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ABSTRACT: Molecular dynamics simulations of proteins are usually per-
formed on a single molecule, and coarse-grained protein models are calibrated
using single-molecule simulations, therefore ignoring intermolecular inter-
actions. We present here a new coarse-grained force field for the study of many
protein systems. The force field, which is implemented in the context of the
discrete molecular dynamics algorithm, is able to reproduce the properties of
folded and unfolded proteins, in both isolation, complexed forming well-
defined quaternary structures, or aggregated, thanks to its proper evaluation of
protein−protein interactions. The accuracy and computational efficiency of the
method makes it a universal tool for the study of the structure, dynamics, and
association/dissociation of proteins.

I. INTRODUCTION

The theoretical representation of systems of interacting pro-
teins presents major challenges due to the need to simulate
very large systems (often above millions of atoms) for very
long periods of time (in some cases on the time scale of days1).
Despite the impressive advance of atomistic molecular
dynamics,2 the representation of protein structure, dynamics,
and interactions still needs of the use of simplified models
that allow a more efficient sampling of the protein conforma-
tional space. Coarse-grained (CG) models increase computa-
tional efficiency by using implicit solvent models3 and by
collapsing groups of atoms on beads.4 This results in a
reduction of the number of degrees of freedom of the system,
which combined with more efficient motion propagation
schemes accelerates the simulations with respect to atomistic
molecular dynamics.
Most transferable CG force fields for proteins were fitted

to reproduce the folded state of a protein,5−7 or at most to
reproduce the transition from unfolded to folded state,8−12 but
they cannot reproduce the behavior of intrinsically disordered
proteins (IDPs). Attempts to develop IDP CG models yield to
functionals which are unable to represent folded proteins,13,14

highlighting the problems to represent with a single functional
folded and unfolded states of proteins. Furthermore, existing

CG force fields were created to study isolated proteins and are
not prepared to reproduce well-ordered protein complexes.
Some of the most successful coarse-grained models used in
molecular dynamics simulations of proteins have been PaLaCe5

and PRIMO,7 that give an excellent description of the structure
and dynamics of folded proteins, and also OPEP11 which, apart
from that, was able to fold several peptides and sample con-
formational changes in small aggregates.12 In summary, despite
decades of effort, there are not general CG methods able to
represent correctly the dynamics of proteins both in its folded
and unfolded conformations, and the association/dissociation
dynamics in multiprotein systems. This lack of methodology
hampers our ability to describe theoretically the dynamics,
interactions, and association of proteins.
We present here a pairwise additive potential for coarse-

grained side chains and atomistic backbone protein model
(PACSAB) with a transferable force field for the simulation of
many-protein systems. Contrary to many CG models which are
based on knowledge rules on folded proteins,15 our approach is
based on a contraction of an implicit solvent classical atomistic
model, which makes possible transferability to different sce-
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narios and systems. The force field is adapted to the framework
of discrete molecular dynamics (DMD),16 which allows a very
efficient sampling of large protein systems. The parameters
defining the potential energy function in the model were fitted
by exploring the phase diagram for a solution of Aβ40 peptides.
The resulting force field was then tested in DMD simulations
of IDPs, folded proteins, and protein−protein complexes.
In summary, we present here a universal coarse-grained simu-
lation model to explore the conformational space and inter-
actions in multiprotein systems.

II. METHODS
Mapping of the Proteins. The aim of our model is to

study different conformations and aggregation states of pro-
teins, which means that the coarse-graining strategy should be
designed to reproduce accurately excluded volume effects, side
chain packing and backbone hydrogen bonding. Following
Marrink’s strategy,17,18 we have placed beads at all Cαs to define
the protein trace, plus a variable number of beads to describe
the side chains using the mapping defined in ref 19 (typically
each bead represents four heavy atoms; see Figure 1A).

We have concentrated all the atoms of the bead on its center of
mass, therefore all the atom−atom distances become equal to
the bead−bead distances. Additionally, to represent explicitly
hydrogen bonds we have added the backbone atoms N, H, C,
and O.5 We have also added a dummy atom bound to the Cα of
each residue in order to keep the proper chirality of the amino
acids. Solvent effects were reproduced using an implicit solvent
model, which increases computational efficiency and sampling
in the study of diluted systems.
DMD Simulations and Sampling. In DMD simula-

tions the particles are considered as hard spheres interacting
through discontinuous potentials, therefore moving at constant
velocity until a collision (event) happens.16 Events occur when
pairwise distance equals the distance of a discontinuity in the
interaction potential (see Figure 1C). No forces have to be
calculated, and it is not necessary to integrate the equations
of motion, speeding up the simulation as compared with
conventional molecular dynamics (MD). Hardcore potentials
preventing steric clashes are defined between unbound
particles, and infinite square wells are defined between bound
particles to keep the proper bond distances. Additional
square wells are used to preserve the side chain geometry
(pseudobonds).

According to DMD, the trajectory of the particles between
collisions is

⃗ + = ⃗ + ⃗r t t r t v t t( ) ( ) ( )i i ic c
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When two particles collide there is a transfer of linear
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Conservation of momentum and energy is imposed at each
event, and from this, the velocity of each particle after the
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Simulations were performed in the canonical ensemble,
using the Andersen thermostat (for more details, see ref 16).
The sampling obtained in implicit solvent DMD simulations is
much higher than that expected from atomistic explicit solvent
MD, due to the lack of collisions with solvent molecules. In
practice, this implies that simulation time defined in a DMD
trajectory corresponds to roughly 2−3 orders of magnitude
longer real time.20 The speed of the DMD simulations with the
PACSAB model for different systems studied in this work is
shown in Table S1 of the Supporting Information.

Construction of the Force Field. The force field consists
of bonded and nonbonded terms. The first set of terms is used
to maintain covalent structure, while the second accounts for
intra- and intermolecular interactions. In all the cases, the
different terms of the interaction potential are expressed by
means of square well potentials to make possible their
implementation with the DMD algorithm.

Bonded Terms. Square potentials are used to maintain all
chemical bonds and to fix the bond angles. We also use a
pseudobond to fix the dihedral angle of the peptide bonds in
order to enforce its planar geometry, but we do not implement
any other dihedral in the PACSAB model. Bonds and
pseudobonds are defined as narrow square wells (with infinite
depth to prevent bond breaking), whose center is at the equi-
librium distance corresponding to each covalent bond, angle or
dihedral.21

Nonbonded Terms. The non-bonded interactions comprise
hydrogen bonding, defined only between the amide N, H, C,
and O atoms and interactions between nonbonded beads
(van der Waals and implicit solvation), affecting only Cα and
side chain beads.

Hydrogen Bonds. They are represented by means of square
wells of depth Ehb and are defined for the pairs O−H, O−N,
and C−H, whenever these four atoms fulfill a geometry
corresponding to the correct alignment and distance between
the two dipoles N−H and O−C (see Figure 1B). Following the
ideas in ref 22, we increase the stability of hydrogen bonds that
are buried inside the protein, therefore not distorted by
interactions with water. With this purpose the hydrogen bond

Figure 1. (A) Extended conformation of a Aβ40 peptide in our coarse-
grained model. Each residue is represented with a different color.
(B) Pseudobonds used to define the hydrogen bond (see main text).
(C) Schematic picture of the construction of the discretized potential
(solid line). The potential well is centered around RAB* = RA* + RB*, the
sum of the bead radii (see main text). The dashed line is the
continuous potential.
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energy is defined as Ehb = Ehbγiγj + Ehb
core(1 − γiγj), where

Ehb
core > Ehb. γ is a structurally dependent shifting function that

helps to smoothly move from fully exposed (γ = 1) to buried
(γ = 0):

γ
α β

=
+ −

n
n

( )
1

1 exp(( )/ ) (1)

where n is an integer quantity related to the level of exposition
to the solvent of the particle (see Appendix A), α is the limit
value between exposed and buried, and β is the sharpness of the
step. The values of α and β were adjusted from simulations on
our training set of folded proteins (see below).
Interactions between Nonbonded Beads. The interaction

between any pair of nonbonded beads A and B is defined as

ω ω= +V r V r V r( ) ( ) ( )AB vdW AB
vdW

solv AB
solv

(2)

where ωvdW and ωsolv are the weights of the optimized van der
Waals and implicit solvation terms (see below). In this work
we have considered that electrostatic effects are properly
included22 through the hydrogen bonding and the implicit
solvation terms Such an approach was used with success in the
ab initio folding of several small proteins.22

To construct the interactions between non bonded coarse-
grained beads, we assume that all the nonbonded interaction
potential terms are pairwise additive in terms of the atomistic
interactions:

∑ ∑=
∈ ∈

V r V r( ) ( )
i j

ijAB
A B (3)

where r is the distance between beads A and B and Vij(r) is the
atomistic interaction. We use the van der Waals parameters εi*
of the atomistic CHARMM19 force field23 to construct the
coarse-grained van der Waals interactions, plus the atomistic
EEF1 effective energy function of Lazaridis and Karplus24 to
derive the implicit solvent coarse-grained model. Constructing
our potentials from atomistic interactions allows us to avoid
biases25 due to the use of statistical potentials derived from
databases of crystal structures,26,27 opening the possibility to
study disordered proteins.
The van der Waals interaction between the coarse-grained

beads is defined as
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r being the distance between beads A and B. RAB* = RA* + RB*, the
sum of the radii of beads A and B. To compute the bead radii,
we consider that the volume of each bead is proportional to the
sum of the volumes of each atom included into the bead,
leading to the relation R* = ρ(∑Ri*

3)1/3, Ri* being the radius of
each atom, ρ being fitted to 0.9 after inspection of atomistic
residue−residue interaction profiles.
The interaction hardness εAB* is computed extrapolating from

atomistic van der Waals interactions (see Appendix B):
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where NA (NB) is the number of atoms included by bead A (B)
and εi* are the atomistic van der Waals interaction hardnesses.
The implicit solvation term between the coarse-grained beads

has been constructed from the atomistic EEF1 functional24

∫ ∫= − ⃗ − ⃗ ≈ − −V r f r f r f r v f r v( ) d d ( ) ( )ij
v j v i j i i j

solv

i j (6)

where vi is the volume and f i(r) = CΔGi exp(−(r/λ)2)/r2 is the
solvation free energy density of particle i, ΔGi being the
solvation free energy of the isolated atom i, λ a correlation
length and C = 1/(2π3/2λ).24 Both ΔGi and vi for each particle
type are determined from experimental data.24 The previous
equation can be rewritten as

λ≈ − Δ + Δ −V r C G v G v r r( ) ( )exp( ( / ) )/ij i j j i
solv 2 2

(7)

Assuming additivity, the solvation term affecting beads A and
B is then defined as
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We have included more information about the parameters
of the atomistic force fields CHARMM19 and EEF1 in the
Supporting Information.
The EEF1 implicit solvation functional assumes24 that any

“nonprotein space” is “solvent space”, even if it is inside the
protein. Thus, this model does not take into account that water
has a finite size and cannot fit inside the core of the protein.
This can be quite realistic when using an atomistic repre-
sentation of the protein, but this is not a good approximation
for coarse-grained representations of the system, where packing
in the interior of the protein cannot be as dense. To correct this
spureous effect we have modulated the implicit solvation term
by including the factor γ (eq 1) in eq 8:
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where ΔGA = γA∑i∈A ΔGi and vA = ∑i∈A vi.
Discretization of the Total Interaction Potential between

Nonbonded Coarse-Grained Beads. To transform the
potential described above to a discretized functional which
can be inserted in the DMD algorithm, we define a well located
at RAB* = RA* + RB* (the minimum of the coarse-grained van
der Waals potential term; see Figure 1). The well depth is
computed as the sum of the two terms at distance r = RAB* :

ω ω* = * + *V R V R V R( ) ( ) ( )AB AB vdW AB
vdW

AB solv AB
solv

AB (11)

To reduce the computational cost of the simulations we
approximate the nonbonded potential of mean force to a
discretized potential with two energy steps, that form a
potential well (or barrier) if the total potential is attractive (or
repulsive). The inner and outer step distances are 0.9RAB* and
1.1RAB* , respectively, while the hardcore repulsion distance was
placed at 0.88RAB* (see Figure 1C).

Parametrization of the Force Field. We refined the
parameters of the force field by analyzing the behavior in water
of a single Aβ40 peptide, a 30 μM solution of Aβ40 peptides,28

and a small folded protein (PDB id 1FAS). Our objective was
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to find a parametrization able to represent correctly the three
states (unfolded, aggregated, and folded).
We used the simulations of the protein 1FAS to adjust

the hydrogen bonding strengths Ehb = 3 kcal/mol and Ehb
core =

4 kcal/mol as well as the parameters α = 10 and β = 0.5 used to
define the factor γ (see eq 1).
The values of ωsolv and ωvdW in eq 11 were selected to get a

proper balance between aggregation and dissociation rates in
simulations of a solution of Aβ40 peptides at a concentration of
30 μM.

III. RESULTS AND DISCUSSION
Force Field Calibration. The macroscopic solution was

modeled by placing four Aβ40 peptides in a cubic box of the
size corresponding to 30 μM concentration and with periodic
boundary conditions. We observed that in this system the
solvation term prompts dissociation and the van der Waals
term prompts association. In order to have a good statistics of
the association process we ran eight long DMD simulations for
each point in the two-dimensional space (ωsolv, ωvdW). We
scanned the range of ωvdW from 0 to 10 and ωsolv from 0 to 18
(mesh density of one unit per dimension) to build the phase
diagram shown in Figure 2. Above the phase boundary line,

aggregation happens due to hydrophobic collapse, and below
it, there is equilibrium between peptide associations and
dissociations. This stationary regime was achieved when the
trajectories reached 3 μs, but to make sure that the oligomer
size distribution was stabilized we extended the simulations up
to 5 μs. Equilibrium is rapidly reached in the DMD simulations
due to the enhanced conformational sampling of the implicit
solvent model we use, making 1 μs equivalent to 1 ms of real
time (see Methods).
We chose the point ωsolv = 8, ωvdW = 7 on the phase

boundary line, that gives the secondary structure in better
agreement with the conformational sampling obtained in the
explicit solvent atomistic MD simulation of a single Aβ40
peptide in ref 29 (see structures in Figure 2), as well as a
realistic aggregation profile in the Aβ40 solution. We refer the
reader to ref 30 for a recent review about simulations of the
Aβ40 peptide. We show in Figure S1 of the Supporting
Information the secondary structure evolution as a function of
time for an Aβ40 peptide. We started the simulation from a

completely extended conformation, and rapidly an α-helix
region is formed between residues 12 and 24. We show the
α-helix and β-strand propensities in Figure S2. These results are
in agreement with those obtained from united-atom implicit
solvent simulations in refs 31 and 32 that give a higher stability
of these secondary structure regions as compared with the
explicit solvent simulations of ref 33.
In order to test the stability of α-helix and β-sheet motifs

with the PACSAB force field, we have made simulations of an
α-helix peptide (EK peptide) and of a β-sheet peptide (the
Gly5-Trp29 segment of the protein with PDB code 1I6C), both
starting from completely extended conformations. PACSAB
folded these peptides to their native conformation, as shown in
the Supporting Information (Figure S5).
We have shown in Figure 3 the evolution with time of the

population of each oligomer order (computed as the average

over the eight simulations) for this point and for a point above
the phase boundary line, where the dynamics of aggregation
tends to populate higher order oligomers. We selected the
protein 1FAS as a training system for fine-tuning of the (ωsolv,
ωvdW) values. However, as can be observed in Figure 4, no
reoptimization was necessary, since the chosen parametization
reproduces correctly the structure of this folded protein. If a
(ωsolv, ωvdW) value below the phase boundary line in Figure 2
is chosen, the protein unfolds due to the underestimated
hydrophobicity with such parametrization.

Figure 2. Phase diagram for the 30 μM concentration Aβ40 solution.
Above the phase boundary line the solution precipitates. Small pictures
show typical secondary structures obtained for monomeric Aβ40 in the
simulations at certain points on the phase boundary line.

Figure 3. Evolution of the percentage of peptides in each oligomeric
state during the trajectory (black line monomers; red line dimers;
green line trimers; blue line tetramers): (upper panel) evolution for
the point at coordinates (6,7) in the phase diagram; (lower panel)
same for the point at (8,7).
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Amyloid Aggregation Dynamics. For each point in the
phase diagram of Figure 2 we started the simulations from
completely extended conformations of the peptides. We
observed that at the beginning of the simulation, the peptides
experience a fast collapse that drive their structure to a fold
intermediate between a helical structure and a molten globule
(see Figure 5), in good agreement with previous explicit solvent
atomistic MD simulations of Aβ40.29

As simulation progresses, intermolecular collisions happen,
some of them leading to peptide association. At 30 μM
concentration peptides collide every 0.1 μs on average, but
only ∼10% of these collisions are productive (leading to
the formation of a stable dimer). The low frequency of

association/dissociation events requires an extensive sampling
than cannot be achieved by standard explicit solvent atomistic
MD simulations, but that was accessible with our implicit solvent
DMD simulations (note in Figure 5 that a stationary regime had
been reached within the simulation window). The association of
monomers with dimers led to the formation of trimers, much less
abundant due to the low population of dimers. For the same
reason the existence of tetramers was residual. Our oligomer size
distribution is coincident with the experimental distributions
observed in a very recent work by Pujol-Pina et al.34 (see Figures
S3 and S4 of the Supporting Information)
We made simulations at higher concentrations, finding that

higher order oligomers become more abundant as the concen-
tration increases. Figure 6 shows the oligomer size distribution

obtained after 1 μs DMD simulations at different concen-
trations. Eight simulations were performed for each concen-
tration. The oligomer size distribution at 50 μM fits well with
the distribution at 30 μM (see Figure 5), but at 100 μM it has
changed clearly with an evident increase of dimers. At 240 μM
similar populations are found for monomers, dimers, trimers,
and tetramers. This tendency is consistent with the results of
very recent atomistic molecular dynamics simulations for solu-
tions of β-amyloid peptides at very high concentration.35

Test Systems. In order to evaluate the quality and
universality of the force field, we performed a comprehensive
evaluation for folded proteins, intrinsically disordered proteins
and protein−protein complexes.

Folded Proteins. We explored the ability of the coarse
grained force field to reproduce the structure of folded proteins
in long simulation time scales. For this purpose we selected a
set of 25 proteins representative of the most prevalent protein
folds36 and performed DMD simulations of 500 ns (this gives,
as explained above, a sampling corresponding to multimicro-
second trajectories in explicit solvent atomistic MD). Results in
Figure 7 show that all the trajectories are stable, without any
evident signal of unfolding as illustrated in the evolution of the
radii of gyration. The RMS deviations from experimental
structure are typically in the range 2−8 Å, higher than those
found in atomistic MD simulations,36−38 but matching the level
of accuracy of state-of-the-art CG force fields designed
specifically to reproduce the folded state of proteins5,7,12 (see
comparison with other coarse-grained models in Table S2 of
the Supporting Information)
As demonstrated by the TM-score value,36 the flexible loops

are the main origin of the deviation of DMD samplings
from experimental structures, while the protein core is fully

Figure 4. Structure of the protein with PDB id 1FAS after a DMD
simulation of 100 ns (red cartoon), compared with the crystallographic
structure (blue). Also shown are the RMSD, TM-score, and radius of
gyration.

Figure 5. Oligomerization in the 30 μM Aβ40 peptide solution.
(upper panel) Structures of a monomer, a dimer, and a trimer
obtained during the simulations. (lower panel) Percentage of peptides
in each oligomeric state observed at different DMD simulation
times using the optimal force field parametrization (see main text):
1 μs (red), 2 μs (yellow), 3 μs (green), 4 μs (blue), and 5 μs (dark
blue).

Figure 6. Percentage of peptides in each oligomeric state at different
concentrations: 50 μM (blue), 100 μM (orange), and 240 μM
(yellow).
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preserved during the simulations. We found conservation of
native secondary structure (Figure 7), which is remarkable
considering that our force field does not introduce, like others,
specific restraints or backbone dihedral terms favoring the
stability of usual secondary structure elements. Despite this lack
of restrictions in the backbone dihedrals, the Ramachandran
plots are well reproduced, as shown in Figure S6 of the
Supporting Information. Finally, fold recognition algorithms
detected in all the cases the real structure (or that of a very
close homologue) from the sampled structure at the end of the
DMD simulation (see Figures S7 and S8 of the Supporting
Information)
In summary, despite the lack of specific training for folded

proteins, the absence of restrictions on secondary structure, and
the lack of structure potentials biasing the simulations toward
the native state, our extremely simple CG model is able to
sample properly the structure of folded proteins in very long
simulations.

Intrinsically Disordered Proteins. To test the generality
and universality of the force field we also explored the dynamics
of two intrinsically disordered proteins (IDPs): ACTR and
α-synuclein. ACTR is an IDP that folds in a well-defined
structure only in the presence of its macromolecular partner,39

while in its absence appears as a random coil with a residual
percentage of α-helix. DMD simulations recognized the IDP
nature of ACTR, sampling a wide variety of conformational
states in a 1 μs DMD trajectory (see Figure 8). The only
common feature between the conformations of the ensemble is
the formation of residual secondary structure, in good agree-
ment with circular dichroism measurements.40

Similar success is obtained with α-synuclein, which is stable
when embedded in a lipid environment, while it is disordered in
water,41 except for some residual contacts between the residues
around position 50 and the residues around position 120 in the
sequence. As shown in Figure 8, the model is able to recognize
the protein as an IDP, with a very low percentage of secondary
structure, and no distinct contacts others than the robust
interaction between residues ∼50 and ∼120, in good agreement
again with experimental information.41

Protein−Protein Complexes. Finally, we tested the ability of
our simulation procedure to recognize experimental structures
of protein−protein complexes. We used here as test set the
strong binding complexes of the Weng’s protein−protein
docking benchmark 4.0.42 Following the standard criterion we
considered as strong binding cases those complexes with a
binding free energy ΔG < −10 kcal/mol43 (the complexes of the
test set are listed in Table S3 of the Supporting Information).
We evaluated the ability of the force field to distinguish
experimental complexes from false positive structures generated
by protein−protein docking calculations. We want to stress
that, instead of refining protein docking poses,44 we just want
to use the PACSAB simulations as a filter to discard nonnative
docking poses. Thus, for each complex in the test set we per-
formed a 1 ns DMD simulation of the experimental structure
and the best scored false positive docking pose generated in a
previous study.44 We found that dissociation happened in the
first few picoseconds of the trajectory, so 1 ns simulations were
long enough to filter the docking poses, that had been scored
using pyDock,45 a state-of-the-art scoring funtion for protein−
protein docking.46

In average 85% of experimental structures remained stable
during the simulations (see Figure 9A), while 80% of the false
positives deviated significantly from its initial conformation,

Figure 7. Structural properties of the folded protein benchmark after
a DMD simulation of 500 ns. (top to bottom) RMSD respect to the
native conformation, TM-score, change in the radius of gyration
during the trajectory, conserved α-helix, and conserved β-sheet. The
value of RMSD, TM-score, and radius of gyration is plotted in a
different color for each protein. Proteins without α-helices are not
shown in the α-helix coverage plot, and the same for β-sheets.
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many of them leading to a complete disruption of the ligand−
receptor complex (Figure 9C). In 90% of the complexes the
RMS deviation from the starting structure is higher for the best
scored false positive than for the experimental structure
(see histogram in Figure 9B). Therefore, we have found that
despite the lack of specific parametrization or the use of
statistical potentials our simple DMD-based method is able not
only to maintain the geometry of experimental protein−protein
complexes, but to identify incorrect structures, even those
that are given a strongly attractive interaction energy in docking
calculations. The ability of the method to keep stable
experimental complex structures while producing dissociation
of nonbinding ligand−receptor orientations suggests us that the
method could give good results in cross-docking47 of proteins
for which experimental information about possible binding is
not available.

Figure 8. Structural data on ACTR (A−D) and α-synuclein (E−H).
(A, E) Radius of gyration during the trajectory. (B, F) Contact map.
The axes are the residue index. The color scale is from blue to red
(arbitrary units). Contacts between consecutive residues have been
neglected. (C) Structure of ACTR when bound to its macromolecular
partner (starting structure for the DMD simulations). (G) Structure of
α-synuclein when embedded in a lipid environment. (D, H) Ensemble
of structures obtained during the simulation. A time-increasing
colorscale (from red to blue) has been used here.

Figure 9. (A) Histogram of RMSDexp, the RMSD with respect to the
initial structure for the experimental complex (left), and histogram of
RMSDfp, the RMSD with respect to the initial structure for the best
scored false positive (right). The RMSDs are calculated after a DMD
simulation of 1 ns. (B) Values of the ratio RMSDfp/RMSDexp. At the
left figure, symbols above the dashed line correspond to complexes for
which RMSDfp > RMSDexp. At right is shown the corresponding
histogram. (C) Structure of the crystal (left) and best scored false
positive docking pose (right) for the complexes 1PPE, 1AY7, and
1GPW (from top to bottom). The receptor is colored in dark blue and
the ligand in red. At left is shown position of the ligand (cyan) after a
simulation of 1 ns; at right is shown the movement of the ligand at the
beginning of the trajectory (in the frame of reference of the receptor).
Several snapshots in a time-increasing colorscale (from red to blue) are
shown for the ligand.
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IV. CONCLUSIONS
We have constructed a physics-based discretized coarse-grained
force field to represent the conformational space of proteins
in solution, but also aggregated and complexed with other
proteins. The force-field is implemented in a highly efficient
discrete molecular dynamics algorithm which allowed us
inexpensive simulations in huge systems, which would be
inaccessible to standard atomistic molecular dynamics simu-
lations. Exhaustive testing of the method shows that it is able
to reproduce correctly the stability of both structured and
intrinsically disordered proteins, to reproduce properly aggre-
gation of β-amyloid peptides, and to recognize the correct
structure of protein−protein complexes when compared with
alternative ligand−receptor orientations which where highly
scored by state-of-the-art protein−protein docking algorithms.
To our knowledge, this is the first coarse-grained model able
to represent both the conformational variability and inter-
actions of proteins, including association, dissociation, and
aggregation.

■ APPENDIX A
The index of packing n of particle i, used in the calculation of
the factor γ

γ
α β

=
+ −

n
n

( )
1

1 exp(( )/ )i

is computed as the number of faces in a truncated cube
centered on particle i such that its center is near to any other
particle j. The maximum value is n = 14, the total number of
faces. n = 14 would correspond to a completely buried particle,
n = 0 to a completely isolated particle. We have fitted α = 10,
the n value at which γ changes from the exposed particle
(γ ≈ 1) to the buried paticle (γ ≈ 0) value (see Figure 10)

■ APPENDIX B
We assume that van der Waals term of the interaction between
beads A and B at the distance r = RAB, such that VAB

vdW has its
energy minimum, is equal to the sum of atomistic van der

Waals interactions at r = RAB. The atomistic van der Waals
interaction between atoms i and j is
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being r the distance between atom i and atom j. ε ε ε* = * *ij i j

and Rij* = Ri* + Rj*. Supposing that all the atoms have the same
van der Waals radii R0*, Rij* ≈ 2R0*. Thus
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where NA (NB) is the number of atoms included by bead A (B).
Therefore, the value of the atomistic van der Waals

interacion between atoms i and j at the distance RAB* is
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The value of the van der Waals term of the coarse-grained
potential at the distance RAB* is the sum of the terms
corresponding to the interactions between all the atoms
included in bead A and bead B:

∑ ∑ ∑ ∑ ε* = * = * −
∈ ∈ ∈ ∈

V R V R x x( ) ( ) ( 2 )
i j

ij
i j

ijAB
A B

at
AB

A B

12 6

where we have defined x = 2/[(NA
1/3 + NB

1/3)ρ].

Taking into account ε ε ε* = * *ij i j and assuming

ε ε ε ε∑ ∑ * * ≈ ∑ * ∑ *
∈ ∈ ∈ ∈( )( )i j i j i i j jA B A B one finally ob-
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Details on the atomistic force fields used to constrcut the
PACSAB force field; tables describing the protein−
protein complexes used, simulation speed for several
systems and the backbone RMSD after PACSAB
simulation for proteins tested with other coarse-grained
models; figures for the secondary structure changes
during a trajectory for Aβ40, secondary structure
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Aβ40, folding trajectories of EK peptide and a β-sheet

Figure 10. Structure of protein 1FVQ where particles are given a color
scaled according to the value of γ (blue: exposed; red: buried).
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