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ABSTRACT

Context. The collisional evolution of submillimeter-sized porous dust aggregates is important in many astrophysical fields.
Aims. We have developed a Monte Carlo code to study the processes of collision between mass-asymmetric, spherical, micron-sized
porous silica aggregates that belong to a dust population.
Methods. The Collision of Porous Aggregates (CPA) code simulates collision chains in a population of dust aggregates that have
different sizes, masses, and porosities. We start from an initial distribution of granular aggregate sizes and assume some collision
velocity distribution. In particular, for this study we used a random size distribution and a Maxwell-Boltzmann velocity distribution. A
set of successive random collisions between pairs of aggregates form a single collision chain. The mass ratio, filling factor, and impact
velocity influence the outcome of the collision between two aggregates. We averaged hundreds of thousands of independent collision
chains to obtain the final, average distributions of aggregates.
Results. We generated and studied four final distributions (F), for size (n), radius (R), porosity, and mass-porosity distributions, for
a relatively low number of collisions. In general, there is a profuse generation of monomers and small clusters, with a distribution
F(R) ∝ R−6 for small aggregates. Collisional growth of a few very large clusters is also observed. Collisions lead to a significant
compaction of the dust population, as expected.
Conclusions. The CPA code models the collisional evolution of a dust population and incorporates some novel features, such as
the inclusion of mass-asymmetric aggregates (covering a wide range of aggregate radii), inter-granular friction, and the influence of
porosity.
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1. Introduction

Understanding the collisional evolution of submillimeter-sized
granular dust aggregates is crucial in many astrophysical envi-
ronments. These aggregates are groupings of smaller individual
grains (usually on micron scales) that are randomly intercon-
nected. A grain (also called a monomer) is the smallest unit
of study and can be assumed to be solid and homogeneous in
composition. These grains are created via condensation in the
protoplanetary disk of the Solar System; they were also previ-
ously created in the interstellar medium (ISM) or by asymptotic
giant branch stars (Alexander et al. 2007).

Dust size plays a fundamental role in the interstellar pro-
cesses (Mathis et al. 1977) that determine the state of the ISM,
affecting its thermal and chemical equilibrium. According to
Ormel et al. (2009), it is clear that the contents of molecular
clouds, as well as the general state of the process of the for-
mation of stars and planets, are linked to the properties of dust
grains and, in particular, their size distribution. Recent space
missions have provided relevant information on the properties of
dust in dense clouds. In particular, comparisons of far-IR emis-
sion maps taken by the Infrared Astronomical Satellite (IRAS)
and Spitzer satellite and the near-IR extinction maps derived
from the Two Micron All-Sky Survey (2MASS) suggest grain

growth in regions of higher density (Schnee et al. 2008). Coagu-
lation processes have also been detected via a detailed absorption
profile analysis of the 10µm silicate absorption band in these
environments (van Breemen et al. 2011).

In protoplanetary disks, collisions between dust aggregates
can lead to the formation of larger aggregates, which are impor-
tant intermediaries in planet building (Armitage 2010; Blum
2010). Even though dust growth does play a major role in shap-
ing the evolution of protoplanetary dust and planet formation,
it is sometimes neglected when building models of protoplan-
etary disks due to its complexity and computational expense
(Draczkowska et al. 2019). However, in recent years the upgrade
of the existing (sub)millimeter arrays, the Atacama Large Mil-
limeter/submillimeter Array (ALMA) and Very Large Array
(VLA), has significantly improved the observational constraints
on models of dust evolution in protoplanetary disks. Laboratory
experiments and numerical simulations have led to a substantial
improvement in the understanding of the physical processes of
grain-grain collisions, which are the foundation for models of
dust evolution in disks. Testi et al. (2014) review the constraints
on the physics of grain-grain collisions as they have emerged
from laboratory experiments and numerical computations; they
also review the current theoretical understanding of the global
processes governing the evolution of solids in protoplanetary
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disks, including dust settling, growth, and radial transport. At
this moment, there is no single model that alone can explain all
the aspects of the pathway from dust grains to planetary sys-
tems; Drazkowska et al. (2022) present an updated summary of
planet formation theories, from dust evolution to the growth of
planetary cores via the accretion of planetesimals, pebbles, and
gas. Dust aggregates also make up the rings of planets and other
minor objects (Burns et al. 2001). According to Burns et al.
(1980), the small grains in Jupiter’s rings are generated by the
impacts of micrometeorites, by collisions between particles of
different sizes, and by self-fracture due to electrostatic stress.

Another important context is when these dust grains collide
with larger objects, such as micrometeorites, that impact objects
in the Solar System, including the Earth. This has allowed their
study and classification (Genge et al. 2008). Also, these small
particles can produce craters on the surfaces they impact and
eject material from them. Likewise, when they hit a space probe
or satellite, they can cause irreversible damage (Grossman et al.
2010). Finally, these types of collisions are also present in debris
disks, which are remnants of the times of formation of planetary
systems. Debris disks are believed to be created and maintained
by mutual collisions, and (possibly) via cometary-like activity
of some minor bodies, similar to asteroids, comets, and objects
in the Solar System’s Kuiper belt. Dust evolves through a cas-
cade of collisions under the action of stellar gravity and radiation
forces (Krivov et al. 2006).

Making a complete dust model including growth and fracture
(applicable to the scenarios described above) is not simple, and
it should include the temporal evolution of the dust as its aggre-
gates collide with one another, taking all possible parameters
into account: different compositions, impact velocities, porosi-
ties, and size, among others. Attempts have been made to achieve
this by including some of the most important parameters. How-
ever, the porosity of dust aggregates has rarely been taken into
account in previous models because it is difficult to determine
accurately since the scattering properties of large porous grains
are qualitatively similar to those of small compact grains of the
same mass and composition (Graham et al. 2007; Shen et al.
2009; Kirchschlager & Wolf 2013).

Gáspár et al. (2012) summarized the collision models appli-
cable to debris disks and presented a code involving erosive and
catastrophic collisions, employing an efficient numerical algo-
rithm that allowed them to evaluate scattering integrals with
high precision. Birnstiel et al. (2012b) derived a simple model
for protoplanetary disks that describes the radial evolution of
the dust surface density under the combined influence of the
growth and fragmentation of compact grains as well as radial
transport mechanisms. The important parameters are the frag-
mentation threshold velocity, the level of turbulence, the initial
dust-to-gas ratio, and the temperature and density profile of the
gas disk. They estimate the effective dust transport velocity by
representing the dust distribution with only two characteristic
grain sizes, a small and a large population. Drazkowska et al.
(2013) developed a numerical model that resolves the spatial
distribution of dust in the radial and vertical dimensions. The
coagulation and fragmentation of solids are taken into account
via a Monte Carlo method. A collision model that adopts the
mass transfer effect (which can occur for different-sized dust
aggregate collisions) is implemented. They focus on a proto-
planetary disk that includes a pressure bump caused by a steep
decline in turbulent viscosity around the snow line. None of the
above three models involve aggregate porosity, but some authors
have included the importance of porosity in the modeling of pro-
toplanetary disks. Ormel et al. (2007) found that the evolution of

their porous aggregates in a collisional model is quantitatively
different from aggregation models in which porosity can be
parameterized by a fixed exponent. In this context, coagulation
models require a microphysical collision model that takes aggre-
gate porosities into account. In a later work, Ormel et al. (2009)
proposed a Monte Carlo code to study the collisional evolution
of the dust population by combining two models: a binary model
that simulates the collision between two aggregates and a coagu-
lation model that computes the dust-size distribution with time.
The collision model features the sticking, breakage, erosion, and
shattering outcomes, and it includes off-center collisions and
changes in the internal structure in terms of the porosity. It also
allows for a scaling of the results to the relevant masses and
critical energies, enabling the calculation to proceed beyond the
sizes covered by the original numerical collision experiments.
However, their binary model only includes collisions between
aggregates with n ≤ 103 particles, and they needed to extrap-
olate the outcomes for larger aggregates. Zsom & Dullemond
(2008) also developed a Monte Carlo method that includes the
porosity analysis of Ormel & Cuzzi (2007), in which they fol-
low the history of a limited number of representative particles.
Their code is almost ten times faster than the code by Ormel et al.
(2007) because the calculation time scales linearly with the num-
ber of collisions simulated. The difference is fragmentation: in
the simulations of Ormel et al. (2007), no fragmentation occurs
because the growth timescales are longer, and the porosities of
these particles would be smaller if fragmentation were included.
This model can track only relatively few particles, and a limita-
tion is encountered when strong growth and fragmentation occur
simultaneously. Zsom et al. (2010) affirm that a more realistic
collision model that includes the compaction and fragmentation
of aggregates is necessary. They also used a Monte Carlo code to
follow the mass and porosity evolution of the particles in time.
They found that significant changes in the porosity of the aggre-
gates have the potential to significantly alter their collision model
and, therefore, the results obtained.

The evolution of the aggregate sizes and porosities has also
been studied using coagulation models. Okuzumi et al. (2012)
used the coupled equations of aggregate size and porosity and
found that the growth of large, highly porous aggregates is possi-
ble if collisional fragmentation was negligible. Zsom et al. (2011)
studied this combined evolution using a Monte Carlo scheme but
pointed out that the evolution of porosity in particular required
more detailed information (experimental or theoretical) to be
reliable. Krijt et al. (2015) followed a similar strategy and con-
cluded that the growth of porous particles showed considerable
differences from the growth of compact particles. This work was
later expanded to a semi-analytical model (Krijt et al. 2016).
Homma & Nakamoto (2018) later pointed out that the radial
drift in protoplanetary disks may play an important role in the
assessment of growth and porosity evolution models, limiting
the possibility of collisional growth. A coupling of radial drift to
grain size and porosity evolution was implemented by Garcia &
Gonzalez (2020); they find that porous aggregates have a higher
chance of growing than compact aggregates. Thus, they can
decouple from the gas present in the disk, which lets them sur-
vive and allows the possibility of further growth to planetesimal
sizes.

Binary collisions between dust aggregates have been stud-
ied over the last 15 yr using granular-mechanics codes. Wada
and coworkers have studied the influence of aggregate porosity,
the collision velocity, and the impact parameter on the colli-
sion outcome of equal-mass collisions (Wada et al. 2007, 2008,
2009). They also investigated sequential collisions of aggregates
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and the induced aggregate compression (Suyama et al. 2008,
2012) as well as the outcome of mass-asymmetric collisions
(Hasegawa et al. 2021). A key finding of these latter studies is
that aggregate porosity is not a fixed characteristic of aggregates
but evolves during their collision history. Using the same code,
Seizinger & Kley (2013) and Seizinger et al. (2013) focus on
aggregate growth and the bouncing threshold. This group also
used smoothed-particle hydrodynamics simulations of aggregate
collisions (Geretshauser et al. 2010; Meru et al. 2013), which
allow the simulations to be extended to larger aggregates (on cen-
timeter and decimeter scales); they report that aggregate porosity
is key to the ability of aggregates to survive collisions and grow.

In this work we first present in Sect. 2 a brief summary of
our previous methods and results that will serve as support for
this study. In Sect. 3, we describe in detail the processes car-
ried out by our Monte Carlo code, which we call the Collision
of Porous Aggregates (CPA) code, starting with the construc-
tion of the aggregate population until the final mass, size, and
porosity distributions are obtained, after a specified number of
binary aggregate collisions occur. In Sect. 4, we apply our code
to several representative cases and present the obtained results.
We focus on a relatively small number of consecutive collisions
that represent the early stages of aggregate growth, well below
the gravity-dominated limit, and are crucial for protoplanetary
disk evolution. Finally, in Sect. 5, we provide some conclusions
and discuss several future possibilities for the code.

2. Collision outcomes from granular mechanical
simulations

2.1. Granular-mechanics algorithm

In the recent past, we carried out numerous granular-mechanics
simulations between porous silica aggregates using the well-
documented granular mechanics package LAMMPS (Plimpton
1995). All our aggregates were built based on the model pub-
lished by Ringl & Urbassek (2012), where granular interactions
are based on the work by Dominik & Tielens (1997). It assumes
a repulsive normal force based on the Hertzian model, addition-
ally viscoelastic dissipation of the motion in normal direction, an
attractive force, sliding friction, rolling friction, and friction of
twisting motion. Of particular importance is the attractive force,
which we modeled according to the Derjaguin–Muller–Toporov
model (Derjaguin et al. 1975; Maugis 2000).

The aggregates consist of a collection of spherical grains
that have the same properties, including radius of grain (Rgrain =

0.76µm), mass (mgrain = 3.68 × 10−15 kg), and density (2 ×
103 kg m−3). These grains only interact with each other if the
distance between their centers, d, is d < 2 Rgrain. The length
δ = 2Rgrain − d is called overlap, and the grains will interact only
if δ > 0. A cluster is defined as a set of connected grains, where
the distance between the centers of two connected grains must
be ≤2Rgrain = 1.52µm. These aggregates can be built with a
specific filling factor (ϕ = 1 − porosity), shape and number of
particles n (for more details, see Ringl et al. 2012b; Planes et al.
2021). Next, we summarize some previous studies that are impor-
tant for the development of this work, all of them have used the
same model mentioned above.

2.2. Background: Previous work

In Planes et al. (2017, hereafter Paper I), we explored the impacts
of spherical granular aggregates (projectiles) composed of a
variable number of grains 5 ≤ np ≤ 500 on a large cubic granular

target composed of nt = 70 000 grains. Both the projectile and
the target have the same value of filling factor (ϕ = 0.36). They
were constructed using the method of Ringl et al. (2012b) by fill-
ing grains homogeneously into a box until the required filling
factor is reached. We denote with µ to the mass ratio between the
target and the projectile. As all grains have the same mass we can
take µ = nt/np, so in this work the range of mass ratio studied
was 140 ≤ µ ≤ 1400. Initially, the projectile is set at a position
above the target so that there is no interaction with it. Then the
simulation is started by giving each grain in the projectile the
same velocity, v, which we vary between 5 and 200 m s−1. We
investigate the dependence of crater formation and grain ejec-
tion during the collisional processes on projectile initial velocity
v and size np (or equivalently, on the mass ratio µ).

In Planes et al. (2020, hereafter Paper II) we explored mass-
asymmetric collisions between spherical aggregates with µ = 60
at v = 100 m s−1, with particular emphasis on their dependence
on aggregate porosity. Even with this large value of mass ratio,
the results were very different respect to impacts on a flat bed or
compared with Paper I. For high filling factors (ϕ > 0.2), a crater
is formed in the target. We find here that – in contrast to impacts
on granular beds – the crater rim fractures, forming petals. For
low filling factors, the projectile can simply penetrate through
the target, leaving a large hole. The separation between the two
regimes is quite abrupt and occurs for filling factors of ϕ ∼ 0.2.
In the window of 0.20 < ϕ < 0.35, we observe the target to grow
by the assembly of mass from the projectile. At larger filling fac-
tors, grain ejection increases, leading to a net mass-loss, while at
smaller ϕ, the projectile tears the target aggregate. We also ana-
lyzed the compaction of the granular material after the collision
and found that, in general, the target remnant strongly compacted
and the average number of contacts between grains has almost
doubled from its original value. Our results also showed that in
mass-asymmetric collisions, even at high velocities, aggregates
may not completely fragment but may even grow.

In our last work Planes et al. (2021, hereafter Paper III),
several impact velocities, porosities, and mass ratios between
the aggregates were used to determine the threshold values that
could separate the agglomeration from the fragmentation of the
target aggregate. We can classify the result of simulations into
three possible outcomes:

– Sticking by penetration (SP): The projectile hits and pene-
trates the target (Güttler et al. 2010).

– Total destruction (TD): This occurs when nlarge/ntot ≤ 0.5
(nlarge is the number of grains of the largest fragment and ntot =
np + nt) according to Wada et al. (2008).

– Two fragments (TF): This is a previously unobserved out-
come. The collision results in two fragments: one of them has
the structure of a hollow cylinder, and the other contains a part
of the target remnant and the majority of the projectile, forming
a structure similar to a hemisphere. This process results from the
piston effect mentioned in Paper II.

Figure 1 shows a snapshot with examples of (a) SP, (b)
TF and (c) TD outcomes (For more details, see Paper II and
Paper III).

In Paper III, erosion and accretion efficiencies were also
studied, and the minimum impact energy required to fracture the
sample was discussed. Compaction and the mass distribution of
the fragments produced after the collision had been analyzed.

3. Monte Carlo code

The Monte Carlo method is a numerical method for solv-
ing mathematical problems through the simulation of random
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Fig. 1. Snapshots at 50µs showing the collision outcome – SP (sticking by penetration), TF (two fragments), or TD (total destruction) – between
aggregates with µ = 10 and: (a) ϕ = 0.15, v = 10 m s−1, (b) ϕ = 0.15, v = 20 m s−1, and (c) ϕ = 0.40, v = 50 m s−1.

variables (Sobol 1994). It is a computational algorithm with a
simple structure configured to follow a random path, which can
be repeated N∗ times, each of these N∗ paths being independent
of the rest, and then the N∗ results are averaged. The error of the
method is inversely proportional to N1/2

∗ . Therefore, the more
times the path is traveled independently, the more certain the
result will be; however, there will always be a margin of error
associated with this process. In our context, we started from an
initial distribution of granular silica aggregates and used this
method to simulate a random collisional chain between them.
A collision chain is understood as the successive process of col-
lisions in pairs that the population aggregates have. Then, a large
enough number of independent chains are averaged to obtain the
final distribution of resulting aggregates. The result of each indi-
vidual collision that occurs between two aggregates will depend
on the results obtained in our previous works (see Sect. 2),
where the size, mass and porosity of the resulting aggregates
were obtained according to the initial conditions of the colli-
sion. A summary of the variables used in the code and the text is
included in Table 1.

3.1. Construction of the population

3.1.1. Input parameters

The code will receive as input a set of initial parameters, which
can be divided into three groups. The first is the parameters
related to the initial population of aggregates:

– Initial density (Nagg,0): This parameter indicates how many
aggregates are generated at the start of the simulation.

– Initial size distribution: A distribution of initial radii R,
(F(R)0), is required as input. This distribution includes Nagg,0 ini-
tial aggregates, having R between a minimum value Rlow and a
maximum value Rhigh.

– Initial filling factor distribution: As for radii, an initial dis-
tribution of filling factors ϕ, is required, as (F(ϕ)0). The Nagg,0
initial aggregates have ϕ values between a minimum value ϕlow
and a maximum value ϕhigh.

The second group comprises parameters related to the indi-
vidual collisions that will occur:

– Impact velocity (v): Initial velocity of all the individual
grains that make up the projectile (smallest aggregate of the pair
of aggregates to collide).

– Impact parameter (b): the impact parameter is the distance
between the direction of the projectile’s velocity and the center
of mass of the target.

Finally, the third group comprises parameters related to the
collisional process:

– Number of collisions (ncoll): This parameter indicates how
many collisions will occur consecutively in a collisional chain.

– Convergence cutoff (Cconv): This parameter indicates the
expected statistical error, when this value is reached the simula-
tion ends. It will be explained in detail later.

– Maximum number of chains (Nmaxchain): This indicates how
many chains will be executed at most, if Cconv is not reached the
code will run until the Nmaxchain chain.

For this work, we started all our simulations with Nagg,0 =

105 aggregates. For F(R)0 and F(ϕ)0 we have distributions with
features shown in Table 2.

The collisional evolution of the dust population requires
some velocity distribution that is sampled by the CPA code.
This velocity distribution in general is not well known and might
even change with time. For example, in some astrophysical envi-
ronments, dust-carrying gas will be turbulent, including tem-
porally and spatially varying accelerations from eddies. Some
previous works have dealt with determining relative collision
velocities in these cases (Ormel & Cuzzi 2007). For certain sce-
narios, a Maxwell-Boltzmann (MB) distribution has been used
(Windmark et al. 2012; Drazkowska et al. 2014), while for sev-
eral cases it has been pointed out that a distribution with a fat tail,
compared to an MB distribution, would be required (Windmark
et al. 2012, and references therein), for instance a Levy dis-
tribution (Garaud et al. 2013). Velocity distributions are often
associated with temperature. However, it is important to point
out that temperature is sometimes not a well-defined quantity
for granular materials (Brilliantov et al. 2018; Baule et al. 2018;
Puglisi et al. 2017). In addition, a kinetic temperature associ-
ated with a velocity distribution of the grains will not be related
to the temperature associated with radiation emission proper-
ties since these are determined from atomic rather than granular
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Table 1. Symbols related to code variables and a brief description.

Symbol Code variable Description

– id Identification number of each aggregate
Nmaxchain MAX_nchains Maximum number of chains that will be executed if Cconv is not reached
ncoll N_coll Number of consecutive collisions within a collision chain
Nagg,0 NAGGREGATES Initial number of aggregates
Rgrain RGRAIN Monomer radius
mgrain MASSGRAIN Monomer mass
µ mass_ratio Mass ratio between collision partners
Rlow RLOW Lowest initial radius value
Rhigh RHIGH Highest initial radius value
Rstep RSTEP Step size between successive radius values, for distribution calculation
ϕlow FFLOW Lowest initial filling factor value
ϕhigh FFHIGH Highest initial filling factor value
ϕstep FFSTEP Step between filling factor values, for distribution calculation
ϕmax FFMAX Maximum filling factor value reached after a collision
Cconv CONV_CUTOFF Convergence cut off: indicates the expected statistical error; if this value is reached the

simulation ends
A1, A2 A1, A2 Pair of aggregates in a collision.
– CALC_NFF Indicate if mass-porosity distribution is required
YL Y_l Number of particles ejected into large fragments after a collision
Ys Y_s Number of particles ejected as monomers or small clusters after a collision
τ TAU Exponent of the power-law relationship for Ys

Table 2. Input distributions taken in this work.

Distribution Rlow Rhigh Rstep

F(R)0 Uniform 1µm 100µm 0.5µm

Distribution ϕlow ϕhigh ϕstep

F(ϕ)0 Uniform 0.075 0.525 0.025

properties. The role of the chosen velocity distribution has to
be carefully evaluated for each astrophysical scenario where the
code would be applied. In this paper, for the sake of simplic-
ity, we sample granular aggregate collision velocities from an
MB distribution with vrms = 10 m s−1. Different vrms can be read-
ily obtained, and different distributions could be relatively easily
added to the code. For instance, the current version also includes
a gamma distribution, which might be relevant for scenarios
where the high velocity tail would be thinner than for an MB
distribution.

The influence of the impact parameter b on granular colli-
sions has not been analyzed by us, since all the collisions we
carried out have been central. Therefore, the influence of this
parameter will not be taken into account in this current work.

Inputs of group (3) will be variable. We discuss the con-
vergence of the code according to the results for different ncoll
later.

3.1.2. Building initial aggregates

In this section, the initial Nagg,0 aggregates are constructed as
follows:

1. A size, Ri, is randomly chosen from the distribution F(R)0.
2. A filling factor value, ϕi is randomly chosen from the

distribution F(ϕ)0.

3. The number of grains in the aggregate, i (ni), is calculated,
assuming a spherical shape:

ni =
4πϕiR3

i

3Vgrain
, (1)

where Vgrain is the volume of one grain (Vgrain = 1.8388 ×
10−18 m3 for silica grains).

4. This aggregate is saved and the construction proceeds in
the same way until Nagg,0 aggregates are obtained.

5. The total number of individual grains in the Nagg,0 aggre-
gates, nagg,tot, is calculated.

Then the initial distribution of mass depends on the initial
size and porosity distributions. In this work, distributions of
Table 2 give an initial mass distribution that exhibits power-law
relationship with exponent ≃−2/3.

3.2. Selection of aggregates to collide

In this section, we will detail how the 2 aggregates that will
collide with each other are selected from the total aggregate pop-
ulation. It is important to note that as the ncoll collisions occur,
the total number of aggregates (Nagg, j) can vary after each jth
collision (where j = 1, 2, . . . , ncoll), but by conservation of mass,
the total number of individual particles in all aggregates nagg,tot,
must be constant at all times. The values in the size (filling fac-
tor) distribution start at Rlow (ϕlow) and increase by steps whose
width is Rstep (ϕlow), with values given in Table 2. There is no a
priori maximum for the size distribution, but for the case of the
filling factor distribution the maximum final value is 1. The code
rounds the numbers obtained after the collision to the appropri-
ate binning value. Using a finer binning than the one indicated
in Table 2 did not affect our results, but with a coarser binning
some features were lost.

The collision probability between two aggregates of radius
R1 and R2 is related to their cross-sectional area. Therefore,
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the collision “kernel” must be proportional to (R1 + R2)2. Other
kernels have been used in the past, and analytical models are
available for simple kernels, when only coagulation is consid-
ered. Results for a constant kernel where aggregates are chosen
at random, independently of their size and velocity, and for a lin-
ear kernel where the choice is related to the sum of aggregate
masses, are shown in Appendix B.

Here again, we emphasize that no study has been conducted
on the result of collisions where the aggregates to collide have
different porosities. Therefore, we do not have information to
incorporate this type of collision into our code, and this type
of collision is not allowed in this work.

In this work the selection of aggregates follows the direct
simulation Monte Carlo technique developed by Bird (1963):

1. For collision j in a given chain, two aggregates, A1 and A2,
are randomly selected with the same filling factor from the size
distribution.

2. A velocity, v, is randomly chosen from the given velocity
distribution, F(v). This is be the impact velocity between A1 and
A2. F(v) has a maximum velocity vmax.

3. The code calculates a collision probability using a col-
lision kernel proportional to the cross section of A1 and A2.
Pcoll = [v · (R1 + R2)2]/[vmax · (R1 + R2)2

max], where (R1 + R2)max
is the sum of the two largest sizes in the aggregates population.

4. A random r value is taken from a uniform distribution
between 0 and 1.

5. If Pcoll > r, the collision between aggregates is performed;
otherwise, the code repeats the process and selects two new
aggregates, starting again from the first step.

6. The mass ratio, µ, between A1 and A2 is calculated. Since
all individual grains have the same mass, µ can be calculated as
the ratio between the number of individual grains, ni, that make
up each aggregate Ai.

7. According to µ and v, the result of the collision is
determined (see the next section). The resulting aggregates are
incorporated into the distribution, which is saved as Nagg, j+1.

8. After the collision is performed, the two aggregates A1 and
A2 are removed from distribution Nagg, j.

9. It is verified that nagg,tot is the same for both Nagg, j and
Nagg, j+1.

10. The process is repeated from the first step, with j = j+ 1,
until j = ncoll.

Therefore, each individual collision will have the following
parameters:

– Aggregate A1: R1, ϕ, n1
– Aggregate A2: R2, ϕ, n2
– Mass ratio, µ
– Impact velocity, v.

3.3. Possible results after a single collision between two
aggregates

The CPA code randomly chooses two aggregates and their
impact velocity, only imposing that they have the same filling
factor. In this section we assign a result to each of the individual
collisions. First, we classify its outcome as SP, TF, or TD – def-
initions according to Sect. 2 – and then we obtain the result of
the collision: it must include the number of resulting fragments,
the number of particles in each of them and their porosity.

3.3.1. Binary collision outcomes

Numerically, it is not feasible to run all the possible combina-
tions of µ, ϕ, and v to obtain the exact information about the

aggregates resulting in each collision. Therefore, based on our
previous results, summarized in Sect. 2, we divided our space of
parameters according to cutoff values.

First branch, mass ratio: Some previous works found differ-
ent results when both collision partners had the same or different
mass (µ = 1 or µ , 1). In Paper III we find that a single cutoff
value seems not to be enough, so as a first improvement (and
approximation) we divide the results according to four possible
intervals of µ (the exact values that we previously analyzed are:
µ = 1, 10, 60, and 140 < µ).

Second branch, filling factor: The outcomes for the different
collisions have been separated between very porous aggregates
(ϕ < 0.20) and porous aggregates (ϕ > 0.20). In some cases, it
was necessary to add an intermediate interval that exhibited a
different behavior in our previous simulations (0.20 ≤ ϕ ≤ 0.30).

Third branch, impact velocity: The last, but no less impor-
tant, parameter to take into account to separate the regimes is the
impact velocity, v. In some cases we have precisely defined the
critic impact velocity, vcrit, that separates the outcome SP from
the TF or TD (Paper III). But in some cases we have only a veloc-
ity range where the transition between regimes occurs: in these
cases we made an estimate of vcrit.

Based on this, we established ranges in each parameter to
classify the collision as SP, TF, or TD, as shown in Table 3 with
their corresponding references. A visual outline of the possible
results for each collision can be found in Fig. A.1.

3.3.2. Resulting fragments

The code has so far classified the result as SP, TF, or TD. We
describe below what implications the different regimes have. We
remember that from each collision we want to obtain the total
number of fragments that result and, for each of these resulting
fragments: the number of grains that compose it and its final
porosity (also its size, but its radius can simply be calculated
with these last two values, taking Eq. (1) into account).

After the collision, one or some large fragments can remain
and the rest of the particles will be part of the ejecta (very small
fragments). For the size distribution of the resulting fragments
we have the following parameters:

– ntot: The total number of particles in both aggregates,
projectile and target (ntot = np + nt).

– Ys: The number of particles ejected in small groups or dust.
Based on our previous DEM simulations (Papers I, II, III), the
maximum size for the resulting fragments was set to 100 grains
for this work.

– YL. The number of particles ejected into large fragments
(with more than 100 grains).

For example, Ys does not include the grains in the largest
aggregate result in SP, or in the two largest aggregates resulting
in TF. For TD the situation is different: when v is high enough,
all the ejecta is dust (Ys ≃ ntot), but when v is close to vcrit, we
observe a number of large fragments (between 1 and 30), and
the rest is dust. This detail will be taken into account later.

Based on our results from Paper III and references here, we
use a power-law relationship to represent the size distribution of
the particles ejected in small fragments:

F(n) = kn−τ, (2)

where k is a constant. So we need to know the value Ys: how
many of the total grains will be part of the ejecta after the col-
lision, and the value of the exponent τ. In Table 3 we present
the results for this value obtained in previous works (when not
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Table 3. Summary of outcomes, and τ and Ys values taken from previous studies.

µ ϕ v (m s−1) Outcome Ys τ References

1
<0.2 <30 SP – – Gunkelmann et al. (2016b)

≥30 TD – –

≥0.2 <17 SP 0.014 2 Ringl et al. (2012a)
≥17 TD – 2–3.8

(1,20]

<0.2
<12.5 SP 0.004 2.8

Planes et al. (2021)

12.5−35 TF 0.02 2
≥35 TD 0.9 2.8

0.2–0.3 <35 SP 0.01 2.8
≥35 TD 0.9 2.8

≥0.3 <35 SP 0.02 2.8
≥35 TD 0.8 2.8

(20,100]

<0.2
<60 SP 0.003 2.8

Planes et al. (2020)

60–150 TF 0.2 2.8
≥150 TD 0.2–0.99 2.8

0.2–0.3 <140 SP 0.01 2.8
≥140 TD 0.2–0.95 2.8

≥0.3 <110 SP 0.01 2.8
≥110 TD 0.3–0.96 2.8

> 100 All cases SP 100 monomers ejected Planes et al. (2017)

detailed, it means that these data were not measured). Taking
this into account, we assigned characteristics to each outcome in
order to maintain a simple model that can be efficiently executed
by our code, but that at the same time it satisfactorily repre-
sents all the results previously obtained by us. As always, any
of these values can be changed by the user if other criteria are
required. For each outcome our code adopts the following Ys,YL,
and τ values. For SP, YL = 0.99ntot (a single large fragment) and
Ys = 0.01ntot with τ = 2.8. The only exception is µ > 100 where
Ys = 100 and all of them are monomers. For TF, if 1 < µ ≤ 20:
YL = 0.98ntot (Fragment 1: 0.49ntot; Fragment 2: 0.49ntot) and
Ys = 0.02ntot with τ = 2.8. If 20 < µ ≤ 100: YL = 0.98ntot (Frag-
ment 1: 0.84ntot; Fragment 2: 0.14ntot) and Ys = 0.02ntot with
τ = 2.8. We remark that YL has a strong dependence on v (see
Table 3 and references there). Therefore, we took only two possi-
bilities to simplify the model. Finally, for TD, YL = 0.7ntot (five
equal-sized fragments) and Ys = 0.3ntot with τ = 2.8. If there
are initially ntot ≤ 5 particles, after the collision they will be all
monomers.

In the TD case, YL and Ys also depend strongly on v. For
example, according to Table 3, Ys varies between 0.2ntot (for v
close to vcrit) and 0.99ntot (for the highest velocities, v, analyzed
in this work).

At this point, two clarifications are necessary: (a) in both TF
and TD cases, it has been preferred to take the values of Ys and YL
that are observed when the impact velocity v is close to vcrit. This
is because the v distribution is an MB distribution with mean of
10 m s−1. Therefore, if a simulation results in TD, for example
the case µ = 10, ϕ = 0.15 in Fig. A.1, it will be more likely to
occur at v ≃ 35 m s−1 than at v ≪ 35 m s−1. (b) The code rounds
the number of particles in each resulting fragment to integers. If,

for this reason, the final number of particles after the collision
exceeds the value ntot, the surplus grains will be subtracted from
the monomers. If this number is less than ntot, the missing grains
will be added as monomers.

3.3.3. Porosities of the resulting fragments

As aggregates are very porous, during collisional process they
could restructure and change their filling factor. The compaction
factor is defined as the ratio of the filling factor ϕ before and after
the collision.

We have limited data on compaction changes after a col-
lision, but we found that it depends on µ (Paper III): if we
consider a v ≃ 10 m s−1 (vrms value of our MB distributions of
random initial velocities), for all the ϕ analyzed, when µ = 10
we observe an increase in compaction of 75–100% and when
µ = 60 of 50–75%. Gunkelmann et al. (2016b) find for µ = 1
(and 0.08 < ϕ < 0.201) an increase of 100%. So as µ increases
the final compaction decreases. From Fig. 5 in Paper III, and
Fig. 7 in Gunkelmann et al. (2016b) we see that a 100% increase
seems to be approximately the maximum reached and then the
compaction values decrease.

Because of that, we assigned two different compaction
ranges: between 1.5 and 1.75 if µ > 20 and between 1.75 and
2 if µ ≤ 20. According the value of µ, the code will randomly
choose a compaction factor from the corresponding range. Of
course, this is a coarse approximation, since compaction depends
on other factors, for example, from Fig. 5a in Ringl et al. (2012a)
we note that the central collisions (like our simulations) present
a maximum in the compaction factor. But in the absence of
more information in this regard, this is an improvement over
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considering a single compaction factor for all collisions, and
can still be easily modified in the code when there are more
simulations to support better regime discrimination.

We set a maximum limit for this value at ϕmax = 0.74,
which is the maximum possible packing for spheres of the same
size (π/

√
18 = 0.7404, considering a face-centered cubic struc-

ture; Bargiel & Tory 1993). Although some authors suggest
that this value is not reached by collisions that cause disorderly
compaction, suggesting maximum values of ϕmax ∼ 0.58–0.65
(Torquato et al. 2000; Weidling et al. 2009; Teiser et al. 2011).
We emphasize that our objective is to evaluate the global com-
paction of these aggregates, then, we prefer to cover the largest
filling factor theoretically possible, which can then be limited in
the post-analysis.

There are two important exceptions: The first are monomers:
aggregates that have a single particle (n = 1) will have an
assigned filling factor of ϕ = 1. The second are dimers: aggre-
gates made up of n = 2 particles should have an assigned filling
factor of ϕ = 0.25 (two touching spheres radius Rgrain enclosed
by a sphere of radius 2Rgrain), although the code assigns them
a different value, ϕ = 0.9125, in order to distinguish them from
aggregates that have ϕ = 0.25 and n , 2. This value can then be
filtered or changed in the post analysis.

This will allow a cutoff to be put at ϕ ∼ 0.75 to observe
the porosities of aggregates with n ≥ 2 since the porosity of
aggregates with few particles is meaningless.

3.4. Final distributions

3.4.1. Resulting distributions after ncoll collisions

At this point, the code executes j = ncoll collisions, following the
procedure described in Sect. 3.2 and using the criteria set out in
the previous section for each individual collision. We want to get:
the mass (F(n)), size (F(R)), and porosity (F(ϕ)) distributions of
the final resulting aggregate population. Furthermore, obtaining
a matrix (F(n, ϕ)) that interrelates the mass and porosity data of
the aggregates can be interesting.

Then, once the last collision ends, the code returns each dis-
tribution normalized with the total number of aggregates existing
in the final population Nagg,ncoll = N:

Mass distribution, F(n). This is the number of aggregates
composed of n grains. Since the mass of all grains is identi-
cal, this can be considered a normalized mass distribution with
mgrain. Here, the possible values of n are hundreds of thou-
sands (and they will rarely match on all chains to simulate later).
Therefore, a grouping has been made in logarithmic bins.

Size distribution, F(R). This shows the radius of all the final
aggregates grouping them into intervals that are 1µm wide (the
width is double the initial to smooth the curve). Each frequency
is located in the initial value of this interval.

Porosity distribution, F(ϕ): It is presented through the distri-
bution of filling factors, which groups the resulting values into
intervals whose width is 0.05 (the width is double the initial to
smooth the curve). Each frequency is located in the middle value
of this interval. Remember that, by default, the code assigns a
value of ϕ = 1 to monomers and ϕ = 0.9125 for dimers.

Mass-porosity distribution, F(n, ϕ): This matrix details the
frequency of aggregates with a certain mass (grouped in log-
arithmic bins) and filling factor values, making it possible to
observe the porosity of the resulting aggregates according to
their mass. It also includes a column with the respective size
for the n bin (where Eq. (1) is used) and so also estimates
the size-porosity distribution (F(R, ϕ)). This last distribution

considerably increases the computation time, and it is the user’s
choice to request it.

3.4.2. Resulting distributions after Nchain chains

So far we have detailed the results after ncoll collisions occurred
in one chain (one path traveled). Now we repeat this process
starting from the same initial population of Nagg,0 aggregates,
but new values will be randomly chosen to repeat the process
detailed in Sect. 3.2, Nchain times, where this number must be
large enough to guarantee the convergence of our results. Next
we detail how the total number of chains to be run, Nchain, is
defined according to the desired error, and the calculation of the
final distributions averaged over Nchain chains. We also estimate
the standard deviation of each point for these distributions.

We distinguish two types of errors: (a) bin error is the calcu-
lation of the standard deviation of each bin of each distribution
and (b) global error is the global error of the code. To explain
this procedure, we need to define some new quantities: The con-
vergence cutoff, Cconv, indicates the accepted global error; once
reached, the code will end. Finally, Nmaxchain is the maximum
number of chains. The Nchain is the number of chains that the
code has traversed until reaching the convergence, Cconv.

For each distribution i normalized by N, F(i), the procedure
is the same:

1. The value of each bin of F(i) is saved for the first chain
that has been traversed, named F(i)avg,0.

2. The next chain is simulated, and the value of each bin of
F(i) is saved.

3. The average value of each bin of F(i) is calculated using
the values from both chains: F(i)avg,1.

4. The equation ∆(i) = F(i)avg,1 − F(i)avg,0 is calculated.
5. Only one of the distributions, i, is used to calculate the

convergence of the simulation (i.e., i = n, R or ϕ). For the
selected distribution, the global error is the sum of ∆(i)2 over
all bins.

6. If the global error is greater than the Cconv cutoff, F(i)avg,1

is saved, F(i)avg,0 is deleted, and the next chain is simulated,
since adding new chains will reduce the error in the limit of large
numbers of chains.

7. If the error is less than the Cconv cutoff during a few
Ncut consecutive chains, each of the final distributions is cal-
culated until the last chain (Nchain), F(i)avg,Nchain , then the data
are output to the disk, and the simulation is ended. We set
Ncut = INT(1000/ncoll) for this work.

Any of the distributions can be chosen to calculate this. In
particular, we chose F(R) since it obeys being the least grouped
distribution and its data have not been modified (as is the case
with some filling factor values). And once the convergence pro-
cess is reached it is normalized by the total number of chains
traveled, Nchain. Finally, each distribution is normalized to area 1,
that is,

∑
i[F(i) · bwi] = 1, where bwi is the bin width; therefore,

this normalization will depend on the width of the bins adopted
in each case.

This code was tested by varying the seed, that is, generat-
ing a new population of Nagg,0 aggregates for each chain, and
repeating the entire collisional process. No quantitative changes
were observed either in the initial population generated (of
10 000 aggregates) or in the final distributions. Therefore, we
conclude that it is not necessary to modify the seed in each
chain of collisions traveled. Again, this is left to the choice of
the user.

To summarize, the final distributions originate not from a
single fragmentation event, but from multiple ones, given by

A50, page 8 of 18



Millán, E. N., et al.: A&A proofs, manuscript no. aa43069-22

MC execution with one 
initial random seed

Read input parameters: 
MAX_nchains, N_coll, NAGGREGATES, RLOW, 
RHIGH, RSTEP, FFLOW, FFHIGH, FFSTEP, 
FFMAX, CONV_CUTOFF, CALC_NFF, ⲧ, seed 
and velocity parameters.

creation of the initial distribution 
for filling factor (Φ) for N 
aggregates

creation of the initial Radius (R) 
distribution for each aggregate

aggregate structure 
with Naggregates:
id,Φ, R, volume, Ngrains, 
copies

Calculate volume and amount 
of grains (Ngrains) in each 
aggregate

Write in disk the initial 
distribution of aggregates

select a velocity from the 
velocity distribution

select aggregate A1 randomly from a 
weighted distribution of aggregates

Select aggregate A2 randomly from the 
aggregate distribution with the following 
conditions:
A2 != A1  and same Φ

Calculate mass_ratio, μ, between A1 and A2

Select Outcome (SP, TF, TD) according to 
the μ, Φ and velocity

Remove the aggregates A1 and A2 from the 
aggregates distribution (the collision has already 
taken place).

According to the outcome and the μ calculate:

Distribution of “big” aggregates Y_l

Distribution of “small” aggregates Y_s 
(with a power distribution)

print to screen the result 
of the collision

from collision = 0 up 
to N_coll

Write to disk the final 
distribution of aggregate 
for the nchain

The MC software is 
called from an external 
Bash script N times with 
different random seeds, 

storing in different 
directories the results of 

each execution.

Calculate and write to disk 
the final distribution of 
aggregates

End of MC simulation

from nchain = 0 up 
to MAX_nchains

end nchain

Calculate the average distribution for Φ, R and 
Ngrains between the current nchain and nchain-1

Stage 1: 
Input and initial configuration

end collisions

Stage 2: 
execute MC simulation

Stage 1

See possible outcomes in the figure 2

Stage 2

Fig. 2. Flow chart diagram of the Monte Carlo simulation.

ncoll. To obtain statistically meaningful results, Nchain collision
chains have to be averaged to obtain a “steady” state, where
the simulation of an additional chain will not affect the aver-
age results beyond the limit given by the convergence parameter.
Therefore, the distributions are “steady” with respect to Nchain
(keeping ncoll constant), not with respect to a possible increase
of ncoll. CPA users can modify this convergence parameter.

As expected, more collision chains are required as the average
number of collisions experienced by aggregates decreases. The
CPA code is shown to converge reasonably well for the sce-
narios studied here, and can thus be run in standard desktop
workstations.

The complete flow diagram of the Monte Carlo software is
shown in Fig. 2.
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Fig. 3. Mass distribution (normalized by area). Colors denote the initial
distribution and final distribution after 5, 10, and 100 collisions. Gray
lines show fits for the exponent α (see text).

4. Results

In this section, we show the results of the CPA code. We ran
the simulations with the input parameters detailed in Table 2,
Cconv = 10−6 and three values for ncoll: 5, 10 and 100. We only
present some representative results for each of the distributions.
We focus on cases with relatively low ncoll, which are relevant
for regions with very low dust density, and for the early stages of
dust aggregation, well below the gravity-dominated regime.

4.1. Mass distributions

Figure 3 shows mass distribution, F(n), of the initial population
(black color) and of the final population after 5, 10, and 100
random collisions. This histogram represents the frequencies of
the number of grains in each aggregate, ni, grouped into bins [i,
i + w), where the widths of intervals w are logarithmic. The ini-
tial distribution of mass (created following Sect. 3.1.2) presents
a power-law relationship:

F(n) = anα, (3)

where a is a constant and α = −2/3. After ncoll collision this
value for α holds for aggregates with n > 30 when ncoll = 5, 10
but only for aggregates with n > 100 when ncoll = 100, as seen
in the fit in Fig. 3. For the smallest aggregates a different expo-
nent α is observed: −2.8. This is reasonable, because this is the
τ value that was assigned to the resulting small fragment size
distribution. As more collisions occur (higher ncoll), a greater
number of fragments will exhibit this behavior; for this reason,
when ncoll = 100, the exponent τ holds up to a greater n (100).
Preliminary results for the full model with much larger ncoll show
a steeper distribution, with larger α, as expected from the models
by Birnstiel et al. (2012a). Some results for simple coagulation
kernels and ncoll = 10000 are shown in Appendix B, showing
excellent agreement with analytical results.

4.2. Size distributions

From Table 2, our initial size distribution is uniform, as we can
see in Fig. 4 in black color. As in the case of mass distribution,
the flat distribution holds for large aggregates, and other power
law is observed for small aggregates:

F(R) = bRβ, (4)
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Fig. 4. Size distribution (normalized by area). Colors denote the initial
distribution and the final distribution after 5, 10, and 100 collisions.
Gray lines show fits for the exponent β (see text).

where b is a constant. A value of β = −6 is shown in Fig. 4. This
fits works well for aggregates until R ∼ 5µm when ncoll = 5, 10
and until R ∼ 10µm when ncoll = 100. Again, this makes sense:
as more collisions occur, more aggregates are generated and
leave the initial uniform distribution. Another interesting thing
is the generation of aggregates with R > Rmax, it means, at the
end, the population contains larger aggregates that in the begin-
ning. These larger aggregates have a low frequency compared
with aggregates with R < 100µm. However, as ncoll increases,
this difference in frequency decreases as well. Of course, Fig. 4
shows the global results, and really large aggregates can appear:
our results include R until 216µm, but these cases have a fre-
quency that is too low and can be neglected. We note that this
slope is quite different to the one used to fit ISM dust size obser-
vational results (Mathis et al. 1977). Collisions and porosity are
not expected to play a dominant role in that scenario.

Sometimes it is possible to relate the power-law exponent for
F(R) to that for F(n) found in the previous section. The number
of aggregates dN with radii between R and (R+ dR) is defined by
the differential size distribution: dN = N(R)dR = CRRsdR, and
with masses between m and (m + dm) by the differential mass
distribution: dN = N(m)dm = Cmmqdm, where CR and Cm are
constants. Then it is

dN = CRRsdR = Cmmqdm. (5)

For spherical aggregates, it is

m =
4
3
πρϕR3. (6)

Using Eq. (6) in Eq. (5), we obtain

CRRsdR = CR

(
3m

4πρϕ

)s/3

dR. (7)

Assuming ρ and ϕ constants and differentiating Eq. (7) yields

dm =
4
3
πρϕ(3R2)dR⇒ dR =

(
dm

4πρϕ

) (
4πρϕ
3m

)−2/3

. (8)

Replacing Eq. (8) in Eq. (7), and after some algebra, one obtains

RsdR =
(

1
4πρϕ

) (
3

4πρϕ

) s−2
3

m
s−2
3 dm. (9)
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(a) Complete distributions. (b) Only aggregates with n > 2.

This allows one to obtain the relationship between the exponents
s and q as

q =
s − 2

3
. (10)

In our simulations, the filling factor is not constant, but we
can still test these approximations. We use α and β for the
exponents in the numerical fit to our results for mass and size dis-
tributions, respectively. For our initial size distribution s = 0 and
we obtain α = −0.66 ∼ q = −2/3, as expected from Eq. (10). For
the small aggregates obtained after the collision chains, we fit a
power law for the size distribution, with β = −6, which would
be equivalent to use s = −6 in Eq. (7), giving q ∼ −2.67 from
Eq. (10). We obtain a value of α = −2.8, fairly similar to the ana-
lytical approximation. The main reason for this agreement with
the analytical approximation is the relatively low number of col-
lisions studied here, such that the mean value of the filling factor
would remain roughly constant.

In our simulations, the initial filling factor of each aggregate
is taken randomly from a uniform distribution, but the code does
not provide the evolution of the distribution of average filling
factor versus aggregate size. The relatively low number of col-
lisions explored in this work is expected to cause only slight
changes to that distribution. Future work exploring longer colli-
sion chains might explore this further, as it has been done before

in coagulation simulations (Ormel et al. 2007; Okuzumi et al.
2012).

4.3. Porosity distributions

Figure 5 shows the initial and final filling factor distributions for
(a) all aggregates and (b) aggregates with n > 2. Figure 5 (a) is
in agreement with our previous plots: monomers (with a filling
factor fixed in ϕ = 1) are predominant, and dimers are in sec-
ond place, respecting the pre-accorded filling factor of ϕ = 0.925
(values according to Sect. 3.3.3). But talking about filling factor
of monomers or dimers has not physical sense. So in Fig. 5 (b),
we remove these aggregates to focus in aggregates with n > 2 (it
is a zoom of (a)). Remember that the value ϕ = 0.75 was chosen
as the upper limit for the compaction, so this figure shows that
as ncoll grows, more aggregates find this upper limit as a conse-
quence of collisional processes. Also, for ncoll = 5, 10 the rest of
the distribution seems to hold quite uniform, but for ncoll = 100,
the distribution seems to take an increasing trend in ϕ.

4.4. Mass and size distribution for different ranges of
aggregate porosities

For this analysis, the possible porosity values will be divided into
three groups: (1) P (very porous): ϕ ≤ 0.2, (2) PC (porous): 0.2 <
ϕ < 0.4 and (3) C (compact): ϕ ≥ 0.4. The separation between
PC and C follows the one proposed by Güttler et al. (2010), and
between P and PC is due to our detailed results in Paper II. For
each interval in ϕ the corresponding mass and size distribution
will be presented. This proposed representation is our choice, the
code gives freedom so that other alternatives can be proposed
according to the object of its application. The purpose here is
understood if the previous distribution shown for all aggregates
present any dependence according the aggregate porosity values.

4.4.1. Mass distribution according to porosity ranges

Figure 6 shows the mass distribution, in logarithmic bins, for
the 3 intervals of porosity for: ncoll: (a) 5, (b) 10, and (c) 100.
We indicate Eq. (3) with α = −0.66 and −2.8 as in Fig. 3. Both
exponents fit quite well. However, the group C covers the largest
interval of values in n. We note that monomers and dimers only
belong here, so C starts at n = 1 whereas PC and P at n = 3.
On the other hand, the largest aggregates are produced by a
collisional process, where compaction took place, so PC covers
higher values of n than P, and C than PC. Beyond the α’s values
being maintained, frequency in smaller aggregates increases as
ncoll increases. Erosion and generation of small clusters are an
extremely important part of the collisional process.

Appendix C shows distributions separated by porosity
region.

4.4.2. Size distributions according to porosity ranges

Figure 7 shows the size distribution for the 3 intervals of porosity
for: ncoll: (a) 5, (b) 10, and (c) 100. This information for R was
obtained throw Eq. (1) (see Sect. 3.4.1), but F(n) is grouped in
logarithmic bins, so an error associated with this grouping must
take into account. We show these results as an example, the user
can request that the code calculate F(R, ϕ) directly, but F(R) has
∼220 bins and F(n) has ∼60, so it will be more expensive in
computational time.

Using Eq. (1), Fig. 7 shows dependences dragged from F(n).
We plot two values for the β exponent of Eq. (4): −6 as in Fig. 4
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Fig. 6. Mass distribution (normalized by area) for ncoll: (a) 5, (b) 10, and
(c) 100. Colors denote ranges of the porosity of the aggregates. Gray
lines show fits for the exponent α (see text).

and −2.8 as in Fig. 3. By the way the aggregates are built, now
the three regimes, P, PC and C start at R = 1µm, but again, larger
aggregates are more compact. We observe that for small aggre-
gates the relationship proposed (with β = −6) fits very well the
cases ncoll = 5 and 10, but for ncoll = 100 the slope seems to
be steeper. Class C includes mostly new aggregates generated by
collisional processes. The distribution of F(R) has no “grouping”
into logarithmic bins to smooth the curves, as F(n) does. For this
reason and for a relatively low number of collisions where new
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Fig. 7. Size distribution (normalized by area) for ncoll: (a) 5, (b) 10, and
(c) 100. Colors denote ranges of the porosity of the aggregates. Gray
lines show fits for the exponent β (see text).

values of R appear with low frequency, there is a large scatter in
Fig. 7.

4.5. Convergence at large radii

Convergence at large radii, larger than the maximum radius
of the initial distribution, requires decreasing the convergence
parameter Cconv. This implies a significant increase in computa-
tional time, and it might not be needed for some applications. As
an example, we show changes for the case ncoll = 100 in Fig. 8
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Fig. 8. Size distribution (normalized by area) for ncoll = 100 at different
Cconv. (a) Complete range of R. (b) 100µm < R < 1 50µm.

for the complete range of R (a) and for large radii (b), but similar
behavior is observed for ncoll = 5, 10. For very larger R, as Cconv
decreases, more continuity is observed, but remember that the
low frequency makes these aggregates negligible. We zoom into
the range 100µm < R < 150µm (Fig. 8 (b)), where the effect of
decreasing Cconv is clear: dispersion is significantly reduced and
for Cconv = 10−6 or lower there are no significant changes.

4.6. Computational performance

Table 4 shows the total number of chains and the computa-
tional cost in the form of wall-clock time for a workstation with
an AMD Ryzen 7 3800X 8-Core and 64GB DDR4 RAM at
2600 MHz for Cconv = 10−6 and 10−8 as examples. Our code
does not use a representative particle approximation, but can
still model growth by binary collisions over many orders of
magnitude thanks to significant hardware improvements since
early pioneering MC work (Ormel et al. 2007), as also seen in
Appendix B. Computational performance of the code is reason-
ably good, and up-scaling the runs to include a larger number of
initial aggregates is possible, increasing the simulated range of
aggregate growth. The maximum consumption of RAM mem-
ory for any of the cases shown in Table 4 is close to 4MB.
Memory usage grows linearly with the initial aggregate number,
Nagg,0. As an example of computational cost, a simulation with
Nagg,0 = 106, ncoll = 106 and Cconv = 10−3 takes almost 26 hours
and 150MB RAM for the constant kernel from Appendix B,

Table 4. Total number of chains required and computational time for
different Cconv for ncoll = 100, 10, and 5.

ncoll
Cconv 100 10 5

10−6 Nchain 6272 103 967 231 936
time 0:00:53 0:02:59 0:05:34

10−8 Nchain 535 018 8 031 191 19 048 194
time 1:15:06 3:46:34 7:32:22

in the same desktop computer used for the rest of the simula-
tions. We also note that total running times increase linearly with
Nagg,0. Assuming ncoll ∼ Nagg,0 = 10p one would obtain dynamic
aggregate growth over p orders of magnitude for the kernels
without fragmentation, shown in Appendix B.

Another issue is that the final number of aggregates for each
simulated collision chain could be large, affecting computational
performance. For example, the final number of aggregates aver-
aged over all independent chains, Nagg, for an initial population
with Nagg,0 = 10 000, leads to Nagg = 10 145 for ncoll = 3 and
Nagg = 114 179 for ncoll = 1000.

Our code runs serially, in a single core. Future versions might
add parallelization by sending different collision chains to dif-
ferent parallel threads, with a master process collecting the final
distributions and normalizing them. This would ensure good par-
allel scaling if the number of chains, required for convergence is
lower than the number of parallel processes. For the tests pre-
sented here Nchain ∼ 104–107, and the future parallel code could
perform in a supercomputer.

5. Conclusions and future possibilities

The CPA code was developed to study the collision processes
between mass-asymmetric, spherical, and micron-sized porous
silica aggregates that belong to a population of dust in a vac-
uum, without gravity. Our simulations, which use a relatively
low number of collisions, ncoll, gave the following results.
1. The size distribution, F(n), is directly related to the mass

distribution. For a distribution that is uniform in size, R, it
is F(n) ∝ n−2/3. As the population evolves due to collisions,
this dependence remains unchanged at large sizes but is bro-
ken at small sizes, below a critical size, ncrit, which increases
as ncoll increases.

2. Collisional evolution produces a huge number of monomers
and dimers, with small clusters following a power law in
radius with exponent ∼−6 (and ∼−2.8 for a power law in
mass), even for very short collision chains. Although it is not
the main objective of these simulations, we show the feasi-
bility of collisional growth of very large clusters. Studying
further growth would require the inclusion of gravitational
forces and other effects.

3. When collisional processes are assumed to end, larger aggre-
gates could appear in the final distributions, in addition to
a significant production of small aggregates (R < 10µm).
The frequency of the largest aggregates (R > 150µm) is ∼10
orders of magnitude lower than the small-sized aggregates,
so they can often be disregarded.

4. Although porosity changes due to collisions are usually
neglected, collisions lead to the compaction of the dust popu-
lation, which is expected. As ncoll increases, a larger number
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of aggregates reach their lowest possible porosity because
they are strongly compacted by one or more consecutive
collisions. These results verify that a dust population sub-
jected to a (relatively low) number of random collisions will
present an important variation in terms of porosity distribu-
tion, which modifies the results of future collisions of the
resulting aggregates (Paper II, Gunkelmann et al. 2016a).

5. In general, the porosity distribution, F(ϕ), shows a popula-
tion at low porosity that increases with ncoll, along with the
population for monomers (filling factor ϕ = 1) and dimers,
which are given an artificially high ϕ (0.9) to separate
them from the rest of the dust population. In general, larger
aggregates result from agglomeration, while monomers and
dimers arise from collisions involving fractures, with both
processes usually leading to compaction.

6. The CPA code provides a matrix that contains the mass and
porosity of all resulting aggregates. A relatively simple post-
analysis can be carried out to separate mass and porosity into
bins chosen by the users, to be examined separately. When
F(n) is evaluated according to different ranges of porosity,
the power law proposed for the entire distribution is roughly
maintained. However, there are some differences for ncoll =
5, the smallest number of collisions considered here, which
represents the very early stages of aggregate growth.

7. The CPA code calculates the size, mass, and porosity dis-
tributions for coagulation-fragmentation equilibrium after a
certain number of collisions, ncoll. Statistical convergence
of the distributions can be explored by users varying the
“Convergence” parameter.

8. In the present study, we focus on the final distributions after
a relatively low number of ncoll. However, one could imagine
a time-dependent scenario where the number of collisions
increases with time and the collision time between aggre-
gates is given by their cross section and the velocity distribu-
tion. Therefore, one could equate ncoll with the elapsed time
and study time evolution. This would require recalculating
average collision times for each new size distribution.
This code incorporates several improvements over the fea-

tures in similar previously developed codes (Birnstiel et al.
2012b; Zsom & Dullemond 2008; Ormel et al. 2007). From
a methodological point of view, the stochastic collision model
is based on the well-known and accepted direct simulation
Monte Carlo approach, and an internal convergence check is
implemented. From a physics viewpoint, the code emphasizes
the inclusion of mass-asymmetric collisions (covering a wide
range in aggregate radius), inter-granular friction, and the influ-
ence of porosity. Hereby, the code design follows a multi-scale
approach that allows handshaking with results from granular-
mechanics codes to provide input parameters on aggregate col-
lisions. However, there is still much to improve. We emphasize
that any improvement would likely entail an increase in compu-
tational time, both in the simulation time of the code itself and
in studies or simulations that support new results to be incor-
porated. We believe that with current technological advances,
the improvements proposed below could be achieved in the near
future:

– Aggregates of different materials: In addition to silica, there
is a need for simulations that provide information on colli-
sions between aggregates of other materials, such as ice – of
particular interest in astrophysics granular collisions (Wada
et al. 2009; Kimura et al. 2020) – and organic (carbon-based)
matter (Nietiadi et al. 2020b). Aggregates whose composi-
tion is a mixture of different materials (such as a silica core

and a water shell) would also need to be considered (Nietiadi
et al. 2020a).

– Porosity: There are two strong points to improve here. Firstly,
simulations between aggregates with different porosities
have not been studied extensively, and therefore this is not
incorporated into our code. Nevertheless, results from a
binary collision may change if the aggregates have differ-
ent porosities, especially in extreme cases, for example, if
a very compact aggregate impacts a very porous one. This
would probably emphasize the piston effect observed in
Paper II. Alternatively, if a very fluffy aggregate impacts
a compact one, the projectile could perhaps be disarmed
almost without disturbing the target. Despite these assump-
tions, further molecular dynamic simulations are required to
test these hypotheses, and we plan to perform them in the
near future. Second, there is no consensus on how the final
porosity varies as a function of impact velocity and mass
ratio. We have generally studied compaction as a function of
the coordination number, which is related to the filling fac-
tor, ϕ. Nonetheless, studies focusing on the evolution of ϕ are
necessary.

– Impact parameter: Although the impact parameter, b, is
included as a variable in our code, we do not have enough
information about the influence of this factor, and, therefore,
it is not considered. However, based on some previous stud-
ies (Ringl et al. 2012a; Wada et al. 2013), growth is favored
over erosion for central collisions. It would be interesting to
be able to include the dependence of these results on b.

– Impact velocity distribution: The influence of the velocity
distribution needs to be investigated. The choice of this dis-
tribution depends on the particular application of the CPA
code, but even in the same scenario there seems to be no con-
sensus about which distribution should be used (Windmark
et al. 2012; Drazkowska et al. 2014; Garaud et al. 2013). In
principle, in a more self-consistent code, the velocity distri-
bution may need to be modified as the system evolves over
time. In future work, we will analyze the changes in the
final distributions of mass, size, and porosity when different
velocity distributions are employed.

– Grouping of outcomes according to impact velocity: for sim-
plicity, some regimes were separated according to a specific
value in velocity. This may not be extremely precise because
it was based on a limited number of granular simulations.
New simulations covering more v values for each set (ϕ, µ)
are required in order to refine these boundaries. In addition,
the number of resulting large fragments and their masses
show a strong dependence on v. However, we believe that it
is possible to improve these points gradually as more results
are obtained by different research groups.

– Aggregate form: All our aggregates are considered spherical,
relating R and n. Although it is not easy to consider irregular
geometric bodies, because that would require a huge num-
ber of collisions for different rotations of the aggregates, we
are aware that this would be a much more realistic case for
representing dust aggregates.

– Grain radius, Rgrain: Results can vary when considering a
different Rgrain or a distribution of grain sizes. Umstätter
& Urbassek (2020), for instance, show that bouncing was
strongly enhanced for a bimodal grain size distribution.
Compaction and fracture are also expected to change signif-
icantly (Pál et al. 2016).

– Number of collisions, ncoll: Future simulations could explore
in detail the regime of much larger ncoll, allowing one to
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compare simulation results with the analytical results from
Birnstiel et al. (2012a).

We expect to apply the CPA code to particular astronomical sce-
narios, but we have made the source code freely available in the
hope that it can help other astronomy research projects that deal
with porous dust collisions1.
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Mathis, J. S., Rumpl, W., & Nordsieck, K. H. 1977, ApJ, 217, 425
Maugis, D. 2000, Contact, Adhesion and Rupture of Elastic Solids (Berlin:

Springer)
Meru, F., Geretshauser, R. J., Schäfer, C., Speith, R., & Kley, W. 2013, MNRAS,

435, 2371
Nietiadi, M. L., Rosandi, Y., & Urbassek, H. M. 2020a, Icarus, 352, 113996
Nietiadi, M. L., Valencia, F., Gonzalez, R. I., Bringa, E. M., & Urbassek, H. M.

2020b, A&A, 641, A159
Okuzumi, S., Tanaka, H., Kobayashi, H., & Wada, K. 2012, ApJ, 752, 106
Ormel, C. W., & Cuzzi, J. N. 2007, A&A, 466, 413
Ormel, C. W., Spaans, M., & Tielens, A. G. G. M. 2007, A&A, 461, 215
Ormel, C. W., Paszun, D., Dominik, C., & Tielens, A. G. G. M. 2009, A&A, 502,

845
Pál, G., Jánosi, Z., Kun, F., & Main, I. G. 2016, Phys. Rev. E, 94, 053003
Planes, M. B., Millán, E. N., Urbassek, H. M., & Bringa, E. M. 2017, A&A, 607,

A19
Planes, M. B., Millán, E. N., Urbassek, H. M., & Bringa, E. M. 2020, MNRAS,

492, 1937
Planes, M. B., Millán, E. N., Urbassek, H. M., & Bringa, E. M. 2021, MNRAS,

503, 1717
Plimpton, S. 1995, J. Comput. Phys., 117, 1
Puglisi, A., Sarracino, A., & Vulpiani, A. 2017, Phys. Rep., 709–710, 1
Ringl, C., & Urbassek, H. M. 2012, Comput. Phys. Commun., 183, 986
Ringl, C., Bringa, E. M., Bertoldi, D. S., & Urbassek, H. M. 2012a, ApJ, 752,

151
Ringl, C., Bringa, E. M., & Urbassek, H. M. 2012b, Phys. Rev. E, 86, 061313
Schnee, S., Li, J., Goodman, A. A., & Sargent, A. I. 2008, ApJ, 684, 1228
Seizinger, A., & Kley, W. 2013, A&A, 551, A65
Seizinger, A., Krijt, S., & Kley, W. 2013, A&A, 560, A45
Shen, Y., Draine, B. T., & Johnson, E. T. 2009, ApJ, 696, 2126
Silk, J., & Takahashi, T. 1979, ApJ, 229, 242
Sobol, I. M. 1994, A Primer for the Monte Carlo Method (Boca Raton: CRC)
Suyama, T., Wada, K., & Tanaka, H. 2008, ApJ, 684, 1310
Suyama, T., Wada, K., Tanaka, H., & Okuzumi, S. 2012, ApJ, 753, 115
Tanaka, H., & Nakazawa, K. 1994, Icarus, 107, 404
Teiser, J., Engelhardt, I., & Wurm, G. 2011, ApJ, 742, 5
Testi, L., Birnstiel, T., Ricci, L., et al. 2014, in Protostars and Planets VI, eds.

H. Beuther, R. S. Klessen, C. P. Dullemond, & T. K. Henning (University of
Arizona Press), 339

Torquato, S., Truskett, T. M., & Debenedetti, P. G. 2000, Phys. Rev. Lett., 84,
2064

Umstätter, P., & Urbassek, H. M. 2020, A&A, 633, A24
van Breemen, J. M., Min, M., Chiar, J. E., et al. 2011, A&A, 526, A152
Wada, K., Tanaka, H., Suyama, T., Kimura, H., & Yamamoto, T. 2007, ApJ, 661,

320
Wada, K., Tanaka, H., Suyama, T., Kimura, H., & Yamamoto, T. 2008, ApJ, 677,

1296
Wada, K., Tanaka, H., Suyama, T., Kimura, H., & Yamamoto, T. 2009, ApJ, 702,

1490
Wada, K., Tanaka, H., Okuzumi, S., et al. 2013, A&A, 559, A62
Weidling, R., Güttler, C., Blum, J., & Brauer, F. 2009, Astrophys. J., 696, 2036
Windmark, F., Birnstiel, T., Ormel, C. W., & Dullemond, C. P. 2012, A&A, 544,

A16
Zsom, A., & Dullemond, C. P. 2008, A&A, 489, 931
Zsom, A., Ormel, C. W., Güttler, C., Blum, J., & Dullemond, C. P. 2010, A&A,

513, A57
Zsom, A., Ormel, C. W., Dullemond, C. P., & Henning, T. 2011, A&A, 534, A73

A50, page 15 of 18

http://linker.aanda.org/10.1051/0004-6361/202243069/1
http://linker.aanda.org/10.1051/0004-6361/202243069/2
http://linker.aanda.org/10.1051/0004-6361/202243069/3
http://linker.aanda.org/10.1051/0004-6361/202243069/4
http://linker.aanda.org/10.1051/0004-6361/202243069/4
http://linker.aanda.org/10.1051/0004-6361/202243069/5
http://linker.aanda.org/10.1051/0004-6361/202243069/6
http://linker.aanda.org/10.1051/0004-6361/202243069/7
http://linker.aanda.org/10.1051/0004-6361/202243069/8
http://linker.aanda.org/10.1051/0004-6361/202243069/9
http://linker.aanda.org/10.1051/0004-6361/202243069/10
http://linker.aanda.org/10.1051/0004-6361/202243069/10
http://linker.aanda.org/10.1051/0004-6361/202243069/11
http://linker.aanda.org/10.1051/0004-6361/202243069/11
http://linker.aanda.org/10.1051/0004-6361/202243069/12
http://linker.aanda.org/10.1051/0004-6361/202243069/12
http://linker.aanda.org/10.1051/0004-6361/202243069/13
http://linker.aanda.org/10.1051/0004-6361/202243069/14
http://linker.aanda.org/10.1051/0004-6361/202243069/14
http://linker.aanda.org/10.1051/0004-6361/202243069/15
http://linker.aanda.org/10.1051/0004-6361/202243069/16
http://linker.aanda.org/10.1051/0004-6361/202243069/18
http://linker.aanda.org/10.1051/0004-6361/202243069/19
http://linker.aanda.org/10.1051/0004-6361/202243069/20
http://linker.aanda.org/10.1051/0004-6361/202243069/20
http://linker.aanda.org/10.1051/0004-6361/202243069/21
http://linker.aanda.org/10.1051/0004-6361/202243069/21
http://linker.aanda.org/10.1051/0004-6361/202243069/22
http://linker.aanda.org/10.1051/0004-6361/202243069/22
http://linker.aanda.org/10.1051/0004-6361/202243069/23
http://linker.aanda.org/10.1051/0004-6361/202243069/24
http://linker.aanda.org/10.1051/0004-6361/202243069/25
http://linker.aanda.org/10.1051/0004-6361/202243069/26
http://linker.aanda.org/10.1051/0004-6361/202243069/26
http://linker.aanda.org/10.1051/0004-6361/202243069/27
http://linker.aanda.org/10.1051/0004-6361/202243069/27
http://linker.aanda.org/10.1051/0004-6361/202243069/28
http://linker.aanda.org/10.1051/0004-6361/202243069/28
http://linker.aanda.org/10.1051/0004-6361/202243069/29
http://linker.aanda.org/10.1051/0004-6361/202243069/30
http://linker.aanda.org/10.1051/0004-6361/202243069/31
https://sites.google.com/site/simafweb/proyectos/monte-carlo-grains-collisions-simulations
https://sites.google.com/site/simafweb/proyectos/monte-carlo-grains-collisions-simulations
http://linker.aanda.org/10.1051/0004-6361/202243069/32
http://linker.aanda.org/10.1051/0004-6361/202243069/32
http://linker.aanda.org/10.1051/0004-6361/202243069/33
http://linker.aanda.org/10.1051/0004-6361/202243069/33
http://linker.aanda.org/10.1051/0004-6361/202243069/34
http://linker.aanda.org/10.1051/0004-6361/202243069/35
http://linker.aanda.org/10.1051/0004-6361/202243069/36
http://linker.aanda.org/10.1051/0004-6361/202243069/37
http://linker.aanda.org/10.1051/0004-6361/202243069/37
http://linker.aanda.org/10.1051/0004-6361/202243069/38
http://linker.aanda.org/10.1051/0004-6361/202243069/39
http://linker.aanda.org/10.1051/0004-6361/202243069/40
http://linker.aanda.org/10.1051/0004-6361/202243069/41
http://linker.aanda.org/10.1051/0004-6361/202243069/42
http://linker.aanda.org/10.1051/0004-6361/202243069/43
http://linker.aanda.org/10.1051/0004-6361/202243069/43
http://linker.aanda.org/10.1051/0004-6361/202243069/44
http://linker.aanda.org/10.1051/0004-6361/202243069/45
http://linker.aanda.org/10.1051/0004-6361/202243069/45
http://linker.aanda.org/10.1051/0004-6361/202243069/46
http://linker.aanda.org/10.1051/0004-6361/202243069/46
http://linker.aanda.org/10.1051/0004-6361/202243069/47
http://linker.aanda.org/10.1051/0004-6361/202243069/47
http://linker.aanda.org/10.1051/0004-6361/202243069/48
http://linker.aanda.org/10.1051/0004-6361/202243069/49
http://linker.aanda.org/10.1051/0004-6361/202243069/50
http://linker.aanda.org/10.1051/0004-6361/202243069/51
http://linker.aanda.org/10.1051/0004-6361/202243069/51
http://linker.aanda.org/10.1051/0004-6361/202243069/52
http://linker.aanda.org/10.1051/0004-6361/202243069/53
http://linker.aanda.org/10.1051/0004-6361/202243069/54
http://linker.aanda.org/10.1051/0004-6361/202243069/55
http://linker.aanda.org/10.1051/0004-6361/202243069/56
http://linker.aanda.org/10.1051/0004-6361/202243069/57
http://linker.aanda.org/10.1051/0004-6361/202243069/58
http://linker.aanda.org/10.1051/0004-6361/202243069/59
http://linker.aanda.org/10.1051/0004-6361/202243069/60
http://linker.aanda.org/10.1051/0004-6361/202243069/61
http://linker.aanda.org/10.1051/0004-6361/202243069/62
http://linker.aanda.org/10.1051/0004-6361/202243069/63
http://linker.aanda.org/10.1051/0004-6361/202243069/64
http://linker.aanda.org/10.1051/0004-6361/202243069/64
http://linker.aanda.org/10.1051/0004-6361/202243069/65
http://linker.aanda.org/10.1051/0004-6361/202243069/66
http://linker.aanda.org/10.1051/0004-6361/202243069/67
http://linker.aanda.org/10.1051/0004-6361/202243069/67
http://linker.aanda.org/10.1051/0004-6361/202243069/68
http://linker.aanda.org/10.1051/0004-6361/202243069/68
http://linker.aanda.org/10.1051/0004-6361/202243069/69
http://linker.aanda.org/10.1051/0004-6361/202243069/69
http://linker.aanda.org/10.1051/0004-6361/202243069/70
http://linker.aanda.org/10.1051/0004-6361/202243069/71
http://linker.aanda.org/10.1051/0004-6361/202243069/72
http://linker.aanda.org/10.1051/0004-6361/202243069/72
http://linker.aanda.org/10.1051/0004-6361/202243069/73
http://linker.aanda.org/10.1051/0004-6361/202243069/74
http://linker.aanda.org/10.1051/0004-6361/202243069/74
http://linker.aanda.org/10.1051/0004-6361/202243069/75


A&A 672, A50 (2023)

Appendix A: Summary of final binary collision
outcomes

Fig. A.1 presents the classifications made by the CPA code for
each binary collision, according to impact velocity, mass ratio
and porosity of the aggregates, in accord with the information
contained in the first four columns of Table 3. The definitions
of regimens SP, TF and TD are found in Sect. 2.2, and how this
classification affects the code is explained in Sect. 3.3.2.

Fig. A.1. Relation between initial conditions and final outcomes.
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Appendix B: Coagulation tests

Our CPA code is not designed exclusively for coagulation, but
takes into account possible fragmentation and generation of
monomers or small aggregates, together with porosity changes.
Regardless, we tested our code with two common coagulation
kernels (linear and constant), excluding fragmentation. Porosity
and velocity distributions do not play any role for those two ker-
nels. With the constant kernel, the aggregates for the collision
are selected at random with a uniform distribution (Fig. B.1). In
the linear kernel (Fig. B.2), the aggregates are selected weighted
by the sum of the masses of the aggregates to collide, with a
higher probability of collision for bigger aggregates. Analytical
solutions (Tanaka & Nakazawa 1994; Silk & Takahashi 1979) for
constant and linear kernels can be written as

F(n) = Nagg,0g
2(1 − g)n−1, (B.1)

F(n) = Nagg,0
nn−1

n!
g(1 − g)n−1e−n(1−g). (B.2)

Following the notation by Tanaka & Nakazawa (1994) g is the
ratio of the total number of aggregates at a given time t (or ncoll)
to its initial value (Nagg,0). g can also be expressed as a func-
tion of a normalized time τ = Nagg,0t, g = 1/(1 − τ/2) and e−τ,
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Fig. B.1. Coagulation test with a constant kernel for (a) F(n) and (b)
F(n)n2. Color lines show the analytic solution (Eq. B.1), and the dashed
line with slope 1 is to guide the eye.

for the constant and linear kernels, respectively. In this work, we
take the time as t = ncollt0, where t0 is the average time between
collisions, determined by the mean free path and the mean col-
lision velocity, and assume constant t0. In reality, t0 will change
dynamically with the dust and velocity distributions, depending
on the specific astrophysical environment, resulting in various
sequences of collision times. Here we present results for n, the
number of particles in the aggregates rather than their mass m,
remembering that this means a normalized mass because each
monomer has the same mass.

Our results for F(n) are shown for the constant kernel
in Fig. B.1(a) and for the linear kernel in Fig. B.2(a). In
our code, the number of aggregates is finite, starting with
Nagg,0 monomers. Therefore, the distribution for large n in
Fig. B.2(a) departs from the analytical one since full agglomera-
tion occurs when the number of collisions approaches Nagg,0, as
expected since a single aggregate will form, including all Nagg,0
monomers. If needed, this can be simply avoided starting with
Nagg,0 larger than the desired relevant number of collisions, ncoll.
Our results for F(n) · n2 are shown for the constant kernel in
Fig. B.1(b) and for the linear kernel in Fig. B.2(b). We show
excellent agreement with the analytical solutions for both ker-
nels, including an accurate description of the distribution well
beyond its maximum, with a sharp decrease for large aggregates
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Fig. B.2. Coagulation test with a linear kernel for (a) F(n) and (b)
F(n)n2. Color lines show the analytic solution (Eq. B.2), and the dashed
line with slope 1 is to guide the eye.
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F(n) · n2. These results can be compared with similar ones in
Ormel et al. (2007), where F(m) · m2 was shown. In our case, a
departure from the analytical results for n approaching Nagg,0 is
observed, as explained above for panel (a).

Appendix C: Mass distribution in different porosity
ranges

In Sect. 4.4.1, different porosity ranges were analyzed. Fig. 6
presents the mass distribution, in logarithmic bins, for the three
intervals of porosity P, PC, and C for three different values of
ncoll. Alternatively, Fig. C.1 shows the mass distribution for each
mentioned porosity interval and their differences when increas-
ing ncoll. The differences in each porosity regime as ncoll grows
show up clearly: For P case (Fig. a) none of the aggregates grows
beyond the largest mass in the initial distribution, while in cases
PC and C, Figs. (b) and (c), there is growth beyond that limit,
with growth being larger for the larger number of collisions,
as expected. In C case, Fig. C.1(c), there are aggregates with
ϕ > 0.5 resulting from collisional processes, together with all
monomers and dimers.
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Fig. C.1. Aggregate mass distribution, F (normalized to unit area), for: (a) P, (b) PC, and (c) C porosity regimens. n indicates the number of
monomers in a given aggregate, which is proportional to aggregate mass. Colors denote the distribution after ncoll collisions, with ncoll=0 indicating
the initial distribution. Gray lines show fits of the form nα, with the dotted line for the low-mass region and the solid line for the high-mass region.
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