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We calculate the conductance through a quantum dot weakly coupled to metallic contacts by means of

the Keldysh out of equilibrium formalism. We model the quantum dot with the SU(2) Anderson model

and consider the limit of infinite Coulomb repulsion. The interacting system is solved with the

numerical diagrammatic Non-Crossing Approximation (NCA) and the conductance is obtained as a

function of temperature and gate voltage from differential conductance (dI/dV) curves. We discuss the

results in comparison with those from the linear response approach which can be performed directly in

equilibrium conditions. Comparison shows that out of equilibrium results are in good agreement with

the ones from linear response supporting reliability of the method employed. The last discussion

becomes relevant when dealing with general transport models through interacting regions. We also

analyze the evolution of conductance vs gate voltage with temperature. While at high temperatures the

conductance is peaked, when the Fermi energy coincides with the localized level it presents a plateau at

low temperatures as a consequence of the Kondo effect. We discuss different ways to determine

Kondo’s temperature.

& 2011 Elsevier B.V. All rights reserved.
1. Introduction

Since the first observation of the Kondo effect in semiconduct-
ing quantum dots (QD) [1] the study of transport through
nanoscopic devices has inspired a rich variety of experimental
and theoretical works. Nowadays, measurements of transport
properties in such systems, such as current versus bias voltage
and conductance, are the main focus of the experiments due to
the interesting and unusual features observed [2,3].

The behavior of the conductance at different temperatures and
for different gate voltages has been studied for very general
systems, including those showing strong correlations. While at
equilibrium almost exact numerical methods have been devel-
oped for the theoretical treatment of these problems (numerical
renormalization group (NRG) [4] or exact diagonalization (ED) [5]),
the ones for non-equilibrium conditions are still in progress. Among
them, the Scattering Bethe Ansatz (SBA) [6] and the Time dependent
Density Matrix Renormalization Group (t-DMRG) [7] are promising
ones.

In this work we study the transport properties of an interacting
QD using the Non-Crossing Approximation (NCA) in its non-equili-
brium [8] and equilibrium [9] versions. We consider mandatory the
comparison between both schemes to support reliability for the
more general procedure dealing with an out of equilibrium
ll rights reserved.
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calculation. We discuss the results for conductance as a function
of bias and gate voltage, and moreover, the dependence of transport
properties on temperature.
2. Model

The transport properties through a quantum dot weakly
coupled to metallic contacts is studied by describing the system
with the Anderson model

H¼
X
ksn

Eksncyksncksnþ
X
s

EddysdsþUdymdmdykdk

þ
X
kns

VknscyknsdsþH:c:, ð1Þ

where cksn(cyksn) is the destruction (creation) operator of an electron
with momentum k, spin s and lead n¼ L (left) or R (right), and ds
(dys) destroys (creates) an electron in the quantum dot.

The non-interacting conduction electrons in the leads are
treated as being in thermal and chemical equilibrium with their
reservoirs, thus Eksn ¼ Eks�mn, allowing for different chemical
potentials mn in each of them. For the central region, we consider
a spin degenerate localized level with energy Ed and Coulomb
repulsion U. The leads and the dot are connected by means of the
hybridizations Vksn.

The physical quantity accessible in transport measurements is
the current. As shown by Meir and Wingreen [10], the current
through a system described by the Hamiltonian equation (1) is
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given by
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Tr
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d ðoÞ=2p, ð2Þ

where Gn
¼ 2p

P
k9Vksn9

2dðo�EksnÞ is the hybridization function
and fL(fR) is the Fermi function for the conduction electrons of the
left (right) lead. The functions rdðoÞ and Go

d ðoÞ represent the
spectral density and the lesser Green function of the central
region respectively. The calculation of such Green functions must
be done in the presence of the leads and it is a non-equilibrium
problem which might be handled within Keldysh formalism.

From the results of different applied bias voltages, differential
conductance dI=dV curves can be obtained by differentiation of
Eq. (2). The value at zero bias dI=dV90 ¼ GðTÞ represents the usual
equilibrium conductance at a given temperature. A simplified
analytical expression for G(T) can be obtained under the condition
of proportional couplings, GL

¼ aGR [8]

GðTÞ ¼ 4p e2

h

Z
do �

@f

@o

� �
GðoÞrdðoÞ, ð3Þ

where G¼GLGR=ðGL
þGR
Þ is the effective hybridization and rdðoÞ

is calculated in equilibrium. Thus, in contrast to Eq. (2) only
equilibrium quantities enter Eq. (3).
3. Results

For the treatment of the model in and out of equilibrium, we
use the diagrammatic NCA technique [8,11,12]. We consider the
case of infinite repulsion, U-1. It must be noted that different
sets of self-consistent equations have to be solved in order to
compute the equilibrium and non-equilibrium Green’s functions.
Therefore, computing the current from Eqs. (2) and (3) allows us
to test the validity of the methods used.

For numerical evaluations, we consider a flat conduction band
with band width 2D and also take VL ¼ VR ¼ V , Gn

¼ pV2=D. As it
is clear from Eqs. (2) and (3), the main dependence of the
conductance at low enough temperatures T is given by the
spectral weight close to the Fermi level. It is then useful to
understand the behavior of the spectral density of the QD for
different conditions, specially in the Kondo regime, where an
enhanced conductance is expected. In Fig. 1 we show the result-
ing rd for different applied bias voltages. We take GL ¼ 1 as our
unit and set Ed ¼�4, D¼10 and T ¼ 5� 10�5. We fix the Fermi
level at EF ¼ 0. Note that EF�EdbGL so that the localized level is
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Fig. 1. QD spectral density for different applied bias voltages.
always occupied (/nsS� 1). This corresponds to the Kondo
regime, in which there is a localized spin interacting with the
conduction electrons.

At zero bias there are two peaks in the spectral density. The
one centered close to Ed, the charge transfer peak, is the result of a
non-interacting orbital hybridizing with a conduction band. If the
temperature were higher than the relevant low-energy scale of
the problem, the Kondo temperature TK, this would be the only
peak in the spectral density. Since T is very low, the low-energy
physics is dominated by the Kondo singlet between conduction
electrons and the localized one. The localized spin leads electrons
close to the Fermi level to suffer spin-flip processes giving rise to
a screening effect. This is the reason for the increase of the
spectral weight at EF shown in the figure, which corresponds
to the Kondo peak. Its width is related with TK. When the bias
is turned on (dashed curves in Fig. 1) the Fermi level of each
metallic contact is shifted. We set mL ¼�mR ¼ eV=2. This energy
shift produces a splitting of the Kondo resonance since conduc-
tion electrons coming from both leads contribute to the screening
process. As a direct consequence, the spectral weight at the
equilibrium Fermi level decreases and a lower conductance is
expected. In Fig. 2, we show the differential conductance for
several temperatures. Since the voltage is applied symmetrically,
the current I(V) is an odd function and thus the conductance
dI=dVðVÞ is an even one. dI=dV curves are Lorentzian-like with the
maximum at zero bias. The value at the maximum and the width
depend on temperature.

From the maximum of the curves of Fig. 2, we can build a
point-by-point curve of G vs. temperature. The result is shown in
Fig. 3. We show also a continuous line curve which corresponds to
an equilibrium calculation of the conductance in the linear-
response regime by means of Eq. (3). The dashed line curve is
the empirical formula derived from the NRG calculations [13].
For high temperatures TbTK , there is no Kondo resonance and
thus the spectral weight at the Fermi level is low. There is an
intermediate region where thermal fluctuations compete, and at
low enough temperatures T5TK , the Kondo effect is fully devel-
oped and conductance tends to a saturation value. However, at
T5TK , the NCA overestimates the Friedel’s sum rule and there-
fore the conductance exceeds the unitary limit.

As it is shown in Fig. 3, there is an excellent agreement
between the results from the non-equilibrium calculation and
the equilibrium ones. Moreover, there is also a great correspon-
dence with the results from NRG. We stress that the calculation of
the linear response conductance implies only equilibrium quan-
tities while the out of equilibrium solving procedure is more
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Fig. 2. dI=dV vs. V for different temperatures.
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formalism (continuous curve) and differential conductance curves evaluated at

zero bias (dots) and NRG predictions.
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Fig. 4. Conductance as a function of gate voltage Vg for different temperatures

obtained from lineal response formalism (continuous curve) and from differential
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this article.)
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complex and deals with lesser and greater Green functions. Since
the first of these approaches is valid just under the condition of
proportional couplings, the agreement we find is a useful check
that supports reliability to the most general procedure based on
the calculation of the current by means of Eq. (2).

We turn now the discussion to the conductance as a function
of gate voltage Vg. The energy of the localized level of the QD
is proportional to this voltage eVg ¼�Ed and it is thus possible
to perform a transistor-type experiment by the control of this
parameter. In Fig. 4, we present the NCA results for different
temperatures. The understanding of this outcome is directly
connected to our previous analysis of the spectral density. For
high temperatures (black continuous line in the figure) the
conductance shows just a symmetric peak centered at Vg¼0. This
corresponds to the localized level placed at the Fermi energy, the
optimum condition for the conduction electrons to pass from the
left to the right metallic contact. For temperatures lower than TK

(dashed curves in the figure) the behavior is completely different.
As soon as the energy of the localized level is below the Fermi
energy, the Kondo effect develops and the spectral density shows
not only the charge transfer peak but also the Kondo resonance.
This is the reason for the plateau in the conductance as a function
of gate voltage. Our results qualitatively agree with those
obtained previously with NRG [14]. As it is shown in Fig. 4, at
finite temperature the conductance starts to decay at some Vg.
This feature has to do with the fact that TK � exp fEdg. Since the
temperature is finite, T turns larger than TK ðEdÞ at some point,
destroying the Kondo effect and the plateau. It must be noticed
that for ToTK , the NCA results are not reliable within the empty
orbital regime, EdZ0, due to the appearance of a spike with non-
physical spectral weight at the Fermi energy.

For T ¼ 1:5� 10�4 we show (with dots) in Fig. 4 the conduc-
tance values obtained by the procedure stated previously from
the out of equilibrium calculations. In the inset of the figure we
show differential conductance curves for several values of Vg’s.
We observe that the maximum of the conductance remains the
same while the curves get narrower for greater values of the gate
voltage. This is a direct indication of the variation of TK with Vg.

There are three different ways to define the characteristic
energy scale, TK, from the physical magnitudes addressed in this
work: at equilibrium it can be obtained from the half-width at
half of the maximum (HWHM) of the spectral density for T-0 (Tr

K ).
Out of equilibrium it follows from the HWHM of the differential
conductance curves, TdI=dV

K . Using the equilibrium conductance, TG
K

can be defined as the temperature for which that GðTÞ ¼ Gð0Þ=2.
From our results, TG

K ¼ 8:2� 10�3, Tr
K ¼ 9:1� 10�3

¼ 1:11TG
K and

TdI=dV
K ¼ 12:1� 10�3

¼ 1:48TG
K . As expected, the three values are of

the same order of magnitude.
4. Conclusions

We study the transport through an interacting quantum dot
described with the Anderson model. We use the NCA to calculate
the conductance as a function of bias, gate voltage, and tempera-
ture. We find a good agreement between the results coming from
non-equilibrium calculations and those from the linear response
regime, which implies only equilibrium quantities. The results for
conductance versus temperature also agree with those from the
NRG calculations. The conductance as a function of gate voltage
shows the formation of a plateau for low enough temperatures
within the Kondo regime in agreement with previous results. At
finite temperature, the conductance decays for a given gate
voltage destroying the plateau. We finally discuss several proce-
dures, in and out of equilibrium, which allow the determination
of the Kondo temperature scale. We find that the values obtained
are of the same order of magnitude and provide numerical
relations among them. While the conductance at equilibrium of
the used model is known from NRG calculations, we show that
NCA is able to provide reliable results at a lower computational
cost in and out of equilibrium, for which few alternative techni-
ques exist. Moreover, the NRG can miss features in the spectral
density which are not near to the Fermi energy [15,16], this
turned out recently to be important to explain a plateau observed
in the G(T) of C60 QDs [2] on the triplet side of a quantum phase
transition, using the NCA [16].
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