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UNIFORM BOUNDS FOR THE NUMBER OF RATIONAL POINTS ON VARIETIES OVER

GLOBAL FIELDS

MARCELO PAREDES 2 and ROMÁN SASYK 1,2

Abstract. We extend the work of Salberger; Walsh; Castryck, Cluckers, Dittmann and Nguyen; and Vermeulen
to prove the uniform dimension growth conjecture of Heath-Brown and Serre for varieties of degree at least 4 over

global fields. As an intermediate step, we generalize the bounds of Bombieri and Pila to curves over global fields
and in doing so we improve the B

ε factor by a log(B) factor.

1. Introduction

Let X be a projective variety defined over a global field K. A central problem in diophantine geometry is to
find bounds for the number of K-rational points in X of bounded height, for some adequate height function. When
K = Q and X is a hypersurface, perhaps the first account of such results with great generality is due to Cohen.
Specifically, as a consequence of the results in [15] concerning Hilbert’s irreducibility theorem, in the appendix of
Heath-Brown’s article [23] it is proved that for an absolutely irreducible form G ∈ Z[X1, . . . ,Xn] of degree d ≥ 2, it
holds ∣{x = (x1, . . . , xn) ∈ Zn ∶ G(x) = 0, h.c.f.(x1, . . . , xn) = 1, max

i
∣xi∣ ≤ B}∣ ≲ε,G Bn− 3

2
+ε,

for any ε > 0. Furthermore, in [23, Page 227] Heath-Brown posed the question:

Question 1.1. Let G be an absolutely irreducible form with coefficients in Z of degree d ≥ 2 in n variables. Is it
true that for every ε > 0 it holds

∣{x = (x1, . . . , xn) ∈ Zn ∶ G(x) = 0,max
i
∣xi∣ ≤ B}∣ ≲ε,G Bn−2+ε?

The results in [15] where later generalized by Serre in [40] to the context of projective varieties over number
fields. Morever, in [40], Serre proposed the following variation of Question 1.1 (see [41, Page 178]),

Question 1.2. Let K be a number field of degree dK , and let X ⊆ Pn
K be an integral projective variety which is not

a linear variety. Let H be the absolute projective multiplicative height. Is there a constant c such that

∣{x ∈ X(K) ∶H(x) ≤ B}∣ ≲X BdK dim(X)(log(B))c?

By considering the quadric xy = zw in P3
K , Serre remarked in [41, Page 178] that the logarithmic factor in

Question 1.2 can not be dispensed. Moreover, in [42, Page 27], he formulated a variant to Question 1.2 where the
logarithmic factor is replaced by a factor Bε for all ε.

The first breakthrough concerning bounds in terms of the degree and dimension of X is due to Bombieri and
Pila in [3]. In that article they developed the now called determinant method of Bombieri-Pila and proved that the
number of integral zeroes of size up to B of an absolutely irreducible polynomial F (X,Y ) ∈ Z[X,Y ] of degree d ≥ 2
is ≲ε,d B 1

d
+ε for all ε > 0. This result was used in [34] by Pila to prove uniform bounds for projective and affine
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varieties, for instance, he proved that the number of rational zeroes of height up to B of an absolutely irreducible

form G ∈ Z[X1, . . . ,Xn] of degree d is ≲ε Bn−2+ 1
d
+ε.

The determinant method of Bombieri-Pila is of an affine nature. Subsequently, in [24] Heath-Brown developed
a p-adic determinant method which allowed him to prove general uniform bounds for projective hypersurfaces. In
particular, he gave a positive answer to Question 1.1 in the case d = 2 and also he proved the following projective
version of the main result in [3].

Theorem 1.3 ([24]). Let F ∈ Z[X1,X2,X3] be an absolutely irreducible form of degree d. Then for all ε > 0 the

number of rational zeroes of height up to B of F is at most ≲ε,d B 2
d
+ε.

Moreover, in this article Heath-Brown stated a uniform version of Question 1.1 ([24, Conjecture 1.2]). A more
general version of this conjeture for projective varieties over Q appeared first in the literature in [7, Conjecture 3.3]
where it is called the “dimension growth conjeture”.

Conjecture 1.4 (Dimension growth conjecture). Let X ⊆ Pn
Q be an integral projective variety of degree d ≥ 2. Let

H be the absolute projective multiplicative height. Then for any ε > 0 it holds:

∣{x ∈ X(Q) ∶H(x) ≤ B}∣ ≲dim(X),d,ε Bdim(X)+ε.

Conjecture 1.4 was established in the case d = 2, and the cases n = 3 and n = 4 for any degree, by Heath-Brown
in [24, Theorem 2] and [24, Theorems 3 and 9], respectively. For n = 5 and d ≥ 4 the conjecture was proved by
Broberg and Salberger in [6, Theorem 1], and for n = 5 and d = 3 it was proved by Browning and Heath-Brown in [8,
Theorem 3]. Moreover, Conjecture 1.4 was proved for varieties of degree d ≥ 6 for all n by Browning, Heath-Brown
and Salberger in [9, Corollary 2].

In order to tackle Conjecture 1.4 in the cases of lower degrees, Salberger further developed the determinant
method. In [37] he extended the p-adic determinant method devised in [24] to prove Conjecture 1.4 for d ≥ 4

whenever X contains finitely many linear varieties defined over Q, of dimension r − 1. This result was superseded
by those of the article [38], where Salberger introduced a global version of the method of Heath-Brown and proved
the following theorem.

Theorem 1.5 ([9, 38]). The dimension growth conjecture holds for every integral projective variety X ⊆ Pn
Q of

degree d ≥ 4. In the case that X has degree d = 3, it holds

∣{x ∈ X(Q) ∶H(x) ≤ B}∣ ≲dim(X),ε Bdim(X)−1+ 2√
3
+ε
.

Theorem 1.3 and Theorem 1.5 (the latter when d ≥ 4) have exponents that are essentially optimal, up to the
ε-factor. Then, it remained an open question if in general one could remove the factor Bε. Building on the global
determinant method of Salberger, and using the polynomial method in a clever way, in [46] Walsh proved that this
is indeed the case for curves.

Theorem 1.6 ([46]). Let F ∈ Z[X1,X2,X3] be an absolutely irreducible form of degree d. Then the number of

rational zeroes of height up to B of F is at most ≲d B 2
d .

This was further explored in [11] by Castryck, Cluckers, Dittmann, and Nguyen where they provided effective
versions of several results in [17, 8, 38, 46], which allowed them to prove that the dimension growth conjecture holds
without the ε factor when the degree is at least 5.

Theorem 1.7 ([11]). Given n > 1, there exist constants c = c(n) and e = e(n), such that for all integral projective
varieties X ⊆ Pn

Q of degree d ≥ 5 and all B ≥ 1 one has

∣{x ∈ X(Q) ∶H(x) ≤ B}∣ ≤ cdeBdim(X).
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While there has been a lot of progress in giving uniform bounds for varieties defined over Q, there are not as
many results for global fields. In [5], Broberg generalized several of the estimates in [24] to number fields. Also, the
determinant method was reinterpreted in the framework of Arakelov’s theory in [12], [13] and [29]. For function
fields, the Bombieri-Pila bound was proved for Fq(T ) in [39] by Sedunova, adapting a reinterpretation given in [25]
by Helfgott and Venkatesh of the determinant method of Bombieri-Pila. Also, by methods of model theory, in [14]
Cluckers, Forey and Loeser proved a stronger bound than the one in [39] for Fq(T ) with char(Fq) large enough.
Quite recently, in [45] Vermeulen proved analogues of Theorem 1.6 and Theorem 1.7 for hypersurfaces over Fq(T )
of degree d ≥ 64.

In this article we extend the work of Salberger, Walsh, and Castryck, Cluckers, Dittmann and Nguyen on the
determinant method of Heath-Brown and Salberger, to give uniform estimates for the number of rational points
of bounded height on projective varieties defined over global fields. More precisely, we first prove the following
extension of Theorem 1.6, [11, Theorem 2] and [45, Theorem 1.1] to global fields.

Theorem 1.8. Let K be a global field of degree dK . Let H be the absolute projective multiplicative height. For any
integral projective curve C ⊆ Pn

K of degree d it holds

∣{x ∈ C(K) ∶H(x) ≤ B}∣ ≲K,n

⎧⎪⎪⎨⎪⎪⎩
d4B

2dK
d if K is a number field,

d8B
2dK
d if K is a function field.

Theorem 1.8 is new when K is a global field different from Q and Fq(T ). Previous to this result, in the number

field case the only known bound was OK,n,d(B 2dK
d
+ε) given in [5, Corollary 1]. For number fields different from Q,

our bound was simultaneously obtained by Liu in [30].
Adapting the strategy devised in [17, Remark 2.3] and developed in [11, Proposition 4.2.1], from Theorem 1.8

we deduce the following extension of [11, Theorem 3] and [45, Theorem 1.2] to global fields.

Theorem 1.9 (Bombieri-Pila type of bound). Let K be a global field of degree dK . For any integral curve C ⊆ An
K

of degree d, it holds

∣{x ∈ C(K) ∩ [B]nOK
}∣ ≲K,n

⎧⎪⎪⎨⎪⎪⎩
d3B

1
d (log(B) + d) if K is a number field,

d7B
1
d (log(B) + d) if K is a function field,

where [B]nOK
is defined in Section 5.2.

We remark that in the function field case, we obtain more precise bounds in the exponent of d than the ones
presented in Theorem 1.8 and Theorem 1.9 which depend on the characteristic of the field as in [45] (see Definition
3.22, Theorem 5.9 and Theorem 5.16 for the precise statements).

Next, we obtain the following estimate for the number of points of bounded height on affine hypersurfaces,
extending [38, Theorem 0.4], [11, Theorem 4] and [45, Theorem 4.2] to global fields.

Theorem 1.10. Let K be a global field of degree dK . Given n > 2 there exist a constant e = e(n) such that for all
polynomials f ∈ OK[Y1, . . . , Yn] of degree d, whose homogeneous part of degree d is absolutely irreducible, it holds

∣{x ∈ Z(f) ∩ [B]nOK
}∣ ≲K,n d

eBn−2, whenever d ≥ 5.

In the case when d = 3,4, for any ε > 0 we have

∣{x ∈ Z(f) ∩ [B]nOK
}∣ ≲K,n,ε

⎧⎪⎪⎨⎪⎪⎩
Bn−2+ε if d = 4,

B
n−3+ 2√

3
+ε

if d = 3.

Theorem 1.10 is new when K is a number field different from Q. When K is a function field, the result is new
when K is a function field different from Fq(T ) or K = Fq(T ) and 3 ≤ d < 64.

By means of an effective projection argument as in [31] which relies on the Combinatorial Nullstellensatz [1]
and on an argument of Mumford found in [32], from Theorem 1.10 we deduce the dimension growth conjecture for
global fields. More precisely, we have
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Theorem 1.11 (Dimension growth conjecture for global fields). Let K be a global field of degree dK . Given n > 1,
there exists a constant e = e(n) such that for all integral projective varieties X ⊆ Pn

K of degree d it holds

∣{x ∈ X(K) ∶H(x) ≤ B}∣ ≲K,n d
eBdK dim(X) whenever d ≥ 5.

In the case d = 3,4, for any ε > 0 we have

∣{x ∈X(K) ∶H(x) ≤ B}∣ ≲K,n,ε

⎧⎪⎪⎨⎪⎪⎩
BdK(dim(X)+ε) if d = 4,

B
dK(dim(X)−1+

2√
3
+ε)

if d = 3.

Theorem 1.11 is new for number fields different from Q. When K is a function field, the result is new when K is
different from Fq(T ) or when K = Fq(T ) and X is a hypersurface of degree 3 ≤ d < 64 or when K = Fq(T ) and X is
a projective variety of codimension at least 2 and degree d ≥ 3. Arguably, these are the first bounds appearing in
the literature estimating the number of points of bounded height for varieties over global fields different from Q or
Fq(T ).

The proof of all these theorems are obtained by adapting and extending the strategies developed in [24, 37, 9, 38,
46, 11] to global fields. Roughly speaking, the proof are obtained by the polynomial method (as it was presented
in [46]), namely by constructing a polynomial g of small degree vanishing on {x ∈ X(K) ∶ H(x) ≤ B}, which does
not vanishes identically on X . Then we study the rational points lying in the irreducible components of Z(g) ∩X .
For those irreducible components of high degree we argue as in [11], while for those of small degree we rework
and simplify the proof of [38, Main Lemma 3.2]. Carrying out this last step adds difficulties all along the article,
which were not present in [11, 46]. Also new challenges appear from dealing with general global fields that will be
explained as they arise. It is relevant to emphasize that this article presents a unified treatment that deals with
number fields and function fields simultaneously.

When we were at the final stages of writing the first arXiv version of this manuscript, Liu uploaded to the arXiv
the article [30] where he proved Theorem 1.8 for number fields by reinterpreting [38] in the framework of Arakelov
theory and by using ideas of [46, 11].

Acknowledgments. We thank Juan Manuel Menconi for useful discussions. We thank Floris Vermeulen for
pointing us a mistake in the first version of the proof of Proposition 7.3 in the case of function fields. We thank
Chunhui Liu for useful comments regarding the effectiveness of the estimates in our results. We thank the referee
for his/her exhaustive revision of the manuscript, and for pointing us some errors and making several comments
that improved the exposition of the article.

2. Heights and primes in global fields

The purpose of this section is manifold. First we establish a normalization of the absolute values of a global
field. We use this to define the height function that will be used in this article and recall some basic properties of
it. Secondly, we prove a proposition that allows us to find affine coordinates of projective points with controlled
affine height. Then we recall the theorems of Bombieri and Vaaler, and Thunder, that give solutions of controlled
height of a system of linear equations. Next, we define and analize two notions of heights of polynomials that will
be used in this article. Finally we present some estimates regarding the distribution of primes in global fields and
we comment on how to make all the bounds in all the statements in this manuscript effective on the dependence of
the global field K.

Notation 2.1. We use the asymptotic notation X = O(Y ) or X ≲ Y to mean ∣X ∣ ≤ C ∣Y ∣ for some constant C. We
also use OK,n,d(Y ) or ≲K,n,d Y to mean that the implicit constants depend on K,n and d.

2.1. Absolute values and relative height. Throughout this paper,K denotes a global field, i.e. a finite separable
extension of Q or Fq(T ), in which case we further assume that the field of constants is Fq. We will denote by dK
the degree of the extension K/k, where k indistinctively denotes the base fields Q or Fq(T ).
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Let K be a number field and let OK be its ring of integers. Then each embedding σ ∶ K ↪ C induces a place v,
by means of the equation

(2.1) ∣x∣v ∶= ∣σ(x)∣ nv
dK
∞ ,

where ∣ ⋅ ∣∞ denotes the absolute value of R or C and nv = 1 or 2, respectively. Such places will be called the places at
infinite, and the set of these places is denoted by MK,∞. Note that ∑v∈MK,∞ nv = dK . They are all the archimedean

places of K. Since the complex embeddings come in pairs that differ by complex conjugation, we have ∣MK,∞∣ ≤ dK .
Now let p be a non-zero prime ideal of the number field K, and denote by ordp the usual p-adic valuation.

Associated to p, we have the place v in K given by the equation

∣x∣v ∶= ∣x∣p ∶= NK(p)− ordp(x)
dK ,

where NK(p) denotes the cardinal of the finite quotient OK/p. Similarly, the norm of a non-zero ideal I ⊆ OK ,
denoted by NK(I), is just the cardinal of the finite quotient OK/I. Such places are called the finite places, and the
set of these places is denoted by MK,fin. They are all the non-archimedean places of K. The set of places of K is
then the union MK,∞ ∪MK,fin, and it will be denoted by MK .

Now, let us suppose that K is a function field over Fq, such that Fq is algebraically closed in K (in other words,
the constant field of K is Fq). A prime in K is, by definition, a discrete valuation ring O(p) with maximal ideal p
such that Fq ⊆ O(p) and the quotient field of O(p) equals to K. By abuse of notation, when we refer to a prime in
K, we will refer to the maximal ideal p. Associated to p, we have the usual p-adic valuation, that we will denote
by ordp. The degree of p, denoted by deg(p) will be the dimension of O(p)/p as an Fq-vector space, which is finite.

Then the norm of p is defined as NK(p) ∶= qdeg(p). Any prime p of K induces a place v in K by the equation

∣x∣v ∶= ∣x∣p ∶= NK(p)− ordp(x)
dK .

They are all the places in K. The set of all places in K is denoted by MK . Now we fix an arbitrary place v∞ in

MK above the place in Fq(T ) defined by ∣f
g
∣
∞
∶= qdeg(f)−deg(g). Its corresponding prime will be denoted p∞; it has

degree at most dK . The ring of integers of K is the subset

OK ∶= {x ∈K ∶ ∣x∣v ≤ 1 for all v ∈MK , v ≠ v∞} .
Given x ∈ OK / {0} we define NK(x) ∶= ∏p≠p∞ NK(p)ordp(x). By definition, ordp(x) ≥ 0 for all p ≠ p∞, so thatNK(x) is a positive integer. The primes in OK will be the primes p ≠ p∞ of K . We will denote MK,∞ ∶= {v∞} and
MK,fin ∶=MK /MK,∞.

By our choice of normalization of the absolute values of K, it holds the product formula

(2.2) ∏
v∈MK

∣x∣v = 1 for all x ∈K.

Now, given a global field K, we define the absolute multiplicative projective height of K of a point x = (x0 ∶ . . . ∶
xn) ∈ Pn(K), to be the function

H(x) ∶= ∏
v∈MK

max
i
{∣xi∣v},

and the relative multiplicative projective height by

HK(x) ∶=H(x)dK .

If x ∈K, HK(x) will always denote the projective height HK(1 ∶ x).
For our purposes, it will be necessary to understand how the affine height of a point behaves under the action

of a polynomial. It is easy to show (see [26, Proposition B.2.5]) that if f(T1, . . . , Tn) = ∑(i1,...,in) ci1,...,inT i1
1 ⋯T

in
n ,

c = (ci1,...,in)i1,...,in and R is the number of (i1, . . . , in) with ci1,...,in ≠ 0, then
(2.3) HK(f(x)) ≤ RdKHK(1 ∶ c)HK(1 ∶ x)deg(f).
Now, let φ0, . . . , φr be homogeneous polynomials of degree m in X0, . . . ,Xn with coefficients in K. Let c be the
projective point consisting of the coefficients of all the polynomials φi. Let us suppose that the maximum number
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of monomials appearing in any one of the φi is R. Then for all x ∈ Pn(K) such that φi(x) is not zero for all i, it
holds

(2.4) HK(φ0(x) ∶ . . . ∶ φr(x)) ≤ RdKHK(c)HK(x)m.
Also, for any x ∈ OK/{0}, it holds
(2.5) NK(x) ≤HK(x).

We will require to lift a bounded subset in projective space to a subset in affine space. The next proposition,
which is a generalization of [41, Section 13.4], states that this can be done in a controlled manner.

Proposition 2.2. Let K be a global field, and let d ≥ 1 be an integer. There exist effective computable constants
c1 ∶= c1(K), c2 ∶= c2(K) and c3 ∶= c3(K) such that for every x ∈ Pd(K) there exists (y0, . . . , yd) ∈ Od+1

K a lift of x
verifying:

(1) if K is a number field, for all embedding σ ∶ K ↪ C, maxi ∣σ(yi)∣ ≤ c1H(x), thus for all v ∈ MK,∞,

maxi ∣yi∣v ≤ c1HK(x) nv

d2
K after relabeling c1. If K is a function field, for the place v∞ it holds maxi ∣yi∣v∞ ≤

c1HK(x) 1
dK ;

(2) for any prime p ∉ MK,∞ with NK(p) > c2, it holds that p /∣ ∑d
i=0 yiOK . Equivalently, for any place v

corresponding to such primes it holds maxi ∣yi∣v = 1;
(3) it holds

∏
v∈MK,fin

max
i
∣yi∣v ≥ c3.

Proof. Given x as in the statement, we choose cordinates (x0, . . . , xd) with xi ∈ OK for all i and consider the ideal

ax0,...,xd
= ∑d

i=0 xiOK . Note that

H(x) = 1

NK(ax0,...,xd
) 1

dK

∏
v∈MK,∞

max
i
∣xi∣v.

The ideal ax0,...,xd
depends on the coordinates, but its ideal class depends only on x. Hence, if we take integral

ideals a1, . . . ar, representing all the ideal classes of OK , satisfying Minkowski’s bound NK(al) ≤ c2 for all l, it
holds that ax0,...,xd

a−1l = αOK for some l and some α ∈ K×. Thus, α−1OKax0,...,xd
= al. We conclude that(x′0, . . . , x′d) ∶= (α−1x0, . . . , α−1xd) are coordinates of x in Od+1

K and ax′0,...,x
′
d
= al. In particular, since NK(al) ≤ c2,

all the prime ideals p dividing al have norm NK(p) ≤ c2. We conclude that

for all prime p ∉MK,∞ with NK(p) > c2, p /∣ d

∑
i=0

x′iOK .

Moreover, if c3 = c
− 1

dK

2 , we see that ∏v∈MK,fin
maxi ∣x′i∣v = 1

NK(al)
1

dK

≥ c3.

If K is a function field, MK,∞ consists only of the place v∞, thus condition (1) of Proposition 2.2 is immediately
verified with c1 ∶= c−13 . If K is a number field, the argument follows the same lines given in [41, Section 13.4], [31,
Proposition 2.1], namely we find c1 and ε ∈ O×K such that the set of coordinates (y0, . . . , yd) ∶= (ε−1x′0, . . . , ε−1x′d) is
a point in Od+1

K , representing x, satisfying for all embedding σ ∶ K ↪ C the bound maxi ∣σ(yi)∣ ≤ c1HK(x). More
precisely, let σ1, . . . , σr , σr+1, . . . , σr+s be all the non-equivalent embeddings of K, rearranged in such a way that σi
is a real embedding for all 1 ≤ i ≤ r, and σi is a complex embedding for all i > r. Since the Z-span

W ∶= ⟨{( log(∣σ1(ε)∣), . . . , log(∣σr(ε)∣), log(∣σr+1(ε)∣2), . . . , log(∣σr+s(ε)∣2)) ∶ ε ∈ O∗K}⟩
Z

has dimension r + s − 1 by Dirichlet’s unit theorem, so the same holds for the Z-span

W ′ ∶= ⟨{( log(∣σ1(ε)∣), . . . , log(∣σr(ε)∣), log(∣σr+1(ε)∣), . . . , log(∣σr+s(ε)∣)) ∶ ε ∈ O∗K}⟩
Z
.

The vector 1 = (1, . . . ,1) ∈ Rr+s does not lie in W ′ because e is transcendental. Then, we have that W1 ∶=W ⊕ Z1

is a lattice in Rr−s. Let ∣∣ ⋅ ∣∣ be the ℓ∞-norm in Rr−s. Let Ω ⊆ Rr−s be a bounded subset containing a representative
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of each class of Rr+s/W1 (this subset exists since Rr+s/W1 is compact) and set CW1
∶= supy∈Ω ∣∣y∣∣. Then it follows

that

(2.6) for any z ∈ Rr+s there exists w ∈W1 verifying ∣∣z −w∣∣ ≤ CW1
.

Now, for any x ∈ Pd(K) with coordinates (x0, . . . , xd) such that ax0,...,xd
= al for some l, we have

H(x) = 1

NK(al) 1
dK

∏
j

max
i
∣σj(xi)∣ nj

dK ∼K ∏
j

max
i
∣σj(xi)∣ nj

dK ,

where nj = 1 if σj is real and nj = 2 if it is complex. Let hσ ∶= maxi ∣σ(xi)∣ > 0. Let z ∶= (log(hσ1
), . . . , log(hσr+s)).

By (2.6) there exists w ∈ W1 such that ∣∣z −w∣∣ ≤ CW1
. In particular, there exist ε ∈ O∗K and m ∈ Z such that

w = (log ∣σ1(ε)∣, . . . , log ∣σr+s(ε)∣) +m1 and

−CW1
≤ log ∣σj(ε)∣ +m − log(hσj

) ≤ CW1
for all j.

Hence, if CK ∶= eCW1 ,we have that there is some ε ∈ O∗K and t = em such that

C−1K

hσj

t
≤ ∣σj(ε)∣ ≤ CK

hσj

t
for all j.

Equivalently,

C−1K max
i
∣σj(xiε−1)∣ ≤ t ≤ CK max

i
∣σj(xiε−1)∣ for all j.

Thus, since ∑i
ni

dK
= 1, for any j0 it follows that

H(x) =H(ε−1x) ∼K ∏
j

max
i
∣σj(xiε−1)∣ nj

dK =∏
j

(max
i
∣σj(xiε−1)∣CK)

nj

dK

C
−

nj

dK

K

≳K ∏
j

t
nj
dK ≳K ∏

j

(max
i
∣σj0(xiε−1)∣C−1K )

nj

dK

≳K max
i
∣σj0(xiε−1)∣.

We conclude that H(x) ≳K maxj,i ∣σj(xiε−1)∣ ≳K maxσ ∣σ(xiε−1)∣ for all i. Then y = (x1ε−1, . . . , xdε−1) is a lift of x
with the required properties. ◻

2.2. Small solutions to linear equations. For our purpose, we will need a strong version of Siegel’s lemma,
given by the well known theorem [4] of Bombieri and Vaaler, and its function field generalization [44] of Thunder.
In order to state these results, we recall the notion of the height of a matrix. Let A = (aij)i,j be an m × n matrix
with entries in K and rankm < n. If J ⊆ {1,2, . . . , n} is a subset with ∣J ∣ =m elements, we write AJ ∶= (ai,j)1≤i≤m,j∈J

for the corresponding submatrix. For each place v ∈MK we define

Hv(A) ∶=
⎧⎪⎪⎨⎪⎪⎩
max∣J ∣=m ∣det(AJ)∣v if v is non-archimedean,

∣det(AA∗)∣ 12v if v is archimedean,

where A∗ is the complex conjugate transpose of A. The Arakelov height of A is defined as the product

HAr(A) ∶= ∏
v∈MK

Hv(A).
Let us state the theorems of Bombieri and Vaaler, and Thunder.

Theorem 2.3 ([4, Theorem 9], [44, Corollary 2]). Let K be a global field. Suppose that A = (aij) is an m × n
matrix of rank m < n with entries in K. Then there exist an effective constant C = C(K) and linearly independent
b1, . . . bn−m ∈K

n with Abti = 0 for all i, satisfying

n−m

∏
i=1

H(bi) ≤ C(K)n−mHAr(A).
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In this paper we will use a different formulation of Theorem 2.3, requiring a more explicit definition of the
Arakelov height of a matrix. For that, let A be an m × n matrix of rank m < n with entries in OK . Let ∆ be the
greatest common divisor in OK of the determinants det(AJ) with ∣J ∣ = m. Since for any non-archimedean place
v ∉MK,∞ with corresponding prime p, it holds

Hv(A) = max
∣J ∣=m

NK(p)− ordp(det(AJ ))
dK =NK(p)−min∣J ∣=m

ordp(det(AJ ))
dK =NK(p)− ordp(∆)

dK ,

we conclude that

∏
v∉MK,∞

Hv(A) =∏
p∣∆

NK(p)− ordp(∆)
dK = NK(∆)− 1

dK .

Hence, we may express the Arakelov height of a matrix as the product:

HAr(A) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
NK(∆)− 1

dK ∏
v∈MK,∞

∣det(AA∗)∣ 12v if K is a number field,

NK(∆)− 1
dK q

−
deg(p∞)

dK
min∣J ∣=m ordp∞(det(AJ)) if K is a function field.

Using this, we conclude the following implication of Theorem 2.3.

Theorem 2.4. Let K be a global field of degree dK . Suppose that A = (aij) is an m ×n matrix of rank m < n with
entries in K. Then there exist an effective constant C = C(K) and a non-zero solution b = (b1, . . . , bn) ∈ On

K with

Abt = 0, satisfying

HK(b1 ∶ . . . ∶ bn)n−m ≤
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
C(K)(n−m)NK(∆)−1 ∏

v∈MK,∞

∣det(AA∗)∣ dK2v if K is a number field,

C(K)(n−m)NK(∆)−1q−deg(p∞)min∣J ∣=m ordp∞(det(AJ)) if K is a function field.

Another useful consequence of Theorem 2.3 (which is slightly stronger than Siegel’s lemma) is the following
result. Given an m × n matrix A with entries in K, we denote by HK(A) the K-relative height of the point in
Pmn−1
K corresponding to the matrix A.

Corollary 2.5. Let K be a global field. Suppose that A = (ai,j) is an m × n matrix of rank r with entries in K.
Then there exists an effective constant C = C(K) and a non-zero solution x ∈ On

K of Ax = 0 with

HK(1 ∶ x) ≤ C(K)(n dK
2 HK(A))

r
n−r

.

Proof. When K is a number field, in [2, Corollary 2.9.9] it is proved that Theorem 2.3 implies the existence of a
non-zero x ∈ On

K of Ax = 0 with

(2.7) HK(x) ≤ C(K)(n dK
2 HK(A))

r
n−r

.

By the same argument, if K is a function field one may find a non-zero solution x ∈ On
K verifying (2.7). Then a

solution verifying the statement of the lemma can be found by lifting x with Proposition 2.2. ◻

2.3. Polynomial heights. We will use a notion of height for a polynomial that is defined in [2, § 1.6]. Specifically,

given a global field K of degree dK , and f = ∑I aIX
I
∈ K[X1, . . . ,Xn] a non-zero polynomial, for any v ∈MK we

let ∣f ∣v ∶=max
I
∣aI ∣v.

Also, for f = ∑I aIX
I
∈ C[X1, . . . ,Xn], we define ℓ∞(f) ∶=maxI ∣aI ∣∞ and ℓ1(f) ∶= ∑I ∣aI ∣∞, where ∣ ⋅ ∣∞ is the usual

absolute value of C.
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Following [2, § 1.6], the height of f ∈K[X1, . . . ,Xn] is defined as

H(f) ∶= ∏
v∈MK

∣f ∣v,
thus, the height of f is just the projective height of the projective point defined by the coefficients of f . In particular,
for any λ ∈K we have H(λf) =H(f).

Similarly, in this article we define the affine height of f by

(2.8) Haff(f) ∶= ∏
v∈MK

max{1, ∣f ∣v}.
It holds that for any non-zero polynomial f , Haff(f) ≥H(f) ≥ 1.

We will also use the K-relative versions of the projective and affine heights of polynomials:

HK(f) ∶=H(f)dK =
⎛
⎝ ∏v∈MK

∣f ∣v⎞⎠
dK

, HK,aff(f) ∶=Haff(f)dK =
⎛
⎝ ∏v∈MK

max{1, ∣f ∣v}⎞⎠
dK

.

We will need the following easy variant of the inequality (2.3). First, let us suppose that K is a number field.

Let f = ∑I aIX
I
∈ Z[X1, . . . ,Xn] be a non-zero polynomial, and let x = (x1, . . . , xn) ∈Kn. For any place v ∈MK,∞,

it holds

∣f(x)∣v ≤∑
I

∣aI ∣v ∣xI ∣v ≤∑
I

∣aI ∣v max
i
{1, ∣xi∣v}deg(f).

Using that the coefficients aI are integers, for any v ∉MK,∞, we have

∣f(x)∣v ≤max
I
{∣aI ∣v ∣xI ∣v} ≤max

i
{1, ∣xi∣v}deg(f).

It holds

H(f(x)) = ∏
v∈MK

max{1, ∣f(x)∣v} ≤ ⎛⎝ ∏v∈MK,∞

∑
I

∣aI ∣ nv
dK

⎞
⎠H(1 ∶ x)deg(f) ≤

⎡⎢⎢⎢⎢⎣ ∏v∈MK,∞

(∑
I

∣aI ∣)
⎤⎥⎥⎥⎥⎦H(1 ∶ x)

deg(f)(2.9)

≤ ℓ1(f)dKH(1 ∶ x)deg(f),
where we used that ∣aI ∣ nv

dK ≤ ∣aI ∣ since nv ≤ dK and ∣aI ∣ ≥ 1. Hence
(2.10) HK(f(x)) ≤ ℓ1(f)d2

KHK(1 ∶ x)deg(f), for all f ∈ Z[X1, . . . ,Xn].
Now, suppose that K is a function field over Fq(T ). Let f = ∑I aIX

I
∈ Fq[X1, . . . ,Xn] be a non-zero polynomial,

and let x = (x1, . . . , xn) ∈Kn. Since all places in K are non-archimedean, and trivial on Fq, for any v ∈MK we have

∣f(x)∣v ≤max{∣aI ∣v ∣xI ∣v} ≤max
i
{1, ∣xi∣v}deg(f),

from where it follows immediately the bound

(2.11) HK(f(x)) ≤HK(1 ∶ x)deg(f), for f ∈ Fq[X1, . . . ,Xn].
2.4. Distribution of primes in global fields. Let K be a global field of degree dK . For any Q > 0, let us denote

P ∶= {p prime in OK}, P(Q) ∶= {p ∈ P ∶ NK(p) ≤ Q}.
There exist constants c1,K , c2,K and c3,K such that
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∑
p∈P(Q)

log(NK(p))NK(p) = log(Q) +OK(1),(2.12)

c1,KQ ≤ ∑
p∈P(Q)

log(NK(p)) ≤ c2,KQ,(2.13)

1

2
Q ≤ ∑

p
Q≤NK(p)≤2Q

log(NK(p)) for all Q ≥ c3,K ,(2.14)

where the logarithms are in base q and Q is of the form qh with h ∈ N when K is a function field. Indeed, if K is
a number field, (2.12), (2.13) and (2.14) follow from Landau Prime Ideal Theorem (see [27, Theorem 5.33]) which

states that ∣P(Q)∣ ∼ Q

log(Q)
. Meanwhile, if K is a function field over Fq of genus g, this follows from the Riemann

Hypothesis over function fields (see [35, Theorem 5.12]), which states that the number of primes in K of degree N

is q
N

N
+OK( qN

2

N
).

By summation by parts, there exists a constant c4,K such that for all Q > 0 it holds

(2.15) ∑
p∈P/P(Q)

log(NK(p))
NK(p) 3

2

≤ c4,KQ
− 1

2 .

We will use the following lemma, which is similar to [38, Lemma 1.10]. We provide a simple proof of it, which
holds for global fields.

Lemma 2.6. Let I ≠ (1) be a non-zero ideal. Then

∑
p∣I

log(NK(p))NK(p) ≤max{log(log(NK(I))),0} +OK(1).

Proof. Let c > 0. By (2.12) we have

∑
p∣I

log(NK(p))NK(p) ≤ ∑
p∣I

NK(p)≤c

log(NK(p))NK(p) + ∑
p∣I

NK(p)>c

log(NK(p))
c

≤max{log(c),0} +OK(1) + log(NK(I))
c

.

The lemma follows by taking c = log(NK(I)). ◻

Remark 2.7. Let K be a function field of degree dK . By inspecting the proof of [35, Theorem 5.12] one sees that

∣{p prime in K ∶ deg(p) = N}∣ = qN

N
+Og( qN

2

N
) is effective, with the implict constant depending only on the genus of

the function field K. Since the prime v∞ has degree at most dK , it follows that all the bounds in § 2.4 for function
fields are effective, with constants depending only on q, dK and the genus of K.

On the other hand, if K is a number field of degree dK and discriminant ∆K , by [27, Theorem 5.33] if one
assumes the Generalized Riemman Hypothesis there exists an effective absolute constant c > 0 such that it holds

∑a∶NK(a)≤QΛK(a) =Q+O(√∣∆K ∣Q exp(−cd2K√log(Q))), where ΛK(a) is the usual von Mangoldt function on ideals
of OK . Then, all the bounds in § 2.4 for number fields would be effective, with constants depending only on dK ,∆K

(see also [21] for explicits versions of Landau Prime Ideal Theorem under the Generalized Riemann Hypothesis).

3. The local and the global determinant method over global fields

In this section we start by recalling some uniform estimates for Hilbert functions given by Salberger in [37]. Then,
in Lemma 3.14 we generalize the local determinant method [37, Main Lemma 2.5] as it is presented in [11, Corollary
2.5] to varieties over global fields. Afterwards, our next main result is Theorem 3.20, which is a generalization of [11,
Proposition 3.2.26] where the authors made explicit the dependence on the degree in the bounds of [46, Theorem
2.3] when K = Q. Finally, in Lemma 3.23, we bound the contribution of the primes p for which the reduction
modulo p of a homogeneous absolutely irreducible polynomial f ∈ OK[X0, . . . ,Xn+1] is not absolutely irreducible.



11

This generalizes [46, inequality (2.1)], [11, Corollary 3.2.3] and [45, Lemma 2.3] to global fields. In order to do that,
we use the theory of effective Noether forms as in [11, 45], forcing us to distinguish the characteristic of the global
field.

We remark that a difference between this article and [46, 11, 45] is the introduction of a finite subset of primes
in the bounds. The reason to do so is rather technical and will be apparent much later (see the introduction to
Section 6); in a few words it will be needed to prove the dimension growth conjecture for small values of d.

3.1. Uniform estimates for Hilbert functions. We start by recalling the definition of the Hilbert function of
a projective variety.

Definition 3.1. Let K be a field and I ⊆ K[X0, . . . ,Xn] be a homogeneous ideal. Given a non-negative integer
k, we will denote the elements of degree k in K[X0, . . . ,Xn]/I by (K[X0, . . . ,Xn]/I)k. Then we define the Hilbert
function as

hI(k) ∶= dimK(K[X0, . . . ,Xn]/I)k.
If X ⊆ Pn

K = Proj(K[X0, . . . ,Xn]) is a closed subscheme, then we define hX(k) ∶= hI(k) for the saturated homoge-
neous ideal I corresponding to X = Proj(K[X0, . . . ,Xn]/I).

By a classic theorem [22, p. 51-52], there is a unique polynomial pI(t) ∈ Q[t], the Hilbert polynomial, such that
hI(k) = pI(k) for all sufficiently large positive integers, verifying

pI(t) = dtr
r!
+O(tr−1),

where r is the dimension of X = Proj(K[X0, . . . ,Xn]/I) and d is the degree of X ⊆ Pn.
For our purposes, we need to have a uniform estimate in the implicit constant appearing in the error term of the

Hilbert polynomial. For this, we require the following two lemmas of Salberger.

Lemma 3.2 ([37, Lemma 1.3]). Let n be a positive integer and let K be a field. Let X = Proj(K[X0, . . . ,Xn]/I) ⊆ Pn
K

be a closed subscheme, with I a homogeneous saturated ideal. Then X is defined by forms in K[X0, . . . ,Xn] of degree
bounded in terms of n and pI(t).
Lemma 3.3 ([37, Lemma 1.4]). Let d and n be positive integers and let K be a field. Then there are only finitely
many possibilities for the Hilbert function hX ∶ N → Z of closed geometrically reduced equidimensional subschemes
X ⊆ Pn

K of degree d.

In order to obtain uniform results in the degree and the dimension, we use Gröbner basis as in Broberg’s article
[5]. We recall the following classic definition from [16, Chapter 2, § 2, Definition 1 and Chapter 8, § 4, p. 416] :

Definition 3.4 (Graded monomial ordering and leading monomial). A graded monomial ordering < is a well-
ordering on the set of monomials Xα = Xα0

0 ⋯X
αn
n satisfying the following conditions for the corresponding order

on the set of exponents α = (α0, . . . , αn) ∈ Zn+1
≥0 :

(1) If α > β and γ ∈ Zn+1
≥0 , then α + γ > β + γ;

(2) if α,β ∈ Zn+1
≥0 and α0 + . . . + αn < β0 + . . . + βn, then α < β.

Moreover, if f = ∑α aαX
α, the leading monomial of f , denoted by LM(f), is the maximum of all Xα with aα ≠ 0.

Let I ⊆ K[X0, . . . ,Xn] be a homogeneous monomial ideal, i.e. an ideal generated by monomials. By the same
argument given in the proof of [16, Chapter 9, § 3, Proposition 3], hI(k) is the number of monomials not in I of
degree k. Furthermore, given a homogeneous ideal I ∈ K[X0, . . . ,Xn], let < be a graded monomial ordering, and
consider the set {LM(f) ∶ f ∈ Ik}, where Ik denotes the elements of degree k in I. Then {LM(f) ∶ f ∈ Ik} ={LM(f1), . . . , LM(fm)} for some polynomials f1, . . . , fm of degree k. It holds that {f1, . . . , fm} is a basis for Ik
and {LM(f1), . . . , LM(fm)} is a basis of the k-degree graded part of the ideal ⟨LT (I)⟩, where

LT (I) ∶= {cXα ∶ exists f ∈ I/{0} satisfying LT (f) = cXα},
(see [16, Chapter 9, § 3, Proposition 9]). We conclude

(K[X0, . . . ,Xn]/I)k ≅ (K[X0, . . . ,Xn]/ ⟨LT (I)⟩)k,
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and thus
hI(k) = h⟨LT (I)⟩(k).

This is quite useful, since this reduces the problem of computing hI(k) to the problem of computing the Hilbert
function of a monomial ideal, which is easy to do, and moreover, the monomial ideal ⟨LT (I)⟩ can be computed by
means of a Gröbner basis of I. Furthermore, (K[X0, . . . ,Xn]/ ⟨LT (I)⟩)k has as a K-basis those monomials which
are not the leading term of some form of degree k in I. From this, it follows easily that the same does hold for(K[X0, . . . ,Xn]/I)k. This is because the monomials of degree k which are not the leading term of some form of
degree k in I are linearly independent on (K[X0, . . . ,Xn]/I)k, and have cardinal hI(k), thus they are a K-basis.

We will also require:

Definition 3.5. Let K be a field and I ⊆ K[X0, . . . ,Xn] be a homogeneous ideal. Let < be a graded monomial
order on {Xα ∶ α ∈ Zn+1

≥0 } and m ∈ {0, . . . , n}. Define

σI,m(k) ∶=∑
α

αm,

where α = (α0, . . . , αn) runs over the exponent set of all monomials Xα which are not leading monomials of any
form of degree k in I.

Since the monomials of degree k which are not leading monomials of any form of degree k in I form a K-basis
of (K[X0, . . . ,Xn]/I)k, it holds
(3.1) σI,0(k) + . . . + σI,n(k) = khI(k).

It turns out that the functions σI,m(k) are numerical polynomials. More precisely:

Lemma 3.6 ([5, Lemma 1]). Let X = Proj(K[X0, . . . ,Xn]/I) ⊆ Pn
K be a closed subscheme of dimension r and degree

d, such that I ⊆ K[X0, . . . ,Xn] is generated by forms of degrees at most δ. There is a positive integer k0 ≲n,δ 1,
such that for all k ≥ k0, hX(k) is equal to some polynomial of degree r, and σI,0(k), . . . , σI,n(k) are equal to some
polynomials of degree r + 1. Furthermore, the coefficients of these polynomials can be bounded in terms of n and δ.

As a consequence of Lemma 3.6, the limit limk→∞
σI,m(k)
khI(k)

exists. This, together with Lemma 3.2, Lemma 3.3,

and equation (3.1) gives:

Lemma 3.7 ([37, Lemma 1.9]). Let K,I,<, σI,m be as above and suppose that X = Proj(K[X0, . . . ,Xn]/I) is reduced
and equidimensional. Denote d = deg(X). For all m ∈ {0, . . . , n}, there exists 0 ≤ aI,m ≤ 1 with aI,0 + . . . + aI,n = 1
such that

σI,m(k)
khI(k) = aI,m +Od,n (1

k
) , m ∈ {0, . . . , n}.

3.2. Prime powers dividing certain determinants. We begin with the following lemma.

Lemma 3.8. Let K be a global field, and let X = Proj(K[X0, . . . ,Xn]/I) be a closed reduced subscheme of Pn
K .

The schematic closure of X in Pn
OK
= Proj(OK[X0, . . . ,Xn]) is equal to

Ξ ∶= Proj(OK[X0, . . . ,Xn]/(I ∩OK[X0, . . . ,Xn])).

Proof. Due to the reduced hypothesis, I ∩OK[X0, . . . ,Xn] is reduced, thus Ξ is reduced. We have a ring morphism

ϕ ∶ OK[X0, . . . ,Xn]/(I ∩OK[X0, . . . ,Xn])→K[X0, . . . ,Xn]/I.
Since, for any homogeneous prime ideal P ⊆ K[X0, . . . ,Xn]/I which does not contain (X0, . . . ,Xn), it holds that
ϕ−1(P) is an homogeneous prime ideal which does not contain (X0, . . . ,Xn), we see that there exists a morphism
Proj(ϕ) ∶ X → Ξ given by P → ϕ−1(P). Now, note that the minimal primes of K[X0, . . . ,Xn]/I correspond
to the primes appearing in the primary decomposition of I. If I = P1 ∩ ⋯ ∩ Pr, then I ∩ OK[X0, . . . ,Xn] =(P1 ∩OK[X0, . . . ,Xn])∩⋯∩ (Pr ∩OK[X0, . . . ,Xn]) and {P1 ∩OK[X0, . . . ,Xn], . . . ,Pr ∩OK[X0, . . . ,Xn]} is the
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set of minimal primes of I ∩ OK[X0, . . . ,Xn], thus they are the set of generic points of Ξ. Since Proj(ϕ)(Pi) =
Pi ∩OK[X0, . . . ,Xn] for all i, the image of Proj(ϕ) contains all the generic points of Ξ, thus its closure is Ξ. Since
Ξ is reduced, by [20, (10.8)] we conclude that Ξ is the schematic closure of X . ◻

From here on, K will denote a global field. We shall work with closed subschemes X = Proj(K[X0, . . . ,Xn]/I)
of Pn

K , which are geometrically reduced, equidimensional of dimension r, and degree d. Also, we will denote

Ξ ∶= Proj(OK[X0, . . . ,Xn]/(I ∩OK[X0, . . . ,Xn])).
Furthermore, given a prime p ∉MK,∞, if Fp ∶= OK/p, we let Ip ⊂ Fp[X0, . . . ,Xn] be the image of I∩OK[X0, . . . ,Xn]
in Fp[X0, . . . ,Xn], and we set

Xp ∶= Proj(Fp[X0, . . . ,Xn]/Ip) = Ξ ×Z Fp.

The following lemmas, that are global field variants of [38, Lemma 2.2, Lemma 2.3] show that the reductions
modulo p of X , i.e. the Fp-schemes Xp, retain the same uniform bounds of Lemma 3.2 and Lemma 3.3.

Lemma 3.9. Let d and n be given and X,Xp as above. Then Xp is defined by forms of degree ≲d,n 1.

Proof. In order to prove Lemma 3.9, we will use the key property that a flat morphism has all its fibres with the
same Hilbert polynomial. Let X and Ξ be as above, and let f ∶ Ξ→ Spec(OK) be the structural morphism. If η is
the generic point of Spec(OK), by Lemma 3.8 the schematic closure of f−1(η) = X is Ξ. Then by [20, Proposition
14.14] f is flat.

By hypothesis, X is geometrically reduced, so we may apply Lemma 3.3. There are thus ≲d,n 1 possible Hilbert
polynomials for the schemes X ⊆ Pn

K . But the Hilbert polynomials of X = Ξ ×OK
K and Xp = Ξ ×OK

Fp coincide
since they are fibres of f , which is flat (this follows from [22, Theorem 9.9]). There are thus ≲d,n 1 possible Hilbert
polynomials also for the Fp-subschemes Xp. The result follows from Lemma 3.2. ◻

Lemma 3.10. Let d and n be given and X,Xp be as above. Let A be the stalk of Xp at some Fp-point P on Xp of
multiplicity µ. Let m be the maximal ideal of A. Let gX,P ∶ Z>0 → Z be the function where gX,P (k) = dimA/mmk/mk+1.
Then there are ≲d,n 1 different functions gX,P among all pairs (X,P ) as above, and we have

gX,P (k) ≤ µ kr−1

(r − 1)! +Od,n(kr−2)
for all k ≥ 1, where r = dim(X). Furthermore, If X is a hypersurface, the implicit constant in the second summand
does not depend on d.

Proof. The function gX,P coincides with the Hilbert function of the projective tangent cone PTCPX ⊆ P
n−1
Fp

of Xp

at P . Moreover, from Lemma 3.9 Xp is defined by forms of degree ≲d,n 1, thus this is also the case for PTCPX

(this follows from the fact that the tangent cone can be effectively computed in terms of a Gröbner basis of I, and
the fact that the degrees of the elements in a Gröbner basis of I are bounded in terms of n and the degrees of the
elements in a basis of I, see [33, III.3] and [16, Chapter 9, § 7, Proposition 4 ]). By Lemma 3.6, there is a positive
integer k0 ≲n,d 1 such that the Hilbert function gX,P (k) coincides with a polynomial pX,P (k) for all k ≥ k0, with

coefficients bounded in terms of n and d. In particular, gX,P (k) ≤ µ kr−1

(r−1)!
+Od,n(kr−2) for all k ≥ 1.

If X is a hypersurface, the projective tangent cone PTCPX ⊆ P
n−1
Fp

is a hypersurface of degree µ in Pn, thus the

function gX,P has the explicit formula

gX,P (k) =
⎧⎪⎪⎨⎪⎪⎩
(r+k

r
) for k < µ,

(r+k
r
) − (r+k−µ

r
) for k ≥ µ.

Now, the same argument in [11, Lemma 2.1] finishes the proof. ◻

We will need the following lemmas.
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Lemma 3.11 ([37, Proof of Main Lemma 2.5],[11, Lemma 2.2]). Let c, r, µ > 0 be integers. Let g ∶ Z≥0 → Z≥0 be a

function with g(0) = 1 and satisfying g(k) ≤ µ kr−1

(r−1)!
+ ckr−2 for k > 0. Let (ni)i≥1 be the non-decreasing sequence of

integers m ≥ 0 where m occurs exactly g(m) times. Then for any s ≥ 0 we have

n1 +⋯+ ns ≥ (r!
µ
)

1
r r

r + 1
s1+

1
r −Or,c(s).

Lemma 3.12 ([11, Lemma 2.3], see also [30, Proposition A.1] for explicit bounds). Consider A as in Lemma 3.10,
and let (ni(A))i≥1 be the non-decreasing sequence of integers k ≥ 0 where k occurs exactly dimA/mmk/mk+1 times.
Write A(s) = n1(A) +⋯ + ns(A). Then

A(s) ≥ (r!
µ
)

1
r r

r + 1
s1+

1
r −Od,n(s),

where r = dim(X). Furthermore, if X is a hypersurface, the implicit constant in the second summand does not
depend on d.

In order to provide our generalization of [37, Lemma 2.4 and Main Lemma 2.5] to global fields, we follow the
exposition in [11, §2]. We denote Op for the localization of OK at the prime p.

Lemma 3.13. Let R be a commutative noetherian local ring containing Op as a subring and let A = R/pR. Let m
be the maximal ideal of A and let (ni(A))i∈N be the non-decreasing sequence of integers k ≥ 0 where k occurs exactly
dimA/mmk/mk+1 times. Let r1, . . . , rs be elements of R and φ1, . . . φs ∶ R → Op be ring homomorphisms such that

φi∣Op
= Id. Then the determinant of the s× s matrix (φi(rj))i,j is divisible by pA(s) for A(s) ∶= n1(A)+ . . .+ns(A).

Proof. Choose one of the homomorphisms φi, say φ1. Let I ∶= Ker(φ1). Since the map Op ↪ R
φ1

Ð→ Op is the identity,

it holds φ1(Op) =Op, hence R/I ≅ Op. If φ̃1 ∶ R/I → Op is the induced homomorphism, then φ̃1
−1(pOp) = (pR+I)/I

is a maximal ideal, from where it follows that pR + I is the maximal ideal of R. Furthermore, φi(I + pR)Op ≠ Op,
otherwise we would find x ∈ I + pR and a ∈ Op with aφi(x) = 1, hence φi(ax− 1) = 0, with contradicts that I + pR is
the only maximal ideal of R. We conclude that φi(I) is a proper ideal of Op, and hence φi(I) ⊆ pOp. In particular,

for all i, φi(Ik) ⊆ pkOp. From Nakayama’s lemma, it follows that for all k ≥ 0, Ik/Ik+1 is an Op-module generated

with at most dimA/mmk/mk+1 elements. Now, suppose that there are more than g(k) ∶= dimA/mmk/mk+1 elements

in Ik − Ik+1 among r1, . . . , rs, say r1, . . . , rq . There exists an Op-module homomorphism λ ∶ Oq
p → Ik/Ik+1 where

λ(β1, . . . , βq) = β1r1 + . . . + βqrq (mod Ik+1). Since Ik/Ik+1 is generated by at most g(k) < q elements we conclude

that there exists (β1, . . . , βq) ∈ Ker(λ) with, say, βq = 1 (this is because Ik/Ik+1 is a finite Op-module generated
by at most g(k) elements and Op is local, then by Nakayama’s lemma there exists j ∈ {1, . . . , q}, say j = q, such
that spanOp

{r1, . . . , rq} = spanOp
{r1, . . . , rq−1}). Denoting ρq = β1r1 + . . . + βq−1rq−1 + rq , we see that ρq ∈ I

k+1,
furthermore, since the homomorphisms φ1, . . . , φs restrict to the identity in Op, we see that the determinant of(φi(rj))i,j will not change if we replace rq with ρq. If we continue making such elementary transformations, we

arrive to a situation where there are at most dimA/mmk/mk+1 elements in Ik − Ik+1 among r1, . . . , rs, for each k ≥ 0.

After rearranging, we have that rj is in I
nj(A) for all j = 1, . . . , s. This implies that all the elements φ1(rj), . . . , φs(rj)

are divisible by pnj(A), hence pA(s) divides the determinant of (φi(rj))i,j . ◻

Lemma 3.14. Let p be a prime and let X,r, d,n,Ξ,Xp be as above. Let P be an Fp-point of multiplicity µP on Xp

and let ξ1, . . . ,ξs be points in On+1
K , such that, for all i, ξi has its coordinates not all divisible by p and it represents

a K-rational point of X which reduces modulo p to P . Let F1, . . . , Fs be forms in (X0, . . . ,Xn) with coefficients
in OK , and let det(Fj(ξl)j,l) be the determinant of the s × s matrix (Fj(ξl))j,l. Then there exists a non-negative

integer N = ( r!
µP
) 1

r
r

r+1
s1+

1
r +Od,n(s) such that pN ∣det(Fj(ξl)j,l). Furthermore, if X is a hypersurface, the implicit

constant in the second summand does not depend on d.
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Proof. Let P = (z0 ∶ z1 ∶ . . . ∶ zn) with zi ∈ Fp for all i. It holds that there is some i with zi ≠ 0, which we may
suppose that it is i = 0. By hypothesis, it also follows that the x0-coordinates of the points ξ1, . . . ξs are not divisible
by p and we replace the forms Fj , j = 1, . . . , s by the rational functions fj = Fj(1, x1

x0
, . . . , xn

x0
) without changing the

p-adic valuation of the determinant.
Now, we define a prime ideal in OK[X0, . . . ,Xn] by P ∶= ⟨p,X0 − z0, . . . ,Xn − zn⟩. Let R ∶= OK[X0, . . . ,Xn]P.

It is clear that R is noetherian local ring containing Op as a subring, and the rational functions fj , j = 1, . . . , s are
elements in R. Moreover, the evaluations evξ1

, . . . evξs
∶ OK[X0, . . . ,Xn] → OK are ring homomorphisms, which

restrict to the identity on OK , and can be extended to ring homomorphisms evξ1
, . . . , evξs

∶ R → Op which restrict
to the identity on Op. Taking φi ∶= evξi

for all i, we see that R and φ1, . . . , φs are as in Lemma 3.13, hence

pA(s)∣det(φl(fj))j,l = det(Fj(ξl))j,l. The proof finishes using Lemma 3.12. ◻

3.3. From local estimates to global estimates. In this section, X ⊆ Pn+1
K will denote a geometrically integral

hypersurface of degree d. Hence, X is defined by an absolutely irreducible homogeneous polynomial f = ∑I aIX
I
∈OK[X0, . . . ,Xn+1] of degree d. We shall begin with an important remark concerning the polynomial f defining X .

Remark 3.15 (Primitive polynomials in global fields). We recall that f is said to be primitive if a ∶= ∑I aIOK = (1).
Also, given a prime p of OK , we will say that f is p-primitive if p does not divide a. Note that in general we can not
take the polynomial f defining X to be primitive as in the case k = Q or Fq(T ). Indeed, by the proof of Proposition
2.2, the ideal class of a = ∑I aIOK is determined by the projective point with coordinates (aI)I . Hence, if OK

is not a principal domain, it may occur that the ideal class of a is not principal, thus there is no non-zero scalar
λ ∈ OK such that λf is primitive. Nevertheless, by Proposition 2.2 we may find a non-zero λ ∈ OK such that λf is
p-primitive for all primes p ⊆ OK with NK(p) > c2, where c2 is the constant in Proposition 2.2. Also, by Proposition

2.2, for all v ∈MK,∞, it holds maxI ∣λaI ∣v ≤ c1H(f) nv
dK if K is a number field, and maxI ∣λaI ∣v∞ ≤ c1H(f) if K is a

function field, for some effective computable constants c1, and c3 which depend on K. By definition 2.8, it holds

HK,aff(λf) = ⎛⎝ ∏v∈MK

max
I
{1, ∣λaI ∣v}⎞⎠

dK

=
⎛
⎝ ∏v∈MK,∞

max
I
{1, ∣λaI ∣v}⎞⎠

dK

≤ cdK

1 HK(f).
Furthermore, since the height is invariant under multiplication by non-zero scalars, it holds HK(λf) = HK(f).

For this reason we may assume thatX is defined by an absolutely irreducible homogeneous polynomial f = ∑I aIX
I
∈OK[X0, . . . ,Xn+1] of degree d, which is p-primitive for all primes p with NK(p) > c2, and

HK,aff(f) ≤ cdK

1 HK(f).

We proceed to generalize [46, Theorem 2.2], [11, Corollary 2.9] and [45, Lemma 2.1] to global fields.

Theorem 3.16. Let p be a prime for which the reduction Xp is absolutely irreducible, and for which either char(K) =
0 and NK(p) > max{27d4, c2}, or 0 < char(K) ≤ max{27d4, c2} and NK(p) ≥ d 14

3 , or char(K) > max{27d4, c2}.
Let (ξ1, . . . ,ξs) be a tuple of points in On+1

K , such that, for all i, ξi has its coordinates not all divisible by p and it
represents a K-rational point of X. Let F1, . . . , Fs ∈ OK[X0, . . . ,Xn+1] be forms with OK-coefficients, and write ∆
for the determinant of (Fi(ξj))i,j. Then, there exists some

ep ≥ n!
1
n

n

n + 1
s1+

1
n

NK(p)+On(d2NK(p) 1
2 ) −On(s)

such that pep ∣∆.

Proof. Let P be an Fp-point on Xp and let us write sP for the cardinal of the subset IP ⊆ {1, . . . , s} of indices l
such that ξl reduces to P modulo p. Let

NP = ( n!
µP

)
1
n n

n + 1
s
1+ 1

n

P +On(sP )
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be the integer in Lemma 3.14. Then by Lemma 3.14, for each sP × sP minor A = (ak,l)k,l of (Fi(ξj))i,j with l ∈ IP ,

it holds that pNP ∣det(A). If we apply this to all the Fp-points on Xp and use the Laplace expansion, we see that
pep ∣∆, where

ep ≥ ∑
P ∈X(Fp)

NP = n!
1
n

n

n + 1
⎛
⎝ ∑
P ∈X(Fp)

s
1+ 1

n

P

µ
1
n

P

⎞
⎠ −On

⎛
⎝ ∑
P ∈X(Fp)

sP
⎞
⎠ = n!

1
n

n

n + 1
⎛
⎝ ∑
P ∈X(Fp)

s
1+ 1

n

P

µ
1
n

P

⎞
⎠ −On(s).(3.2)

To conclude the proof, we need to estimate ∑P ∈X(Fp)
s
1+ 1

n
P

µ
1
n
P

. By Hölder’s inequality,

s = ∑
P ∈X(Fp)

sP ≤
⎛
⎝ ∑
P ∈X(Fp)

µP

⎞
⎠

1
n+1 ⎛
⎝ ∑
P ∈X(Fp)

s
1+ 1

n

P

µ
1
n

P

⎞
⎠

n
n+1

,

hence

(3.3) ∑
P ∈X(Fp)

s
1+ 1

n

P

µ
1
n

P

≥
s1+

1
n

⎛
⎝ ∑
P ∈X(Fp)

µP

⎞
⎠

1
n

.

If we denote np ∶= ∑P ∈X(Fp) µP , from (3.2) and (3.3) we see that

(3.4) ep ≥ n!
1
n

n

n + 1
s1+

1
n

n
1
n
p

−On(s).
In order to bound np, namely the number of Fp-points in Xp counted with multiplicity, we observe that the singular

points of Xp, sayXp,sing, consist of the intersection of f and the partial derivatives ∂f

∂xi
. Hence, we may suppose that

Xp,sing is contained in the intersection of f and ∂f

∂x0
, which is the intersection of two hypersurfaces of degree at most

d. By Bézout’s Theorem [18, Example 8.4.6], the number of irreducible components of Z(f) ∩Z( ∂f

∂x0
) is bounded

by d2, and their degree are also bounded by d2. Then the standard Schwarz-Zippel estimate for Z(f) ∩ Z( ∂f

∂x0
)

yields ∣Xp,sing(Fp)∣ ≤ ∣(Z(f) ∩Z( ∂f

∂x0
)) (Fp)∣ ≲n d2NK(p)n−1. Hence

(3.5) np − ∣X(Fp)∣ = ∑
P ∈X(Fp)

(µP − 1) ≤ (d − 1)∣Xp,sing(Fp)∣ ≲n d3NK(p)n−1 ≲n dNK(p)n− 1
2 .

Claim 3.17. ∣X(Fp)∣ ≤ NK(p)n +On(d2NK(p)n− 1
2 ).

Proof of Claim 3.17. This follows from an effective version of the Lang-Weil estimate. If K is a number field,
by hypothesis, we have NK(p) > max{27d4, c2}. On the other hand, if K is a function field over Fq(T ) with
char(K) > max{27d4, c2}, it holds NK(p) ≥ q ≥ char(K) > max{27d4, c2}. In either case, since Xp is absolutely
irreducible and NK(p) > 27d4, from [10, Corollary 5.6] it follows that the number of Fp-points of Xp counted without
multiplicity is bounded by

NK(p)n+1 + (d − 1)(d − 2)NK(p)n+ 1
2 + (5d2 + d + 1)NK(p)n − 1NK(p) − 1 ≤ NK(p)n +On(d2NK(p)n− 1

2 ).
Similarly, if K is a function field over Fq(T ) with char(K) < max{27d4, c2}, by hypothesis NK(p) > d 14

3 , thus [10,
Theorem 5.2] gives that the number of Fp-points of Xp counted without multiplicity is bounded by

NK(p)n+1 + (d − 1)(d − 2)NK(p)n+ 1
2 + 5d

13
3 NK(p)n − 1NK(p) − 1 ≤NK(p)n +On(d2NK(p)n− 1

2 ). ◻
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Combining (3.5) and Claim (3.17) we obtain np ≤ NK(p)n+On(d2NK(p)n− 1
2 ). Applying the bound ∣x 1

n −1∣ ≤ ∣x−1∣
to x =

np

NK(p)
, we conclude that n

1
n
p ≤ NK(p) +On(d2NK(p)− 1

2 ). Replacing this in (3.4) finishes the proof. ◻

Our next objective is to obtain a global bound for the determinant ∆ in Theorem 3.16, without making any
assumptions over its reductions Xp. We follow the presentation given in [11, Proposition 3.2.26] where the authors
made explicit the dependence of the degree in the bounds of [46, Theorem 2.3].

Definition 3.18. Let c2 be the constant in Proposition 2.2. We let

β ∶=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
27d4 if char(K) = 0,
d

14
3 if 0 < char(K) ≤max{27d4, c2},

1 if char(K) >max{27d4, c2}.
Given f ∈ OK[X0, . . . ,Xn+1] we define b(f) ∶= 0 if f is not absolutely irreducible, otherwise we set

b(f) ∶= ∏
p∈Pf

exp( log(NK(p))NK(p) ) ,
where

(3.6) Pf ∶= {p ∉MK,∞ ∶ NK(p) >max{β, c2} and f mod p is not absolutely irreducible} .

Remark 3.19. Observe that if X ⊆ Pn+1
K is a geometrically integral hypersurface defined by an absolutely irreducible

homogeneous polynomial f ∈ OK[X0, . . . ,Xn+1] which is p-primitive, then Xp is geometrically irreducible if and
only if f mod p is absolutely irreducible.

Theorem 3.20. Let (ξ1, . . . ,ξs) be a tuple of K-rational points in X, let Fli ∈ OK[X0, . . . ,Xn+1], 1 ≤ l ≤ L,1 ≤ i ≤ s,
be homogeneous polynomials with integer coefficients, and write ∆l for the determinant of (Fli(ξj))ij. Let ∆ be
the greatest common divisor of the ∆l, and assume that ∆ ≠ 0. Let {p1, . . . ,pu} be (a possibly empty) subset of
primes and set q ∶= ∏u

i=1 pi if u ≥ 1 and q ∶= (1) if u = 0. Let PX be the collection of primes p ∉ MK,∞ such that
either NK(p) ≤max{β, c2}, Xp is not geometrically irreducible, or p ∈ {p1, . . . ,pu}, namely PX = Pf ∪ {p ∶NK(p) ≤
max{β, c2}} ∪ {p1, . . . ,pu}. Then there is some non-zero ideal I, relative prime with all the primes lying in PX ,
such that I∣∆, and

log(NK(I)) ≥ n!
1
n

n + 1
s1+

1
n (log(s) −On,K(1) − n(log(β) +max{log(log(NK(q))),0} + log b(f))).

Proof. We fix On+1
K -coordinates for the tuple (ξ1, . . . ,ξs) satisfying the conditions of Proposition 2.2. Let us suppose

that all prime p with NK(p) ≤ s 1
n is contained in PX . Then by (2.12) and Lemma 2.6 we have

1

n
log(s) +OK(1) = ∑

p

NK(p)≤s
1
n

log(NK(p))NK(p) ≤ ∑
p

NK(p)≤max{β,c2}

log(NK(p))NK(p) + ∑
p

p∈Pf

log(NK(p))NK(p) +∑
p
p∣q

log(NK(p))NK(p)
≤ log(β) + log(b(f))+max{log(log(NK(q))),0} +OK(1).

Thus, if the term On,K(1) is large enough, we may take I = (1), since the right hand side of the bound in Theorem
3.20 is negative.

Hence we may suppose that there is some prime p ∉ PX with NK(p) ≤ s 1
n . Applying Theorem 3.16 for each

prime p ∉ PX with NK(p) ≤ s 1
n , we obtain ∏

p∉PX ∶NK(p)≤s
1
n
pep ∣∆. Let I ∶= ∏

p∉PX ∶NK(p)≤s
1
n
pep . Then the Landau

estimate (2.13) yields
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log(NK(I)) = ∑
p∉PX

NK(p)≤s
1
n

ep log(NK(p)) ≥ n!
1
nn

n + 1
s1+

1
n ∑

p∉PX

NK(p)≤s
1
n

log(NK(p))
NK(p) +On(d2NK(p) 1

2 ) −On(s) ∑
p

NK(p)≤s
1
n

log(NK(p))

≥
n!

1
nn

n + 1
s1+

1
n ∑

p∉PX

NK(p)≤s
1
n

log(NK(p))
NK(p) +On(d2NK(p) 1

2 ) −On,K(s1+ 1
n ).

The inequality 1

x+On(d2x
1
2 )
≥ 1

x
−On(d2) 1

x
3
2

for all x ≥ 0, the Landau estimates (2.12), (2.13), and (2.15), and Lemma

2.6, allow us to deduce

∑
p∉PX

NK(p)≤s
1
n

log(NK(p))
NK(p) +On(d2NK(p) 1

2 ) ≥ ∑
p

NK(p)≤s
1
n

log(NK(p))NK(p) − ∑
p∈PX

log(NK(p))NK(p) −On(d2) ∑
p∉PX

NK(p)≤s
1
n

log(NK(p))
NK(p) 3

2

≥
log(s)
n
−OK(1)− ∑

p
NK(p)≤max{β,c2}

log(NK(p))NK(p) −∑
p∣q

log(NK(p))NK(p) − log b(f)−On(d2) ∑
p∉PX

NK(p)≤s
1
n

log(NK(p))
NK(p) 3

2

≥
log(s)
n
− log(β) −max{log log(NK(q)),0} − log b(f) −OK(1) −On(d2) ∑

p
NK(p)>β

log(NK(p))
NK(p) 3

2

≥
log(s)
n
− log(β) −max{log(log(NK(q))),0} − log b(f)−OK(1)+On,K(d2β− 1

2 )
≥
log(s)
n
− log(β) −max{log(log(NK(q))),0} − log b(f)−On,K(1).

The bound in Theorem 3.20 follows. ◻

Remark 3.21. When q = (1), Theorem 3.20 gives the bounds in [11, Proposition 3.2.26] and [45, Proposition 2.4] in
the cases K = Q and K = Fq(T ), respectively.

In [46] Walsh proved the bound b(f) ≲d max{log(HK,aff(f)),1} for K = Q. In order to keep track of the
dependence on the degree of f , in [11, Corollary 3.2.3] and [45, Lemma 2.3] the authors gave an effective bound of
b(f) for K = Q and K = Fq(T ), respectively. We follow their strategy to give an effective bound for global fields.
We will use the following notation

Definition 3.22. Let d ∈ N, and let K be a global field. Then for any a1, a2, a3, a4 ∈ R we denote

[a1, a2, a3, a4] ∶=
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

a1 if char(K) = 0,
a2 if 0 < char(K) ≤ d(d − 1),
a3 if d(d − 1) < char(K) ≤max{27d4, c2},
a4 if char(K) >max{27d4, c2}.

Lemma 3.23. Let f = ∑I aIX
I
∈ OK[X0, . . . ,Xn+1] be an absolutely irreducible homogeneous polynomial of degree

d ≥ 2. We have

b(f) ≲K,n max{d[−2, 43 ,− 8
3
,2] log(HK,aff(f)),1}.
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Proof. We will use Noether forms as they are presented in [36, 28, 19]. Let Pf be as in (3.6). First, let us suppose
that K is a number field. By [36, Satz 4], there is a homogeneous form Φ with coefficients in Z, of degree d2 −1 and

(3.7) ℓ1(Φ) ≤ d3(d2−1) [(n + d
n
)3d]d

2−1

,

such that Φ applied to the coefficients of f is non-zero, but is divisible by any prime in Pf . In particular, by
inequalities (2.5), (2.10) we have

∏
p∈Pf

NK(p) ≤NK(Φ(aI)I) ≤HK(Φ(aI)I) ≤ ℓ1(Φ)d2
KHK(1 ∶ (aI)I)deg(Φ) = ℓ1(Φ)d2

KHK,aff(f)deg(Φ).(3.8)

Let c ∶= ℓ1(Φ)d2
KHK,aff(f)deg(Φ). Using the above inequality and (2.12), we have

log(b(f)) = ∑
p∈Pf

log(NK(p))NK(p) ≤∑
p

max{27d4
,c2}<NK(p)≤log c

log(NK(p))NK(p) + ∑
p∈Pf

log c<NK(p)

log(NK(p))
log c

≤max{log(log c) − 4 log d,0} +OK(1) + log c

log c

≤max{log(deg(Φ) log(HK,aff(f)))− 4 logd, log(d2K log ℓ1(Φ)) − 4 logd} +OK(1).
Using that deg(Φ) = d2 − 1 and (3.7), the result follows in the number field case. Indeed, note that

log(dK deg(Φ) log(HK,aff(f))) − 4 logd ≤ log(dK) + log(d2 log(HK,aff(f))) − 4 log d(3.9)

≤ log(dK) + log(log(HK,aff(f)))− 2 logd.
Meanwhile,

log(d2K log ℓ1(Φ)) ≤ log⎛⎝d2K log
⎛
⎝d3(d

2−1) [(n + d
n
)3d]d

2−1⎞
⎠
⎞
⎠(3.10)

≤ 2 log(dK) + 2 log(d) + log (3 log(d) + d log(3) + d log(n + d) − log(d!)) .
Now we bound log(d2K log ℓ1(Φ)) − 4 logd. Since

3 log(d) + d log(3)+ d log(n + d) − log(d!)
d2

≲n 1,

from (3.10) we obtain log(d2K log ℓ1(Φ)) − 4 log(d) ≲n,K 1. This together with (3.9) gives the bound for b(f) in the
number field case.

Now let us suppose that K is a function field over Fq(T ). We will follow [45], and consider separately the cases
of small and large characteristic.

Let K be with 0 < char(K) ≤ d(d − 1). By [28, Theorem 7], there is a homogeneous form Φ with coefficients in
Z, of degree 12d6 such that Φ applied to the coefficients of f is non-zero, but divisible by any prime in Pf . On the
other hand, if char(K) > d(d− 1), by [19, Lemma 2.4], the result in [36, Satz 4] still holds in the function field case
and then we may take Φ of degree d2 − 1. In any case, since the coefficients of Φ are integers, their height in K is
1, then ℓ1(Φ) = 1. Then by inequalities (2.3), (2.5), (2.11) we have

(3.11) ∏
p∈Pf

NK(p) ≤NK(Φ(aI)I) ≤HK(Φ(aI)I) ≤
⎧⎪⎪⎨⎪⎪⎩
HK,aff(f)12d6

if 0 < char(K) ≤ d(d − 1),
HK,aff(f)d2−1 if char(K) > d(d − 1).
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Now, denoting c ∶=HK,aff(f)deg(Φ), by (2.12) and (2.13) it follows that

log(b(f)) = ∑
p∈Pf

log(NK(p))NK(p) ≤∑
p

max{β,c2}<NK(p)≤log c

log(NK(p))NK(p) + ∑
p∈Pf

log c<NK(p)

log(NK(p))
log c

≤max{log(deg(Φ)(logHK,aff(f)))− log(β),0} +OK(1)
≤max{log(deg(Φ)) + log(log(HK,aff(f))) − log(β),0} +OK(1).

From this last estimate it follows the bounds for function fields. ◻

4. An adequate change of coordinates

For technical reasons that will appear in the next section, given two non-zero polynomials f, h ∈ OK[X0, . . . ,Xn+1],
we will need to obtain a lower bound for the quantity HK(fh) in terms of HK(f) and HK(h). This turns out to
be rather easy in the function field case. Indeed, suppose that K is a function field. Then every place v ∈ MK is
non-archimedean. Thus, by Gauss’ lemma, (e.g. see [2, Lemma 1.6.3]), it holds

(4.1) HK(fh) =HK(f)HK(h).
In the number field case, while it is possible to bound HK(fh) in terms of HK(f) and HK(h), this bound will

necessarily depend on the degrees of f and g, which is not good enough for our purposes (see Remark 5.6). In
Claim 5.7 we will prove that, if f is of an adequate form, it is possible to bound from below HK(fh) in terms of
HK(f) and of the degree of f . By making an adequate change of variables as in [46, §3], in this section we will
show that any polynomial can be taken into a polynomial that verifies the hypothesis of Claim 5.7.

Let us suppose that K is a number field. Let f =∑I cIX
I
∈ OK[X0, . . . ,Xn+1] be a homogeneous polynomial of

degree d. Let a0, . . . , an ∈ OK and consider the new variables X ′i ∶= Xi − aiXn+1 for all i = 0, . . . , n + 1. Then the
linear change of variables gives

f̃(X0, . . . ,Xn+1) ∶= f(X ′0, . . . ,X ′n,Xn+1) = ∑
i0+⋯+in+1=d

ci0,...,in+1(X0 − a0Xn+1)i0⋯(Xn − anXn+1)inX in+1
n+1

= ±
⎛
⎝ ∑
i0+...+in+1=d

ci0,...,in+1a
i0
0 ⋯a

in
n

⎞
⎠Xd

n+1 +⋯ = ±f(a0, . . . , an,1)Xd
n+1 +⋯.

So, the coefficient of Xd
n+1 in f̃ is ±f(a0, . . . , an,1). Next, we will require that this coefficient is large enough. More

precisely, we shall prove the following generalization of [46, § 3] and [11, Lemma 3.4.2].

Lemma 4.1. Let K be a number field and let f = ∑I cIX
I
∈ OK[X0, . . . ,Xn+1] be a homogeneous polynomial of

degree d. There exist integers a0, . . . , an with 0 ≤ ai ≤ d for all i such that

∏
v∈MK,∞

∣f(a0, . . . , an,1)∣v ≥ 3− (n+1)ddK 2−d ∏
v∈MK,∞

∣f ∣v.

Proof. Given an embedding σ ∶ K → C, we define σ(f) ∶= ∑I σ(cI)XI and fG = ∏σ σ(f) where the product runs
over all the embeddings of K in C. By (2.1) it holds

(4.2) ∏
v∈MK,∞

∣f(a0, . . . , an,1)∣v = ∣fG(a0, . . . , an,1)∣ 1
dK .

By [11, Lemma 3.4.2], there exist integers a0, . . . , an with 0 ≤ ai ≤ d for all i such that

∣fG(a0, . . . , an,1)∣ ≥ 3−(n+1)dℓ∞(fG).
Since fG is a polynomial of degree dKd, by [2, Lemma 1.6.11] we have

∣fG(a0, . . . , an,1)∣ ≥ 3−(n+1)d2−ddK∏
σ

ℓ∞(σ(f)).
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If v is the place corresponding to σ, we have ℓ∞(σ(f)) = ∣f ∣ dKnv
v . Then, since the complex embeddings come in

conjugate pairs, both corresponding to the same place, it follows that

(4.3) ∣fG(a0, . . . , an,1)∣ ≥ 3−(n+1)d2−ddK
⎛
⎝ ∏v∈MK,∞

∣f ∣v⎞⎠
dK

.

Combining (4.2) and (4.3) yields the desired result. ◻

From Lemma 4.1 we find integers a0, . . . , an with 0 ≤ ai ≤ d for all i, such that f̃(X0, . . . ,Xn,Xn+1) = f(X ′0, . . . ,X ′n,Xn+1) =
cf̃X

d
n+1 +⋯, with ∏v∈MK,∞ ∣cf̃ ∣v ≥ 3− (n+1)ddK 2−d∏v∈MK,∞ ∣f ∣v. Since for all v ∈MK,∞, it holds

(4.4) ∣f̃ ∣v ≤ ∣(n + d + 1
n + 1

)∣
v

∣d∣dv ∣f ∣v ≤ ∣2(n + 1)ddd∣v ∣f ∣v,
we conclude that

(4.5) ∏
v∈MK,∞

∣cf̃ ∣v ≥ 3− (n+1)ddK 2−(d+1)(n + 1)−dd−d ∏
v∈MK,∞

∣f̃ ∣v ≥ C−nd1+ 1
n ∏

v∈MK,∞

∣f̃ ∣v,
where C is a positive constant depending on K and n. The bound is not sharp, but having it in this form will be
convenient for our purposes. Now, if p is a prime such that f is p-primitive, it also follows that f̃ is p-primitive.
Furthermore, if f̃ = ∑J bJX

J , the proof of Proposition 2.2 shows that there exists a constant c1 = c1(K) and a unit

ε ∈ O×K such that εf̃ satisfies

HK(1 ∶ (εbJ)J) ≤ cdK

1 HK(εf̃).
Since the p-adic valuation of any unit is 0, and by the product formula (2.2) it holds ∏v∈MK,∞ ∣ε∣v = 1, we see that

the coefficient of Xd
n+1 in f1 ∶= εf̃ also satisfies (4.5). Moreover, from the identity f(X0, . . . ,Xn+1) = ε−1f1(X0 +

a0Xn+1, . . . ,Xn + anXn+1,Xn+1), proceeding as in (4.4), we have that for all v ∈MK,∞

(4.6) ∣f ∣v ≤ ∣ε∣−1v ∣2(n + 1)ddn+1∣v ∣f1∣v.
Also, for all v ∈MK,fin, it holds

(4.7) ∣f ∣v = ∣f1∣v,
hence (4.6) and (4.7) imply

HK(f) ≤ ∏
v∈MK,∞

∣ε∣−1v ∣2(n + 1)ddn+1∣v ∣f1∣v ∏
v∈MK,fin

∣f1∣v ≤ C′d1+ 1
n
HK(f1),

for some constant C′ depending only on n. We summarize all this in the next proposition.

Proposition 4.2. Let K be a number field, and let f = ∑I aIX
I
∈ OK[X0, . . . ,Xn+1] be an absolutely irreducible

homogeneous polynomial of degree d ≥ 2, which is p-primitive for all primes p with NK(p) > c2 and

(4.8) HK,aff(f) ≤ cdK

1 HK(f).
Then there are integers a0, . . . , an with 0 ≤ ai ≤ d and a unit ε ∈ O×K such that f1(X0, . . . ,Xn,Xn+1) ∶= εf(X0 −
a0Xn+1, . . . ,Xn − anXn+1,Xn+1) is a polynomial with coefficient cf1 in Xd

n+1 verifying

∏
v∈MK,∞

∣cf1 ∣v ≥ C−nd1+ 1
n ∏

v∈MK,∞

∣f1∣v and HK(f) ≤ C′d1+ 1
n
HK(f1)

for some positive constants C = C(n,K), C′ = C(n). Furthermore, f1 verifies (4.8) and it holds b(f) = b(f1).
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5. Construction of the auxiliary hypersurface and bounds for the number of rational points of
curves over global fields

This section is divided in two parts, the first one dealing with the proof of Theorem 1.8 extending and improving
the bound of Heath-Brown [24] and the second one dealing with Theorem 1.9 extending and improving the bounds
of Bombieri and Pila.

The main technical tool in the first part is Theorem 5.2 (which is a generalization of [46, Theorem 1.3], [11,
Theorem 3.1.1] and [45, Theorem 3.1] to global fields) where we construct an auxiliary hypersurface of bounded
degree that vanishes on the rational points of the hypersurface X of prescribed height. From Theorem 5.2 and
Bézout’s theorem, Theorem 1.8 follows for plane projective curves. By means of a projection argument used in [31]
we deduce the general form of Theorem 1.8. In the proof of Theorem 5.2, the change of variables done in Section
4 will allow us to assume that in the number field case the polynomial defining X has its height concentrated on
a prescribed coefficient. Unlike [45], in the function field case the proof presented here does not need a change of
variables. As in [46, 11, 45], the bound on the degree of the auxiliary hypersurface improves as the height of the
polynomial defining X gets larger. A difference with [46, 11, 45] is that the hypersurface we construct vanishes on
the rational points of X of bounded height and prescribed reduction modulo p for many primes p, and this produces
a saving in the degree of the hypersurface, which will be needed in Section 6.

The proof of Theorem 1.9 follows the same strategy of the proof of Theorem 1.8, the main technical tool being
Theorem 5.14, which is an adaptation of Theorem 5.2 to affine hypersurfaces. In the proof of Theorem 5.14 we
follow the strategy devised in [17, Remark 2.3] and developed in [11, Proposition 4.2.1].

5.1. The projective case. We proceed to generalize [46, Theorem 1.3], [11, Theorem 3.1.1] and [45, Theorem 3.1]
to global fields. Moreover, this generalization also improves [38, Theorem 2.2] when (B0, . . . ,Bn+1) = (B, . . . ,B) by
removing a logarithmic factor. We will require the following notation.

Notation 5.1. Let X ⊆ Pn+1
K be a projective variety. Given B ∈ R>0, we will denote

X(K,B) ∶= {x ∈X(K) ∶HK(x) ≤ B} ,
Moreover, if {p1, . . . ,pu} is a subset of primes such that for all 1 ≤ i ≤ u we let Pi be a non-singular Fpi

–point on
Xpi

, we denote

X(K,B;P1, . . . , Pu) ∶= {x ∈ X(K,B) ∶ x specialises to Pi in Xpi
for all i}.

We denote

N(X,K,B) ∶= ∣X(K,B)∣.
Theorem 5.2. Let K be a global field of degree dK . Let X ⊆ Pn+1

K be an integral hypersurface of degree d ≥ 2,
defined by an irreducible homogeneous polynomial f ∈ OK[X0, . . . ,Xn+1] of degree d. Let {p1, . . . ,pu} be (a possibly
empty) subset of primes and let Pi be a non-singular Fpi

–point on Xpi
for each i ∈ {1, . . . , u}. Set q ∶= ∏u

i=1 pi if
u ≥ 1 and q ∶= (1) if u = 0. Then for any B ≥ 1, there exists a homogeneous g ∈ OK[X0, . . . ,Xn+1] of degree

M ≲K,nB
n+1

nd
1
n
d[4,

14
3
, 14

3
,0]− 1

n b(f)max{log(NK(q),1})
HK(f) 1

n
1

d
1+ 1

n NK(q)
+ d1−

1
n log(BNK(q))+ d2− 1

n log(NK(q))

+ d[4−
1
n
,7, 14

3
− 1

n
,3] (max{log(NK(q)),1}NK(q) + 1) ,

not divisible by f and vanishing on all X(K,B;P1, . . . , Pu).
Remark 5.3. Observe that if a polynomial f is irreducible but not absolutely irreducible over K, then by the
argument in [24, Corollary 1], there exists a homogeneous polynomial g ∈ OK[X0, . . . ,Xn+1] of degree d, not
divisible by f and vanishing on all K-rational points of X . Thus, in the proof of Theorem 5.2 we may assume that
f is absolutely irreducible.
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In order to prove Theorem 5.2, first we will prove a seemingly weaker version of it where the polynomial f
defining the hypersurface X satisfies the following assumption, afterwards the work done in Section 4 will be used
to deduce the general case.

Assumption 5.4. f ∈ OK[X0, . . . ,Xn+1] is an absolutely irreducible homogeneous polynomial of degree d that
verifies:

(1) f is p-primitive for any prime p of OK with NK(p) > c2;
(2) HK,aff(f) ≤ cdK

1 HK(f).
(3) If K is a number field, the coefficient cf of Xd

n+1 in f verifies:

∏
v∈MK,∞

∣cf ∣v ≥ C−nd1+ 1
n ∏

v∈MK,∞

∣f ∣v,
where C is a constant that depends only on K and n.

Proof of Theorem 5.2 assuming f verifies Assumption 5.4. The proof follows the usual strategy of the polynomial
method: first we find a small characteristic subset C ⊆ X(K,B;P1, . . . , Pu), which detects the algebraic structure
of X(K,B;P1, . . . , Pu). Then, we use a dimensional argument (which usually is a variation of the Siegel’s lemma)
to construct an adequate polynomial g of small complexity that vanishes on C. From the nature of the subset C, it
will follow that g vanishes on X(K,B;P1, . . . , Pu) and has the desired property.

In order to accomplish the above strategy, we let M be a positive integer of size

M ∼K,nB
n+1

nd
1
n
d[4,

14
3
, 14

3
,0]− 1

n b(f)max{log(NK(q)),1}
HK(f) 1

n
1

d
1+ 1

n NK(q)
+ d1−

1
n log(BNK(q))+ d2− 1

n log(NK(q))(5.1)

+ d[4−
1
n
,7, 14

3
− 1

n
,3] (max{log(NK(q)),1}NK(q) + 1) .

This integer will be the degree of the polynomial g to be constructed. Now we construct the characteristic subset,
which should be a subset such that any polynomial of degreeM , vanishing on it also vanishes onX(K,B;P1, . . . , Pu),
without vanishing completely on X . The construction is rather natural. Using Proposition 2.2 we represent points
in X(K,B;P1, . . . , Pu) with coordinates in On+2

K . Afterwards, we take C ∶= {ξ1, . . . ,ξs} to be a maximal subset

of X(K,B;P1, . . . , Pu) with the property that if A is the matrix whose ith row is the evaluation of the different
monomials of degree M at ξi, then A has rank s.

The next step is to construct an adequate polynomial by means of the Bombieri-Vaaler theorem. Given an
integer D, we write B[D] for the set of monomials of degree D; it follows that ∣B[D]∣ = (D+n+1

n+1
). Since the elements

of fB[M − d] provide linearly independent polynomials vanishing on X(K,B;P1, . . . , Pu), it follows that
(5.2) s = rank(A) ≤ ∣B[M]∣ − ∣B[M − d]∣.

Now, let us note that since A has coefficients in OK , if the inequality (5.2) is strict we can find a polynomial in
the OK-span of B[M] which vanishes on C (so it also vanishes on X(K,B;P1, . . . , Pu), by the maximality of C),
and it is not divisible by f . This would conclude the proof. Then we may suppose that

(5.3) s = ∣B[M]∣ − ∣B[M − d]∣.
The remaining of the proof is to show that (5.3) does not hold if the implicit constant in (5.1) is large enough.

Let us note that (5.3) implies

(5.4) s =
dMn

n!
+On(d2Mn−1).

From (5.4) and the fact that M ≳ d2 we obtain

(5.5) log(s) = log(d) + n log(M) −On(1),
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and

(5.6)
s

1
n

M
=
d

1
n

n!
1
n

+On ( d2
M
) .

Now, let ∆ be the greatest common divisor in OK of the determinants of the s× s-minors of A and let us denote

r ∶= ∣B[M]∣.
To find an OK- homogeneous polynomial of degree M that vanishes on C amounts to find a non-trivial solution
in Or

K of the system of linear equations given by A. For that, using Theorem 2.4, there exists a polynomial

g =∑I aIX
I
∈ OK[X0, . . . ,Xn+1] of degree M , vanishing on C and satisfying the inequality

(5.7) HK(g)r−s ≤
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
C(K)(r−s)dKNK(∆)−1 ∏

v∈MK,∞

∣det(AA∗)∣ dK2v if K is a number field,

C(K)(r−s)dKNK(∆)−1q−deg(p∞)min∣J ∣=s ordp∞ (det(AJ)) if K is a function field.

Claim 5.5. There is some positive constant c̃1 = c̃1(K) such that it holds the inequality

(5.8) HK(g)r−s ≤ C(K)(r−s)NK(∆)−1c̃1Mss!
dK
2 r

dKs

2 BMs.

Proof of Claim 5.5. The proof amounts to bound the contribution of the places v ∈MK,∞ in the right-hand side of
(5.7). Since the coordinates of the points ξi were chosen according to Proposition 2.2, given any 1 ≤ i ≤ s and any
monomial of degree M corresponding to an index set J ⊆ Nn+2, it holds that for any place v ∈MK,∞,

(5.9) ∣ξJi ∣v = ∣ξj0i,0⋯ξjn+1i,n+1∣v ≤
⎧⎪⎪⎪⎨⎪⎪⎪⎩
cM1 (Bj0⋯Bjn+1) nv

d2
K = cM1 B

Mnv

d2
K if K is a number field,

cM1 (Bj0⋯Bjn+1) 1
dK = cM1 B

M
dK if K is a function field.

Let us suppose that K is a number field. Let v ∈MK,∞. If σ ∈ Ss then

∣(AA∗)i,σ(i)∣v = ∣ r

∑
k=1

ai,kaσ(i),k∣
v

≤ c2M1 ∣r∣vB 2Mnv

d2
K .

Hence

∣det(AA∗)∣v =
RRRRRRRRRRR∑σ∈Ss

(−1)σ s

∏
i=1

(AA∗)i,σ(i)
RRRRRRRRRRRv ≤ ∣s!∣v (c

2M
1 ∣r∣vB 2Mnv

d2
K )s .

The above inequality allows us to conclude that

∏
v∈MK,∞

∣det(AA∗)∣ dK2v ≤ ∏
v∈MK,∞

cdKMs
1 ∣s!∣ dK2v B

Msnv
dK ∣r∣ dKs

2
v ≤ c

d2
KMs

1 s!
dK
2 r

dKs

2 BMs.(5.10)

On the other hand, if K is a function field over Fq(T ), recalling that for all x ∈ K, ∣x∣v∞ = NK(p∞)− ordp∞(x)
dK ,

(5.9) implies that every entry aij of A verifies ordp∞(aij) ≥ − M
deg(p∞)(dK logq(c1) + logq(B)). Then, for any minor

AJ it holds

ordp∞(det(AJ)) = ordp∞ ⎛⎝∑σ∈Ss

(−1)σ s

∏
i=1

(AJ)i,σ(i)⎞⎠ ≥ min
σ∈Ss

{ordp∞ ((−1)σ s

∏
i=1

(AJ)i,σ(i))}
≥ min

σ∈Ss

{ s

∑
i=1

ordp∞((AJ)i,σ(i))} ≥ − sM

deg(p∞)(dK logq(c1) + logq(B)),
and from this, we get the bound

(5.11) q−deg(p∞)min∣J ∣=s ordp∞(det(AJ)) ≤ qsM(dK logq(c1)+logq(B)) = cdKsM
1 BsM .

Denoting c̃1 ∶= c
d
2
K

1 or c̃1 ∶= cdK

1 according to K being a number field or a function field, respectively, the inequalities
(5.10) and (5.11) applied in (5.7) yields the desired result. ◻
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Now, the standing hypothesis (5.3) implies that g must be of the form g = fh with h homogeneous of degree
M − d. We shall bound HK(g) =HK(fh) in terms of the height HK(f).
Remark 5.6. If K is a number field, for f, h ∈ K[X1, . . . ,Xn], it holds (e.g. see [2, Theorem 1.6.13]) that
HK(fh) ≳deg(f),deg(h) HK(f)HK(h). Since in our case the polynomial h has degree M − d, such a bound would
depend on the parameter M . The next claim shows that under the Assumption 5.4(3) it is possible to obtain a
bound independent of the degree of h.

Claim 5.7. There exists some positive constant C, depending only on n,K, such that HK(g) ≥ C−nd1+ 1
nHK(f).

Proof of Claim 5.7. If K is a function field, then by identity (4.1) and the fact that HK(h) ≥ 1 the claim follows
by taking C = 1.

Now, let us suppose that K is a number field. If h = ∑I cIX
I , let ch = (cI)I be the projective point defined by

the coordinates of h. Following the proof of Proposition 2.2, we find a non-zero scalar λ ∈ OK such that (λcI)I
satisfies the conditions of Proposition 2.2. Thus, we get∏v∈MK,fin

∣λh∣v ≥ c3. Since the polynomial height is invariant

under multiplication by scalars, we get H(g) =H(λg) =H(f(λh)). Hence, after multiplication by a scalar, we may
suppose that g = fh with h ∈ OK[X0, . . . ,Xn+1] satisfying
(5.12) ∏

v∈MK,fin

∣h∣v ≥ c3.
Let W be the greatest monomial (in right to left lexicographical order) appearing in h with non-zero coefficient and
let w its coefficient. Then the monomial WXd

n+1 appears in g with cfw as its coefficient, where cf is the coefficient

of Xd
n+1 in f . By Gauss’ lemma (see [2, Lemma 1.6.3]), it holds

(5.13) H(g) =H(fh) = ∏
v∈MK

∣fh∣v = ∏
v∈MK,fin

∣f ∣v ∏
v∈MK,fin

∣h∣v ∏
v∈MK,∞

∣fh∣v.
Now we bound ∣fh∣v for any infinite place v. Since WXd

n+1 appears in g with coefficient cfw, from Assumption 5.4
we have

(5.14) ∏
v∈MK,∞

∣fh∣v ≥ ∏
v∈MK,∞

∣cfw∣v ≥ C−nd1+ 1
n ∏

v∈MK,∞

∣f ∣v ∏
v∈MK,∞

∣w∣v .
Moreover, if given v ∈MK,∞, we let σv be the embedding corresponding to v, then

∏
v∈MK,∞

∣w∣v = ∏
v real

∣σv(x)∣ 1
dK ∏

v complex

∣σv(x)∣ 2
dK = (∏

σ

∣σ(w)∣)
1

dK

≥ 1

where the last inequality is because w is an algebraic integer and ∏σ σ(w) is the constant term of the minimal
polynomial of w. Thus from (5.14) it follows

(5.15) ∏
v∈MK,∞

∣fh∣v ≥ C−nd1+ 1
n ∏

v∈MK,∞

∣f ∣v.
Using inequalities (5.12) and (5.15) in (5.13) we deduce

(5.16) H(g) ≥ c3C−nd1+ 1
n ∏

v∈MK

∣f ∣v = c3C−nd1+ 1
n
H(f).

Thus, from (5.16), after relabelling C, the claim follows. ◻

Multiplying (5.8) by NK(∆) and using Claim 5.7 it follows that

(5.17) (C−nd1+ 1
n
HK(f))r−sNK(∆) ≤ C(K)(r−s)c̃1Mss!

dK
2 r

dKs

2 BMs.
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Now we take logarithm in (5.17). By Theorem 3.20, there is some non-zero ideal I, relative prime with all the
primes lying in PX , such that J ∣∆, and

(5.18) log(NK(I)) ≥ n!
1
n

n + 1
s1+

1
n (log(s) −On,K(1)− n(log(β) +max{log(log(NK(q))),0} + log b(f))).

Recall that given i ∈ {1, . . . , u}, Pi is a non-singular Fpi
-point on Xpi

. So, by Lemma 3.14, there exists a non-

negative Ni = n!
1
n

n
n+1

s1+
1
n−On(s) such that pNi

i ∣∆. Hence, if we set I′ ∶= ∏u
i=1 p

Ni

i , then I′∣∆, it is relative prime
with I, and

(5.19) log(NK(I′)) = n! 1
n

n

n + 1
s1+

1
n log(NK(q)) +On(s log(NK(q))).

On the one hand, bounding log(NK(∆)) by means of (5.18) and (5.19), the logarithm of the left hand side of
(5.17) has as lower bound

n!
1
n

n + 1
s1+

1
n (log(s) + n log(NK(q))−On,K(1)− n(log(β) +max{log(log(NK(q))),0} + log b(f)))(5.20)

−On(s log(NK(q))) + (r − s) log(HK(f))− (r − s)nd1+ 1
n log(C).

On the other hand, the logarithm of the right hand side of (5.17) is

(5.21) (r − s) log(C(K)) +Ms log(c̃1) + dK
2

log(s!) +Ms log(B) + sdK
2

log(r).
Since log(s!) ≤ s log(s), r = ∣B[M]∣ = (M+n+1

n+1
) ≤ (M + 1)n+1 and M ≳ d, by (5.5) it holds log(r) ≲n log(M) ≲n

log(s), and so the terms dK

2
log(s!) and sdK

2
log(r) are majorized by s1+

1
n . Replacing (5.20) and (5.21) in (5.17)

gives

n!
1
n

n + 1
s1+

1
n (log(s) + n log(NK(q)) −On,K(1) − n(log(β) +max{log(log(NK(q))),0} + log b(f)))

(5.22)

≤Ms log(c̃1) +Ms log(B) − (r − s) log(HK(f))+ (r − s) log(CK) + (r − s)nd1+ 1
n log(C) +On(s log(NK(q))).

We will now estimate the right hand side of (5.22). By (5.1), M ≳ d2 and this implies

r − s = ∣B[M − d]∣ = (M − d + n + 1
n + 1

) = Mn+1

(n + 1)! +On(dMn),
hence from (5.4) we obtain

(5.23)
r − s
Ms

=

1
(n+1)! +On(dM−1)
d
n!
+On(d2M−1) =

1

d(n + 1)
1 +On(dM−1)
1 +On(dM−1) =

1

d(n + 1) +On ( 1

M
) .

Since log(c̃1) and d
1
n n

n+1
log(C) are majorized by d

1
n n

n+1
On,K(1), and since by (5.1), M ≳ log(NK(q)), using (5.23) and

that M ≳ d2 ≳ d1+
1
n , the quotient by Ms of the right hand side of (5.22) is equal to

log(c̃1) + log(B) − ( 1

d(n + 1) +On ( 1

M
)) log(HK(f)) + ( 1

d(n + 1) +On ( 1

M
))nd1+ 1

n log(C)(5.24)

+On ( 1

M
log(NK(q))) = log(B) − ( 1

d(n + 1) +On ( 1

M
)) log(HK(f))+ d

1
nn

n + 1
On,K(1).

We will now estimate the left hand side of (5.22). Using the inequalities (5.5) and (5.6) the quotient by Ms in
the left hand side of (5.22) is equal to
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n!
1
n

n + 1
( d 1

n

n!
1
n

+On ( d2
M
))( log(s) + n log(NK(q)) +On,K(1) − n(log(β) +max{log(log(NK(q))),0} + log(b(f))))

(5.25)

=
d

1
nn

n + 1
(1 +On (d2−

1
n

M
))( log(M) + 1

n
log(d) + log(NK(q)) +On,K(1) − log(β) −max{log(log(NK(q))),0} − log(b(f)))

=
d

1
nn

n + 1
(log(M)+ log(NK(q)) − log(βd− 1

n ) +On,K(1) − (1 +On (d2−
1
n

M
)) log(b(f))−max{log(log(NK(q))),0}) ,

where the termsOn(d2− 1
n

M
log(M)), On(d2− 1

n

M
log(NK(q))), On(d2− 1

n

M
max{log(log(NK(q))),0}), andOn(d2− 1

n

M
log(d))

were merged in the term On,K(1).
Replacing the inequalities (5.24) and (5.25) in (5.22) gives

d
1
nn

n + 1
⎛
⎝ log(M) + log(NK(q))− log(βd− 1

n ) −On,K(1)− (On (d2−
1
n

M
) + 1) log(b(f))−max{log(log(NK(q))),0}⎞⎠

(5.26)

≤ log(B) − ( 1

d(n + 1) +On ( 1

M
)) log(HK(f)).

The leading term in the right hand side (5.26) depends on the size of HK(f). In the case when HK(f) is small,

namely HK(f) ≤ B2d(n+1), we use (5.1) to bound M ≥ d1−
1
n log(B). From this it follows

log(HK(f))
M

≤
2d(n + 1) log(B)

M
≲n d

1
n .

Assumption 5.4(2) and Lemma 3.23 yield

(5.27) b(f) ≲K,n max{d[−2, 43 ,− 8
3
,2] log(HK(f)),1}.

Then it holds that d2−
1
n

log(b(f))
M

≲K,n 1, hence in (5.26) the terms OK,n ( log(HK(f))
M

) and On (d2− 1
n

log(b(f))
M

) can
be merged in the term On,K(1). Then, rearranging (5.26), we obtain

log(M) ≤(n + 1)
nd

1
n

log(B) − log(NK(q)) − log(HK(f))
d1+

1
nn

+ log(βd− 1
n ) +On,K(1) + log(b(f))+max{log(log(NK(q))),0}.

Hence we reach a contradiction if the implicit constant in (5.1) is large enough.

In the case when HK(f) is large, namely HK(f) ≥ B2d(n+1), let us take the implicit constant in (5.1) large

enough such that On( log(HK(f))
M

) is bounded by log(HK(f))
4d(n+1) . Then the right hand side of (5.26) is

log(B) − log(HK(f))
d(n + 1) −On ( log(HK(f))

M
) ≤ − log(HK(f))

2d(n + 1) +
log(HK(f))
4d(n + 1) ≤ −

log(HK(f))
4d(n + 1) .

Recalling that by (5.1), M ≳ d2, we conclude that O(d2− 1
n

M
) = O(d− 1

n ). Then, rearranging (5.26) we obtain

log(M) ≤On,K(1)+ log(βd− 1
n ) − log(NK(q))+ (1 +On(d− 1

n )) log(b(f))(5.28)

+max{log(log(NK(q))),0} − log(HK(f))
4nd1+

1
n

.



28 M. PAREDES, R. SASYK

By (5.27),

On(1) log(b(f))− log(HK(f))
4nd1+

1
n

≤ On,K(1) log(max{d[−2, 43 ,− 8
3
,2] log(HK(f)),1})− log(HK(f))

4nd1+
1
n

(5.29)

≤ On,K(1)max{log log(HK(f)) + [−2, 4
3
,−

8

3
,2] log(d),0} − log(HK(f))

4nd1+
1
n

≤max{0, [−2, 4
3
,−

8

3
,2] log(d) +On,K(1) log log(HK(f)) − log(HK(f))

4nd1+
1
n

}
≤max{0, [−2, 4

3
,−

8

3
,2] log(d) + (1 + 1

n
) log(d) +On,K(1)} .

In the last line, we used that given c > 0, for any x > 1 we have log log(x)− log(x)
c
≤ log(c)+O(1) (see [11, Lemma

3.3.5]). Using (5.29) in (5.28) we get

log(M) ≤ On,K(1) + log(βd− 1
n ) − log(NK(q)) +max{log(log(NK(q))),0}

+max{0,([−1, 7
3
,−

5

3
,3] + 1

n
) log(d) +On,K(1)}

≤ On,K(1) +max{log (βd− 1
n ) , log(βd[−1, 73 ,− 5

3
,3]) +On,K(1)} − log(NK(q))+max{log(log(NK(q))),0}.

Hence if the implicit constant in (5.1) is large enough, we arrive at a contradiction. ◻

Proof of Theorem 5.2. By Remark 5.3, we may assume that f is absolutely irreducible. Then, by Remark 3.15, we
may assume, after multiplication by a non-zero scalar in OK that f satisfies conditions (1) and (2) in Assumption
5.4. This is enough to conclude the proof in the function field case.

For number fields, we use Proposition 4.2 to find integers a0, . . . , an with 0 ≤ ai ≤ d and an unit ε ∈ O×K such
that f1(X0, . . . ,Xn,Xn+1) ∶= εf(X0 − a0Xn+1, . . . ,Xn − anXn+1,Xn+1) satisfies all the conditions in Assumption
5.4. For each i ∈ {1, . . . , u}, let P ′i be the image of Pi under the linear transformation (x0, . . . , xn+1) ↦ (x0 +
a0xn+1, . . . , xn − anxn+1, xn+1); it is a non-singular Fpi

-rational point on Z(f1)p. Then we can apply Theorem 5.2
to f1 and P ′1, . . . , P

′
u to conclude that for any B′ ≥ 1 there exists a homogeneous polynomial g1 ∈ OK[X0, . . . ,Xn+1]

of degree

M ≲K,nB
′

n+1

nd
1
n
d[4,

14
3
, 14

3
,0]− 1

n b(f1)max{log(NK(q)),1}
NK(q)HK(f1) 1

n
1

d
1+ 1

n

+ d1−
1
n log(B′NK(q))+ d2− 1

n log(NK(q))(5.30)

+ d[4−
1
n
,7, 14

3
− 1

n
,3] (max{log(NK(q)),1}NK(q) + 1) ,

not divisible by f1, which vanishes on Z(f1)(K,B′;P ′1, . . . , P ′u). Thus, g ∶= g1(X0+a0Xn+1, . . . ,Xn+anXn+1,Xn+1)
is a polynomial of degree at most M , vanishing on X(K, B′

(2d)dK ;P1, . . . , Pu). Indeed, if L(X0, . . . ,Xn+1) ∶= (X0 −
a0Xn+1, . . . ,Xn − anXn+1,Xn+1), by (2.4), it holds

HK(L(x0 ∶ . . . ∶ xn+1)) ≤ (2d)dKHK(x0 ∶ . . . ∶ xn+1).
Take B′ = (2d)dKB. By Proposition 4.2, f1 verifies b(f) = b(f1) and HK(f) ≤ C′d1+ 1

nHK(f1). Replacing this in
(5.30), it follows that M verifies the bound on the statement of the theorem. ◻

As a consequence of Theorem 5.2, Lemma 3.23, Remark 3.15, and Bézout’s theorem, we generalize [46, Theorem
1.2], [11, Corollary 3.1.2] and [45, Theorem 1.1]:

Corollary 5.8. LetK be a global field of degree dK . For any irreducible homogeneous polynomial f ∈ OK[X0,X1,X2]
of degree d and for any B ≥ 1, if Z(f) ⊆ P2

K is the corresponding curve, it holds

N(Z(f),K,B) ≲K B
2
d
d[4,

14
3
, 14

3
,0]b(f)

HK(f) 1

d2

+ d log(B) + d[4,8, 143 ,4] ≲K d[4,8,
14
3
,4]B

2
d .
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Now we are in position to prove Theorem 1.8 of the introduction by extending Corollary 5.8 to general curves
using a projection argument. This is accomplished by means of an effective change of variables, as in [31]. The
approach presented here differs from the one given in [11, §5].

Theorem 5.9. Let K be a global field of degree dK . Given n > 1, for any integral projective curve C ⊆ Pn
K of degree

d it holds
N(C,K,B) ≲K,n d

[4,8, 14
3
,4]B

2
d .

Proof. We are going to reduce Theorem 5.9 to the case of a planar curve, by means of an adequate change of
variables, as in [31]. More specifically, by the method of the proof of [31, Theorem 4.3] there exists linear forms
L0, L1, L2 ∈ OK[X0, . . . ,Xn] of height bounded by ≲

k,n d
n−2 such that ϕ ∶ C → P2 given by ϕ(x) ∶= (L0(x) ∶ L1(x) ∶

L2(x)) is a finite morphism with fibres of size at most d and ϕ(C) is a geometrically integral projective curve
defined over K of degree deg(ϕ(C)) ≤ d. Furthermore, by (2.4), any point x ∈ C(K) of K-relative height at most
B verifies HK(ϕ(x)) ≲k,n dn−2HK(x) ≲k,n dn−2B. Hence, there is some constant c = c(K,n) such that it holds

(5.31) N(C,K,B) ≤ dN(ϕ(C),K, cdn−2B).
By Corollary 5.8, we have

(5.32) N(ϕ(C),K, cdn−2B) ≲K,n d
[4,8, 14

3
,4] (cdn−2B) 2

d ≲K,n d
[4,8, 14

3
,4]B

2
d .

The conclusion of Theorem 5.9 follows from (5.31) and (5.32). ◻

Remark 5.10. By Remark 5.3 and Bézout’s theorem, if f ∈ OK[X0,X1,X2] is irreducible but not absolutely
irreducible, we have N(Z(f),K,B) ≤ d2. In consequence, the argument of the proof of Theorem 5.9 shows that for
any integral projective curve C ⊆ Pn

K of degree d, which is not geometrically irreducible, it holds N(C,K,B) ≤ d2.
5.2. The affine case. In Theorem 5.2 we found a hypersurface of small degree vanishing on the rational points up
to height B of a given projective hypersurface X . Now we will obtain a similar result in the affine case. For this
purpose, given a number field K, for any x ∈ OK we define

x ∶= max
σ∶K↪C

∣σ(x)∣,
and [B]OK

∶= {x ∈ OK ∶ x ≤ B
1

dK }.
When K is a function field, we define

[B]OK
∶= {x ∈ OK ∶ ∣x∣v∞ ≤ B 1

dK }.
Remark 5.11. The previous definition is to ensure that given x ∈ Pn+1(K) with HK(x) ≤ B, by Proposition 2.2 it
follows that x has a lift (y1, . . . , yn+2) ∈ An+2(K) which lies in the box [c1B]n+2OK

.

Similarly to the projective case, for any X ⊆ An
K affine variety, given B ∈ R>0 we will use the notation

Xaff(OK ,B) ∶=X(K)∩ [B]nOK
,

Moreover, if {p1, . . . ,pu} is a subset of primes such that for all 1 ≤ i ≤ u we let Pi be a non-singular Fpi
-point on

Xpi
, we denote

Xaff(OK ,B;P1, . . . , Pu) ∶= {x ∈ Xaff(OK ,B) ∶ x specialises to Pi in Xpi
for all i}.

We denote
Naff(X,OK ,B) ∶= ∣Xaff(OK ,B)∣.

We need the next application of the bound of Bombieri and Vaaler presented in Corollary 2.5, which will be
useful also in Lemma 6.1 and Lemma 6.2. A variant of this for K = Q and K = Fq(T ) can be found in [24, Theorem
4] and [45, Lemma 3.5] with different proofs.
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Lemma 5.12. Let f ∈ OK[X1, . . . ,Xn+2] be a homogeneous polynomial of degree d.

(1) Let B ≥ 1. Then, either HK,aff(f) ≲K (d+n+1n+1
)dK(d+n+1n+1 )

Bd(d+n+1
n+1 ) or there exists a homogeneous polynomial g

of degree d, vanishing on all Z(f)aff(OK ,B), and not divisible by f ;

(2) Let B ≥ 1. Then, either HK,aff(f) ≲K (d+n+1n+1
)dK(d+n+1n+1 )Bd(d+n+1

n+1 ), or there exists a homogeneous polynomial

g of degree d, vanishing on all {x = (x1, . . . , xn+2) ∈ [B]n+2OK
∶ x1 = 1 and f(1, x2, . . . , xn+2) = 0}, and not

divisible by f .

Proof. Let R ∶= (d+n+1
n+1
) and let x(1), . . . ,x(N) ∈ Z(f)aff(OK ,B). Consider the N × R matrix M whose ith row

consists of the R possible monomials of degree d in the variables X1, . . . ,Xn+2 evaluated in x(i). We have

HK(M) ≤ ⎛⎝ ∏v∈MK,∞

max
i,j
{1, ∣Mij ∣v}⎞⎠

dK

≤ Bd.

Denoting by f the vector in On+2
K consisting of the coefficients of f , it holds Mf = 0. Since f ≠ 0, the matrix M

must have rank at most R − 1. Hence, by Corollary 2.5 the linear system Mg has a non-zero g ∈ OR
K verifying

HK,aff(g) ≤ C(K)(R dK
2 HK(M))

rank(M)
R−rank(M)

≤ C(K)(d + n + 1
n + 1

)dK(d+n+1n+1 )
Bd(d+n+1

n+1 ).

Let g ∈ OK[X1, . . . ,Xn+2] be the polynomial of degree d corresponding to g. Then, either f divides g, in which

case HK(f) = HK(g) = HK(g) ≤ HK,aff(g) ≤ (d+n+1n+1
)dK(d+n+1n+1 )

Bd(d+n+1
n+1 ), or g is a non-zero homogeneous polynomial

of degree d, not divisible by f and vanishing on all Z(f)aff(OK ,B). This proves Lemma 5.12(1). The proof of
Lemma 5.12(2) is analogous. ◻

Lemma 5.13. Let K be a global field of degree dK . Let f = ∑I aIX
I
∈ OK[X1, . . . ,Xn+2] be an absolutely irreducible

homogeneous polynomial of degree d. If we let 1 ≤ y ≤HK,aff(f) then
d[4,

14
3
, 14

3
,0]− 1

n
b(f)

HK,aff(f) 1
n

1

d
1+ 1

n

≲n,K d[2,6,2,2]−
1
n
log(y)+ d[2,1+ 1

n
, 8
3
,1+ 1

n
]

y
1
n

1

d
1+ 1

n

.

Proof. The proof is similar to the one of [11, Lemma 4.2.3 ] for number fields, and to the one of [45, Lemma 3.4]
for function fields, but instead of using [11, Corollary 3.2.3] or [45, Lemma 2.3] one uses Lemma 3.23. ◻

Now we use Lemma 5.12(1) and Lemma 5.13 to prove the following generalization of [11, Proposition 4.2.1] and
[45, Lemma 3.6]:

Theorem 5.14. Let K be a global field of degree dK . Let n > 0 be an integer. Let X ⊆ An+1
K be an integral

hypersurface of degree d > 0, defined by an irreducible polynomial f ∈ OK[X1, . . . ,Xn+1] of degree d. For each i

write fi for the degree i homogeneous part of f . Let {p1, . . . ,pu} be (a possibly empty) subset of primes and Pi be a
non-singular Fpi

-point on Xpi
for each i ∈ {1, . . . , u}. Set q ∶=∏u

i=1 pi if u ≥ 1 and q = (1) if u = 0. Fix B ≥ 1. Then
there is a polynomial g ∈ OK[X1, . . . ,Xn+1] of degree

M ≲K,nB
1

d
1
n d[2,6,2,2]−

1
n
min{log(HK(fd)) + d log(B) + d[2,1+ 1

n
, 8
3
,1+ 1

n
], d[2,−

4
3
, 8
3
,−2]b(f)}max{log(NK(q)),1}

HK(fd) 1
n

1

d
1+ 1

n NK(q)
+ d1−

1
n log(BNK(q)) + d2− 1

n log(NK(q)) + d[4− 1
n
,7, 14

3
− 1

n
,3] (max{log(NK(q)),1}NK(q) + 1) ,

not divisible by f , and vanishing on all Xaff(OK ,B;P1, . . . , Pu).
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Proof. The proof follows the strategy devised in [17, Remark 2.3] and developed in [11, Proposition 4.2.1]. Recall
that k denotes the field Q if K is a number field, or Fq(T ) if K is a function field. By Remark 5.3 and Remark

3.15, we may assume, after multiplication by a non-zero scalar in OK that f = ∑I aIX
I is absolutely irreducible

and it is p-primitive for any prime p of OK with NK(p) > c2, and HK,aff(f) ≤ cdK

1 HK(f).
For each L ∈ O

k

we consider the polynomial FL ∈ OK[X1, . . . ,Xn+2] given by FL(X1, . . . ,Xn+2) ∶= ∑d
i=0L

ifiX
d−i
n+2.

Then FL is an absolutely irreducible homogeneous polynomial of degree d. Furthermore, if we denote by XL the
projective hypersurface in Pn+1

K of degree d defined by FL, we see that each point (x1, . . . , xn+1) ∈ X(OK) gives a
K-rational point (x1, . . . , xn+1, L) in XL. Given 1 ≤ i ≤ u, we denote P̃i ∶= (Pi, L) ∈ (XL)pi

(Fpi
). If pi /∣ L, then we

see that P̃i is a non-singular Fpi
-point on (XL)pi

.
Observe that given a subset of On+1

K of size ≲K 1, there exists a g ∈ OK[X1, . . . ,Xn+1] of degree ≲K,n 1 vanishing
on it which is not divisible by f . Applying this to the subset [B]n+1OK

with B ≲K 1, we see that it is enough to prove
Theorem 5.14 when B ≳K 1.

Let P ′ be the subset of primes L ∈ O
k

with H
k

(L) ∈ [(B
2
) 1

dK ,B
1

dK ] such that q =∏u
i=1 pi has no common prime

factor with L. Let us see that if

(5.33) ∑
L∈P ′

log(N
k

(L)) ≤ 1

4
B

1
dK ,

then ∣Xaff(OK ,B;P1, . . . , Pu)∣ ≲K 1. Indeed, by Bertrand’s postulate (2.14) and (5.33) it follows that for B ≳
k

1

(5.34) ∑
L prime in O

k

/P ′

H
k

(L)∈[(B
2
)

1
dK ,B

1
dK ]

log(N
k

(L)) ≥ 1

4
B

1
dK .

By the definition of P ′, for any prime L in O
k

/P ′ such that H
k

(L) ∈ [(B
2
) 1

dK ,B
1

dK ], we choose one pL∣q such that

pL∣L. Then NK(pL) = Nk(L)fpL ≥ N
k

(L), where fpL
is the inertia index of pL above L. Hence, if P ′′ ∶= {pL ∶

L prime in O
k

/P ′,H
k

(L) ∈ [(B
2
) 1

dK ,B
1

dK ]} then
(5.35) ∑

pL∈P ′′
log(NK(pL)) ≥ 1

4
B

1
dK .

Furthermore, for any pL ∈ P ′′, since pL∣q, from the definition of the subset Xaff(OK ,B;P1, . . . , Pu) it holds that
all x ∈ Xaff(OK ,B;P1, . . . , Pu) reduces modulo pL to the same point in FpL

. In consequence, if Xj is the image of
Xaff(OK ,B;P1, . . . , Pu) under the projection on the j-th coordinate, for any pair of distinct elements x, y ∈ Xj it
holds that x ≡ y mod(pL), i.e pL∣x − y. Thus, ∏pL∈P ′′ pL∣x − y. This and (2.5) imply the bound

(5.36) ∏
pL∈P ′′

NK(pL) ≤NK(x − y) ≤HK(x − y) for all x ≠ y, x, y ∈Xj .

Since x, y ∈ [B]OK
, if K is a number field then the bound ∣x − y∣v ≤ 2 nv

dK B
nv

d2
K holds for all v ∈MK,∞, and if K is a

function field it holds ∣x − y∣v∞ ≤max{∣x∣v∞ , ∣y∣v∞} ≤ B 1
dK . Then (5.36) implies

(5.37) ∏
pL∈P ′′

NK(pL) ≤HK(x − y) = ⎛⎝ ∏v∈MK,∞

max{1, ∣x − y∣v}⎞⎠
dK

≤ 2dKB for all x ≠ y, x, y ∈Xj .

Taking logarithms in (5.37) and using (5.35) we conclude the bound

1

4
B

1
dK ≤ ∑

pL∈P ′′
log(NK(pL)) ≤ dK log(2) + log(B) for all x ≠ y, x, y ∈ Xj,

which clearly can not hold if B is large enough. Thus, for B ≳K 1 we have ∣Xj ∣ = 1 for all j, and in particular

∣Xaff(OK ,B;P1, . . . , Pu)∣ ≤ 1. Hence, for B ≳K 1 if ∑L∈P ′ log(Nk(L)) ≤ 1
4
B

1
dK there exists g ∈ OK[X1, . . . ,Xn+1] of

degree ≲K 1 vanishing on Xaff(OK ,B;P1, . . . , Pu) which is not divisible by f .
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Then, we may suppose that

(5.38) ∑
L∈P ′

log(N
k

(L)) ≥ 1

4
B

1
dK .

We will split the rest of the proof in two cases: when there exists L ∈ P ′ for which L /∣ f0 and when for all L ∈ P ′,
L∣f0.

In the first case, FL is p-primitive for all primes of norm at least c2. Moreover, for all i, P̃i is a non-singular
Fpi

-point on (XL)pi
. We apply Theorem 5.2 to FL to find a homogeneous polynomial GL ∈ OK[X1, . . . ,Xn+2] of

degree

M ≲K,nB
n+1

nd
1
n
d[4,

14
3
, 14

3
,0]− 1

n b(FL)max{log(NK(q)),1}
HK(FL) 1

n
1

d
1+ 1

n NK(q)
+ d1−

1
n log(BNK(q))(5.39)

+ d[4−
1
n
,7, 14

3
− 1

n
,3] (max{log(NK(q)),1}NK(q) + 1) ,

not divisible by FL, and vanishing on all XL(K,B; P̃1, . . . P̃u). By Remark 3.15, there exists λ ∈ O×K such that

HK,aff(λFL) ≤ cdK

1 HK(FL). Since b(FL) = b(λFL), inequality (5.39) gives

M ≲K,nB
n+1

nd
1
n
d[4,

14
3
, 14

3
,0]− 1

n b(λFL)max{log(NK(q)),1}
HK,aff(λFL) 1

n
1

d
1+ 1

n NK(q)
+ d1−

1
n log(BNK(q))(5.40)

+ d[4−
1
n
,7, 14

3
− 1

n
,3] (max{log(NK(q)),1}NK(q) + 1) .

From the definition of FL we see that for all v ∈MK it holds

∣λFL∣v =max
i
∣λLifiX

d−i
n+2∣v ≥ ∣λLdfd∣v = ∣λ∣v ∣Ld∣v ∣fd∣v.

Then

HK,aff(λFL) = ⎛⎝ ∏v∈MK,∞

max{1, ∣λFL∣v}⎞⎠
dK

≥
⎛
⎝ ∏v∈MK,∞

∣λ∣v ∣Ld∣v ∣fd∣v⎞⎠
dK

≥HK(Ld)HK(fd) ≥ Bd

2d
HK(fd).(5.41)

Hence, from Lemma 5.13 we have the bound

d[4,
14
3
, 14

3
,0]− 1

n
b(λFL)

HK,aff(λFL) 1
n

1

d
1+ 1

n

≲n,K (B
2
)−

1

nd
1
n
d[2,6,2,2]−

1
n
log(HK(fd)) + d log(B) + d[2,1+ 1

n
, 8
3
,1+ 1

n
]

HK(fd) 1
n

1

d
1+ 1

n

Replacing this on the first summand on the right hand side of (5.40), it follows that this summand is at most

(5.42) ≲n,K B
1

d
1
n d[2,6,2,2]−

1
n
(log(HK(fd)) + d log(B) + d[2,1+ 1

n
, 8
3
,1+ 1

n
])max{log(NK(q)),1}

HK(fd) 1
n

1

d
1+ 1

n NK(q)
.

On the other hand, since the reduction modulo p of FL for all primes p not dividing L is absolutely irreducible
whenever f is so, and the number of primes in OK dividing L is at most dK , it follows from Definition 3.18 that
b(FL) coincides with b(f) up to a factor OK(1).

This and (5.41) give that the first summand on the right hand side (5.40) is bounded by

(5.43) B
1

d
1
n d[4,

14
3
, 14

3
,0]− 1

n
b(f)max{log(NK(q)),1}
HK(fd) 1

n
1

d
1+ 1

n NK(q)
.

By inequalities (5.42) and (5.43), it follows that the polynomial GL has degree at most
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M ≲K,nB
1

d
1
n d[2,6,2,2]−

1
n
min{log(HK(fd)) + d log(B) + d[2,1+ 1

n
, 8
3
,1+ 1

n
], d[2,−

4
3
, 8
3
,−2]b(f)}max{log(NK(q)),1}

HK(fd) 1
n

1

d
1+ 1

n NK(q)
(5.44)

+ d1−
1
n log(BNK(q)) + d[4− 1

n
,7, 14

3
− 1

n
,3] (max{log(NK(q)),1}NK(q) + 1) .

Thus the polynomial g(X1, . . . ,Xn+1) ∶= GL(X1, . . . ,Xn+1, L) has degree bounded by the right hand side of
(5.44), it is not divisible by f and it vanishes on the subset

A ∶= {x ∈ Z(f)∩On+1
K ∶ x specialises to Pi for all i and HK(x ∶ L) ≤ B} .

Now we will see that Z(f)aff(OK ,B;P1, . . . , Pu) is contained in A. For that, it is enough to see that for x ∈ [B]n+1OK
,

it holds HK(x ∶ L) ≤ B. In the case when K is a number field, for any v ∈MK,∞, ∣L∣v = ∣L∣ nv
dK
∞ ≤ B

nv

d2
K . Then, for all(x1, . . . , xn+1) ∈ [B]n+1OK

, we have

HK(x1 ∶ . . . ∶ xn+1 ∶ L) = ⎛⎝ ∏v∈MK

max
i
{∣xi∣v, ∣L∣v}⎞⎠

dK

≤
⎛
⎝ ∏v∈MK,∞

max
i
{∣σv(xi)∣ nv

dK ,B
nv

d2
K }⎞⎠

dK

≤
⎛
⎝ ∏v∈MK,∞

B
nv

d2
K

⎞
⎠
dK

= B.

(5.45)

In the case when K is a function field, since v∞ was chosen above the place ∣ ⋅ ∣∞, it holds ∣L∣v∞ = ∣L∣
nv∞
dK
∞ ≤ B

nv∞
d2
K ≤

B
1

dK , where nv∞ is the degree of the finite extension Kv∞/k∞, with Kv∞ and k∞ the completions of K and k with
respect to v∞ and ∣ ⋅ ∣∞, respectively. Then, for all (x1, . . . , xn+1) ∈ [B]n+1OK

, we have

(5.46) HK(x1 ∶ . . . ∶ xn+1 ∶ L) = ⎛⎝ ∏v∈MK

max
i
{∣xi∣v, ∣L∣v}⎞⎠

dK

≤ (max{∣xi∣v∞ ,B 1
dK })dK

≤ B.

This ends the proof in the case when there exists a prime element L ∈ P ′ verifying that L /∣ f0.
Now we must deal with the other case, namely, when ∏

L∈P ′
L ∣f0. If f0 ≠ 0, using (2.5) we deduce

∑
L∈P ′

log(NK(L)) = dK ∑
L∈P ′

log(L) ≤ log(NK(f0)) ≤ log(HK(f0)).
Since

HK(f0) ≤HK,aff(f0) = (∏
v

max{1, ∣f0∣v})
dK

≤ (∏
v

max
i
{1, ∣fi∣v})

dK

=HK,aff(f),
we deduce

(5.47) dK ∑
L∈P ′

log(L) ≤ log(HK,aff(f)).
Now, if HK,aff(f) ≳K (d+n+1n+1

)dK(d+n+1n+1 )Bd(d+n+1
n+1 ), we are done by Lemma 5.12(1). Otherwise, by (5.47) we get

dK ∑
L∈P ′

log(L) ≤ dK(d + n + 1
n + 1

) log((d + n + 1
n + 1

)) + d(d + n + 1
n + 1

) log(B) +OK(1).
By (5.38) there exists a constant c depending only on k, such that

(5.48) dKcB
1

dK ≤ d(d + n + 1
n + 1

) log(B) + dK(d + n + 1
n + 1

) log((d + n + 1
n + 1

)) +OK(1).
From (5.48) it follows that B is bounded by a polynomial in d, and hence B

1

nd
1
n ≲n,K 1.

Let us take L = 1 and consider the polynomial F1. Then Theorem 5.2 for F1 gives a homogeneous polynomial
G1 ∈ OK[X1, . . . ,Xn+2] of degree
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M ≲K,nB
1

d
1
n d[4,

14
3
, 14

3
,0]− 1

n
b(F1)max{log(NK(q)),1}
HK(F1) 1

n
1

d
1+ 1

n NK(q)
+ d1−

1
n log(BNK(q))(5.49)

+ d[4−
1
n
,7, 14

3
− 1

n
,3] (max{log(NK(q)),1}

NK(q) + 1) ,
not divisible by F1, and vanishing on all X1(K,B; P̃1, . . . , P̃u). Now we use Remark 3.15 to find λ ∈ O×K such that

HK,aff(λF1) ≤ cdK

1 HK(F1). The same argument used to prove inequality (5.41) gives HK,aff(λF1) ≥HK(fd). This,
together with the fact that b(F1) = b(f), Lemma 3.23 and Lemma 5.13 allows us to conclude the bound

(5.50) d[4,
14
3
, 14

3
,0]− 1

n
b(λF1)

HK,aff(λF1) 1
n

1

d
1+ 1

n

≲n,K d[2,6,2,2]−
1
n
min{logHK(fd) + d[2,1+ 1

n
, 8
3
,1+ 1

n
], d[2,−

4
3
, 8
3
,−2]b(f)}

HK(fd) 1
n

1

d
1+ 1

n

.

From (5.45) and (5.46) with L = 1, and from (5.49) and (5.50), it follows that g(X1, . . . ,Xn+1) ∶= G1(X1, . . . ,Xn+1,1)
verifies the conclusion of Theorem 5.14.

In order to finish the proof of Theorem 5.14, it remains to cover the case when f0 = 0, namely f(0) = 0. By the
Combinatorial nullstellensatz (see [1, Theorem 1.2]), we may find A = (a1, . . . , an+1) ∈ On+1

k

with f(a1, . . . , an+1) ≠ 0
and H

k

(ai) ≤ d for all 1 ≤ i ≤ n + 1. Let us consider the polynomial f̃(X) ∶= f(X +A); we see that f̃(0) ≠ 0,

HK(fd) =HK(f̃d), and b(f̃) = b(f). Thus, reasoning as in the two previous cases with f̃ in place of f and B̃ = B+d
in place of B we obtain a polynomial g̃ ∈ OK[X1, . . . ,Xn+1] of degree

M ∼K,nB̃
1

d
1
n d[2,6,2,2]−

1
n
min{log(HK(fd)) + d log(B̃) + d[2,1+ 1

n
, 8
3
,1+ 1

n
], d[2,−

4
3
, 8
3
,−2]b(f)}max{log(NK(q)),1}

HK(fd) 1
n

1

d
1+ 1

n NK(q)
+ d1−

1
n log(B̃NK(q)) + d[4− 1

n
,7, 14

3
− 1

n
,3] (max{log(NK(q)),1}

NK(q) + 1) ,
not divisible by f̃ , and vanishing on Z(f̃)aff(OK , B̃;P1, . . . , Pu). Then g(X) = g̃(X −A) verifies the conclusion of
Theorem 5.14. ◻

As a consequence of Theorem 5.14, Bézout’s theorem, and the estimate log(HK(fd))
HK(fd)

1

d2
≲ d2, we get the next

improvement of the bounds of Bombieri and Pila.

Corollary 5.15. Let K be a global field of degree dK . For any irreducible polynomial f ∈ OK[X1,X2] of degree d
and any B ≥ 1, if Z(f) ⊆ A2

K denotes the corresponding curve, it holds

Naff(Z(f),OK ,B) ≲K B
1
d
min{d[2,6,2,2] log(HK(fd)) + d[3,7,3,3] log(B) + d[4,8, 143 ,4], d[4,

14
3
, 14

3
,0]b(f)}

HK(fd) 1

d2

+ d log(B) + d[4,8, 143 ,4] ≲K d[3,7,3,3]B
1
d (log(B) + d[1,1, 53 ,1]).

Now we are in position to prove Theorem 1.9 of the introduction by extending Corollary 5.15 to general curves
using a projection argument. This is accomplished by means of an effective change of variables, as in [31].

We also have:

Theorem 5.16. Let K be a global field of degree dK . Given n > 1, for any integral curve C ⊆ An
K of degree d, it

holds

Naff(C,OK ,B) ≲K,n d
[3,7,3,3]B

1
d (log(B) + d[1,1, 53 ,1]).
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Proof. We argue as in the proof of Theorem 5.9, first reducing Theorem 5.16 to the case of a planar curve and then
we apply Corollary 5.15. We remark that the change of variables in [31, Theorem 4.3] works in the affine setting,

namely one takes the projective closure of C of C in Pn
K and then one constructs an adequate finite morphism

ϕ ∶ C → P2, which maps C to the affine part A2 = P2 ∩ϕ(An). ◻

Remark 5.17. As in Remark 5.10, if C ⊆ An
K is an integral curve which is not geometrically irreducible, then

Naff(C,OK ,B) ≤ d2.
6. Partitioning a hypersurface in P3 by curves of small degree

The purpose of this section is to prove Theorem 6.9, which is an affine variant of [38, Theorem 3.16] for varieties
defined over global fields. This will be used in Section 7 to prove the dimension growth conjecture in the cases when
the variety has degree 4 ≤ d ≤ 15 if K is a number field, and in the cases when the variety has degree 4 ≤ d ≤ 65 if
K is a function field.

In [38, §3] Salberger developed a technique that allowed him to partition the Q-rational points of bounded height
of a projective variety X ⊆ Pn

Q in a small number of subvarieties of codimension at most 2. We follow the same
strategy of [38], that is, we construct a family of hypersurfaces which vanish on the rational points of X of bounded
height and prescribed reduction modulo p for many primes p. The degree of these hypersurfaces is bounded also
in terms of the density of this subset of primes, and this is reflected in the parameter q in the statements of the
theorems of the previous sections. This will allow us to control the number and the degree of the subvarieties
of the partition. The main technical tool is Proposition 6.3 which is a variant of [38, Main Lemma 3.2]. For its
proof, instead of using [38, Theorem 2.2] and [38, Lemma 2.8] we rely on the results of Section 5.2 and we give
a streamlined construction of a suitable large subset of primes with small norm. This allows us to simplify the
presentation of the proof given in [38].

Before ending this brief introduction we mention that all bounds in this section can be made effective on the
dependence on the degree d. Unlike the previous sections, we choose not to make this dependence explicit because
this would further complicate the proof and the final bound obtained by the methods of this section is double
exponential on d.

For any X ⊆ Pn
K projective variety, given B ∈ R>0 we will denote

Xaff(OK ,B) ∶= {(x1, . . . , xn) ∈ [B]nOK
∶ (1 ∶ x1 ∶ . . . ∶ xn) ∈ X(K)},

Naff(X,OK ,B) ∶= ∣Xaff(OK ,B)∣.
Moreover, if {p1, . . . ,pu} is a subset of primes such that for all 1 ≤ i ≤ u we let Pi be a non-singular Fpi

-point on
Xpi

, we denote

Xaff(OK ,B;P1, . . . , Pu) ∶= {x ∈ Xaff(OK ,B) ∶ x specialises to Pi in Xpi
for all i},

We will use the following notation. Given a hypersurface X ⊆ Pn+1
K and x ∈X , we will denote

πx ∶= ∏
p∈MK,fin

x speacilises to a
singular Fp−point in Xp

p and πX ∶= ∏
p∈MK,fin

Xp is not geometrically integral

p.

The following lemmas, which generalize Lemma [38, Lemma 3.1] and [38, Lemma 3.2] give estimates for πx and πX .

Lemma 6.1. Let X ⊆ Pn+1
K be a geometrically integral hypersurface defined over K by a homogeneous polynomial

f ∈ OK[X0, . . . ,Xn+1] of degree d ≥ 2. Let us suppose that X is the only hypersurface of degree d containing
Xaff(OK ,B). Then for any non-singular point x in Xaff(OK ,B), it holds log(NK(πx)) ≲n,K,d log(B).
Proof. By Lemma 5.12(2) and the assumption on X , we have that HK,aff(f) ≲K (d+n+1n+1

)dK(d+n+1n+1 )Bd(d+n+1
n+1 ). Now,

given a non-singular point x, there exists 1 ≤ j ≤ n + 1 such that ∂f

∂Xj
(x) ≠ 0. Then for all prime p appearing in the
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product πx, we have p∣ ∂f
∂Xj
(x). By (2.3) and (2.5), this implies:

NK(πx) ≤HK ( ∂f
∂Xj

(x)) ≤ (d + n
n + 1

)dK

HK,aff ( ∂f
∂Xj

)HK(1 ∶ x)d−1 ≲n,K d(n+2)dK(d + n + 1
n + 1

)dK(d+n+1n+1 )
Bd(d+n+1

n+1 )+d−1

By taking logarithms, we conclude log(NK(πx)) ≲n,K,d log(B). ◻

Lemma 6.2. Let X ⊆ Pn+1
K be a geometrically integral hypersurface defined by a homogeneous polynomial f ∈

OK[X0, . . . ,Xn+1] of degree d ≥ 2. Then, either there is a polynomial g ∈ OK[X1, . . . ,Xn+1] of degree d not divisible
by f which contains Xaff(OK ,B), or log(NK(πX)) ≲n,K,d log(B).
Proof. If there is no polynomial g ∈ OK[X0, . . . ,Xn+1] of degree d, not divisible by f , which contains Xaff(OK ,B),
by Lemma 5.12(2) it holds HK,aff(f) ≲K (d+n+1n+1

)dK(d+n+1n+1 )
Bd(d+n+1

n+1 ). Now, note that any prime p∣πX is also a prime
for which f modulo p is not absolutely irreducible. Then, following the proof of inequalities (3.8) and (3.11) in
Lemma 3.23, we have

∏
p∈πX

NK(p) ≤
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
d3(d

2−1)d2
K [(d+n

n
)3d](d2−1)d2

K
HK,aff(f)(d2−1) if char(K) = 0,

HK,aff(f)12d6

if 0 < char(K) ≤ d(d − 1),
HK,aff(f)d2−1 if char(K) > d(d − 1).

The proof finishes by taking logarithms. ◻

Now we are in condition to prove the main technical lemma of this section, which is a variant of [38, Main Lemma
3.2]. In what follows, by a prime divisor on X we shall mean a closed integral subscheme of codimension one.

Proposition 6.3. Let n ≥ 2 and let X ⊆ Pn+1
K be a geometrically integral hypersurface defined by a polynomial

f ∈ OK[X0, . . . ,Xn+1] of degree d ≥ 2. Then there exists a family {Dγ}γ∈Γ of prime divisors on X, and a (possibly
empty) subset Z(q)}q∈Q of effective cycles of codimension 2 on X with Q a subset of ideals, such that the following
conditions hold:

(1) The index subset Γ has size ∣Γ∣ ≲n,K,d B
1

d
1
n log(B) and for each γ ∈ Γ, it holds deg(Dγ) ≲n,K,d log(B)2.

(2) There is some positive constant c ≲n,K,d 1 such that

∑
q∈Q

deg(Z(q)) ≲n,K,d B
n

d
1
n exp(c log(B)

log(log(B))) .
(3) For each non-singular point x ∈ Xaff(OK ,B) which does not lie in ⋃γ∈ΓDγ there exists q ∈ Q such that

x ∈ Supp(Z(q)) and such x specialises to a non-singular Fpi
-point for each prime pi dividing q.

When n = 2, Proposition 6.3 says that we may partition a hypersurface X in such a way that those points
x ∈Xaff(OK ,B) either lie in a small family of curves of low degree, or lie in an exceptional subset of controlled size.

Roughly speaking, the proof of Proposition 6.3 is as follows. First, we localize a big subset of primes P such
that for all p ∈ P , the reduction Xp is geometrically irreducible, and all non-singular x ∈ Xaff(OK ,B) specialises
to a non-singular point in Xp for many primes p ∈ P . Then we construct a hypersurface Y that covers all points
of Xaff(OK ,B). By the second assumption on the subset P , a large family {Dγ}γ∈Γ of irreducible components of
X ∩ Y will have points which specialise to non-singular points for many primes in P . Then by the first assumption
on P and the Lang-Weil estimate, it will turn out that those non-singular points missed by {Dγ}γ lie in a subvariety
of codimension 2 with controlled degree.

Proof. First let us suppose that B ≲K 1. Then cover Xaff(OK ,B) by ≲n,K 1 hyperplanes and let (Dγ)γ∈Γ be this
family of hyperplane sections and let Q = ∅.

Now, let us suppose that Xaff(OK ,B) is contained in another hypersurface Y of degree d. In this case let (Dγ)γ∈Γ
be the components of X ∩ Y . By Bezout’s Theorem [18, Example 8.4.6], ∣Γ∣ ≤ d2 and deg(Dγ) ≤ d2 for each γ ∈ Γ.
Let Q = ∅.
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In the previous two cases, all the assertions of Proposition 6.3 are verified. Thus, we may suppose that X ⊆ Pn+1
K

is the only hypersurface of degree d containing Xaff(OK ,B) and that B ≳K 1. The next step will be to construct a
family of auxiliar hypersurfaces.

By Lemma 6.1 and Lemma 6.2, there are positive constants k1 ≲n,K,d 1, δ ≲n,K,d 1 such that

(6.1) for all non-singular x ∈ Xaff(OK ,B), NK(πx) ≤ Bk1 and ∑
p∣πX

log(NK(p)) ≤ δ log(B).
We begin by localizing an adequate large subset of primes.

Claim 6.4. Given c′ ≥ 1, for all c > 2(δ + c′), if I ∶= [c log(B),2c log(B)] we have ∑ p/∣ πX

NK(p)∈I
log(NK(p)) ≥ c′ log(B)

for B ≳K 1.

Proof of Claim 6.4. Let c ≥ 1. Let us suppose that ∑ p/∣ πX

NK(p)∈I
log(NK(p)) ≤ c′ log(B). Then by (2.14) for B ≳K 1 it

holds:
1

2
c log(B) ≤ ∑

p
NK(p)∈I

log(NK(p)) = ∑
p∣πX

NK(p)∈I

log(NK(p)) + ∑
p/∣ πX

NK(p)∈I

log(NK(p)) ≤ (δ + c′) log(B).
Thus we arrive at a contradiction taking c > 2(δ + c′). ◻

Let c′ ∶= k1 + 1, and let us take c ∶= 2(δ + k1 + 1) + 1, I ∶= [c log(B),2c log(B)]. Let q∗ ∶= ∏ p/∣πX

NK(p)∈I
p. By (2.13)

and Claim 6.4,

(6.2) (k1 + 1) log(B) ≤ log(NK(q∗)) ≤ 2c2,Kc log(B).
Let q = ∏u

i=1 pi ∣q∗. For each i denote (Xpi
)ns for the non-singular locus of Xpi

, and let (P1, . . . , Pu) ∈
∏u

i=1(Xpi
)ns(Fpi

). We choose a hypersurface Y (P1, . . . , Pu) as the homogenization of the one in Theorem 5.14.
By (6.2) it holds

deg(Y (P1, . . . , Pu)) ≲K,n,d B
1

d
1
n log(B)NK(q)−1 log(NK(q)) + log(BNK(q)) + log(NK(q))+ 1(6.3)

≲K,n,d B
1

d
1
n log(B)NK(q)−1 log(NK(q)) + log(B) + 1.

When q = (1) (in which case we use the convention u = 0), there is a projective hypersurface Y vanishing on
Xaff(OK ,B) and not identically zero on X , with

(6.4) deg(Y ) ≲K,n,d B
1

d
1
n log(B) + log(B) + 1 ≲K,n,d B

1

d
1
n log(B).

Now we will define the subset Γ and the subset of prime divisors Dγ ⊆ X . This divisors will be the irreducible
components of X ∩Y which are contained in Y (P1, . . . , Pu) for some sequence (P1, . . . , Pu) ∈∏u

i=1(Xpi
)ns(Fpi

) with
q =∏u

i=1 pi verifying NK(q) ≥ B 1

d
1
n . Then by (6.3), (6.4) and Bézout’s theorem [18, Example 8.4.6] it holds

deg(Dγ) ≤ deg(X)deg(Y (P1, . . . , Pu)) ≲n,K,d (log(B))2,
∣Γ∣ ≤ deg(X ∩ Y ) ≤ deg(X)deg(Y ) ≲n,K,d B

1

d
1
n log(B),

thus {Dγ}γ verifies the conditions in Proposition 6.3(1).

Claim 6.5. For all x ∈ Xaff(OK ,B) non-singular not lying in ⋃γ∈ΓDγ there is some q∣q∗, relatively prime to πxπX

and such that B
1

d
1
n ≤ NK(q) ≤ 2cB 1

d
1
n log(B).

Proof. Let x ∈ Xaff(OK ,B) be a non-singular point which does not lie in ⋃γ∈ΓDγ . From (6.1) and (6.2) it follows

that there is some ideal factor q of q∗, relatively prime to πxπX , that verifies NK(q) ≥ B 1

d
1
n . Let q∣q∗ of minimal

norm such that it is relatively prime with πxπX and NK(q) ≥ B 1

d
1
n . Let us suppose that NK(q) > 2cB 1

d
1
n log(B).
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Since any prime p∣q∗ has norm in I, there is some prime p∣q with NK(p) ≤ 2c log(B). Thus NK(qp−1) ≥ B 1

d
1
n , which

contradicts the minimality of q. ◻

If x and q = ∏u
i=1 pi are as in Claim 6.5, then x specialises to a non-singular Fpi

-rational point Pi on Xpi
for

all i, thus x ∈ Y (P1, . . . , Pu). Let Dx be an irreducible component of X ∩ Y containing x. It can not hold that
Dx ⊆ Y (P1, . . . , Pu), since otherwise x ∈ ⋃γ∈ΓDγ . Hence, there is some t ∈ {0, . . . , u − 1} with Dx ⊆ Y (P1, . . . , Pt)
but Dx /⊆ Y (P1, . . . , Pt+1). If D′x is an irreducible component of X ∩Y (P1, . . . , Pt+1) containing x, then x ∈Dx∩D′x.
This will motivate the construction of the cycles.

Given q = qt+1 = ∏
t+1
i=1 pi with t ≥ 0, let Z(P1, . . . , Pt+1) be the formal sum of all the irreducible components

of D ∩D′ where D is an irreducible component of X ∩ Y (P1, . . . , Pt) and D′ ≠ D is an irreducible component of
X ∩ Y (P1, . . . , Pt+1). By Bézout’s theorem [18, Example 8.4.6], inequalities (6.3) and (6.4), if qt ∶= qt+1p−1t+1, then it
holds

deg(Z(P1, . . . , Pt+1)) ≤ deg(X)deg(Y (P1, . . . , Pt))deg(Y (P1, . . . , Pt+1))
(6.5)

≲K,n,d (B 1

d
1
n log(B)NK(qt+1)−1NK(pt+1) log(NK(qt)) + log(B) + 1)(B 1

d
1
n log(B)NK(qt+1)−1 log(NK(qt+1)) + log(B) + 1.) .

≲K,n,d (B 1

d
1
n log(B)NK(qt+1)−1(log(B))2 + log(B) + 1)(B 1

d
1
n log(B)NK(qt+1)−1 log(B) + log(B) + 1.) .

We define
Z(q) = Z(qt+1) ∶= ∑

(P1,...,Pt+1)∈∏t+1
i=1(Xpi

)ns(Fpi
)
Z(P1, . . . , Pt+1).

In order to bound the degree of Z(qt+1) we need to estimate the cardinal of ∏t+1
i=1(Xpi

)ns(Fpi
).

Claim 6.6. It holds ∣∏t+1
i=1(Xpi

)ns(Fpi
)∣ ≤ NK(qt+1)n exp(C log(B)

log(log(B))) for some C ≲K,n,d 1.

Proof of Claim 6.6. By definition, for all i, Xpi
is geometrically irreducible. Then the Lang-Weil estimate gives∣Xpi

(Fpi
)∣ ≤ NK(pi)n + ANK(pi)n− 1

2 for some positive constant A ≲d,n 1. This, together with the facts that
t ≲K,n,d log(B) and that for all i, pi ∈ I, thus NK(pi) ≥ 1

2
c log(B), yield

∣t+1∏
i=1

(Xpi
)ns(Fpi

)∣ ≤ NK(qt+1)n t+1

∏
i=1

(1 +ANK(pi)− 1
2 ) ≤ NK(qt+1)n (1 + 2

1
2A

c
1
2 (log(B)) 1

2

)
t+1

≤NK(qt+1)n exp(C log(B)
log(log(B))) ,

for some C ≲K,n,d 1. ◻

By (6.5) and Claim 6.6, it follows that

deg(Z(qt+1)) ≲K,n,d (B 1

d
1
n log(B)NK(qt+1)−1(log(B))2 + log(B) + 1)(B 1

d
1
n log(B)NK(qt+1)−1 log(B) + log(B) + 1)

NK(qt+1)n exp(C log(B)
log(log(B)))

≲K,n,d (B 2

d
1
n NK(qt+1)n−2(log(B))5 +B 1

d
1
n NK(qt+1)n−1(log(B))4 +B 1

d
1
n NK(qt+1)n−1(log(B))3

+B
1

d
1
n NK(qt+1)n−1(log(B))3 +B 1

d
1
n NK(qt+1)n−1(log(B))2 + (log(B))2NK(qt+1)n) exp(C log(B)

log(log(B))) .
If NK(q) ≲K,n,d B

1

d
1
n log(B), it follows that

(6.6) deg(Z(qt+1)) ≲K,n,d B
n

d
1
n (log(B))n+3 exp(C log(B)

log(log(B))) ≲K,n,d B
n

d
1
n exp(C′ log(B)

log(log(B)))
for some positive constant C′ ≲K,n,d,ε 1.
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Then we define

Q ∶= {q∣q∗ ∶ q ≠ (1) and NK(q) ≤ 2cB 1

d
1
n log(B)} .

Claim 6.7. There is some C′′ ≲K,n,d 1such that it holds ∣Q∣ ≤ exp(C′′ log(B)
log(log(B))).

Proof of Claim 6.7. It will suffice to bound the number of divisors of q∗. By Landau Prime Ideal Theorem or the

Riemann Hypothesis over function fields, there is a constant cK ≲K,n,d 1 such that ∣{p ∶ NK(p) ∈ I}∣ ≤ cK c log(B)
log(c log(B)) .

Then

∣Q∣ ≤ ∣{q ∶ q∣q∗}∣ ≤ 2∣{p∶NK(p)∈I}∣ ≤ exp(cK c log(B)
log(c log(B))) ≤ exp(C′′

log(B)
log(log(B))) ,

for some C′′ ≲K,n,d 1. ◻

Thus, (6.6) and Claim (6.7) imply that

∑
q∈Q

deg(Z(q)) ≲K,n,d B
n

d
1
n exp(C′′ log(B)

log(log(B))) exp(C′
log(B)

log(log(B))) ≲K,n,d B
n

d
1
n exp(C′′′ log(B)

log(log(B))) ,
for some C′′′ ≲K,n,d 1. This proves Proposition 6.3(2). Moreover, by Claim 6.5 and the construction of {Z(q)}q∈Q,
it follows that {Dγ}γ∈Γ and {Z(q)}q∈Q verify the statement of Proposition 6.3(3). ◻

Remark 6.8. In Proposition 6.3(2) one could get the better bound ≲K,n,d B
n

d
1
n exp(c (log(B)) 12

log(log(B))) if in the proof of

Claim 6.6 one bounds the quantity ∏t+1
i=1(1 +NK(pi)− 1

2 ) as in [43, §1.5.5]. We choose not to do so because when
we use it in the proof of an affine variant of the dimension growth conjecture (Proposition 7.3) this saving will be
absorbed in a factor Bε. This remark also applies to the bound in the first summand of the next theorem.

Theorem 6.9. Let X ⊆ P3
K be a geometrically integral hypersurface of degree d, defined over K, and let Xns be the

non-singular locus of X. Then for all ν > 0 there exists a subset of ≲K,d B
1√
d log(B) geometrically integral curves

Dλ ⊆X, λ ∈ Λ = Λν, of degree at most 1
ν
, such that it holds

Naff (Xns − ⋃
λ∈Λ

Dλ,OK ,B) ≲K,d

⎧⎪⎪⎨⎪⎪⎩
B

2√
d exp (c log(B)

log(log(B))) + 1
ν4B

1√
d
+ν(log(B))2 if K is a number field,

B
2√
d exp (c log(B)

log(log(B))) + 1
ν8B

1√
d
+ν(log(B))2 if K is a function field,

for some positive constant c ≲K,d 1.

Proof. Let {Dγ}γ∈Γ, and {Z(q)}q∈Q as in Proposition 6.3 for n = 2. By Proposition 6.3(3), it holds

Naff

⎛
⎝Xns − ⋃

γ∈Γ

Dγ ,OK ,B
⎞
⎠ ≤ ∑q∈Qdeg(Z(q)).

Hence, by Proposotion 6.3(2), there is a positive constant c ≲K,d 1 such that it holds

(6.7) Naff

⎛
⎝Xns − ⋃

γ∈Γ

Dγ ,OK ,B
⎞
⎠ ≲K,d B

2√
d exp(c log(B)

log(log(B))) .
Now, let Λ ⊆ Γ be the subset of all indexes γ ∈ Γ for which deg(Dγ) ≤ 1

ν
. Then

(6.8) Naff (Xns − ⋃
λ∈Λ

Dλ,OK ,B) ≤ Naff

⎛
⎝Xns − ⋃

γ∈Γ

Dγ ,OK ,B
⎞
⎠ + ∣Γ∣ max

γ∈Γ/Λ
Naff(Dγ ,OK ,B).

It remains to bound Naff(Dγ ,OK ,B) for any γ ∈ Γ/Λ. Now, we apply Theorem 5.16 to each Dγ with γ ∈ Γ/Λ to
obtain

Naff(Dγ ,OK ,B) ≲K
⎧⎪⎪⎨⎪⎪⎩

1
ν4B

ν log(B) if K is a number field
1
ν8B

ν log(B) if K is a function field.
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By Proposition 6.3(1), ∣Γ∣ ≲K,d B
1√
d log(B), from which we deduce

(6.9) ∣Γ∣ max
γ∈Γ/Λ

Naff(Dγ ,OK ,B) ≲K,d

⎧⎪⎪⎨⎪⎪⎩
1
ν4B

1√
d
+ν(log(B))2 if K is a number field,

1
ν8B

1√
d
+ν(log(B))2 if K is a function field.

The theorem follows from (6.7), (6.8), and (6.9). ◻

7. Uniform dimension growth conjecture

In this section we prove Theorem 1.10 and Theorem 1.11 of the introduction, which generalize [38, Theorem 0.3
and Theorem 0.4], [11, Theorem 1 and Theorem 4], and [45, Theorem 1.3 and Theorem 4.2] to varieties over global
fields. The proof follows the strategy given in [9]. For this, we use an inductive argument: we establish Theorem
1.10 in the case X ⊆ An

K with n = 3 (this is the content of Proposition 7.3), and afterwards we intersect X with an
adequate hyperplane H so that X ∩H is of smaller dimension and suitable to apply the inductive hypothesis. As
in [9] we deduce Theorem 1.11 by using a projection argument to reduce it to the case of a hypersurface, and then
by taking affine cones and applying Theorem 1.10.

In order to prove Proposition 7.3 we proceed as in [11, Proposition 4.3.4], namely, first we establish that for
large degree, the counting function Naff(Z(f),OK ,B) is at most ≲K deB. This is done by using Theorem 5.14
to cover Xaff(OK ,B) with a hypersurface of small degree and then by bounding the contribution of the rational
points coming from the irreducible components of X ∩ Y using Theorem 5.16 for the ones of degree at least 2 and
Proposition 7.1 for the ones of degree 1. Having proved Proposition 7.3 for large degree, the remaining cases are
dealt with Theorem 6.9.

Now we begin to carry out this program. First we establish the following generalization of [11, Proposition 4.3.3],
where the authors give an effective estimate of [9, Proposition 1, case D = 1], with explicit dependence on the degree
of the hypersurface.

Proposition 7.1. Let K be a global field . There exists a constant c = c(K,n) such that for all f ∈ OK[X1,X2,X3]
of degree d ≥ 3 satisfying that the homogeneous part of higher degree fd is irreducible, and for all finite sets I of
curves C ⊆ A3

K of degree 1 lying on the hypersurface Z(f) defined by f , and all B ≥ 1, it holds

Naff (Z(f)∩ (⋃
C∈I

C) ,OK ,B) ≤ cd6B + ∣I ∣.

Proof. Let us write I = I1 ∪ I2 where

I1 ∶= {C ∈ I ∶ Naff(C,OK ,B) ≤ 1}, I2 ∶= {C ∈ I ∶ Naff(C,OK ,B) > 1}.
It is clear that

Naff (Z(f) ∩ ( ⋃
C∈I1

C) ,OK ,B) ≤ ∣I1∣.
Now, for any C ∈ I2 there exist a = (a1, a2, a3),w = (w1,w2,w3) ∈ O3

K with a ∈ [B]3OK
, and C(K) = {a+λw ∶ λ ∈K}.

Claim 7.2. Let C be the line defined by a + λw with a ∈ [B]3OK
and w ∈ O3

K . Then

∣C(K) ∩ [B]3OK
∣ ≲K B

HK(w) .

Proof of Claim 7.2. While in the case K = Q or K = Fq(T ) the claim is trivial, in general the proof is more involved
due to the fact OK may not be a principal ideal domain. This is why we use the geometry of numbers and the
theory of divisors.

By Proposition 2.2, we may suppose thatw is p-primitive for all p ofOK withNK(p) > c2, and∏v∈MK,fin
maxi ∣wi∣v ≥

c3. In particular, for all v ∈MK,fin, maxi ordpv
(wi) ≲K 1. Let S =MK,∞ ∪ {v ∶NK(pv) ≤ c2}. We let

OK,S ∶= {x ∈ OK ∶ ∣x∣v ≤ 1 for all v ∉ S}.
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If K is a number field, then

C(K) ∩ [B]3OK
= {a + λw ∈ O3

K ∶ ai + λwi ≤ B
1

dK for all i}
⊆

⎧⎪⎪⎨⎪⎪⎩a + λw ∈ O
3
K ∶ λ ∈ OK,S , ∣σ(λ)∣ ≤ 2B

1
dK

maxi ∣σ(wi)∣∀σ ∶K ↪ C, ∣λ∣v ≤ c4∀v ∈ S/MK,∞

⎫⎪⎪⎬⎪⎪⎭ ,
for some c4 ∶= c4(K). Now, if Kv denotes the completion of K with respect to v, we have that OK,S is a lattice
under the usual embedding OK,S ↪ ∏v∈SKv. Denoting Bv(0, rv) for the usual disk in Kv of center 0 and radius
rv, we have

∣C(K) ∩ [B]3OK
∣ ≤
RRRRRRRRRRRR
OK,S ∩ ∏

v∈MK,∞

Bv

⎛
⎝0,

2B
1

dK

maxi ∣σ(wi)∣
⎞
⎠ × ∏

v∈S/MK,∞

Bv(0, c4)
RRRRRRRRRRRR

≲K ∏
σ real

2B
1

dK

maxi ∣σ(wi)∣ ∏
σ complex

4B
2

dK

maxi ∣σ(wi)∣2 ≲K
B

HK(w) .
If K is a function field over Fq(T ), then

C(K) ∩ [B]3OK
= {a + λw ∈ O3

K ∶ ∣ai + λwi∣v∞ ≤ B 1
dK for all i}

⊆

⎧⎪⎪⎨⎪⎪⎩a + λw ∈ O
3
K ∶ λ ∈ OK,S , ∣λ∣v∞ ≤ 2B

1
dK

maxi ∣wi∣v∞ , ∣λ∣v ≤ c4∀v ∈ S/{v∞}
⎫⎪⎪⎬⎪⎪⎭ ∶= A

for some constant c4 ∶= c4(K). Now we argue as in [31, Proposition 2.2]. Any λ ∈ A satisfiesHK(λ) ≲K B
HK(w) . Since

HK(λ) =HK(λ−1), the positive divisor ∑v∶ordv(λ)≥0 ordv(λ) ⋅v has degree ≲K logq( B
HK(w)); by [31, Proposition 2.2],

there are at most ≲K B
HK(w) such divisors. Since ordv(λ) ≳K 1 for all v ∈ S/{v∞} and ∑v∈MK

ordv(λ)deg(v) = 0,
we conclude that the subset A has at most ≲K B

HK(w) elements. ◻

Now, for any w ∈ K3 there are at most d(d − 1) lines C ∈ I2 in the direction of w (this is because each such
line intersects a generic hyperplane in A3 in a common point of the hypersurfaces defined by f and its directional
derivate in the direction w).

Since C ∈ I2, it verifies the hypothesis of Claim 7.2, then we have HK(w) ≤ cB. Moreover, since C ⊆ Z(f),
fd(w) = 0. Consider the set Ai ∶= {w ∈ P2(K) ∶ fd(w) = 0,HK(w) = i}. Then by Claim 7.2,

(7.1) Naff (Z(f) ∩ ⋃
C∈I

C,OK ,B) ≤ ∣I1∣ + (d − 1)d ⌊cB⌋∑
i=1

∣Ai∣cB
i
.

Now Corollary 5.8 implies that ∑k
i=1 ∣Ai∣ ≲K d4k

2
d . This, and summation by parts give

⌊cB⌋
∑
i=1

∣Ai∣cB
i
=

⌊cB⌋
∑
i=1

∣Ai∣ cB⌊cB⌋ +
⌊cB⌋
∑
i=1

( k

∑
i=1

∣Ai∣) (cB
k
−

cB

k + 1
) ≲K d4B

2
d +

⌊cB⌋
∑
i=1

d4k
2
d

cB

k(k + 1) ≲K d4B,(7.2)

where the last bound is because d ≥ 3. Replacing (7.2) in (7.1) finishes the proof. ◻

Proposition 7.3. Let K be a global field of degree dK , and let e = 18 if K is a number field and e = 64 if K is a
function field. Then for all polynomial f ∈ OK[X1,X2,X3] of degree d whose homogeneous part of highest degree is
absolutely irreducible, it holds

Naff(Z(f),OK ,B) ≲K deB whenever d ≥ 5.

In the case d = 3,4, for all ε > 0 it holds

Naff(Z(f),OK ,B) ≲K,ε

⎧⎪⎪⎨⎪⎪⎩
B1+ε if d = 4,

B
2√
3
+ε

if d = 3.
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Proof. The strategy of the proof follows [11, Proposition 4.3.4], namely, first we establish that for large degree, the
counting function Naff(Z(f),OK ,B) is at most ≲K deB. This is done by using Theorem 5.14 to cover Xaff(OK ,B)
with a hypersurface of small degree. Then one bounds the contribution of the rational points coming from the
irreducible components of X ∩ Y . Now, the contribution of those irreducible components of degree 1 is bounded

with Proposition 7.1. By Bézout’s theorem, the degree of these curves can be large as ≲K,d B
1√
d , hence one can not

apply directly Theorem 5.16 to deal with the components of X ∩Y of degree ≳K log(B). This technical obstruction
will be dealt by assuming that the degree of X is large enough.

Having proved Proposition 7.3 for large degree, the remaining cases are dealt with Theorem 6.9. Then, after
enlarging the implicit constant, one concludes Naff(Z(f),OK ,B) ≲K deB. We remark that, while Theorem 6.9
gives the bound Naff(Z(f),OK ,B) ≲K,d B for d ≥ 5, it gives a double exponential dependence on d; it is for this
reason that we do not use it to prove Proposition 7.3 for all d ≥ 5.

For any prime for which fd mod p is absolutely irreducible the reduction of f modulo p is absolutely irreducible.
Hence b(f) ≤ b(fd). Using Lemma 3.23 and Theorem 5.14, for any B ≥ 1 we find a polynomial g ∈ OK[X1,X2,X3]
of degree

(7.3) ≲K
⎧⎪⎪⎨⎪⎪⎩
d

7
2B

1√
d if K is a number field,

d7B
1√
d if K is a function field,

not divisible by f and vanishing on all Z(f)aff(OK ,B). Let Z(f, g) be the intersection of f = 0 and g = 0 (here
the intersection is being considered with its reduced structure). Let C be the subset of irreducible components of
Z(f, g). By Bézout’s theorem [18, Example 8.4.6],

(7.4) ∣C∣ ≤ ∑
C∈C

deg(C) ≲K
⎧⎪⎪⎨⎪⎪⎩
d

9
2B

1√
d if K is a number field,

d8B
1√
d if K is a function field.

By Proposition 7.1 and (7.4), the contribution of the irreducible components of Z(f, g) of degree 1 is

(7.5) ≲K d6B + ∣C∣ ≲K
⎧⎪⎪⎨⎪⎪⎩
d6B if K is a number field,

d8B if K is a function field.

Now, let us suppose that C1, . . . ,Ck are the irreducible components of Z(f, g) of degree greater than 1, arranged
in such a way that deg(Ci) ≤ log(B) for all 1 ≤ i ≤m, and deg(Ci) > log(B) for all i >m. Let us denote δi ∶= deg(Ci).
By Theorem 5.16, for all i it holds

(7.6) Naff(Ci,OK ,B) ≲K
⎧⎪⎪⎨⎪⎪⎩
δ3iB

1
δi (log(B) + δi) if K is a number field,

δ7iB
1
δi (log(B) + δi) if K is a function field.

Claim 7.4. For all 1 ≤ i ≤m it holds Naff(Ci,OK ,B) ≲K B
1
2 (log(B) + 1).

Proof of Claim 7.4. Let us suppose that K is a number field. Let us set ψ(δ) ∶= δ4B 1
δ . Then log(ψ(δ)) = 4 log(δ)+

log(B)
δ
= log(B)(4 logB(δ) + 1

δ
). Since the function δi ↦ 4 logB(δi) + 1

δi
is decreasing in (0, log(B)

4
) and increasing in

( log(B)
4

,+∞), the maximum value of ψ(δ) in [2, log(B)] is
(7.7) max{ψ(2), ψ(log(B))} =max{24B 1

2 , (log(B))4B 1
log(B) } ≲ B 1

2 .

The inequalities (7.6), (7.7), and the trivial bound δ ≥ 1 give Claim 7.4 for number fields. The case of function fields
is analogous. ◻

By Claim 7.4 and (7.4) we have

(7.8)
m

∑
i=1

Naff(Ci,OK ,B) ≲K B
1
2 (log(B) + 1)m ≲K

⎧⎪⎪⎨⎪⎪⎩
d

9
2B if K is a number field,

d8B if K is a function field.
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On the other hand, if δ > log(B) then B 1
δ is bounded, thus (7.4) and (7.6) imply

(7.9)
k

∑
i=m+1

Naff(Ci,OK ,B) ≲K
⎧⎪⎪⎨⎪⎪⎩
∑k

i=m+1 δ
4
i ≲K (∑k

i=m+1 δi)4 ≲K d18B
4√
d if K is a number field,

∑k
i=m+1 δ

8
i ≲K (∑k

i=m+1 δi)8 ≲K d64B
8√
d if K is a function field.

Combining (7.3), Claim 7.5, (7.4), and (7.9), Proposition 7.3 follows for d ≥ 16 if K is a number field and for
d ≥ 64 if K is a function field.

For the remaining values of d, by Theorem 6.9 with ν = 1

2
√
d
, there is a constant c ≲K,d 1 such that for all B ≥ 1

there exists a subset of ≲K,d B
1√
d log(B) geometrically integral curves Dλ ⊆X , λ ∈ Λ, of degree at most ≲K

√
d such

that for all ε > 0 it verifies

Naff (Xns − ⋃
λ∈Λ

Dλ,OK ,B) ≲K,d,ε B
2√
d
+ε +B

2√
d ,

where we used that exp( log(B)
log(log(B))) ≲d,K,ε B

ε. Hence, for all ε > 0 we have

Naff (Xns − ⋃
λ∈Λ

Dλ,OK ,B) ≲K,d,ε

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
B if d ≥ 5,

B1+ε if d = 4,

B
2√
3
+ε

if d = 3.

Thus, it remains to bound the contribution of the points lying in any of the curves Dλ, and the points lying in
the complement of X/Xns. By Proposition 7.1, those curves Dλ ⊆ Λ of degree 1 contribute at most ≲K,d B points,

while by Theorem 5.16 those curves Dλ ⊆ Λ of degree at least 2 contribute at most ≲K,d B
1
2
+ε points. On the

other hand, by Bézout’s theorem, X/Xns is a union of irreducible curves the sum of whose degrees is bounded by
a constant. Applying Theorem 5.8 to those curves of degree at least 2, and Proposition 7.1 to those of degree 1
yields that the rational points coming from X/Xns is ≲K,d B. ◻

Lemma 7.5. Let K be a global field. Let n ≥ 3 and let X ⊆ Pn
K be a geometrically integral hypersurface of degree

d. Let κ = (n + 1)(d2 − 1) if K is a number field, and κ = 12(n + 1)d7 if K is a function field. Then there exists a
non-zero form F ∈ OK[Y0, . . . , Yn] of degree at most κ such that F (A) = 0 whenever the hyperplane section HA ∩X
is not geometrically integral, where A ∈ (Pn)∗ and HA ⊆ P

n denotes the hyperplane corresponding to the linear form
A.

Proof. The proof is similar to the one given in [11, Proposition 4.3.7] for K = Q and in [45, Lemma 4.6] for
K = Fq(T ). ◻

Now we are in condition to prove the dimension growth conjecture for varieties over global fields, namely Theorem
1.10 and Theorem 1.11 for the introduction.

Proof of Theorem 1.10. Let n ≥ 3 and X ⊆ An
K be a geometrically integral hypersurface of degree d ≥ 3 defined by

a polynomial f ∈ OK[X1, . . . ,Xn] with absolutely irreducible highest degree part. We proceed by induction on n,
where the base case n = 3 is Proposition 7.3.

Now, let us assume that n > 3 and that the theorem holds for all lower n. Let fd be the homogeneous part
of highest degree of f ; since it is absolutely irreducible, it defines a geometrically integral hypersurface in Pn−1

K .
Applying the Combinatorial Nullstellensatz (see [1, Theorem 1.2]) to F of Lemma 7.5 there exists A = (a1, . . . , an)
such that the hyperplane section {fd = 0} ∩ {∑i aiXi = 0} is geometrically integral of degree d, with all ai ∈ Ok
having H

k

(ai) ≤ n(d2 − 1) or Hk

(ai) ≤ 12nd7 if K is a number field or a function field, respectively. Let γ = 2 or
γ = 7 if K is a number field or a function field, respectively. Since there exists a constant c(n) ≲n 1 such that for
any (x1, . . . , xn) ∈ [B]nOK

we have a1x1 +⋯+ anxn ∈ [c(n)dγB]OK
, it follows that

Naff(Z(f),OK ,B) ≤ ∑
k∈[c(n)dγB]OK

Naff ({f = 0} ∩ {∑
i

aiXi = k} ,OK ,B) .
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For each k, the variety {f = 0} ∩ {∑i aiXi = k} is a hypersurface in the affine plane {∑i aiXi = k}, thus after a
change of variables it is described by a polynomial g ∈ OK[X1, . . . ,Xn−1] whose homogeneous part of highest degree
is absolutely irreducible by the construction of A. The proof follows from the induction hypothesis and the fact
that ∣[B]OK

∣ ∼K B. ◻

Proof of Theorem 1.11. We make a change of variables as in the proof of Theorem 5.9 to reduce Theorem 1.11 to
the case of a hypersurface. Hence let n ≥ 3 and consider an irreducible polynomial f ∈ OK[X0, . . . ,Xn] of degree
d ≥ 3. Then we take the affine cone C(f) defined by Z(f); it is an affine hypersurface in An+1

K . By Proposition 2.2
or by Remark 5.11, for any point in Z(f)(K,B), there is a lift in An+1

K which lies in Z(C(f))aff(OK , [c1B]n+1OK
).

Thus
N(Z(f),K,B) ≤ Naff(C(f),OK , c1B).

If f is absolutely irreducible, applying Theorem 1.10 finishes the proof. Otherwise, by Remark 5.3, there exists a
homogeneous polynomial g ∈ OK[X0, . . . ,Xn+1] of degree d not divisible by f and vanishing on all K-rational point
of C(f). Then
(7.10) Naff(C(f),OK , c1B) ≤ Naff(C(f) ∩Z(g),OK , c1B).
Now, it holds that C(f) ∩Z(g) is a variety of dimension n − 2. By a hyperplane section argument as in [8, Page
91], it holds

(7.11) Naff(C(f) ∩Z(g),OK ,B) ≲K,n dB
n−2.

Then inequalities (7.10) and (7.11) yield the conclusion of Theorem 1.11 for integral projective varieties which are
not geometrically irreducible. ◻
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