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Abstract. We determine conditions on q for the nonexistence of deep holes

of the standard Reed–Solomon code of dimension k over Fq generated by poly-
nomials of degree k + d. Our conditions rely on the existence of q–rational

points with nonzero, pairwise–distinct coordinates of a certain family of hyper-

surfaces defined over Fq . We show that the hypersurfaces under consideration
are invariant under the action of the symmetric group of permutations of the

coordinates. This allows us to obtain critical information concerning the singu-

lar locus of these hypersurfaces, from which the existence of q–rational points
is established.

1. Introduction

Let Fq be the finite field of q elements of characteristic p, let Fq denote its algebraic
closure and let F∗q denote the group of units of Fq. Let Fq[T ] and Fq[X1, . . . , Xn]
denote the rings of univariate and n-variate polynomials with coefficients in Fq,
respectively.

Given a subset D := {x1, . . . , xn} ⊂ Fq and a positive integer k ≤ n, the Reed–
Solomon code of length n and dimension k over Fq is the following subset of Fnq :

C(D, k) := {(f(x1), . . . , f(xn)) : f ∈ Fq[T ], deg f ≤ k − 1}.
The set D is called the evaluation set and the elements of C(D, k) are called codewords
of the code. When D = F∗q , we say that C(D, k) is the standard Reed–Solomon code.
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Let C := C(D, k). For w ∈ Fnq , we define the distance of w to the code C as

d(w, C) := min
c∈C

d(w, c),

where d is the Hamming distance of Fnq . The minimum distance d(C) of C is the
shortest distance between any two distinct codewords. The covering radius of C is
defined as

ρ := max
y∈Fn

q

d(y, C).

It is well–known that d(C) = n− k + 1 and ρ = n− k hold. Finally, we say that a
“word” w ∈ Fnq is a deep hole if d(w, C) = ρ holds.

A decoding algorithm for the code C receives a word w ∈ Fnq and outputs the
message, namely the codeword that is most likely to be received as w after trans-
mission, roughly speaking. One of the most important algorithmic problems in this
setting is that of the maximum–likelihood decoding, which consists in computing the
closest codeword to any given word w ∈ Fnq . It is well–known that the maximum–
likelihood decoding problem for Reed–Solomon codes is NP-complete ([10]; see also
[4]).

Suppose that we receive a word w := (w1, . . . , wn) ∈ Fnq . Solving the maximum–
likelihood decoding for w amounts at finding a polynomial f ∈ Fq[T ] of degree at
most k − 1 satisfying the largest number of conditions f(xi) = wi, 1 ≤ i ≤ n. By
interpolation, there exists a unique polynomial fw of degree at most n − 1 such
that fw(xi) = wi holds for 1 ≤ i ≤ n. In this case, we say that the word w was
generated by the polynomial fw. If deg fw ≤ k − 1, then w is a codeword.

In this paper our main concern will be the existence of deep holes of the given
Reed–Solomon code C. According to our previous remarks, a deep hole can only
arise as the word generated by a polynomial f ∈ Fq[T ] with k ≤ deg f ≤ n− 1. In
this sense, we have the following result.

Proposition 1.1 ([4, Corollary 1]). Polynomials of degree k generate deep holes.

Next we reduce further the set of polynomials f ∈ Fq[T ] which are candidates for
generating deep holes. Suppose that we receive a word w ∈ Fnq , which is generated
by a polynomial fw ∈ Fq[T ] of degree greater than k. We want to know whether w
is a deep hole. We can decompose fw as a sum fw = g+ h, where g consists of the
sum of the monomials of fw of degree greater than or equal to k and h consists of
those of degree less than or equal to k − 1.

Remark 1.2. Let wg and wh be the words generated by g and h respectively.
Observe that wh is a codeword. Let u ∈ C be a codeword with d(w,u) = d(w, C).
From the identities

d(w, C) = d(w,u) = d(w −wh,u−wh) = d(wg,u−wh)

and the fact that u−wh ∈ C holds, we conclude

d(wg, C) ≤ d(w, C).

On the other hand, for u′ ∈ C with d(wg, C) = d(wg,u
′), we have

d(wg, C) = d(wg,u
′) = d(wg + wh,u

′ + wh) = d(w,u′ + wh) ≥ d(w, C).

Therefore we have d(w, C) = d(wg, C). Hence w is a deep hole if and only if wg is
a deep hole.
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From Remark 1.2 it follows that any deep hole of the Reed–Solomon code C is
obtained as the word wf generated by a polynomial f ∈ Fq[T ] of the form

(1) f := T k+d + fd−1T
k+d−1 + · · ·+ f0T

k,

where d is a nonnegative integer with k+ d < q− 1. In view of Proposition 1.1, we
shall only discuss the case d ≥ 1.

From now on we shall consider the standard Reed–Solomon code C := C(F∗q , k).
In [4] it is conjectured that the reciprocal of Proposition 1.1 also holds, namely a
word w is a deep hole of C if and only if it is generated by a polynomial f ∈ Fq[T ]
of degree k. Furthermore, the existence of deep holes of C is related to the non-
existence of q–rational points, namely points whose coordinates belong to Fq, of a
certain family of hypersurfaces, in the way that we now explain. Fix f ∈ Fq[T ] as
in (1) and let wf be the generated word. Let X1, . . . , Xk+1 be indeterminates over

Fq and let Q ∈ Fq[X1, . . . , Xk+1][T ] be the polynomial

Q = (T −X1) · · · (T −Xk+1).

We have that there exists Rf ∈ Fq[X1, . . . , Xk+1][T ] with degRf ≤ k such that the
following relation holds:

(2) f ≡ Rf mod Q.

Assume that Rf has degree k and denote by Hf ∈ Fq[X1, . . . , Xk+1] its leading
coefficient. Suppose that there exists a vector x ∈ (F∗q )k+1 with pairwise–distinct
coordinates such that Hf (x) = 0 holds. This implies that r := Rf (x, T ) has degree
at most k − 1 and hence generates a codeword wr. By (2) we deduce that

d(wf , C) ≤ d(wf ,wr) ≤ q − k − 2

holds, and thus wf is not a deep hole.
As a consequence, we see that the given polynomial f does not generate a deep

hole of C if and only if there exists a zero x := (x1, . . . , xk+1) ∈ Fk+1
q of Hf with

nonzero, pairwise–distinct coordinates, namely a solution x ∈ Fk+1
q of the following

system of equalities and non-equalities:

(3) Hf (X1, . . . , Xk+1) = 0,
∏

1≤i<j≤k+1

(Xi −Xj) 6= 0,
∏

1≤i≤k+1

Xi 6= 0.

1.1. Related work. As explained before, in [4] the nonexistence of deep holes of
the standard Reed–Solomon code C is reduced to the existence of q–rational points,
namely points whose coordinates belong to Fq, with nonzero, pairwise–distinct co-
ordinates of the hypersurfaces Vf defined by the family of polynomials Hf of (3),
where f runs through the set of polynomials f ∈ Fq[T ] as in (1). The authors prove
that all the hypersurfaces Vf are absolutely irreducible. This enables them to apply
the explicit version of the Lang–Weil estimate of [3] in order to obtain sufficient con-
ditions for the nonexistence of deep holes of Reed–Solomon codes. More precisely,
the following result is obtained.

Theorem 1.3 ([4, Theorem 1]). Let k, d be given positive integers and suppose that
q is a prime number. If q > max{k4+ε, d13/3+ε} holds, then no word wf generated
by a polynomial f ∈ Fq[T ] of degree k + d < q − 1 is a deep hole of the standard
Reed–Solomon code over Fq of dimension k.

In [16] the existence of deep holes is reconsidered. Using the Weil estimate for
certain character sums as in [20], the authors obtain the following result.
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Theorem 1.4 ([16, Theorem 1.4]). Let k, d be given positive integers. If q >
max{d2+ε, (k + 1)2} and k > ( 2

ε + 1)d + 8
ε + 2 holds for a constant ε > 0, then no

word wf generated by a polynomial f ∈ Fq[T ] of degree k+ d < q− 1 is a deep hole
of the standard Reed–Solomon code over Fq of dimension k.

1.2. Our results. We determine further threshold values λ1(d, k) and λ2(d) such
that for q > λ1(d, k) and k > λ2(d) the standard Reed–Solomon code over Fq of
dimension k has no deep holes generated by polynomials of degree k + d. In fact,
we have the following result (see Theorems 5.5 and 5.6 for precise versions).

Theorem 1.5. Let k, d be positive integers and 0 < ε < 1. Suppose that q >
max{14d2+ε, (k + 1)2} and k > ( 2

ε + 1)d hold. Let f ∈ Fq[T ] be an arbitrary

polynomial of degree k + d < q − 1 and let wf ∈ Fq−1
q be the word generated by f .

Then wf is not a deep hole of the standard Reed–Solomon code over Fq of dimension
k.

This result is obtained from a lower bound on the number of q–rational points
with nonzero, pairwise–distinct coordinates of the family of hypersurfaces Vf intro-
duced above. Our result improves that of [4] by means of a deeper study of the
geometry of these hypersurfaces. In fact, we show that each hypersurface Vf has
a singular locus of dimension at most d − 1 (Corollary 3.3), which in particular
implies that it is absolutely irreducible (as proved by [4]). We further prove that
for p := charFq > d + 1, the singular locus of the hypersurfaces Vf of interest has
dimension at most d− 2 (Theorem 4.2, Lemma 4.3 and Proposition 4.5).

For this purpose, we show that the polynomials Hf ∈ Fq[X1, . . . , Xk+1] defining
the hypersurfaces Vf are symmetric, namely invariant under any permutation of
the variables X1, . . . , Xk+1. More precisely, for any polynomial f ∈ Fq[T ] as in (1)
of degree k + d, we prove that Hf can be expressed as a polynomial in the first
d elementary symmetric polynomials Π1, . . . ,Πd of Fq[X1, . . . , Xk+1] (Propositions
2.2 and 2.3). Such an expression involves the number of different partitions of d
(admitting repetition) and resembles the Waring formula.

The result on the dimension of the singular locus of the hypersurfaces Vf is then
combined with estimates on the number of q–rational points of singular complete
intersections [8], yielding our main result Theorem 1.5.

Our results also constitute an improvement of that of [16], as can be readily
deduced by comparing the statements of Theorems 1.4 and 1.5. Nevertheless, as
the “main” exponents in both results are similar, we would like to stress here the
methodological aspect. As mentioned before, the critical point for our approach is
the invariance of the family of hypersurfaces Vf under the action of the symmetric
group of k + 1 elements. In fact, our results on the dimension of the singular lo-
cus and the estimates on the number of q–rational points can be extended mutatis
mutandis to any symmetric hypersurface whose projection on the set of primary
invariants (using the terminology of invariant theory) defines a nonsingular hyper-
surface. This might be seen as a further source of interest of our approach, since
hypersurfaces with symmetries arise frequently in coding theory and cryptography
(for example, in the study of almost perfect nonlinear polynomials or differentially
uniform mappings; see, e.g., [18] or [2]).

2. Hf in terms of the elementary symmetric polynomials

Fix positive integers d and k such that d < k, and consider the first d ele-
mentary symmetric polynomials Π1, . . . ,Πd of Fq[X1, . . . , Xk+1]. For convenience
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of notation, we shall denote Π0 := 1. In Section 1 we associate a polynomial
Hf ∈ Fq[X1, . . . , Xk+1] to every polynomial f ∈ Fq[T ] of degree k + d as in (1). As
asserted above, the word wf generated by a given polynomial f is not a deep hole
of the standard Reed–Solomon code of dimension k over Fq if Hf has a q–rational
zero with nonzero, pairwise–distinct coordinates.

The main purpose of this section is to show how the polynomials Hf can be
expressed in terms of the elementary symmetric polynomials Π1, . . . ,Πd. In order
to do this, we first obtain a recursive expression for the polynomial Hd associated
to the monomial T k+d.

Lemma 2.1. Fix H0 := 1. For any d ≥ 1, the following identity holds:

(4) Hd = Π1Hd−1 −Π2Hd−2 + · · ·+ (−1)d−1ΠdH0.

Proof. Let as before Q := (T −X1) · · · (T −Xk+1). We have

T k+1 ≡ Π1T
k −Π2T

k−1+ · · ·+ (−1)d−1ΠdT
k−(d−1) + · · ·+ (−1)kΠk+1 mod Q.

Multiplying this congruence relation by T d−1 we obtain:

T k+d ≡ Π1T
k+d−1 −Π2T

k+d−2 + · · ·+ (−1)d−1ΠdT
k +O(T k−1) mod Q,

where O(T k−1) represents a sum of terms of Fq[X1, . . . , Xk+1][T ] of degree at most
k−1 in T . Recall that we define Hd−j as the unique polynomial of Fq[X1, . . . , Xk+1]
satisfying the congruence relation

T k+d−j ≡ Hd−jT
k +O(T k−1) mod Q

for 1 ≤ j ≤ d− 1. Hence, we obtain the equality

Hd = Π1Hd−1 −Π2Hd−2 + · · ·+ (−1)d−1Πd.

This finishes the proof of the lemma.

Our second step is to obtain an explicit expression of the polynomial Hd in
terms of the elementary symmetric polynomials Π1, . . . ,Πd. From this expression
we readily obtain an expression for the polynomial Hf associated to an arbitrary
polynomial f as in (1) of degree k + d.

Proposition 2.2. Let Hd ∈ Fq[X1, . . . , Xk+1] be the polynomial associated to the
monomial T k+d. Then the following identity holds:

(5) Hd =
∑

i1+2i2+···+did=d

(−1)∆(i1,...,id) (i1 + · · ·+ id)!

i1! · · · id!
Πi1

1 · · ·Π
id
d ,

where 0 ≤ ij ≤ d holds for 1 ≤ j ≤ d and ∆(i1, . . . , id) := i2 + i4 + · · · + i2bd/2c
denotes the sum of indices ij for which j is an even number.

Proof. We argue by induction on d. The case d = 1 follows immediately from (4).
Assume now that d > 1 holds and (5) is valid for 1 ≤ j ≤ d − 1. From (5) we

easily conclude that Hj is a homogeneous symmetric polynomial of Fq[X1, . . . , Xk+1]
of degree j for 1 ≤ j ≤ d − 1. Furthermore, from Lemma 2.1 we deduce that Hd

is also a homogeneous symmetric polynomial of degree d. Combining the inductive
hypotheses and Lemma 2.1 we see that Hd can be expressed in the form

Hd =
∑

i1+···+did=d

ai1,...,idΠi1
1 · · ·Π

id
d ,
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for suitable elements ai1,...,id ∈ Fq. As a consequence, it only remains to prove that
the terms ai1,...,id have the asserted form, namely

ai1,...,id = (−1)∆(i1,...,id) (i1 + · · ·+ id)!

i1! · · · id!
.

Fix (i1, . . . , id) ∈ (Z≥0)d with i1 + 2i2 + · · · + did = d. Then Lemma 2.1 shows
that

ai1,...,id =

d∑
j=1

(−1)j−1(Hd−j)i1,...,ij−1,...,id ,

where (Hd−j)i1,...,ij−1,...,id is the coefficient of the monomial Πi1
1 · · ·Π

ij−1
j · · ·Πid

d in

the expression of Hd−j as a polynomial of Fq[Π1, . . . ,Πd].
Therefore, applying the inductive hypothesis, we obtain:

ai1,...,id =

d∑
j=1

(−1)j−1(−1)∆(i1,...,ij−1,...,id) (i1 + · · ·+ id − 1)!

i1! · · · (ij − 1)! · · · id!
.

If j is an odd number, then ∆(i1, . . . , ij − 1, . . . , id) = ∆(i1, . . . , ij , . . . , id) and

(−1)j−1 = 1 hold, which implies (−1)j−1+∆(i1,...,ij−1,...,id) = (−1)∆(i1,...,ij ,...,id).
On the other hand, if j is an even number then we have (−1)j−1 = −1 and
(−1)∆(i1,...,ij ,...,id) = (−1)j−1(−1)∆(i1,...,ij−1,...,id). Therefore

ai1,...,id = (−1)∆(i1,...,id)(i1 + · · ·+ id − 1)!
(i1 + · · ·+ id)

i1! . . . id!

= (−1)∆(i1,...,id) (i1 + · · ·+ id)!

i1! . . . id!
.

This concludes the proof of the proposition.

It is interesting to remark the similarity of the expression for Hd with Waring’s
formula expressing the power sums in terms of the elementary symmetric polyno-
mials (see, e.g., [17, Theorem 1.76]).

Finally we obtain an expression of the polynomial Hf ∈ Fq[X1, . . . , Xk+1] associ-
ated to an arbitrary polynomial f ∈ Fq[T ] of degree k+d in terms of the polynomials
Hd.

Proposition 2.3. Let f := T k+d + fd−1T
k+d−1 + · · · + f0T

k be a polynomial of
Fq[T ] and let Hf ∈ Fq[X1, . . . , Xk+1] be the polynomial associated to f . Then the
following identity holds:

(6) Hf = Hd + fd−1Hd−1 + · · ·+ f1H1 + f0.

Proof. In the proof of Lemma 2.1 we obtain the following congruence relation:

T k+d ≡ Π1T
k+d−1 −Π2T

k+d−2 + · · ·+ (−1)d−1ΠdT
k +O(T k−1) mod Q.

Hence we have

T k+d +

d−1∑
j=0

fjT
k+j ≡

d−1∑
j=0

(
(−1)d−1+jΠd−j + fj

)
T k+j +O(T k−1) mod Q.
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Therefore, taking into account that T k+j ≡ HjT
k + O(T k−1) mod Q holds for

1 ≤ j ≤ d− 1, we obtain

f := T k+d +

d−1∑
j=0

fjT
k+j ≡

d−1∑
j=0

(
(−1)d−1+jΠd−j + fj

)
HjT

k +O(T k−1) modQ

=

(
d−1∑
j=0

(−1)d−1+jΠd−jHj +

d−1∑
j=0

fjHj

)
T k +O(T k−1)

=

(
Hd +

d−1∑
j=0

fjHj

)
T k +O(T k−1),

where the last equality is a consequence of Lemma 2.1. This shows that (6) is valid
and finishes the proof.

Remark 2.4. From Lemma 2.1 and Proposition 2.2 we easily conclude that Hd is
a homogeneous polynomial of Fq[X1, . . . , Xk+1] of degree d and can be expressed as
a polynomial in the elementary symmetric polynomials Π1, . . . ,Πd. In this sense,
we observe that Hd is a monic element of Fq[Π1, . . . ,Πd−1][Πd], up to a nonzero
constant of Fq. Combining these remarks and Proposition 2.3 we see that, for an
arbitrary polynomial f := T k+d+fd−1T

k+d−1 + · · ·+f0T
k ∈ Fq[T ], the correspond-

ing polynomial Hf ∈ Fq[X1, . . . , Xk+1] has degree d and is also a monic element of
Fq[Π1, . . . ,Πd−1][Πd].

3. The geometry of the set of zeros of Hf

For positive integers d and k with k > d, let be given f := T k+d + fd−1T
k+d−1 +

· · ·+f0T
k ∈ Fq[T ] and consider the corresponding polynomialHf ∈Fq[X1, . . . , Xk+1].

According to Remark 2.4, we may express Hf as a polynomial in the first d el-
ementary symmetric polynomials Π1, . . . ,Πd of Fq[X1, . . . , Xk+1], namely Hf =
Gf (Π1, . . . ,Πd), where Gf ∈ Fq[Y1, . . . , Yd] is a monic element of Fq[Y1, . . . , Yd−1][Yd]
of degree 1 in Yd.

In this section we obtain critical information on the geometry of the set of zeros
of Hf that will allow us to establish upper bounds on the number q–rational zeros
of Hf .

3.1. Notions of algebraic geometry. Since our approach relies heavily on
tools of algebraic geometry, we briefly collect the basic definitions and facts that we
need in the sequel. We use standard notions and notations of algebraic geometry,
which can be found in, e.g., [13], [19].

We denote by An the affine n–dimensional space Fqn and by Pn the projec-

tive n–dimensional space over Fqn+1. Both spaces are endowed with their respec-
tive Zariski topologies, for which a closed set is the zero locus of polynomials of
Fq[X1, . . . , Xn] or of homogeneous polynomials of Fq[X0, . . . , Xn]. For K := Fq or

K := Fq, we say that a subset V ⊂ An is an affine K–variety if it is the set of com-
mon zeros in An of polynomials F1, . . . , Fm ∈ K[X1, . . . , Xn]. Correspondingly, a
projective K–variety is the set of common zeros in Pn of homogeneous polynomials
F1, . . . , Fm ∈ K[X0, . . . , Xn]. An affine or projective K–variety is sometimes called
simply a variety. When V is the set of zeros of a single polynomial of K[X1, . . . , Xn],
or a single homogeneous polynomial of K[X0, . . . , Xn], we say that V is an (affine
or projective) Fq–hypersurface.
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A K–variety V is K–irreducible if it cannot be expressed as a finite union of
proper K–subvarieties of V . Further, V is absolutely irreducible if it is irreducible
as a Fq–variety. An Fq–hypersurface V is absolutely irreducible if and only if any
polynomial of Fq[X1, . . . , Xn], or any homogeneous polynomial of Fq[X0, . . . , Xn], of
minimal degree defining V is absolutely irreducible, namely is an irreducible element
of the ring Fq[X1, . . . , Xn] or Fq[X0, . . . , Xn]. Any K–variety V can be expressed as
an irredundant union V = C1 ∪ · · · ∪ Cs of absolutely irreducible K–varieties, unique
up to reordering, which are called the absolutely irreducible K–components of V .

The set V (Fq) := V ∩ Fnq is the set of q–rational points of V . Studying the
number of elements of V (Fq) is a classical problem. The existence of q–rational
points depends upon many circumstances concerning the geometry of the underlying
variety.

For a K-variety V contained in An or Pn, we denote by I(V ) its defining ideal,
namely the set of polynomials of K[X1, . . . , Xn], or of K[X0, . . . , Xn], vanishing
on V . The coordinate ring K[V ] of V is the quotient ring K[X1, . . . , Xn]/I(V ) or
K[X0, . . . , Xn]/I(V ). The dimension dimV of a K-variety V is the length r of the
longest chain V0  V1  · · ·  Vr of nonempty irreducible K-varieties contained in
V . The degree deg V of an irreducible K-variety V is the maximum number of points
lying in the intersection of V with a generic linear space L of codimension dimV ,
for which V ∩L is a finite set. More generally, following [11], if V = V1 ∪ · · · ∪ Vs is
the decomposition of V into irreducible K–components, we define the degree of V
as

deg V :=

s∑
i=1

deg Vi.

Let V be a variety contained in An and let I(V ) ⊂ Fq[X1, . . . , Xn] be the defin-
ing ideal of V . Let x be a point of V . The dimension dimx V of V at x is the
maximum of the dimensions of the irreducible components of V that contain x. If
I(V ) = (F1, . . . , Fm), the tangent space TxV to V at x is the kernel of the Jaco-
bian matrix (∂Fi/∂Xj)1≤i≤m,1≤j≤n(x) of the polynomials F1, . . . , Fm with respect
to X1, . . . , Xn at x. The point x is regular if dim TxV = dimx V holds. Otherwise,
the point x is called singular. The set of singular points of V is the singular locus
Sing(V ) of V . For a projective variety, the concepts of tangent space, regular and
singular point can be defined by considering an affine neighborhood of the point
under consideration.

3.2. The singular locus of symmetric hypersurfaces. With the notations
of the beginning of Section 3, let Vf ⊂ Ak+1 denote the Fq–hypersurface defined
by Hf . Our main concern in this section is the study of the singular locus of Vf .
For this purpose, we consider the somewhat more general framework that we now
introduce. This will allow us to make more transparent the facts concerning the
algebraic structure of the family of polynomials Hf which are important at this
point.

Let Y1, . . . , Yd be new indeterminates over Fq, let G ∈ Fq[Y1, . . . , Yd] be a given
polynomial and let ∇G ∈ Fq[Y1, . . . , Yd]

d denote the vector consisting of the first
partial derivatives of G. Suppose that ∇G(y) is a nonzero vector of Ad for every
y ∈ Ad. Hence G is square–free and defines a nonsingular hypersurface W ⊂ Ad.

Let Π1, . . . ,Πd be the first d elementary symmetric polynomials of Fq[X1, . . . ,
Xk+1] and let H := G(Π1, . . . ,Πd). We denote by V ⊂ Ak+1 the hypersurface
defined by H. The main result of this section will be an upper bound on the
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dimension of the singular locus of V . For this purpose, we consider the following
surjective morphism of Fq–hypersurfaces:

Π : V → W

x 7→ (Π1(x), . . . ,Πd(x)).

For x ∈ V and y := Π(x), we denote by TxV and TyW the tangent spaces to V at
x and to W at y. We also consider the differential map of Π at x, namely

dxΠ : TxV → TyW
v 7→ A(x) · v,

where A(x) stands for the d× (k + 1) matrix

(7) A(x) :=


∂Π1

∂X1
(x) · · · ∂Π1

∂Xk+1
(x)

...
...

∂Πd

∂X1
(x) · · · ∂Πd

∂Xk+1
(x)

 .

In order to prove our result about the singular locus of V , we first make a few
remarks concerning the Jacobian matrix of the elementary symmetric polynomials
that will be useful in the sequel.

It is well known that the first partial derivatives of the elementary symmetric
polynomials Πi satisfy the following equalities (see, e.g., [14]) for 1 ≤ i, j ≤ k + 1:

(8)
∂Πi

∂Xj
= Πi−1 −XjΠi−2 +X2

jΠi−3 + · · ·+ (−1)i−1Xi−1
j .

As a consequence, denoting by Ak+1 the (k + 1)× (k + 1) Vandermonde matrix

(9) Ak+1 :=


1 1 · · · 1
X1 X2 · · · Xk+1

...
...

...
Xk

1 Xk
2 · · · Xk

k+1,

 ,

we deduce that the Jacobian matrix of Π1, . . . ,Πk+1 with respect to X1, . . . , Xk+1

can be factored as follows:
(10)

(
∂Πi

∂Xj

)
1≤i,j≤k+1

:= Bk+1 ·Ak+1 :=



1 0 0 . . . 0
Π1 −1 0

Π2 −Π1 1
. . .

...
...

...
...

. . . 0
Πk −Πk−1 Πk−2 · · · (−1)k

 ·Ak+1

We observe that the left factor Bk+1 is a square, lower–triangular matrix whose
determinant is equal to (−1)k(k+1)/2. This implies that the determinant of the
matrix (∂Πi/∂Xj)1≤i,j≤k+1 is equal, up to a sign, to the determinant of Ak+1, i.e.,

det

(
∂Πi

∂Xj

)
1≤i,j≤k+1

= (−1)k(k+1)/2
∏

1≤i<j≤k+1

(Xi −Xj).
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An interesting fact, which will not be used in what follows, is that the inverse matrix
of the matrix Bk+1 of (10) is given by

B−1
k+1 =



H0 0 0 . . . 0
H1 −H0 0

H2 −H1 H0
. . .

...
...

...
...

. . . 0
Hk −Hk−1 Hk−2 · · · (−1)kH0

 .

Theorem 3.1. The singular locus Σ of V has dimension at most d− 1. Moreover,
the elements of Σ have at most d− 1 pairwise–distinct coordinates.

Proof. By the chain rule we deduce that the partial derivatives of H satisfy the
following equality for 1 ≤ j ≤ k + 1:

∂H

∂Xj
=

(
∂G

∂Y1
◦Π

)
· ∂Π1

∂Xj
+ · · ·+

(
∂G

∂Yd
◦Π

)
· ∂Πd

∂Xj
.

If x is any point of Σ, then we have

∇H(x) = ∇G(Π(x)) ·A(x) = 0,

where A(x) is the matrix defined in (7). Fix x ∈ Σ and let v := ∇G
(
Π(x)

)
. By

hypothesis we have that v ∈ Ad is a nonzero vector satisfying

v ·A(x) = 0.

Hence, all the maximal minors of A(x) must be zero.
The matrix A(x) is the d×(k+1)–submatrix of (∂Πi/∂Xj)1≤i,j≤k+1(x) consisting

of the first d rows of the latter. Therefore, from (10) we conclude that

A(x) = Bd,k+1(x) ·Ak+1(x),

where Bd,k+1(x) is the d × (k + 1)–submatrix of Bk+1(x) consisting of the first d
rows of Bk+1(x). Furthermore, since the last k + 1 − d columns of Bd,k+1(x) are
zero, we may rewrite this identity in the following way:

(11) A(x) = Bd(x) ·


1 1 . . . 1
x1 x2 . . . xk+1

...
...

...

xd−1
1 xd−1

2 . . . xd−1
k+1,

 ,

where Bd(x) is the (d× d)–submatrix of Bk+1(x) consisting on the first d rows and
the first d columns of Bk+1(x).

Fix 1 ≤ l1 < · · · < ld ≤ k + 1, set I := (l1, . . . , ld) and consider the (d ×
d)–submatrix MI(x) of A(x) consisting of the columns l1, . . . , ld of A(x), namely
MI(x) := (∂Πi/∂Xlj )1≤i,j≤d(x).

From (10) and (11) we easily see that MI(x) = Bd(x) ·Ad,I(x), where Ad,I(x) is

the Vandermonde matrix Ad,I(x) := (xi−1
lj

)1≤i,j≤d. Therefore, we obtain

(12)

det
(
MI(x)

)
= (−1)(d−1)d/2 detAd,I(x) = (−1)(d−1)d/2

∏
1≤r<s≤d

(xlr − xls) = 0.

Since (12) holds for every I := (l1, . . . , ld) as above, we conclude that every point
x ∈ Σ has at most d−1 pairwise–distinct coordinates. In particular, Σ is contained
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in a finite union of linear varieties of Ak+1 of dimension d−1, and thus its dimension
is at most d− 1.

We observe that the proof of Theorem 3.1 provides a more precise description of
the singular locus Σ of V , which is the subject of the following remark.

Remark 3.2. Let notations and assumptions be as in Theorem 3.1. From the proof
of Theorem 3.1 we obtain the following inclusion:

Σ ⊂
⋃
I
LI ,

where I := {I1, . . . , Id−1} runs over all the partitions of {1, . . . , k + 1} into d − 1
nonempty subsets Ij ⊂ {1, . . . , k + 1} and LI is the linear variety

LI := span(v(I1), . . . ,v(Id−1))

spanned by the vectors v(Ij) := (v
(Ij)
1 , . . . , v

(Ij)
k+1) defined by v

(Ij)
m := 1 for m ∈ Ij

and v
(Ij)
m := 0 for m /∈ Ij . In particular, it follows that if Σ has dimension d − 1,

then it contains a linear variety LI as above.

3.3. The dimension of the singular locus of Vf . Now we consider the hy-
persurface Vf defined by the polynomial Hf ∈ Fq[X1, . . . Xk+1] associated to the
polynomial f := T k+d + fd−1T

k+d−1 + · · · + f0T
k. According to Remark 2.4, we

may express Hf in the form Hf = Gf (Π1, . . . ,Πd), where Gf ∈ Fq[Y1, . . . , Yd] is a
polynomial of degree d which is monic in Yd, up to a nonzero constant. Moreover,
since

∇Gf (y) =

(
∂Gf
∂Y1

(y), . . . ,
∂Gf
∂Yd−1

(y), (−1)d−1

)
holds for every y ∈ Ad, we see that ∇Gf (y) 6= 0 for every y ∈ Ad; in other words,
Gf defines a nonsingular hypersurface W ⊂ Ad. Then the results of Section 3.2 can
be applied to Hf . In particular, we have the following immediate consequence of
Theorem 3.1.

Corollary 3.3. The singular locus Σf ⊂ Ak+1 of Vf has dimension at most d− 1.

In order to obtain estimates on the number of q–rational points of Vf we also
need information concerning the behavior of Vf “at infinity”. For this purpose, we
consider the projective closure pcl(Vf ) ⊂ Pk+1 of Vf , whose definition we now recall.
Consider the embedding of Ak+1 into the projective space Pk+1 which assigns to
any x := (x1, . . . , xk+1) ∈ Ak+1 the point (1 : x1 : · · · : xk+1) ∈ Pk+1. The closure
pcl(Vf ) ⊂ Pk+1 of the image of Vf under this embedding in the Zariski topology
of Pk+1 is called the projective closure of Vf . The points of pcl(Vf ) lying in the
hyperplane {X0 = 0} are called the points of pcl(Vf ) at infinity.

It is well–known that pcl(Vf ) is the Fq–hypersurface of Pk+1 defined by the ho-
mogenization Hh

f ∈ Fq[X0, . . . , Xk+1] of the polynomial Hf (see, e.g., [13, §I.5,

Exercise 6]). We have the following result.

Proposition 3.4. pcl(Vf ) has singular locus at infinity of dimension at most d−2.

Proof. By Proposition 2.3, we have

Hf = Hd + fd−1Hd−1 + · · ·+ f1H1 + f0,
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where each Hj is a homogeneous polynomial of degree j for 1 ≤ j ≤ d. Hence, the
homogenization of Hf is the following polynomial of Fq[X0, . . . , Xk+1]:

(13) Hh
f = Hd + fd−1Hd−1X0 + · · ·+ f1H1X

d−1
0 + f0X

d
0 .

Let Σ∞f ⊂ Pk+1 denote the singular locus of pcl(Vf ) at infinity, namely the set of

singular points of pcl(Vf ) lying in the hyperplane {X0 = 0}. We have that any point
x ∈ Σ∞f satisfies the identities Hh

f (x) = 0 and ∂Hh
f /∂Xi(x) = 0 for 0 ≤ i ≤ k + 1.

From (13) we see that any point x := (0 : x1 : · · · : xk+1) ∈ Σ∞f satisfies the
identities

(14)


Hd(x1, . . . , xk+1) = 0,

fd−1Hd−1(x1, . . . , xk+1) = 0,

∂Hd

∂Xi
(x1, . . . , xk+1) = 0 (1 ≤ i ≤ k + 1).

From Proposition 2.2 and Remark 2.4 we have that Hd ∈ Fq[X1, . . . , Xk+1] is a
homogeneous polynomial of degree d which can be expressed in the form Hd =
Gd(Π1, . . . ,Πd), where Gd ∈ Fq[Y1, . . . , Yd] has degree d and is monic in Yd. Com-
bining these remarks with Theorem 3.1 we conclude that the set of solutions of (14)
is an affine cone of Ak+1 of dimension at most d−1, and hence, a projective variety
of Pk of dimension at most d− 2. This finishes the proof of the proposition.

We end this section with a useful consequence of our bound on the dimension of
the singular locus of pcl(Vf ), namely that Vf is absolutely irreducible. This result,
which has been proved in [4, Section 4], is obtained here as an easy consequence of
Proposition 3.4.

Corollary 3.5. The hypersurface Vf is absolutely irreducible.

Proof. We observe that Vf is absolutely irreducible if and only if pcl(Vf ) is abso-
lutely irreducible (see, e.g., [13, Chapter I, Proposition 5.17]). If pcl(Vf ) is not
absolutely irreducible, then it has a nontrivial decomposition into absolutely irre-
ducible components

pcl(Vf ) = C1 ∪ · · · ∪ Cs,

where C1, . . . , Cs are projective hypersurfaces of Pk+1. Since Ci ∩ Cj 6= ∅ and Ci, Cj
are absolutely irreducible, we conclude that dim(Ci ∩ Cj) = k − 1 holds.

Denote by Σhf the singular locus of pcl(Vf ). Corollary 3.3 and Proposition 3.4

imply dim Σhf ≤ d − 1. On the other hand, we have Ci ∩ Cj ⊂ Σhf for any i 6= j,

which implies dim Σhf ≥ k− 1. This contradicts the assertion dim Σhf ≤ d− 1, since
we have d < k by hypothesis. It follows that Vf is absolutely irreducible.

4. The singular locus of Vf for fields of large characteristic

In this section we characterize the set of polynomials f ∈ Fq[T ] for which the
associated hypersurface Vf ⊂ Ak+1 has a singular locus of dimension d − 1. This
characterization enables us to give conditions under which such polynomials do not
generate deep holes of the standard Reed–Solomon code of dimension k over Fq.

The first step is to obtain a suitable expression of the derivatives of the polyno-
mial Hd associated to T k+d.
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Lemma 4.1. If j ≥ 2, then the partial derivatives of the polynomials Hj satisfy
the following identity for 1 ≤ i ≤ k + 1:

∂Hj

∂Xi
= Hj−1 +Hj−2Xi +Hj−3X

2
i + · · ·+Xj−1

i .

Proof. The proof is by induction on j. By Lemma 2.1 we have H1 = Π1 and
H2 = Π1H1 − Π2. Combining this with (8) we easily see the assertion for j = 2.
Next assume that the statement of the lemma holds for 2 ≤ j ≤ l− 1; we are going
to show that it also holds for j = l. According to Lemma 2.1, we have

(15)
∂Hl

∂Xi
=

l∑
m=1

(−1)m−1 ∂(ΠmHl−m)

∂Xi
.

By the inductive hypothesis and the expression (8) for the first partial derivatives
of the elementary symmetric polynomials, each term in the right–hand side of (15)
can be expressed as follows:

(16)
∂(ΠmHl−m)

∂Xi
= Hl−m

m∑
n=1

(−1)n−1Πm−nX
n−1
i + Πm

l−m∑
n=1

Hl−(m+n)X
n−1
i .

Now we determine the coefficient of Hl−m in the right–hand side of (15). From
(16) we see that the only terms having a nonzero contribution to the coefficient of
Hl−m are ∂(ΠnHl−n)/∂Xi for 1 ≤ n ≤ m. In particular, we easily deduce that the
coefficient of Hl−1 is 1. For 1 ≤ n < m, the summand (−1)n−1∂(ΠnHl−n)/∂Xi

contributes with the term (−1)n−1Xm−n−1
i Πn. On the other hand, the summand

(−1)m−1∂(ΠmHl−m)/∂Xi in the right–hand side of (15) contributes with the sum

(−1)m−1
∑m−1
n=0 (−1)m−n−1ΠnX

m−n−1
i . Putting all these terms together, we con-

clude that the term Hl−m occurs in (15) multiplied by

(−1)m−1
m−1∑
n=0

(−1)m−n−1ΠnX
m−n−1
i +

m−1∑
n=1

(−1)n−1ΠnX
m−n−1
i = Xm−1

i .

This finishes the proof of the lemma.

Observe that, similarly to the factorization (10) of the Jacobian matrix of the
elementary symmetric polynomials of Section 3.2, Lemma 4.1 allows us to express
the Jacobian matrix of H1, . . . ,Hk+1 with respect to X1, . . . , Xk+1 as the following
matrix product:

(17)

(
∂Hi

∂Xj

)
1≤i,j≤k+1

:=


H0 0 · · · 0

H1 H0
. . .

...
...

...
. . . 0

Hk Hk−1 . . . H0

 ·Ak+1,

where Ak+1 is the Vandermonde matrix defined in (9).
Let f ∈ Fq[T ] be a polynomial of the form

f := T k+d + fd−1T
k+d−1 + · · ·+ f1T

k+1 + f0T
k,

and let Vf ⊂ Ak+1 be the hypersurface associated to f . By Proposition 2.3, we
have that Vf is the hypersurface defined by the polynomial

Hf = Hd + fd−1Hd−1 + · · ·+ f1H1 + f0H0,

Advances in Mathematics of Communications Volume 6, No. 1 (2012), 69–94



82 Antonio Cafure, Guillermo Matera and Melina Privitelli

where the polynomials Hj ∈ Fq[X1, . . . , Xk+1] (0 ≤ j ≤ d) are defined in Section 2.
We recall that each Hj is homogeneous and symmetric of degree j (Remark 2.4).

Corollary 3.3 asserts that the singular locus Σf of Vf has dimension at most
d− 1. Suppose now that the dimension of Σf is equal to d− 1. From Remark 3.2
we see that there exists a partition I := {I1, . . . , Id−1} of the set {1, . . . , k+ 1} into
d− 1 nonempty sets Ij ⊂ {1, . . . , k+ 1} with the following property: let LI ⊂ Ak+1

denote the linear variety

LI := span(v(I1), . . . ,v(Id−1))

spanned by the vectors v(Ij) := (v
(Ij)
1 , . . . , v

(Ij)
k+1) defined by v

(Ij)
l := 1 for l ∈ Ij and

v
(Ij)
l := 0 for l /∈ Ij (1 ≤ j ≤ d−1). Then LI ⊂ Σf holds. Let λ := (λ1, . . . , λd−1) ∈
Ad−1 and let x :=

∑d−1
j=1 λjv

(Ij) be an arbitrary point of LI . Since x is a singular
point of Vf we have

0 =
∂Hf

∂Xi
(x) =

∂Hd

∂Xi
(x) +

d−1∑
j=1

fd−j
∂Hd−j

∂Xi
(x)

for 1 ≤ i ≤ k + 1. This shows that the following matrix identity holds:

(18) −


∂H1

∂X1
(x) · · · ∂Hd−1

∂X1
(x)

...
...

∂H1

∂Xk+1
(x) · · · ∂Hd−1

∂Xk+1
(x)


 f1

...
fd−1

 =


∂Hd

∂X1
(x)

...
∂Hd

∂Xk+1
(x)

 .

By symmetry, we may assume that xi = λi holds for 1 ≤ i ≤ d− 1. We further
assume that λi 6= λj for i 6= j. Considering the first d − 1 equations of (18) we
obtain the square system

(19) −B(x) ·

 f1

...
fd−1

 =


∂Hd

∂X1
(x)

...
∂Hd

∂Xd−1
(x)

 ,

where B(x) ∈ A(d−1)×(d−1) is the matrix

B(x) :=


∂H1

∂X1
(x) · · · ∂Hd−1

∂X1
(x)

...
...

∂H1

∂Xd−1
(x) · · · ∂Hd−1

∂Xd−1
(x)

 .

From (17) we see that B(x) can be factored as follows:

(20) B(x) = Ad−1(x)t ·


H0 H1(x) . . . Hd−2(x)
0 H0 . . . Hd−3(x)
...

. . .
. . .

...
0 . . . 0 H0

 ,
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where Ad−1(x) is the Vandermonde matrix Ad−1(x) := (xi−1
j )1≤i,j≤d−1. As a con-

sequence, we have that B(x) is nonsingular and its determinant is equal to

(21) detB(x) =
∏

1≤i<j≤d−1

(xi − xj).

Hence (f1, . . . , fd−1) is the unique solution of the linear system (19). Furthermore,
by the Cramer rule we obtain

fj =
detB(j)(x)

detB(x)
(1 ≤ j ≤ d− 1),

where B(j)(x) ∈ A(d−1)×(d−1) is the matrix obtained by replacing the jth column
of B(x) by the vector b(x) :=

(
(∂Hd/∂X1)(x), . . . , (∂Hd/∂Xd−1)(x)

)
.

Let B,B(j) ∈ Fq[X1, . . . , Xk+1](d−1)×(d−1) be the “generic” versions of the matri-

ces B(x), B(j)(x) for 1 ≤ j ≤ d− 1. We claim that detB =
∏

1≤i<j≤d−1(Xi −Xj)

divides detB(j) in Fq[X1, . . . , Xk+1].

In order to show this claim, let C ∈ Fq[X1, . . . , Xd−1](d−1)×d be the following
matrix:

(22) C :=


1 X1 · · · Xd−2

1 Xd−1
1

1 X2 · · · Xd−2
2 Xd−1

2
...

...
...

...

1 Xd−1 · · · Xd−2
d−1 Xd−1

d−1

 .

Observe that this matrix is obtained by appending the vector column (Xd−1
j )1≤j≤d−1

to the transpose Atd−1 of the generic matrix Ad−1 ∈ Fq[X1, . . . , Xd−1](d−1)×(d−1).

Further, for 1 ≤ j ≤ d− 1 we define a matrix H(j) ∈ Fq[X1, . . . , Xk+1]d×(d−1) as

H(j) :=



H0 H1 · · · Hj−2 Hd−1 Hj · · · Hd−2

0 H0 · · · Hj−1 Hd−2 Hj−1 · · · Hd−3

... 0
. . .

...
...

...
...

. . . H0 Hd−j+1 H2 · · · Hj−1

...
... 0 Hd−j H1

...

Hd−j−1 H0
. . .

...
...

...
... 0

. . . H1

H1

...
. . . H0

0 0 · · · 0 H0 0 · · · 0



,

namely H(j) is obtained by appending a zero dth row to the second factor in the
right–hand side of (20) and replacing the resulting jth column by the column vector
(Hd−j : 1 ≤ j ≤ d) ∈ Fq[X1, . . . , Xk+1]d×1.

It turns out that the matrix B(j) can be factored as follows:

(23) B(j) = C ·H(j).

Indeed, for l 6= j, the lth columns of B and B(j) agree, and the fact that the lth
columns of both sides of (23) are equal is easily deduced from (20). On the other
hand, from Lemma 4.1 we immediately conclude that the jth columns of B(j) and
C ·H(j) are equal.
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In particular, the determinant of B(j) can be obtained from (23) by means of the
Cauchy–Binet formula. Since any maximal minor of C is a multiple of detB (see,
e.g., [6, Lemma 2.1] or [7, Exercise 281]), we immediately deduce that detB divides
detB(j) in Fq[X1, . . . , Xk+1].

As a consequence of our claim, we see that for 1 ≤ j ≤ d − 1 there exists a
homogeneous polynomial P (j) ∈ Fq[X1, . . . , Xd−1] of degree d− j or zero such that

(24) fd−j = P (j)(λ1, . . . , λd−1)

holds for 1 ≤ j ≤ d − 1 and for any (λ1, . . . , λd−1) ∈ Ad−1 with λi 6= λj for i 6= j.
Since (24) holds in a Zariski open dense subset of Ad−1, we conclude that (24) holds
for every (λ1, . . . , λd−1) ∈ Ad−1. By substituting 0 for λi in (24) we deduce that
fd−j = 0 holds for 1 ≤ j ≤ d−1. Finally taking into account that (0, . . . , 0) belongs
to LI ⊂ Σf ⊂ Vf we obtain f0 = 0. Therefore, we have the following result.

Theorem 4.2. With notations as above, if the singular locus Σf of Vf has dimen-
sion d− 1, then f0 = · · · = fd−1 = 0 holds.

4.1. The monomial case. Fix a polynomial f ∈ Fq[T ] of degree k + d < q − 1
with k > d as in (1) and consider the corresponding hypersurface Vf ⊂ Ak+1.
Corollary 3.3 shows that the dimension of the singular locus of Vf is at most d− 1.
Furthermore, Theorem 4.2 asserts that, if the dimension of the singular locus of Vf
is d− 1, then the polynomial f is necessarily the monomial f = T k+d. Our purpose
in this section is to show that, if the characteristic p of Fq satisfies the inequality
p > d+ 1, then this monomial does not generate a deep hole of the standard Reed–
Solomon code of dimension k over Fq. This implies that, for the sake of deciding the
existence of deep holes, we may assume without loss of generality that the singular
locus of Vf has dimension at most d − 2 when p > d + 1 holds. As a first step in
this direction, we prove that, if the dimension of the singular locus of Vf is d − 1,
then p divides k + d.

Lemma 4.3. Fix positive integers k and d with k > d. If the hypersurface Vd ⊂
Ak+1 associated to T k+d has a singular locus of dimension d− 1, then p|(k + d).

Proof. We use the notations of the proof of Theorem 4.2. In such a proof we show
that, if the singular locus Σd of Vd has dimension d − 1, then there exists a linear
variety

LI := span(v(I1), . . . ,v(Id−1))

of dimension d − 1 contained in Σd, where v
Ij
i ∈ {0, 1} for 1 ≤ i ≤ k + 1 and

1 ≤ j ≤ d− 1, and v(I1) + · · ·+v(Id−1) = (1, . . . , 1). Let λ := (λ1, . . . , λd−1) ∈ Ad−1

and let x :=
∑d−1
j=1 λjv

(Ij) be and arbitrary point of LI . As in the proof of Theorem

4.2, we assume that xi = λi (1 ≤ i ≤ d− 1) and λi 6= λj (1 ≤ i < j ≤ k + 1) holds.
By (21) we have that the matrix B(x) is nonsingular and hence 0 ∈ Ad is the unique
solution of the linear square system (19), namely

−B(x) ·

 f1

...
fd−1

 =


∂Hd

∂X1
(x)

...
∂Hd

∂Xd−1
(x)

 .

In particular, the Cramer rule implies

(25) detB(d−1)(x) = 0,
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where B(d−1)(x) ∈ A(d−1)×(d−1) is the matrix obtained by replacing the (d − 1)th
column of B(x) by the vector b(x) :=

(
(∂Hd/∂Xj)(x) : 1 ≤ j ≤ d − 1

)
. We also

recall that the matrix B(d−1)(x) can be factored as in (23), namely B(d−1)(x) =
C(x) ·H(d−1)(x), where C(x) is defined as in (22) and H(d−1)(x) ∈ Ad×(d−1) is the
following matrix:

H(d−1)(x) :=



1 H1(x) · · · Hd−3(x) Hd−1(x)

0 1 · · · Hd−4(x) Hd−2(x)

0
. . .

...
...

...
...

. . . 1 H2(x)

0 H1(x)

0 0 · · · 0 1


.

We shall obtain an explicit expression of detB(d−1)(x) by applying the Cauchy–
Binet formula to such a factorization of B(d−1)(x). For this purpose, we observe
that H(d−1)(x) has only two nonzero (d−1)×(d−1) minors: the one corresponding
to the submatrix consisting of the first d−1 rows of H(d−1)(x), whose value is equal
to H1(x), and the one determined by the rows {1, . . . , d− 2, d} of H(d−1)(x), which
is equal to 1. Therefore, by the Cauchy-Binet formula we have

detB(d−1)(x) = H1(x) · detB(x) + det


1 x1 · · · xd−3

1 xd−1
1

1 x2 · · · xd−3
2 xd−1

2
...

...
...

...

1 xd−1 · · · xd−3
d−1 xd−1

d−1

 .

Combining (25) with, e.g., [6, Lemma 2.1] or [7, Exercise 280], we obtain the fol-
lowing identity:

0 = H1(x) · detB(x) + (x1 + · · ·+ xd−1) detB(x)

= detB(x) ·
(
(#I1 + 1)λ1 + · · ·+ (#Id−1 + 1)λd−1

)
.

From (21) we see that B(x) is a nonsingular matrix. Hence we conclude that

(26) (#I1 + 1)λ1 + · · ·+ (#Id−1 + 1)λd−1 = 0

holds for every λ ∈ Ad−1 with λi 6= λj for i 6= j, and thus for every λ ∈ Ad−1.
Substituting 1 for λi in (26), the statement of the lemma follows.

Remark 4.4. The conclusion in the statement of Lemma 4.3, namely that p|(k+d),
is actually a rather weak consequence of (26). In addition to such a conclusion, (26)
establishes strong restrictions on the partitions I of the linear varieties LI contained
in the singular locus Σd of a hypersurface Vd with dim Σd = d − 1. In particular,
fix i ∈ {1, . . . , d− 1} and substitute 1 for λi and 0 for any λj with j 6= i. Then (26)
implies #Ii ≡ −1 mod p.

Now we are ready to prove the main result of this section, namely that the
assumption p > d + 1 implies that any member Vf of the family of hypersurfaces
which are relevant for the nonexistence of deep holes has singular locus of dimension
at most d− 2.

Proposition 4.5. Let be given positive integers k and d with k > d, p > d + 1,
and q − 1 > k + d. Assume further that p|(k + d) holds. Let wd ∈ Fq−1

q be the
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word generated by the polynomial T k+d ∈ Fq[T ]. Then wd is not a deep hole of the
standard Reed–Solomon code C of dimension k over Fq.

Proof. Write q := ps. The inequality q− 1 > k+ d ≥ p implies s > 1. Consider the

trace mapping trFq/Fp : Fq → Fp defined by trFq/Fp(α) =
∑s−1
i=0 α

pi . It is well–known
that trFq/Fp is a surjective Fp–linear morphism. This in particular implies that there

exist ps−1 elements in Fq whose trace equals zero. Write k + d = p l. Then the
condition q − 1 > k + d implies ps−1 > l, which in turn shows that there exist l
pairwise–distinct elements b1 . . . , bl ∈ F∗q with trFq/Fp(bi) = 0.

Since trFq/Fp(bi) = 0 holds for 1 ≤ i ≤ l, by [5, Theorem 3] it follows that the
Artin–Schreier polynomial gbi := T p − T − bi ∈ Fq[T ] has p distinct roots in F∗q for
1 ≤ i ≤ l. Furthermore, since bi 6= bj holds for i 6= j, we easily deduce that gbi and
gbj have no common roots. Therefore, the polynomial

(27) g :=

l∏
i=1

gbi =

l∏
i=1

(T p − T − bi)

has p l distinct roots in F∗q . On the other hand,

g = T k+d − lT p(l−1)+1 +O(T p(l−1)) = T k+d + h(T ),

where h := lT p(l−1)+1 + O(T p(l−1)) has degree at most p(l − 1) + 1. Denote by
wh ∈ Fq−1

q the word generated by the polynomial h. Since

p(l − 1) + 1 = k + d− p+ 1 ≤ k + d− (d+ 2) + 1 = k − 1

holds, we have that wh is a codeword. The fact that the polynomial g of (27) has
p l > k distinct roots in F∗q implies d(wd,wh) < q − 1 − k holds, where d denotes

the Hamming distance of Fq−1
q . We conclude that wd is not a deep hole of the code

C. This finishes the proof of the proposition.

5. Main results

We have shown that, if a given hypersurface Vf has a q–rational point with
nonzero, pairwise–distinct coordinates, then there are no deep holes of the standard
Reed–Solomon code C of dimension k over Fq. Combining the results of Sections 3
and 4, we will obtain a lower bound for the number of q–rational points of Vf and
an upper bound for the number of q–rational points of Vf with a zero coordinate or
at least two equal coordinates. From these results we will establish a lower bound
for the number of q–rational points of Vf as required. This will allow us to obtain
conditions on q, d and k which imply the nonexistence of deep holes of the standard
Reed–Solomon code C.

As before, let be given positive integers d and k with k > d and q − 1 > k + d
and a polynomial f := T k+d + fd−1T

k+d−1 + · · · + f0T
k ∈ Fq[T ]. Consider the

hypersurface Vf ⊂ Ak+1 defined by the polynomial Hf ∈ Fq[X1, . . . Xk+1] associated
to f . According to Corollaries 3.3 and 3.5, the hypersurface Vf has a singular locus
of dimension at most d− 1 and is absolutely irreducible.

5.1. Estimates on the number of q–rational points of hypersurfaces.
In what follows, we shall use an estimate on the number of q–rational points of
a projective Fq–hypersurface due to S. Ghorpade and G. Lachaud ([8]; see also
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[9]). In [8, Theorem 6.1] the authors prove that, for an absolutely irreducible Fq–
hypersurface V ⊂ Pm+1 of degree d ≥ 2 and singular locus of dimension at most
s ≥ 0, the number #V (Fq) of q–rational points of V satisfies the estimate

(28) |#V (Fq)− pm| ≤ bm−s−1,d q
m+s+1

2 + Cs,m(V )q
m+s

2 ,

where pm := qm + qm−1 + · · ·+ q+ 1 is the cardinality of Pm(Fq). Here bm−s−1,d is
the (m− s− 1)th primitive Betti number of any nonsingular hypersurface in Pm−s
of degree d, which is upper bounded by

(29) bm−s−1,d ≤
d− 1

d

(
(d− 1)m−s − (−1)m−s

)
≤ (d− 1)m−s,

while Cs,m(V ) is the sum

Cs,m(V ) :=

m+s∑
i=m

bi,`(V ) + εi,

where bi,`(V ) denotes the ith `–adic Betti number of V for a prime ` different from
p := char(Fq) and εi := 1 for even i and εi := 0 for odd i. In [8, Proposition 5.1] it
is shown that

(30) Cs,m(V ) ≤ 18(d+ 3)m+2.

This bound is a particular case of a bound for singular projective complete inter-
sections. Nevertheless, in our case it is possible to slightly improve (30).

Lemma 5.1. If V ⊂ Pm+1 is an absolutely irreducible hypersurface of degree d ≥ 2
and singular locus of dimension at most s ≥ 0, then we have the following bound:

(31) Cs,m(V ) ≤ 6(d+ 2)m+2.

Proof. Let E(n, d) be a universal upper bound for the Euler characteristic of any
affine hypersurface V ⊂ An defined by the vanishing of a polynomial FV ∈ Fq[X1, . . . ,
Xn] of degree at most d, and let A(n, d) be the number

A(n, d) := E(n, d) + 2 + 2

n−1∑
j=1

E(j, d).

Then the Katz inequality [12, Theorem 3] implies that

(32) Cs,m(V ) ≤ s+ 2 +

m+1∑
n=1

(
1 +A(n+ 1, d+ 1)

)
.

As a consequence of [1, Theorem 5.27] it follows that an admissible choice for E(n, d)
is the following:

E(n, d) :=
2

d

(
(d+ 1)n+1 − 1

)
.

Elementary calculations show that, for such a choice of E(n, d), we have

A(n, d) = 2 +
2

d2

(
(d+ 1)n+1(d+ 2)− (2d2 + d(2n+ 3) + 2)

)
≤ 2 + 2

(d+ 2)

d2

(
(d+ 1)n+1 − 2d

)
.

Combining this inequality with (32) we obtain

Cs,m(V ) ≤ m+ 1 +

m+1∑
n=1

(
3 + 2

(d+ 3)

(d+ 1)2

(
(d+ 2)n+2 − 2d− 2

))
≤ 6(d+ 2)m+2.
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This finishes the proof of the lemma.

Combining (28) with (29) and Lemma 5.1 we obtain an explicit upper bound
for the number of q–rational points of singular projective Fq–hypersurfaces. More
precisely, if V ⊂ Pm+1 is an absolutely irreducible Fq–hypersurface of degree d ≥ 2
and singular locus of dimension at most s ≥ 0, then the number of q–rational points
of V satisfies the estimate

(33) |#V (Fq)− pm| ≤ (d− 1)m−s q
m+s+1

2 + 6(d+ 2)m+2q
m+s

2 .

The first step towards our main result is to obtain a lower bound on the number
of q–rational points of the hypersurface Vf . For this purpose, combining Corollary
3.5 and [13, Chapter I, Proposition 5.17] we conclude that the projective closure
pcl(Vf ) ⊂ Pk+1 of Vf is an absolutely irreducible hypersurface which is defined
over Fq. Furthermore, from Corollary 3.3 and Proposition 3.4 we deduce that the
singular locus of pcl(Vf ) has dimension at most d − 1. Therefore from (33) we
deduce the following estimate:

(34) |#pcl(Vf )(Fq)− pk| ≤ (d− 1)k−d+1 q
k+d
2 + 6(d+ 2)k+2q

k+d−1
2 .

Our next result provides a lower bound on the number of q–rational zeros of the
affine hypersurface Vf .

Proposition 5.2. Let be given positive integers d and k with k > d ≥ 2 and
q− 1 > k+ d. Then the number of q–rational points of the hypersurface Vf satisfies
the following inequality:

#Vf (Fq) ≥ qk − 2(d− 1)k−d+1q
k+d
2 − 7(d+ 2)k+2q

k+d−1
2 .

Proof. Since we are interested in the q–rational points of Vf , we discard the points
of pcl(Vf )(Fq) lying in the hyperplane at infinity {X0 = 0}. Since pcl(Vf ) is the zero
locus of the polynomial Hh

f = Hd + fd−1Hd−1X0 + · · ·+ f0X
d
0 ∈ Fq[X0, . . . , Xk+1],

we conclude

#
(
pcl(Vf )(Fq) ∩ {X0 = 0}

)
= #{x ∈ Pk(Fq) : Hd(x) = 0}.

According to Proposition 3.4, the projective Fq–hypersurface V∞f ⊂ Pk defined

by Hd has a singular locus of dimension at most d− 2. Applying (33) we obtain

(35) |#V∞f (Fq)− pk−1| ≤ (d− 1)k−d+1 q
k+d−2

2 + 6(d+ 2)k+1 q
k+d−3

2 .

Combining (34) and (35) we have:

#Vf (Fq)− qk=
(
#pcl(Vf )(Fq)− pk

)
−
(
#V∞f (Fq)− pk−1

)
≥ −(d− 1)k−d+1q

k+d
2 (1+q−1)− 6(d+ 2)k+2q

k+d−1
2

(
1+(q(d+2))−1

)
.

From this lower bound the inequality of the statement easily follows.

Next we obtain an upper bound on the number of q–rational points of the hy-
persurface Vf which are not useful in connection with the existence of deep holes,
namely those with a zero coordinate or at least two equal coordinates. We begin
with the case of the points with a zero coordinate.

Proposition 5.3. With hypotheses as in Proposition 5.2, the number N1 of q–
rational points of Vf with a zero coordinate satisfies the following inequality:

N1 ≤ (k + 1)
(
qk−1 + 2(d− 1)k−dq

k+d−1
2 + 7(d+ 2)k+1q

k+d−2
2

)
.
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Proof. Let x := (x1, . . . , xk+1) be a point of Vf with a zero coordinate. Without loss
of generality we may assume xk+1 = 0. Hence, x is a q–rational point of the intersec-
tion Wk+1 := Vf∩{Xk+1 = 0}. Observe that Wk+1 is the Fq–hypersurface of the lin-
ear space {Xk+1 = 0} defined by the polynomial Gf (Πk

1 , . . . ,Π
k
d), where Πk

1 , . . . ,Π
k
d

are the first d elementary symmetric polynomials of the ring Fq[X1, . . . , Xk]. Then
Theorem 3.1 shows that Wk+1 has a singular locus of dimension at most d − 1.
Furthermore, Proposition 3.4 implies that the singular locus of Wk+1 at infinity has
dimension at most d− 2. As a consequence, arguing as in the proof of Proposition
5.2 we obtain

#Wk+1(Fq)− qk−1 =
(
#pcl(Wk+1)(Fq)− pk−1

)
−
(
#W∞k+1(Fq)− pk−2

)
≤ (d− 1)k−dq

k+d−1
2 + 6(d+ 2)k+1q

k+d−2
2

+(d− 1)k−dq
k+d−3

2 + 6(d+ 2)kq
k+d−4

2 .

Therefore, we have the upper bound

(36) #Wk+1(Fq) ≤ qk−1 + 2(d− 1)k−dq
k+d−1

2 + 7(d+ 2)k+1q
k+d−2

2 .

Adding the upper bounds of the q–rational points of the varieties Wi := Vf ∩{Xi =
0} for 1 ≤ i ≤ k + 1, the proposition follows.

Next we consider the number of q–rational points of Vf with two equal coordi-
nates.

Proposition 5.4. With hypotheses as in Proposition 5.2, the number N2 of q–
rational points of Vf with at least two equal coordinates satisfies the following in-
equality:

N2 ≤
(k + 1)k

2

(
qk−1 + 2(d− 1)k−dq

k+d−1
2 + 7(d+ 2)k+1q

k+d−2
2

)
.

Proof. Let x := (x1, . . . , xk+1) ∈ Vf (Fq) be a point having two distinct coor-
dinates with the same value. Without loss of generality we may assume that
xk = xk+1 holds. Then x is a q–rational point of the hypersurface Wk,k+1 ⊂
{Xk = Xk+1} defined by the polynomial Gf (Π∗1, . . . ,Π

∗
d) ∈ Fq[X1, . . . , Xk], where

Π∗i := Πi(X1, . . . , Xk, Xk) is the polynomial of Fq[X1, . . . , Xk] obtained by substi-
tuting Xk for Xk+1 in the ith elementary symmetric polynomial of Fq[X1, . . . , Xk+1].
Observe that

(37) Π∗i = Πk−1
i + 2Xk ·Πk−1

i−1 +X2
k ·Πk−1

i−2

where Πl
j denotes the jth elementary symmetric polynomial of Fq[X1, . . . , Xl] for

1 ≤ j ≤ d and 1 ≤ l ≤ k + 1.
We claim that the singular locus of pcl(Wk,k+1) and the singular locus of Wk,k+1

at infinity have dimension at most d − 1 and d − 2, respectively. In order to show
this claim, we first assume that the characteristic p of Fq is greater than 2. Then,
using (37) it can be proved that all the maximal minors of the Jacobian matrix
(∂Π∗i /∂Xj)1≤i≤d,1≤j≤k are equal, up to multiplication by a nonzero constant, to
the corresponding minors of the Jacobian matrix (∂Πk

i /∂Xj)1≤i≤d,1≤j≤k. Then the
proofs of Theorem 3.1 and Proposition 3.4 go through with minor corrections and
show our claim.

Now assume p = 2. From (37) we see that the first partial derivative of Π∗j with
respect to Xk is equal to zero. Furthermore, it is easy to see that the nonzero
(d × d)–minor of the Jacobian matrix (∂Π∗i /∂Xj)1≤i≤d,1≤j≤k determined by the
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columns 1 ≤ i1 < i2 < · · · < id ≤ k − 1 equals the corresponding nonzero mi-
nor of (∂Πk−1

i /∂Xj)1≤i≤d,1≤j≤k. This shows that each nonzero maximal minor of
(∂Π∗i /∂Xj)1≤i≤d,1≤j≤k is a Vandermonde determinant depending on d of the inde-
terminates X1, . . . , Xk−1. In particular, the vanishing of all these minors does not
impose any condition on the variable Xk.

Let Σk,k+1 denote the singular locus of Wk,k+1. Arguing as in the proof of
Theorem 3.1, we have the following inclusion (see Remark 3.2):

(38) Σk,k+1 ⊂
⋃
I
LI ,

where I := {I1, . . . , Id} runs over all the partitions of {1, . . . , k+1} into d nonempty
subsets Ij ⊂ {1, . . . , k + 1} such that Ij ⊂ {1, . . . , k − 1} for 1 ≤ j ≤ d − 1 and
Id := {k, k + 1}, and LI is the linear variety

LI := span(v(I1), . . . ,v(Id))

spanned by the vectors v(Ij) := (v
(Ij)
1 , . . . , v

(Ij)
k+1) defined by v

(Ij)
m := 1 for m ∈ Ij

and v
(Ij)
m := 0 for m /∈ Ij . It follows that Σk,k+1 has dimension at most d, and if

dim Σk,k+1 = d holds, then it contains a linear variety LI as above.
Now we show that Σk,k+1 has dimension at most d−1. Arguing by contradiction,

suppose that Σk,k+1 has dimension d. Following the proof of Theorem 4.2 we con-
clude that f is the monomial T k+d, and thus Hf = Hd holds. Fix I := {I1, . . . , Id}
as above and consider the corresponding d–dimensional linear variety LI . We claim
that LI intersects Σk,k+1 properly. Observe that, combining this claim with (38),
we easily deduce that dim Σk,k+1 ≤ d − 1, since each variety LI is absolutely ir-
reducible and each irreducible component of Σk,k+1 is a proper subvariety of a
suitable LI . This contradicts our supposition dim Σk,k+1 = d, showing thus that
dim Σk,k+1 ≤ d− 1 holds.

In order to prove our claim, consider the line `λ := {vλ := (0, . . . , 0, λ, λ) ∈ Ak+1 :
λ ∈ A1} ⊂ LI . Observe that `λ ∩ Σk,k+1 = {vλ ∈ Ak+1 : Hd(vλ) = 0,∇Hd(vλ) =
0}. From the identities Πj(vλ) = 0 (j /∈ {0, 2}) and Π2(vλ) = λ2 and Proposition
2.2, we conclude that Hd(vλ) = ±λd for even d and Hd−1(vλ) = ±λd−1 for odd
d. Furthermore, from Lemma 4.1 we obtain (∂Hd/∂X1)(vλ) = Hd−1(vλ) = ±λd−1

for odd d. In both cases, the identities Hd(vλ) = (∂Hd/∂X1)(vλ) = 0 imply λ = 0.
This shows that `λ ⊂ LI intersects properly Σk,k+1 and shows our claim.

Finally, arguing as in Proposition 3.4 we conclude that the singular locus of
Wk,k+1 at infinity has dimension at most d− 2.

Summarizing, we have that, independently of the characteristic p of Fq, the singu-
lar locus of pcl(Wk,k+1) and the singular locus of Wk,k+1 at infinity have dimension
at most d− 1 and d− 2. Then, following the proof of Proposition 5.3 we obtain:

(39) #Wk,k+1(Fq) ≤ qk−1 + 2(d− 1)k−dq
k+d−1

2 + 7(d+ 2)k+1q
k+d−2

2 .

From (39) we deduce the statement of the proposition.

5.2. Results of nonexistence of deep holes. Now we are ready to prove the
main results of this paper. Fix q, k and d ≥ 3 with q − 1 > k + d and consider the
standard Reed–Solomon code C of dimension k over Fq. From Section 1 we have
that a polynomial f := T k+d + fd−1T

k+d−1 + · · ·+ f0T
k does not generate a deep

hole of the code C if and only if the corresponding hypersurface Vf ⊂ Ak+1 has a q–
rational point with nonzero, pairwise–distinct coordinates. Combining Propositions
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5.2, 5.3 and 5.4 we conclude that the number N of such points satisfies the following
inequality:

N ≥ qk − (k + 1)(k + 2)

2
qk−1 − 2(d− 1)k−dq

k+d
2

(
d− 1 +

(k + 1)(k + 2)

2q
1
2

)
−7(d+ 2)k+1q

k+d−1
2

(
d+ 2 +

(k + 1)(k + 2)

2q
1
2

)
.

(40)

Therefore, the polynomial f does not generate a deep hole of the code C if the
right–hand side of (40) is a positive number.

Suppose that q, k and d ≥ 3 satisfy the following conditions:

(41) q > (k + 1)2, k > 3d.

Since k ≥ 10, it follows that 3
4 (k + 1)(k + 2) ≤ (k + 1)2 < q holds. Therefore, we

have q − 1
2 (k + 1)(k + 2) > q/3, which implies

qk − (k + 1)(k + 2)

2
qk−1 = qk−1

(
q − (k + 1)(k + 2)

2

)
>
qk

3
.

Hence, the right–hand side of (40) is positive if the following condition holds:

(42)

qk

3
≥ 2(d− 1)k−dq

k+d
2

(
d− 1 +

(k + 1)(k + 2)

2q
1
2

)
+ 7(d+ 2)k+1q

k+d−1
2

(
d+ 2 +

(k + 1)(k + 2)

2q
1
2

)
.

Taking into account that k+ 1 < q
1
2 , we conclude that (42) can be replaced by the

following condition:

qk

3
≥ 2(d− 1)k−dq

k+d
2

(
d− 1 + k+2

2

)
+ 7(d+ 2)k+1q

k+d−1
2

(
d+ 2 + k+2

2

)
.

From d ≤ k−1
3 we obtain d + 2 + k+2

2 ≤ k + 1, and therefore we conclude that the
right–hand side of (40) is positive if

qk

3
≥ 2(d− 1)k−d(k − 2)q

k+d
2 + 7(d+ 2)k+1(k + 1)q

k+d−1
2 ,

or equivalently if

(43) qk ≥ 6(d− 1)k−d(k − 2)q
k+d
2 + 21(d+ 2)k+1(k + 1)q

k+d−1
2 ,

holds. Furthermore, this condition is in turn implied by the following conditions:

qk

8
≥ 6(d− 1)k−d(k − 2)q

k+d
2 ,

7qk

8
≥ 21(d+ 2)k+1(k + 1)q

k+d−1
2 ,

which can be rewritten as

(44) qk ≥ 48(d− 1)k−d(k − 2)q
k+d
2 , qk ≥ 24(d+ 2)k+1(k + 1)q

k+d−1
2 .

The first inequality is equivalent to the following inequality:

q ≥ (48(k − 2))
2

k−d (d− 1)2.

From (41) one easily concludes that 3(k − d) ≥ 2k + 1 holds. Since the function
k 7→

(
48(k − 2)

)
6/(2k+1) is decreasing, taking into account that k ≥ 10 holds we

deduce that a sufficient condition for the fulfillment of the inequality above is

(45) q > 6d2.
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Next we consider the second inequality of (44). First, we observe that this inequality
can be expressed as follows:

(46) q > (24(k + 1))
2

k−d+1

(d+ 2

d

)2+ 2d
k−d+1

d2+ 2d
k−d+1 .

From (41) we deduce 3(k − d+ 1) ≥ 2k + 4. Taking into account that the function
k 7→

(
24(k + 1)

)
3/(k+2) is decreasing, in particular for k ≥ 12 (and thus for d ≥ 4),

we see that (46) is satisfied if the following condition holds:

(47) q > 14 d2+2d/(k−d).

Combining (41), (45) and (47) we conclude that (41) and (47) yield a sufficient
condition for the nonexistence of deep holes. Finally, starting from (40) one easily
sees that (41) and (47) yield a sufficient condition for the nonexistence of deep holes
for d = 3. As a consequence, we have the following result.

Theorem 5.5. Let k and d be integers with k > d ≥ 3 and q − 1 > k + d, and let
C be the standard Reed–Solomon code of dimension k over Fq. Let be given a real
number ε with 0 < ε < 1 and let w be a word generated by a polynomial f ∈ Fq[T ]
of degree k + d. If the conditions

q > max{(k + 1)2, 14 d2+ε}, k ≥ d
( 2

ε
+ 1
)

hold, then w is not a deep hole of C.

We remark that in [15] it is shown that, for d = 1, k > 2 and q > k + 3,
polynomials of degree k + 1 do not generate deep holes of the standard Reed–
Solomon code C. On the other hand, a similar result as in Theorem 5.5 can be
obtained for d = 2 with our approach, namely that for a suitable constant M1 > 14,
if the conditions q > max{(k + 1)2,M1 22+ε} and k ≥ 2(2/ε + 1) hold, then no
polynomial of degree k + 2 generates a deep hole of C.

5.3. Nonexistence of deep holes for char(Fq) > d + 1. Finally, we briefly
indicate what we obtain under the assumption that the characteristic p of Fq satisfies
the inequality p > d+ 1. Fix q, k and d ≥ 3 with q− 1 > k+d, k > d and p > d+ 1
and consider the standard Reed–Solomon code C of dimension k over Fq.

Fix f := T k+d+fd−1T
k+d−1 +· · ·+f0T

k ∈ Fq[T ]. First suppose that the singular
locus of the hypersurface Vf associated to f has dimension d− 1. By Theorem 4.2
we have that f is the monomial T k+d. Furthermore, from Lemma 4.3 it follows that
p|(k + d). Then Proposition 4.5 shows that the monomial T k+d does not generate
a deep hole of C. Therefore, we may assume without loss of generality that Vf has
a singular locus of dimension at most d − 2. As a consequence, arguing as in the
proofs of Propositions 5.2, 5.3 and 5.4 we obtain the following bounds:

#Vf (Fq) ≥ qk − 2(d− 1)k−d+2q
k+d−1

2 − 7(d+ 2)k+2q
k+d−2

2 ,

N1 ≤ (k + 1)(k + 2)

2

(
qk−1 + 2(d− 1)k−d+1q

k+d−2
2 + 7(d+ 2)k+1q

k+d−3
2

)
,

where N1 denotes the number of q–rational points of Vf having a zero coordinate
or at least two equal coordinates. Hence we have that the number N of q–rational
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points of Vf with nonzero, pairwise–distinct coordinates satisfies the following in-
equality:

N ≥ qk − (k+1)(k+2)

2
qk−1 − 2(d− 1)k−d+1q

k+d−1
2

(
d− 1 +

(k+1)(k + 2)

2q
1
2

)
−7(d+ 2)k+1q

k+d−2
2

(
d+ 2 +

(k+1)(k + 2)

2q
1
2

)
.

(48)

Suppose that q, k and d ≥ 4 satisfy the following conditions:

(49) q > (k + 1)2, k > 3(d− 1).

Then the right–hand side of (48) is positive if

(50) qk ≥ max
{

48(d− 1)k−d+1(k − 1)q
k+d−1

2 , 24(d+ 2)k+1(k + 2)q
k+d−2

2

}
.

With similar arguments as in the proof of Theorem 5.5 we conclude that (50) is
satisfied if the following condition holds:

(51) q > 14 d2+(2d−2)/(k−d+2).

On the other hand, starting from (48) one easily sees that (51) yields a sufficient
condition for the nonexistence of deep holes for d = 3. Summarizing, we have the
following result.

Theorem 5.6. Let k and d be integers with k > d ≥ 3 and q − 1 > k + d, and let
C be the standard Reed–Solomon code of dimension k over Fq. Let be given a real
number ε with 0 < ε < 1 and let w be a word generated by a polynomial f ∈ Fq[T ]
of degree k + d. If char(Fq) > d+ 1 and the conditions

q > max{(k + 1)2, 14 d2+ε}, k ≥ (d− 1)
( 2

ε
+ 1
)

hold, then w is not a deep hole of C.
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