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Distribution pattern and population structure of Calanus australis
Brodsky, 1959 over the southern Patagonian Shelf off Argentina
in summer
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In the southwest Atlantic Ocean, Calanus australis is widely distributed in waters of the
inner and middle shelf off Argentina. Along the coast of southern Patagonia it is the
most abundant large copepod through all seasons, typically occurring at higher
densities over the inner shelf <100 m deep. Its concentration decreases offshore as it is
replaced by Calanus simillimus and Neocalanus tonsus. The abundance, vertical
distribution, and population structure of Calanus australis off Patagonia were exam-
ined during a summer survey (March 1998) in order to study the ecological response of
the copepod to hydrographic conditions. Differences in population densities were
related to geographical difference in water-column stability. Higher numbers were
recorded inshore at 51�S in strongly stratified coastal waters, where a well developed
thermocline was present at 50 m. A sharp decline in abundance was evident south-
wards, coinciding with the occurrence of highly mixed, coastal, isothermal, and
isohaline waters. Very low concentrations were also found at the most offshore,
thermally stratified stations influenced by transitional waters between shelf and
Malvinas waters. The population consisted mainly of stage 5 copepodites and fewer
adult females. The scarcity or absence of younger stages cannot be attributed to the
mesh size employed (150 �m). The population dynamics of Calanus australis are
discussed and compared WITH other Calanus species.
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Introduction

Waters off southern Patagonia constitute one of the
most productive fishing grounds off Argentina. The
region sustains high production of mainly demersal and
midwater fish, such as longtail hake, southern blue
whiting, Argentinian common hake, austral hake,
Patagonian toothfish, austral cod, and kingklip (Otero
et al., 1981; Bertolotti et al., 1996; Wöhler et al., 1999).
Pelagic species such as squid (Brunetti and Pérez Comas,
1989) and Patagonian sprat (Sánchez et al., 1995, 1997)
are also present. All these species consume micro- and
mesozooplankton during their early life history, and
some feed on zooplankton exclusively, even as adults.

Among them, the Patagonian sprat is also recognized as
a link between trophic levels, because it is a main food
item for many of the commercially targeted species.
Hence, copepods play an important part in the tro-
phodynamics of both adult and juvenile fish in the
region.

Calanus australis is virtually the sole large copepod
occurring year-round over the inner and middle shelf off

Argentina south of 46�S (Ramı́rez, 1970; Ramı́rez and
Sabatini, 2000) and it constitutes a major component of
the larger fraction of mesozooplankton biomass
(Sabatini and Alvarez Colombo, 2000). In common with
several other members of the helgolandicus lineage to
which it belongs (Bucklin et al., 1995), the species is
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abundant nearshore and over the adjacent continental
shelf off southern Patagonia. Other examples of the
group include Calanus chilensis (Escribano and
Rodrı́guez, 1994), Calanus helgolandicus (Söhr et al.,
1996), Calanus agulhensis (Verheye et al., 1994), Calanus
pacificus (Osgood and Frost, 1994), and Calanus sinicus
(Huang et al., 1993). As a crucial link between primary
production and fish, it most likely plays a similar role in
austral Patagonia to that of Calanus finmarchicus and
Calanus helgolandicus in the North Atlantic and North
Sea (e.g. Matthews and Bakke, 1977; Cushing, 1984;
Williams and Conway, 1984; Franz et al., 1991; Tande,
1991; Meise and O’Reilly, 1996; Runge and de
Lafontaine, 1996), Calanoides carinatus in the southeast
Atlantic ecosystem (e.g. Verheye et al., 1992) and in the
upwelling area off Cabo Frı́o, Brazil (e.g. Campaner and
Honda, 1987; Valentin et al., 1987), and Calanus agul-
hensis in southern South African waters (e.g. Verheye
et al., 1994).

The species was first described in the study area,
and it is strictly restricted to the southern hemisphere
(Brodsky, 1959). At present, despite its implied impor-
tance, no population studies have been conducted on it,
and little is known beyond its overall distribution. In the
southwest Atlantic Ocean, Calanus australis is widely
distributed in shelf waters off Argentina, presumably
related to the overall drift northwards of subantarctic
waters. Its abundance decreases offshore as it is gradu-
ally replaced by Calanus simillimus and Neocalanus
tonsus. Abundance of Calanus simillimus starts to
increase in an offshore direction from the middle shelf,
whereas Calanus australis is the typically dominant
species in inner- and middle-shelf waters. Neocalanus
tonsus becomes abundant towards the outer shelf and
slope (Ramı́rez, 1970; Ramı́rez and Sabatini, 2000).

Two main currents transport subantarctic waters onto
the austral Patagonian shelf (Fig. 1), the Cape Horn
Current (cA. 33.5) flowing over the shelf in a N–NE
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Figure 1. Area of investigation and schematic major circulation pattern off southern Patagonia (adapted from Piola and Rivas,
1997). Arrows indicate the direction and relative mass transport of the water flux.
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direction towards the Atlantic Ocean, and the Malvinas
Current (33.75) flowing also N–NE but along the conti-
nental slope (Lusquiños and Valdés, 1971; Piola and
Rivas, 1997). The former waters are measurably diluted
in the northern Drake Passage by an excess of rainfall in
the southeast Pacific and by continental discharge
from the Fueginian Channels. The cold, nutrient-rich
Malvinas Current originates as a branch of the Antarctic
Circumpolar Current, and it is the major boundary
current influencing the region. Run-off from the
Magellan Strait creates a tongue of water of low salinity
(<32.5) that also flows N–NE, but along the Patagonian
coast (Piola and Rivas, 1997). Three water masses can
be recognized over the shelf off southern Patagonia:
Malvinas Water, characterized by salinities of 33.8–34.2,
Coastal Water, <33.2, and Shelf Water, produced by
mixing of the other two, with salinities of 33.2–33.8
(Bianchi et al., 1982). Stratification over the Patagonian
Shelf depends largely on the seasonal variation of solar
radiation. The influence of salinity is limited exclusively
to the area of discharge of diluted waters from the
Magellan Strait (Guerrero and Piola, 1997). The increas-
ing solar warming during spring is stored in the upper
layer of the water column, generating a seasonal ther-
mocline between 30 and 50 m depth (Blanc et al., 1983;
Glorioso, 1987; Scasso and Piola, 1988; Martos and
Guerrero, 1992). The southernmost limit for the occur-
rence of the seasonal thermocline appears to be ca. 52�S,
and it vanishes completely at 53�S. The southern
Patagonian coast is characterized by high tidal ampli-
tude, which in turn generates high energy dissipation
caused by bottom friction (Simpson and Bowers, 1981;
Glorioso, 1987). The high tidal energy, along with the
seasonal thermal stratification, leads to the formation of
tidal fronts along the coast (Glorioso, 1987; Glorioso
and Flather, 1995; Martos and Sánchez, 1997).

As a first step in investigating the population dynam-
ics of Calanus australis in the region, the aims of this
work were to examine the horizontal and vertical distri-
bution of the copepod and its population structure
during a summer survey carried out off southern Patago-
nia, and to relate them to the major hydrographic
features of the region.

Material and methods

The research was conducted in the southern region of
the Argentine Sea from 10 to 22 March 1998.At all
stations (Fig. 2), profiles of temperature and salinity
were recorded with a Sea-Bird 19 CTD. Data were
calibrated for salinity by salinometer measurements of
discrete water samples and for temperature by reversing
thermometers.

Stratification of the water column was estimated by
calculating the vertical stability parameter �, which is a

measure of the amount of mechanical work, in J m�3,
required to vertically mix the water column and is
derived from vertical profiles of density (Simpson, 1981).
The parameter is defined as

where g is the gravity acceleration, h the total depth, �
the density, �0 the mean density of the water column,
and z the depth. It was derived from vertical profiles
with a depth interval of 1 m.

Zooplankton sampling was performed along a cross-
shelf transect at 51�S and in waters along the
Patagonian–Fueguinian coast. Samples (n=44) were col-
lected using a multiple opening/closing Hydrobios
Multinet, 0.25 m2 mouth opening and 150 �m mesh size.
Sampling was carried out by horizontal tows of
5–10 min at each of 3–4 discrete depths covering the
total water column in ca. 25-m steps. Filtered volume
was estimated from the mouth area and towing time and
speed. The samples were preserved in 4% buffered
formaldehyde solution immediately after capture for
later analysis ashore.

Developmental stages were counted from subsamples
consisting generally of at least 200 Calanus australis,
which were all staged and the adults sexed. Total
samples were enumerated on occasions when animals
were very scarce. The numbers of individuals per cubic
meter obtained at each towing depth were quantified to
the abundance of animals per ca. 25 m stratum (number
m�2) by multiplying those values by their respective
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Figure 2. Hydrographic and biological sampling in the study
area. Dots and numbers correspond to stations where zoo-
plankton and CTD sampling were performed and crosses refer
to those where only a CTD was used.
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strata depths. The depth-integrated abundance for the
total water column was estimated as the sum of all the
3–4 strata.

Results
Hydrography

Surface temperature was lowest (8.5�C) in the southeast
of the area surveyed, whereas the highest values (11�C)
were recorded in the coastal area of Grande Bay (Fig.

3a). Bottom temperature showed the same pattern,
reaching minimum and maximum values of 5 and
10.5�C, respectively. There were two frontal zones, one
located nearshore over the 50-m isobath in Grande Bay
and the other at 53�S over the 200-m isobath. The
former is a tidal front; the latter is produced by Shelf
Water meeting the colder western subantarctic outflow
(Fig. 3b).

The salinity field revealed the typical water masses of
the region. The 33.2 isoline running over roughly the
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Figure 3. (a) Surface and (b) bottom temperature (�C). Dots indicate stations where zooplankton sampling was carried out.
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100-m isobath indicated the limit between Coastal and
Shelf Waters. The 33.8 isoline denoted the external limit
of Shelf Water (Fig. 4a, b).

The distribution of water column stability allowed the
identification of distinct hydrological areas over
the typical water masses of the region (Fig. 5). A �
critical value of 40 J m�3 separated well-mixed
from stratified waters. North of 52�S, Coastal Water
was associated with a tidal front separating the
innermost waters (<50 m), which were tidally mixed,
from strongly thermally stratified ones. Stability
increased farther offshore over the Shelf Water, also
as a result of the thermal stratification. South of

52�S, in contrast, Coastal Water was highly mixed
without either thermal or haline stratification. In
contrast, outer Shelf Water was strongly stratified
because of the influence of the colder and heavier
subantarctic waters entering the region west of the
Burdwood Bank.

The water column structure in the thermally stratified
northern area is illustrated by a vertical profile along the
cross-shelf transect at 51�S (Fig. 6a). There was a
thermocline (0.4�C m�1) at approximately 50 m deep. A
change from stratified to well-mixed water took place at
the same depth, indicating the presence of the tidal front
that was also evident from both bottom temperature and
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stability fields. Salinity was vertically homogeneous
throughout the entire section (Fig. 6b).

Calanus australis abundance, vertical distribution
and population structure

Higher numbers of Calanus australis (Fig. 5), ranging
from 4000 to 8000 individuals m�2, but up to 18 755
individuals m�2, were recorded inshore <100 m deep at
51�S, mostly in thermally stratified Coastal Water. Val-
ues were highest in Grande Bay at the two innermost
stations along the transect, both located on the stratified
side of the tidal front. Lowest concentrations (�200
individuals m�2) were offshore in transitional waters
between Shelf and Malvinas Waters. There was also a
sharp decline in abundance southwards alongshore,
coinciding with the occurrence of well-mixed Coastal
Water. Peak densities of the copepod corresponded to a
stability (�) range of 80–100 J m�3. Only very low
concentrations were found in water masses with
stabilities <40 or >100 J m�3.

The vertical distribution of Calanus australis was
overall in accordance with the typical pattern of diel
vertical migration known for planktonic organisms
(Mauchline, 1998), even when there was strong thermal
stratification (Fig. 7). The bulk of the population was in
the upper layer during darkness (Fig. 7a, b, c, f), from

21:00 to 22:30, probably exhibiting an evening ascent.
On the contrary, animals were found at some distance
from the surface (e.g. 07:30, Fig. 7e) or at different levels
(e.g. 06:00, Fig. 7d) in daylight, likely descending to
deeper waters (morning descent). The uniform distribu-
tion observed through the whole water column at a
station sampled at 00:30 (Fig. 7b) was probably due to
sampling during the passive midnight sinking. Even
though the observed patterns are largely suggestive of
diel changes in behaviour, they cannot be considered
conclusive. The day–night patterns could be confounded
to some degree by changes in station location, so
reflecting differences in space and time (e.g. Fig. 7g, l).

A distinct bathymetric pattern of developmental
stages within the water column over the diel cycle was
not found, implying no ontogenetic migration by Cala-
nus australis. No pattern was evident corresponding to
thermal stratification (Fig. 7).

The population consisted mainly of stage 5 copep-
odites and a few adult females (Fig. 8). On average,
74%�10 of the population was composed of C5 at the
stations along the transect, whereas that fraction was
much lower in the south (31%�10). Presence of C3 and
C4 was occasionally significant at two stations located in
this latter area, in coincidence with the lowest abun-
dances. Adult males and stages younger than C3 were
normally scarce or not found. This cannot be attributed
to the mesh size employed, because the sampler had a
150-musignm mesh and the length of Calanus spp. first
nauplius is in the range 190–240 �m (Nichols and
Thompson, 1991).

Discussion

Distribution of Calanus australis is presumably confined
to the northern part of the West Wind Drift up to
ca. 42�S (Marin et al., 1994). As in the Southwest
Atlantic, the species is found in coastal waters off

southeastern Australia and New Zealand, normally in
high numbers in bays and over the mid-shelf (Nyan Taw
and Ritz, 1979; Bradford et al., 1980; Bradford, 1985;
Bradford-Grieve, 1994). It is a common species year-
round in inshore coastal waters of southeastern Tasma-
nia, where it is influenced by both estuarine and oceanic
waters. Maximum abundance is during summer, C5s
outnumbering the adults (Nyan Taw and Ritz, 1979). In
the narrow continental shelf off western New Zealand,
where onshore/offshore advection takes place as a result
of major across-shelf exchanges of water, greatest num-
bers of adults and copepodites may be recorded subsur-
face in outer shelf waters or over the upper slope
(Bradford, 1985). Calanus australis has been mentioned
as also occurring in waters off Chile between 18 and 52�S
(e.g. Brodsky, 1961; Bjönberg, 1973; Arcos, 1976; Marin
and Antezana, 1985) and in the Magellan Strait
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(Mazzochi and Ianora, 1991; Mazzochi et al., 1995).
However, its identity along the southern South Ameri-
can Pacific coast remains controversial given its striking
similarity with Calanus chilensis (Marin et al., 1994). In
any case, to our knowledge, there is a complete lack of
information of both species off southern Chile except for
the records cited. In the Magellan Strait it has been
reported as uniformly distributed with depth, with
highest abundances in the upper 200 m (Mazzochi et al.,
1995).

The shelf off Patagonia can be divided hydrographi-
cally into an area down to 52�S, where thermal stratifi-
cation as a result of increased solar radiation takes place
during the warmer months of the year, and another area,
thermally unstratified, south of 52�S. Both areas are
largely influenced by Magellan Strait run-off. The devel-
opment of different water masses and hydrographic
structures in the region appears to lead to distinct
patterns in the spatial distribution of Calanus australis.
Therefore, differences in densities would be related to
geographical differences in water column stability. Much
of the area of highest copepod abundance was over the
thermally stratified inner shelf, coinciding with a tidal
front in Coastal Water. This is in striking contrast to the
low densities recorded farther south in isothermal and
isohaline Coastal Water and in stratified Shelf Water
offshore, suggesting that Calanus australis approaches
the southern boundary of its geographical distribution
as the development of seasonal stratification vanishes
with increasing latitude. Aggregation and likely
enhanced primary production in the frontal area may
explain its peak concentrations in Grande Bay.

The onset of stratification in spring is known to
trigger the plankton production cycle in temperate seas
(Cushing, 1975). Furthermore, seasonal thermal stratifi-
cation is often closely related to the occurrence of
frontal phenomena (Simpson and Hunter, 1974; Pingree

and Griffiths, 1978; Le Fèvre, 1986). Tidal fronts are
well known as highly productive hydrographic struc-
tures where phytoplankton accumulates by convergence,
and other processes such as upwelling, cross-frontal
flow, the spring/neap tidal cycle, and vertical mixing
through the thermocline increase production (Cushing,
1995). Some evidence for the response of Calanus aus-
tralis to upwelling events is available from studies in the
area between New Zealand’s North and South Islands,
where a plume of upwelled water extending northeast is
generally found during summer (Bradford-Grieve et al.,
1993). It appears that different parts of its life cycle
occur in separate zones of the upwelling system, highest
population abundance being reached in non-upwelled
waters inshore in the eastern region of the plume corri-
dor. A strategic vertical migration may be involved,
ensuring that animals are carried inshore to breed. The
closely related southern species Calanus agulhensis
(formerly called Calanus australis), which largely domi-
nates the mesozooplankton community in the eastern
Agulhas Bank off South Africa, also appears to be
associated with a subsurface ridge of upwelled water,
particularly during spring and early summer (Verheye
et al., 1994).

Seasonal thermal stratification combined with the
presence of a tidal front in Grande Bay may create an
optimal environment for the development of a large
endemic population of Calanus australis. The bay may
constitute in turn a centre of dispersal for the species,
supplementing neighbouring waters by advection of
individuals in a north–northeast direction, following the
mean flow in the region. The absence of thermal strati-
fication and the lack of shallow-sea fronts in the south-
ern coastal waters may be the reasons for the low
population abundance of Calanus australis. In accord-
ance with the present findings, large copepods of the
genus Calanus appear to be associated with seasonally
stratified waters over European shelves (Williams et al.,
1994).

By late summer, the bulk of the population of Calanus
australis in Grande Bay was mostly C5s along with a few
adult females and C4. Younger copepodites were scarce
or totally absent. Such a population structure may
correspond to an ageing summer generation that has
finished reproduction, with C5s resulting from the sum-
mer breeding preparing to enter diapause in autumn.
Even though C5s were not concentrated at any particu-
lar depth, i.e. evidence for diapause (Mauchline, 1998),
animals at this stage were usually carrying large stores of
lipid. Overwintering males of smaller Calanus spp. at
high latitude in the northern hemisphere over shelves
with winter temperatures >0�C moult earlier than
females that spawn at the start of the spring phytoplank-
ton bloom or shortly later (Conover, 1988). Boreal
Calanus species usually spawn during a period of active
phytoplankton growth (Marshall and Orr, 1955; Runge,
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Figure 8. Depth-integrated population structure of Calanus
australis over the investigated area. Stations 302–313 are along
a transect at 51�S in an offshore direction and Stations 294–272
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1984). This may also be the case for Calanus australis
because, although there is not yet complete seasonal
coverage of the phytoplankton cycle off southern Pat-
agonia, there is typically a single long bloom during
spring and early summer (Angelescu and Prenski, 1987).
The fact that males moult earlier to be ready to fertilize
newly moulted females (Marshall and Orr, 1955) and
have a shorter longevity than that of females (see
Landry, 1983) may be the reason for the very low male
: female ratios we found in late summer.

Further studies focused on the life cycle and dynamics
of Calanus australis covering larger parts of the year,
especially spring–summer, definitely need to be carried
out to understand fully the role of the species in the
ecosystem off southern Patagonia.
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merluza común del Mar Argentino (Merlucciidae, Merluccius
hubbsi). 2. Dinámica de la alimentación analizada sobre la
base de las condiciones ambientales, la estructura y las
evaluaciones de los efectivos en su área de distribución. Serie
Contribuciones del Instituto Nacional de Investigación y
Desarrollo Pesquero, 561: 1–205.
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Alvarez Colombo, G., and Macchi, G. 1997. The reproduc-
tive biology of the Patagonian sprat (Sprattus fuegensis):
several facts and still some speculations. ICES CM 1997/HH:
22, 24 pp.

Sánchez, R. P., Remeslo, A., Madirolas, A., and Ciechomski, J.
D. 1995. Distribution and abundance of post-larvae and
juveniles of the Patagonian sprat, Sprattus fuegensis, and
related hydrographic conditions. Fisheries Research, 23:
47–81.

Scasso, L. M., and Piola, A. R. 1988. Intercambio neto de agua
entre el mar y la atmósfera en el Golfo San Matı́as. Geoacta,
15: 13–31.

Simpson, J. H. 1981. The shelf-sea fronts: implications of their
existence and behaviour. Philosophical Transactions of the
Royal Society of London, 302(A): 531–546.

Simpson, J. H., and Bowers, D. 1981. Models of stratification
and frontal movement in shelf seas. Deep-Sea Research, 28A:
727–738.

Simpson, J. H., and Hunter, J. R. 1974. Fronts in the Irish Sea.
Nature, 250: 404–406.
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