}
A log' = {(1, deposit, 15),(1, deposit, 10), (2, deposit,5)} |

To illustrate the functionality of the ATM the following
schemas define the balance and credit operations. The first
one informs the available money and the another deposits a
certain amount of money. The last operation increments the
balance by changing the function bal by means of the opera-
tor <) that updates the function with the new balance:

_ Credit —Balance
AATM EATM
amount? : R src? i Nj

dst?: N; amount! : R
report! : MESSAGE Y
bal’ = bal & {dst? — bal(dst?) + amount?}
log’ = log U {(dst?, deposit, amount?)
report! = ok

amount! = bal(src?)

In order to validate requirements with the user, a visual-
ization was developed, as Figure 9 shows. The scene is com-
posed by different graphics objects such as money, ticket
and ATM among others. The following scripts define the
main components of the visualization:

* Money: When the client makes an extraction gets the
money.

geometry(file(‘money.bsh’)).

action(money,[moveFromTo(time(0,2),[point3d(-0.5,1,0.3),
point3d(-0.5,1,2)])]).

event(stateChanged,op(‘z_WidthdrawOk’),[money]).

e Ticket: When the user makes an operation gets a ticket.

geometry(file(ticket.bsh’)).

Requizsn

Card slot
Monitor

Figure 9 ATM

computer systems science & engineering

action(ticket,[moveFromTo(time(0,2),[point3d(0.0,1.0,0.3),
point3d(0.0,1.0,2.0)])]).
event(stateChanged,op(‘z_Balance’),[ticket]).

Finally, a bsh script integrates all graphic objects. Also,
other graphic objects are created using JAVA3D:

* Creates a Z Executor object to animate the Z specifica-
tion:

ZAnimat Bank= new ZAnimat(“bank.tex.pl”);
* Composes the scene 3D:

J3DCompositeComponent World=

new J3DCompositeComponent();
J3DCompositeComponent ATM=

new J3DCompositeComponent();
J3DComponent money=Factory3D.instance().

createViewForZ(“money.scr”,Bank);
ATM.addComponent(money);
J3DComponent ticket=Factory3D.instance().

createViewForZ(“ticket.scr”,Bank);
ATM.addComponent(ticket);

return World;

4.1 An architectural refinement

We have seen how to use Z to precisely capture software
requirements and validate them using visualization tech-
niques. However, in order to build the final system these
specifications can be refined. In fact, this section illustrates a
specification of the ATM at an architectural level, which in
addition, can replace the initial specification and can be still
validated using the visualization previously developed.

The basic building blocks of an architectural description
are components and connectors. Components are computa-
tional entities of a system, which make tasks through inter-
nal computation and external communication with the rest of
the system, while connectors represent the architectural
interaction between components. For example, Figure 10
shows an architectural refinement of the ATM system,
which includes a pipeline subsystem, a specialization of the
style pipes and filters [31]. A filter (component) reads
stream of data on its input and produces streams of data on
its output. The pipes (connectors) perform as channels for
the transmission of the data produced by the filters.

In order to connect components and connectors, both
types of elements define a collection of interaction points:
the ports. A port is an individual connection point, which
defines a service that the element either offers or expects.

The complexity of a component may be high; it could be
for example an entire subsystem. This means, that a compo-
nent could be disaggregated in a collection of other compo-
nents that interact by means of connector instances. This
decomposition constitutes a configuration. Therefore, an
architectural description is defined as hierarchical configura-
tions of components and connectors as Figure 10 illustrates.

In order to animate specifications the architectural model
is based on the notion of an event. An event is initiated in a

vol 20 no 1 january 2005

EARLY REQUIREMENTS VALIDATION WITH 3D WORLDS

Broker

Pipeline Subsystem

input output output output oulput ml!pul;
© (] Filterl Filter2 Filter3 [

input inpul input input

Figure 10 ATM architectural refinement

port of a component and propagated to the port of the other
element. A Z operation schema models an event. An event
has a type, an instance that indicates the element that initiat-
ed it, input parameters for passing information about the
event and output parameters for returning information.

The refined specification of the ATM addresses new
issues such as distribution. The system consists now in
decoupled components that interact by remote services inter-
action (Broker Architectural Style [5]). The main compo-
nents are shown in Figure 10. The Bank Server implements
the services for managing accounts and making transactions.
This component registers with the Broker indicating the ser-
vices it provides. The Broker stores the name of the
providers and is responsible for coordinating communication
between clients and providers. The ATM implements user
functionality: deposit, withdraw, transfer, balance and user
authentication. The Bank Server provides transaction and
accounting support. It is a complex component that is inter-
nally composed of other components. One of its components
is a pipeline subsystem that implements transaction filtering
and sorting operations.

The Broker provides support for registering services. The
Bank Server registers itself with the Broker component via a
registry event. The Broker stores the name of the provider
and is responsible for coordinating communication between
clients and providers.

_ Broker
definer : Port
services : Name + Component

MESSAGE ::= fail ‘ ok
—LookUp
EBroker
event? : EVENT -
instance? : ELEMENT = f;yrf]szg
inputP? : Name

outputP! : Component event? : EVENT
it instance? : ELEMENT

inputP? : Name x Component
outputP!: MESSAGE

event? = lookUp
outputP! = services(inputP?)

event? = registry
services' = services @ {inputP!}
outputP! = ok

When a client requests a service via a lookUp event, the bro-
ker locates the appropriate server. This implementation of
the Broker realizes the Direct Communication Broker Sys-
tem variant, that is, clients can communicate with servers
directly.

The ATM provides basic transactions support. In order to
use the ATM machine, the user inserts his/her card and is
prompted for a password. The password is validated and if it
is correct, the client can make different transactions. In order
to find an appropriate server it sends a lookUp event to the
Broker by calling the Initiate schema operation. After that,

69

A R TEYSEYRE AND M CAMPO

the sentence callerS.setConnection links the callerS port with
the Bank Server port, setting a channel for making requests.

— Connect
AATM

callerB.Initiate(lookUp, This, bankserver, Res)
callerS.setConnection(Res.definer)

The ATM calls BankServer services for actually perform-
ing transactions. For example, the next Z schema models a
Credit operation. The ATM calls bank services using callerS
port. Using this port the ATM sends a credit event to the
Bank Server:

— Credit
AATM
amount? : R
dst?: N
report! : MESSAGE

callerS.Initiate(credit, This,amount?, dst?, report!)

The BankServer implements basic transaction and log
operations. The BankServer registers with the Broker with
the InitService schema. The following schemas model this
component:

— InitService
ABankServer

callerB.Initiate(registry, This, bankserver — This, Res)

— BankServer — Credit
callerB : Port ABankServer
definer : Port event : EVENT
pipeline : Port instance : ELEMENT
bal :N -+ R amount? : R
pass : N+ N dst?: N

log : P(Nx TRANSACTION xR) report! : MESSAGEINIT

event = credit

bal’ = bal ® {dst? — bal(dst?) + amount?}
log’ = log U{(dst?, deposit, amount?) }
report! = ok

As a result of modeling the system at an architectural lev-
el, we provide a way to reason about software systems at an
adequate level of abstraction. In fact, it has been recognized
that finding an appropriate architectural design for a system
is a key element of its long-term success.

S. THE TOOL

In essence, REQVIZ3D takes a specification as input and
generates a visualization as output, through which users can
validate requirements. Firstly, the system requirements are
specified in Z using an editor as Figure 11 shows. After that,
their respective graphical representations are also built with
ReqViZ3D. Finally, the requirements are animated and visu-
alized, and so validated by the user. For example, Figure 11
also presents the visualization of a vending machine. A client
inserts coins in the coin slot. After that, if the required
amount of money was inserted, the client obtains a can by
pressing the eject button. The machine can dispense a limited
number of cans. The vending machine has two buttons: one
for inserting coins and the other for ejecting the can. When
the correct amount of money is inserted the eject button is lit
on, then the user can press it and the can is ejected and the
button is lit off.

REQVIZ3D was developed in JAVA. In order to animate
a Z specification, it is translated to PROLOG and executed.

70

Files of the Opened
Project Files

Edition Elements of Z

\

e\
CiTA |
G

Components e e
of the ' s
specification

Can Eject Button

Figure 11 REQVIZ3D tool

1| Z Specificati 7 Prolog P
17 ¢ »| Zparser 721 i
EE i

Model E E View + Controller

Java3D

| Javalog |

Java

Figure 12 Global system view

As we developed REQVIZ3D in JAVA, a way to integrate
JAVA and PROLOG was needed. As we have seen this inte-
gration was done using JAVALOG. Also, trying to take
advantage of 3D visualizations we developed the View sub-
system on top of JAVA3D. Figure 12 presents a global sys-
tem view of REQVIZ3D that defines a blueprint of the
overall structure of the application and corresponds to the
architectural model Model-View-Controller [5]. This model
prescribes the division of an interactive application in three
parts, the Model that represents the application functionality,
the View responsible for the output interface and the Con-
troller responsible for the input handling.

6. CONCLUSIONS

The main contribution of this work is the utilization of 3D
visualization techniques to reduce the communication gap
between the customer and the developer resulting in a much
more effective process of requirements validation: the system
is described in a way that users can understand. Therefore, as
a consequence of validating requirements in the earlier stages
of the development process, the total effort to develop a sys-
tem is reduced.

In addition, a prototype tool to visualize requirements was
developed. This tool assists the developer in several stages in
the development process: from requirements specification in
Z and definition of graphical objects, to animation and exe-
cution of requirements in a 3D world.

Several examples were presented showing that the use of
visualization techniques were very useful in analyzing their

computer systems science & engineering

dynamics. In addition, we have presented an architectural
refinement of a case study, which can replace the initial
system specification and can be still validated using the
visualization initially developed.

Three-dimensional graphics were used in the construction
of the visualizations. Their similitude with the real world
enables us to represent it in a more natural way than 2D. This
means that the representation of the objects can be done
according to its associated real concept. However, the con-
struction of 3D graphics presentations is a difficult and time-
consuming task, besides it requires specific knowledge and
even artistic skills. Therefore, a future extension includes the
automatization of the presentation extending the ideas pre-
sented in several works about the automatic generation of
presentations [23,39].

At last, the work combines an informal approach (visual-
ization) with a formal light one, resulting in a more effective
technique. In that sense, a light application of formal meth-
ods can be an economical way to improve the quality of
specifications without using formal proofs.

Others future extensions include supporting OBJECTZ as
specification language and provide a basic library of 3D
graphics components.

REFERENCES

1 Antonio Alencar and Joseph Goguen. OOZE. In Object Ori-
entation in Z, pages 79-94. Susan Stepney, Rosalind Barden,
and David Cooper editors, Springer, 1992.

2 A. Amandi, A. Zunino, and R. Iturregui. Multi-paradigm lan-
guages supporting multi-agent development. In MAAMAW’99,
pages 128-139, 1999.

3 Barry Boehm. Requirements that handle ikiwisi, cots, and rapid
change. Computer, 33(7):99-102, 2000.

4 P. Breuer and J. Bowen. Towards Correct Executable Seman-
tics for Z. In Proc. 8th Z Users Workshop (ZUM), pages
185-212. Springer-Verlag, 1994.

5 Frank Buschmann, Regine Meunier, Hans Rohnert, Peter
Sommerlad, and Michael Stal. Parttern-Oriented Software
Architecture: A System of Patterns. John Wiley & Sons, 1996.

6 Stuart Card, Jock MacKinlay, and Ben Shneiderman, edi-
tors. Readings in Information Visualization: Using Vision to
Think. Morgan Kaufmann, 1998.

7 Roger Duke, Paul King, Gordon Rose, and Graeme Smith.
The Object-Z specification language, version 1. Technical
Report 91-1, Software Verification Research Centre, Depart-
ment of Computer Science, The University of Queensland, Aus-
tralia, 1991.

8 A.S. Evans. Specifying and verifying concurrent systems using
Z. Lecture Notes in Computer Science, 873, 1994.

9 N. Fuchs. Specifications are (preferably) executable. IEEE Soft-
ware Engineering Journal, 7(5):323-334, September 1992.

10 J. P. Diaz Gonzalez and J. E. Urban. Language aspects of
ENVISAGER. an object-oriented environment for the specifica-
tion of real-time systems. Computer Languages, 16(1):19-37,
1991.

11 Anthony Hall. Using z as a specification calculus for object-
oriented systems. In Dines Bjgrner, C. A. R. Hoare, and H.
Langmaack, editors, VDM’90: VDM and Z-Formal Methods in
Software Development, volume 428 of Lecture Notes in Com-
puter Science, pages 290-318. Springer-Verlag, 1990.

12 D. Hazel, P. Strooper, and O. Traynor. Possum: An animator
for the SUM specification language. In Proceedings: 4th Asia-
Pacific Software Engineering and International Computer Sci-
ence Conference, pages 42-51. IEEE Computer Society Press,

vol 20 no 1 january 2005

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

EARLY REQUIREMENTS VALIDATION WITH 3D WORLDS

1997.

Johann Horl and Bernhard K. Aichernig. Validating voice
communication requirements using lightweight formal methods.
IEEE Software, 17(3):21-27, MayJune 2000.

ISO. Vrml97, international specification. Technical report, 1SO,
1997.

Daniel Jackson and Jeanette Wing. Lightweight Formal
Methods. IEEE Computer, 29(4):22-23, April 1996.

CIiff B. Jones. Systematic Software Development Using VDM.
Prentice-Hall International, Englewood Cliffs, New Jersey, sec-
ond edition, 1990. ISBN 0-13-880733-7.

Cliff B. Jones. Formal methods light: A rigorous approach to
formal methods. Computer, 29(4):20-21, April 1996.

John C. Kelly, Joseph S. Sherif, and Jonathan Hops. An
analysis of defect densities found during software inspections.
The Journal of Systems and Software, 17(2):111-117, February
1992.

Hideki Koike. The role of another spatial dimension in software
visualization. ACM Transactions on Information Systems,
11(3):266-286, 1993.

Kevin Lano. The B Language and Method: A guide to Practical
Formal Development. Springer Verlag London Ltd., 1996.
Kevin C. Lano. Z++. In Susan Stepney, Rosalind Barden, and
David Cooper, editors, Object Orientation in Z, Workshops in
Computing, pages 106—-112. Springer-Verlag, Cambridge CB2
1LQ, UK, 1992.

J. D. Mackinlay, G. G. Robertson, and S.K. Card. The per-
spective wall: Detail and context smoothly integrated. In Pro-
ceedings of ACM CHI’91, pages 173—-179, 1991.

Jock Mackinlay. Automating the design of graphical presenta-
tions of relational information. ACM Transactions on Graphics,
5(2):110-141, April 1986.

Bertrand Meyer. On formalism in specifications. /EEE Soft-
ware, 2(1):6-26, January 1995.

Pat Niemeyer. BeanShell. http://www.beanshell.org, 1999.
M. B. Ozcan, P. W. Parry, 1. C. Morrey, and J. 1. Siddiqi.
Visualisation of executable formal specifications for user vali-
dation. Lecture Notes in Computer Science, 1385, 1998.

Ben Potter, Jane Sinclair, and David Till. An Introduction to
Formal Specification and Z. Prentice Hall, New York, 1991.
C. Potts. Expediency and appropriate technology: An agenda
for requirements engineering research in the 1990s. Lecture
Notes in Computer Science, 550, 1991.

P. Pulli, R. Elmstrom, G. Leon, and de la Puente. IPTES —
incremental prototyping technology for embedded real-time sys-
tems. Technical report, ESPRIT, 1991.

Manojit Sarkar and Marc H. Brown. Graphical fisheye
views. Technical Report CS-93-40, Department of Computer
Science, Brown University Providence, September 1993.

M. Shaw and D. Garlan. Software Architecture: Perspective
on an Emerging Discipline. Prentice-Hall, 1996.

I. Sommerville. Software Engineering, 5/e. Addison-Wesley
Publishing Company, 1996.

H. Sowizral, K. Rushforth, and M. Deering. The Java 3D API
Specification. Addison-Wesley, 1998.

J. M. Spivey. The Z Notation. Prentice Hall International, UK,
2 edition, 1992.

S. Stepney, R. Barden, and D. Cooper, editors. Object Orien-
tation in Z. Workshops in Computing. Springer-Verlag, 1992.
L. Sterling, P. Ciancarini, and T. Turnidge. On the Anima-
tion of Not Executable Specifications by Prolog. Int. Journal on
SE and KE, 6(1):6—88, 1996.

Peter Wegner. Dimensions of object-based language design. In
Conference proceedings on Object-oriented programming sys-
tems, languages and applications, pages 168—182. ACM Press,
1987.

P. J. Whysall and J. A. McDermid. An approach to object-ori-
ented specification using Z. In J. E. Nicholls, editor, Z User

71

A R TEYSEYRE AND M CAMPO

Workshop, Oxford 1990, Workshops in Computing, pages
193-215. Springer-Verlag, 1991.

39 Michelle X. Zhou. Automated visual discourse synthesis:
Coherence, versatility, and interactivity. In Proceedings of ACM

72

CHI 98 Conference on Human Factors in Computing Systems
(Summary), volume 2 of Doctoral Consortium, pages 76-77,
1998.

computer systems science & engineering

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

