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Abstract In this contribution, a methodology is reported

in order to build an interval fuzzy model for the pollution

index PLI (a composite index using relevant heavy metal

concentration) with magnetic parameters as input variables.

In general, modelling based on fuzzy set theory is designed

to mimic how the human brain tends to classify imprecise

information or data. The ‘‘interval fuzzy model’’ reported

here, based on fuzzy logic and arithmetic of fuzzy num-

bers, calculates an ‘‘estimation interval’’ and seems to be

an adequate mathematical tool for this nonlinear problem.

For this model, fuzzy c-means clustering is used to parti-

tion data, hence the membership functions and rules are

built. In addition, interval arithmetic is used to obtain the

fuzzy intervals. The studied sets are different examples of

pollution by different anthropogenic sources, in two dif-

ferent study areas: (a) soil samples collected in Antarctica

and (b) road-deposited sediments collected in Argentina.

The datasets comprise magnetic and chemical variables,

and for both cases, relevant variables were selected:

magnetic concentration-dependent variables, magnetic

features-dependent variables and one chemical variable.

The model output gives an estimation interval; its width

depends on the data density, for the measured values. The

results show not only satisfactory agreement between the

estimation interval and data, but also provide valued

information from the rules analysis that allows under-

standing the magnetic behaviour of the studied variables

under different conditions.

Keywords Fuzzy c-means clustering � Interval fuzzy

model � Magnetic monitoring � Magnetic parameters �
Pollution

Introduction

Pollution is a subject of current interest and there is a need

for monitoring techniques developed by several fields of

research, in order to analyse the distribution and the reach

around the contamination sources. Although the anthro-

pogenic contribution of heavy metals and other pollutants

can be studied by careful chemical methods (time-

consuming, laborious and costly), magnetic monitoring

constitutes an alternative tool for pollution studies

(Petrovský and Elwood 1999). In particular, in previous

studies (Chaparro et al. 2006, 2007, 2008; Marié et al.

2010), multivariate statistical analyses were investigated

for magnetic monitoring in soils, stream sediments and

road-deposited sediments, revealing a link between mag-

netic and chemical variables.

Although a large number of authors found linear rela-

tionships between magnetic parameters and chemical

variables for particular environments, non-significant cor-

relations were reported as well (Georgeaud et al. 1997;

Petrovský et al. 1998; Chaparro et al. 2007; Ng et al. 2003;

Desenfant et al. 2004; Spiteri et al. 2005; Lu et al. 2005;

Magiera et al. 2006). The latter, as well as non-reported

studies, reveals that the relationship between both kinds of
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variables constitutes complex cases of non-linear mathe-

matics. In consequence, multivariate techniques have

become necessary and used to investigate the problem

(Bityukova et al. 1999; Petrovský et al. 2001; Knab et al.

2001; Wang and Qin 2006; Chaparro et al. 2008). Recently,

Chaparro et al. (2010) studied river sediments from

India; they used successfully principal coordinate analysis

(PCoordA) and fuzzy c-means clustering analysis (FCM) to

make a classification and to perform a magnetic-chemical

characterization of data into four groups (from less to most

impacted samples).

Mathematical models are not simple descriptive statis-

tics for particular datasets, but they allow having a wider

and global knowledge of the case study. The building

technique for a model is based on quantitative (measure-

ments) and qualitative (gained experience) knowledge; this

weighted combination enriches the quality outcome, giving

a better fitting between data and modelled results. The

qualitative knowledge may be useful, but sometimes it is

not easily quantifiably and therefore cannot be available for

classical mathematical models.

The fuzzy tools may usually be appropriated to model

uncertainties that are inherent in colloquial language, as

well as to emulate some logic mechanisms and to mimic

how the human brain tends to classify imprecise informa-

tion or data.

The defuzzification comprises the transformation from a

fuzzy set to a crisp number. Some useful information is lost

in classical defuzzification process, for this reason, and to

achieve better results, here a fuzzy interval instead of a

crisp output is calculated.

In this contribution, a methodology is reported in order

to build a mathematical model for calculating an ‘‘esti-

mation interval’’ of the index PLI. The model is based on

fuzzy logic and arithmetic of fuzzy numbers, this type of

model is called ‘‘interval fuzzy model’’.

Methodology

Model

Basically, a fuzzy model or fuzzy inference system (FIS,

Klir and Yuan 1995) is formed by four parts (Fig. 1):

(a) the input processor, which translates (non-) quantifiable

inputs into fuzzy sets of their respective universes; (b) the

fuzzy rule base, consisting of a collection of fuzzy

IF-THEN rules aggregated by the disjunction or the con-

junction, which is a key knowledge-encoding component

of fuzzy rule-based systems; (c) the fuzzy inference engine,

performing approximate reasoning by using the composi-

tional rule of inference, hence a fuzzy set answer or global

conclusion will be calculated by aggregation of the partial

solutions contributed by each rule; (d) the defuzzifier,

which assigns a real (or crisp) number that is representative

of the corresponding fuzzy set answer. The last process is

called defuzzification.

First, it is necessary to partition the space into possible

clusters to build the model. The knowledge and data are

used to select variables and to partition the space using

fuzzy c-means clustering. This fuzzy partition, instead of

an exact partition, and the fuzzification comprise the pro-

cess of transforming the data into degrees of membership

for fuzzy sets.

As different numbers of clusters can be assumed, the

optimum number is evaluated from the analysis of the

modified partition coefficient (VMPC, Dave 1996). These

processes allow defining the number of membership

functions and therefore the fuzzy rules. The rules comprise

different situations and they are defined as conditional

statements involving linguistic variables, and values

determined by fuzzy sets. Some useful information about

the rule inferences is lost in classical defuzzification pro-

cess, for this reason, fuzzy arithmetic was used to achieve

better results.

Fig. 1 Schematic diagram of the fuzzy inference system
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Membership functions (MF)

The membership functions are defined in two steps using

all data (n) and fuzzy c-means clustering analysis. First, the

FCM is applied to all (input and output) variables. The

FCM is an unsupervised clustering algorithm that allows

finding several partitions ambiguously from 2 to n - 1 for

all variables. As it is necessary to preassume the number of

clusters (c) for FCM and this number c is unknown, a

method have to be performed to find an optimal c and solve

the cluster validity (Bezdek 1974).

The optimal number of clusters is usually determined

from popular validity indexes, e.g. the partition coefficient

(PC, Bezdek 1981) and the entropy index (PE, Bezdek

1974). Hence, for a good partition, minimum partition

entropy or maximum partition coefficient is studied

(Höppner et al. 1999). Both PC and PE possess monotonic

evolution tendency with c. Modification of the VMPC index

proposed by Dave (1996) can reduce the monotonic

tendency and is defined as:

VMPC ¼ 1� c

c� 1
1� 1

n

Xc

j¼1

Xn

i¼1

u2
ji

 !

¼ 1� c

c� 1
1� PCð Þ ð1Þ

where uji is the membership grade of the jth cluster and the

ith data. The index values from Eq. 1 range in [0; 1] and

the optimal cluster number (c*) is found by solving

max2\j\c-1 VMPC to produce the best clustering perfor-

mance for the studied data set.

Secondly, once the number c* is defined, the FCM is

applied again but to each variable. From this fuzzy partition

for each variable, a parametrization is carried out to define

parameters for each trapezoidal MF. The trapezoidal MF is

known in fuzzy arithmetical terms like as the flat fuzzy

number. This relationship between fuzzy set and fuzzy

number allows applying fuzzy arithmetic based on opera-

tions on closed intervals. This selection is appropriated and

necessary for the next step in the construction of the model.

Rules

The inference rules are built using piece of information

from the fuzzy partition. In this work, the 70% of the data

were used, which were selected by a random sampling with

replacement.

From the selected samples, the maximum membership

degree (if above 0.60) of each input and output variables is

considered to build a rule. If the membership value is below

0.60, this datum is not used for the rules. It is necessary for all

the variables of a sample to have membership grades above

0.60; otherwise, the sample will not be used in the model.

Each ‘‘useful’’ sample is identified and labelled using

its corresponding fuzzy set with maximum membership.

Thus, the rule is established by the label of each set for

each variable. For instance, if for a sample, with four input

variables (Inp#) and one output variable (Outp), is

observed that:

(a) For Inp1 the value belongs to fuzzy set Inp11 (label 1)

with membership value 0.80.

(b) For Inp2 the value belongs to fuzzy set Inp25 (label 5)

with membership value 0.70.

(c) For Inp3 the value belongs to fuzzy set Inp32 (label 2)

with membership value 0.66.

(d) For Inp4 the value belongs to fuzzy set Inp43 (label 3)

with membership value 0.86.

(e) For Outp the value belongs to fuzzy set Outp2 (label

2) with membership value 0.90.

Therefore, for this example the IF-THEN rule will be

15232. In Table 2, another example of IF-THEN rule (rule

13432) is detailed.

In addition, a ‘‘grade of confidence’’ or weight is

determined for each rule, which is observed from the rule

weight (CF, Eq. 2). This CF is defined by the following

expression,

CF xð Þ ¼
Ym

k¼1

max fk;i xið Þ
� �

ð2Þ

where fk;i xið Þ is the membership degree of the kth variable

for the ith datum. Higher values imply more confident

rules. For the previous example, the CF will be 0.29.

Hence, the rule will be defined as 15232 (0.29).

Defuzzification—fuzzy arithmetic

The defuzzification comprises the transformation from a

fuzzy set to a crisp number. As aforementioned, some

useful information is lost in classical defuzzification pro-

cess, for this reason and to achieve better results, a fuzzy

interval was calculated instead of a crisp output. Often,

results from each active rule are added using operations

(defined by t-norms) on fuzzy sets. Although each infer-

ence output can be aggregated as a fuzzy set, these results

were constrained to a more specific output, that is, a fuzzy

interval. A fuzzy interval was defined by a fuzzy set A

satisfying the following: (a) A is normal; (b) The support

{x: A(x) [ 0} of A is bounded; (c) The a-cuts of A are

closed intervals.

Fuzzy arithmetic is based on two properties of fuzzy

numbers: each fuzzy number can fully and uniquely be

represented by its a-cuts and the a-cuts of each fuzzy

number are closed intervals of real numbers for all a [
(0, 1] (Klir and Yuan 1995). These properties enable to
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define arithmetic operations on fuzzy numbers, in terms of

operations on closed intervals. The four operations on

closed intervals are defined by:

a; b½ � þ d; e½ � ¼ aþ d; bþ e½ �
a; b½ � � d; e½ � ¼ a� d; b� e½ �
a; b½ �: d; e½ � ¼ min ad; ae; bd; beð Þ;max ad; ae; bd; beð Þ½ �

a; b½ �= d; e½ � ¼ a; b½ �: 1

e
;
1

d

� �

¼ min
a

e
;
a

d
;
b

e
;
b

d

� �
;max

a

e
;
a

d
;
b

e
;
b

d

� �� �
ð3Þ

Arithmetic (Eq. 3) on closed interval satisfies some useful

properties, i.e. associative, commutative and a very

important property for this work is:

If b:c�0 for every b2 B and c2C; then A: B:Cð Þ
¼ A:BþA:C

Furthermore, if A¼ a;a½ �; then a: B:Cð Þ ¼ a:Bþ a:C ð4Þ

According to the defined operation for this model, a new

‘‘average’’ fuzzy set, that is a fuzzy interval, is obtained.

This new fuzzy interval is calculated using the Eq. 5,

Xfuzzy ¼
1

n

Xn

i¼1

aiAi ¼ �xl
i; �x

cl
i ; �xcs

i ; �x
s
i

� �
ð5Þ

where each ith element, Ai = (ai
l, ai

cl, ai
cs, ai

s), is a fuzzy

interval that is constituted by four parameters and ai is the

maximum membership degree.

From the Eq. 5, the estimation interval (EI, Eq. 6) is

defined from the maximum membership interval, that is for

i = 1, 2,…, n,

EIi ¼ �xcl
i ; �xcs

i

� �
ð6Þ

where �xcl
i and �xcs

i are the central values obtained by Eq. 5.

This interval EI constitutes the confidence indicator for this

model, which width is related to the precision, narrower EI

is indicative of better results. If a datum belongs to the

interval EIi, then it is a satisfactory approximation.

For example, in Fig. 2, three rules were activated, and

therefore, three fuzzy intervals (each one with its corre-

sponding a) obtained. These intervals are used to calculate

a new fuzzy interval using interval arithmetic. After that,

the model output for such a sample is obtained from four

crisp numbers: al acl acs and as. The numbers acl and acs

belong to an interval whose width or EI (Eq. 6) depends on

the degree of membership of the Xfuzzy.

Data and methods

The studied sets are different examples of pollution by

different anthropogenic sources, in two different study

areas: (a) soil samples collected in Base Marambio from

Antarctica (n = 20); and (b) road-deposited sediments

collected in the road Autovia 2 from Buenos Aires Prov-

ince, Argentina (n = 31). The data under study were

recently published, for detailed information the reader is

referred to Chaparro et al. (2007) and Marié et al. (2010).

The model was implemented using the software SCI-

LAB 5.0.2 (INRIA-ENPC, http://www.scilab.org). The

program was written by the authors and runs the simulation

with the output option as a fuzzy interval.

The datasets comprised magnetic and chemical variables,

i.e. thirteen (13) variables; specifically, magnetic variables:

mass-specific magnetic susceptibility (v), anhysteretic

remanent magnetisation (ARM), saturation of isothermal

remanent magnetisation (SIRM), anhysteretic susceptibility

to volumetric susceptibility-ratio (jARM/j), S-ratio (IRM-

300mT/SIRM), remanent coercivity (Hcr); and chemical

variables: contents of chromium (Cr), nickel (Ni), cooper

(Cu), zinc (Zn), lead (Pb), iron (Fe) and Tomlinson pollution

load index (PLI) defined by Tomlinson et al. (1980).

PLI ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Yq

p¼1

CHM;p=Cbaseline;p

� �q

vuut ð7Þ

where CHM,p is the concentration of each heavy metal and

Cbaseline,p is the baseline value for each heavy metal.

However, for this work, the following four input vari-

ables: v, ARM (concentration-dependent variables), jARM/

j and Hcr (magnetic features-dependent variables) were

selected. The output variable is the PLI, which is a com-

posite index of Cr, Ni, Cu, Zn and Pb (q = 5) calculated

from the Eq. 7. This selection of variables was carried out

according to the empirical knowledge and relevance of

parameters in magnetic monitoring.

Fig. 2 Example of the defuzzification process. In this case, three

rules were activated and a fuzzy number Xfuzzy (shaded area) is

calculated by interval arithmetic. The output is obtained from the

crisp numbers: al, acl acs and as, which determine the parameters for

the fuzzy interval (al,acl,acs,as) for this model
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Results and discussion

Data interpretation

The datasets are different examples of pollution in contrast-

ing areas, their descriptive statistics are summarised in

Table 1. The magnetic features-dependent variables are

related with the magnetic mineralogy of these soils and

sediments. In Antarctica and Argentina, magnetite-like

minerals were identified as the main carriers, as well as

subordinate hard magnetic carriers (higher values of Hcr), by

magnetic and scanning electron microscopy (SEM) studies

(Chaparro et al. 2007, 2010, Marié et al. 2010). The presence

of these subordinate carriers is evident from the interquartile

interval [Q1; Q3], which is wider for Antarctica (from 29.2 to

63.8 mT) than for Argentina (from 33.6 to 37.0 mT). The

jARM/j variable is especially sensitive to magnetic grain

size; higher values may indicate finer magnetic grain sizes.

The magnetic concentration-dependent parameters show

high median values that were interpreted as ‘‘magnetic

enhancement’’ by Chaparro et al. (2007) and Marié et al.

(2010). In addition, note the different impact between both

areas from v (e.g. 37.6 9 10-8 m3 kg-1 for Antarctica and

338.8 9 10-8 m3 kg-1 for Argentina) and ARM (e.g.

67.2 9 10-6 Am2 kg-1 for Antarctica and 542.8 9 10-6

Am2 kg-1 for Argentina).

On the other hand, the PLI variable gives an assessment of

the overall toxicity status of a sample, indicating to what extent

a sample exceeds the heavy metal content for natural or

unpolluted environments (PLI = 1). Such variable has median

values up to three times of the values of natural environments.

Membership functions

Although the number of data are different for both cases,

i.e. Antarctica (n = 20) and Argentina (n = 31), the

evaluation of Eq. 1 gives a common optimal number

c* = 4 as can be appreciated in Fig. 3.

It is worth mentioning that the partition of the input

and output variable space is entirely determined and

constrained to the values of the used dataset. In Fig. 4, it

is possible observe the fuzzy partition for each variable,

as well as the four membership functions from both cases.

The centres of MF are distinctively different between both

study areas, which is connected to the chosen dataset used

to build the corresponding MF. From this, the expert’s

empiric knowledge is important to find an adequate

choice of samples, as noted in this work; it is possible to

obtain different parameters for the MF using another

dataset.

A possible way to solve or avoid this problem is adding

information to the model from the optimization of

parameters. This optimization may be obtained from the

expert’s knowledge and the increase of dataset with new

samples. In this contribution, it is worth of mentioning that

the MF’s parameters were obtained using FCM.

Rules

In Table 2, the inference rules, CF results and the rule

ranking are listed. The number of rules is 17 for Antarctica

and 20 for Argentina; some of them are similar showing

slight differences between them. This number may be

reduced by analyzing such differences and their corre-

sponding CF (Table 2), and therefore fusing repeated rules.

Another possibility to optimize the relation data-rules

could come from the increase of data; anyway, this topic

will be studied in a next stage.

In addition, the rules are not only useful to the defuzz-

ification process and therefore to obtain a representative

model, but also they have an added-value because of the

parameter interpretation. In general, taking into account the

Table 1 Descriptive statistics of the data: Antarctica and Argentina

Mean SD Min Q1 Median Q3 Max

Antarctica (n = 20)

v [10-8 m3 kg-1] 84.5 99.8 11.9 25.4 37.6 96.7 339.6

ARM [10-6 A m2 kg-1] 97.8 90.6 29.3 53.7 67.2 97.1 425.7

jARM/j [dimensionless] 2.6 1.2 0.9 1.4 2.6 3.5 4.7

Hcr [mT] 49.2 27.9 14.8 29.2 39.8 63.8 142.3

PLI [dimensionless] 2.2 0.8 1.0 1.6 1.9 2.8 4.1

Argentina (n = 31)

v [10-8 m3 kg-1] 338.5 137.2 33.6 230.1 338.8 422.2 579.4

ARM [10-6 A m2 kg-1] 537.1 136.0 117.4 452.3 542.8 667.6 745.7

jARM/j [dimensionless] 2.5 1.5 1.2 1.6 1.9 3.1 8.3

Hcr [mT] 36.1 6.6 31.7 33.6 34.4 37.0 70.0

PLI [dimensionless] 2.8 0.6 1.4 2.4 2.8 3.1 4.3
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values of CF (see Table 2), it is concluded from the con-

struction of these rules for both studied examples that,

• In Antarctica, IF low values of v and ARM, and

moderate-high values of jARM/j and low values of Hcr

THEN very low values of PLI (CF = 0.903, ranking 4);

• In Argentina, IF very high values of v and ARM, and

low values of jARM/j and Hcr THEN very high values

of PLI (CF = 0.902, ranking 2);

• In both sites: (1) IF high-moderate values of v and

ARM, and low values of jARM/j and Hcr THEN

moderate values of PLI [CF = 0.980, ranking 1

(Antarctica); CF = 0.903, ranking 1 (Argentina)]; (2)

IF high-moderate values of v and ARM, and moderate

values of jARM/j and low values of Hcr THEN high

values of PLI [CF = 0.931, ranking 3 (Antarctica);

CF = 0.730, ranking 7 (Argentina)].

The rules allow extracting information from both study

areas, like as shared characteristics as well as differences

between them. For example, (a) in Antarctica, Rule 11211:

IF low values of v and ARM, and moderate-high values of

jARM/j and low values of Hcr THEN very low values of

PLI (CF = 0.903, ranking 4), while in Argentina, the

equivalent rule according to the classification in Table 2 is,

(b) Rule 22321: IF moderate values of v and ARM, and

moderate-high values of jARM/j and moderate values of

Hcr THEN very low values of PLI (CF = 0.525, ranking

16). Such difference between rules from each study area is

expected according differences between the environments

under study, their pollution sources and the load of pollu-

tants input. As reported by Chaparro et al. (2007) and

Marié et al. (2010), human activities and pollution sources

are quite different in the Antarctic area and in the Conti-

nental (Argentina) area. The pollution influence is local,

Fig. 3 The validity index VMPC (the modified partition coefficient).

The optimal number of clusters is 4 for both cases of study

Fig. 4 Trapezoidal

membership functions obtained

from fuzzy c-means clustering

analysis
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on nearby soils of Base Marambio, and the sources involve

a small power plant, reduced vehicle traffic on summer

period and different residues. This human settlement was

established about 40 years ago and receives up to 100

researchers in summer. Such activities and sources are

really contrasting with the ones from Argentina case. The

latter only involves traffic-derived pollutants of a large area

(tollbooth areas and roadside soils along a length of

120 km) from a national road (Autovia 2). As mentioned in

Marié et al. (2010), this area has a considerable traffic

density of about 5,500 vehicles per day, reaching about

8,000 vehicles per day on the weekends.

On the other hand, from equivalent rules of both study

cases (e.g. Rule 44112 (CF = 0.980, ranking 1, Antarctica)

and Rule 32112 (CF = 0.903, ranking 1, Argentina))

showing coincidences, it is possible note that there is a

relationship between variables beyond the aforementioned

differences. Moreover, this fact validates the use of mul-

tivariate techniques to study the association between heavy

metals and magnetic variables.

Defuzzification—fuzzy arithmetic

Results showed in Fig. 5 belong to the Antarctic dataset.

As can be appreciated in this figure, the model calculates

the values of the variable PLI successfully. Most of data

(90%) are modelled by the intervals, in particular the 55%

of data belong to the central fuzzy interval EI (the most

confident interval); only two data (10%) were not prop-

erly predicted by the model. These data correspond to the

‘‘Pristine area’’ or Control site (sample M44) and the

Incinerator area from Base Marambio (sample M12).

Control samples of the Antarctica’s dataset are M44 and

M47, and the model is able to classify them as unpolluted

samples; this can be observed from the activated rules for

such samples. In spite of the fact that the PLI value of

M44 (PLI = 1.01) does not fit to the fuzzy interval (EI)

calculated by the model, this sample is adequately clas-

sified as unpolluted one. It is necessary to point out

that the corresponding fuzzy number is XFuzzy;M44 ¼
1:09; 1:35; 1:58; 1:77ð Þ (see Fig. 5).

On the other hand, the sample M12 shares (from the

point of view of fuzzy partitions) similar magnetic prop-

erties with samples M89, M97 and M259 (classified as high

values of contamination) and with samples M32, M34,

M99 and M95 (classified as moderate values of contami-

nation). For both mentioned subset of samples, the v values

of M12 is twice and three times higher. The jARM/j value

is up to four/three times lower than subsets of high/mod-

erate values of contamination. Although the sample M10

belongs to same area (Incinerator area) and has similar PLI

values, it shows higher magnetic values (except the vari-

able Hcr) than M12. It is concluded from this analysis that

sample M12 evidences an anomalous behaviour regarding

the Antarctic dataset. It may be a consequence of an

erroneous classification or particular characteristics of such

Table 2 Collection of fuzzy IF-THEN rules and their corresponding

confidence grade CF

Rule* CF Ranking Classification (from output var.)

Antarctica

11211 0.903 4 The lowest values

11331 0.894 6

11341 0.764 10

44112 0.980 1 Moderate values

11342 0.941 2

12232 0.858 7

23212 0.828 8

12322 0.803 9

13422 0.733 12

13432 0.694 13

12442 0.649 14

34313 0.931 3 High values

44113 0.902 5

23223 0.737 11

12333 0.447 17

22124 0.571 15 The highest values

33114 0.542 16

Argentina

22321 0.525 16 The lowest values

11441 0.325 20

32112 0.903 1 Moderate values

23342 0.894 3

43122 0.847 4

11342 0.759 5

24412 0.735 6

33142 0.726 8

22222 0.710 9

12432 0.645 11

31112 0.574 14

44142 0.496 17

33242 0.450 18

22332 0.412 19

33223 0.730 7 High values

44133 0.698 10

34213 0.631 12

12443 0.582 13

44124 0.902 2 The highest values

34224 0.536 15

The rule ranking is calculated from the CF values (the highest CF

value corresponds to ranking 1)

* IF-THEN rule; e.g. rule 13432 means IF x1 is MF1 and x2 is MF 3

and x3 is MF4 and x4 is MF3 THEN y1 is MF2. Where x1, x2, x3, x4

are the input variables and y1 is the output variable
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sampling site that deserves more detailed studies in the

future.

On the other hand, results displayed in Fig. 6 belong to

the Argentinean dataset. Although these data belong to a

quite different environmental problem, the model also

calculates the values of the variable PLI successfully. In

this case of study, all data are fitted to the model and

predicted by the non-central interval EIext (Fig. 6). In

particular, the 87% of data (27 out of 31) are calculated by

the most confident interval EI (central fuzzy interval).

The model shows satisfactory results for these cases, but

it is noted that the calculated output for the second study

case (Argentina) is better than the first one (Antarctica). As

first remark, one explanation is related to difference in the

number of data between datasets (i.e. n = 31 for Argentina

and n = 20 for Antarctica), which could be tested in future

studies. Other reasons, as aforementioned, differences

between cases can come from the environmental charac-

teristics of sites, their pollution sources and the load of

pollutants input. This fact may have a direct influence on

the ranges and distribution of magnetic and chemical

variables, which can be appreciated in Table 1. Note from

descriptive statistics wider interquartile intervals and

higher SD values for Antarctica than for Argentina, espe-

cially for magnetic variables: v, ARM and Hcr. For

example, the coefficient of variation (CV) ranges from 57

to 118% for Antarctica and from 18 to 40% for Argentina.

Conclusions

This methodology is easy to implement and provides to the

user with a simple and effective modelling tool. A large

amount of data is not necessary; however, the increase of

data allows improving the model. The latter is observed

from a better prediction for the larger dataset (Argentina,

n = 31).

The model output shows satisfactory agreement with

two quite different datasets (Antarctica and Argentina).

However, it is noted better results for Argentina than

for Antarctica; this difference may be related to the

Fig. 5 The interval model and data from Antarctica. The estimation

intervals EI (the most confident interval, dark grey zone) and EIext
(light grey zone) are shown as well as the differences between the data

and the upper/lower (*/?) interval limits

Fig. 6 The interval model and data from Argentina. The estimation

intervals EI (dark grey zone) and EIext (light grey zone) are shown as

well as the differences between the data and the upper/lower (*/?)

interval limits
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environmental characteristics and pollution sources, being

the worst case (Antarctica) influenced by multiple pollution

sources. This fact may have a direct influence on the ranges

and distribution of magnetic and chemical variables, and

therefore in the construction and prediction of the model.

The rules constitute a useful tool to analyse the problem,

allowing obtain information from both study areas. Dif-

ferences between rules from each area are expected

according differences between study cases. Furthermore,

similarities between equivalent rules validate the use of

multivariate techniques to study the association between

heavy metals and magnetic variables. The model may be

used in large magnetic dataset to model chemical variables,

such as PLI, Cr, Pb and Zn contents among them.
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