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Abstract

An abstract indefinite least squares problem with a quadratic constraint is con-
sidered. This is a quadratic programming problem with one quadratic equality
constraint, where neither the objective nor the constraint are convex functions.
Necessary and sufficient conditions are found for the existence of solutions.
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1. Introduction

Quadratic optimization is a fundamental problem in optimization theory
and its applications. Economic equilibrium, combinatorial optimization and
numerical partial differential equations are all sources of quadratic optimiza-
tion problems. Quadratic programming (QP) with a convex objective function
was shown to be polynomial-time solvable. However, QP with an indefinite
quadratic term is NP-hard in general. Usually, duality concepts and variational
methods are applied to characterize and compute global minimizers. The liter-
ature on quadratically constrained quadratic programming (QCQP) problems
is abundant, specially in the finite dimensional setting [34, 35, 36, 37, 46]. In
this case, these problems can be written in the following form:

minimize f0(x) = xTP0x+ qT0 x+ r0

subject to fi(x) = xTPix+ qTi x+ ri ≤ 0, i = 1, 2, ...,m

Email addresses: sgzerbo@fi.uba.ar (Santiago Gonzalez Zerbo), amaestri@fi.uba.ar
(Alejandra Maestripieri), francisco@mate.unlp.edu.ar (Francisco Mart́ınez Peŕıa)
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where x ∈ Rn is the optimization variable, and Pi ∈ Rn×n, qi ∈ Rn, ri ∈ R are
given problem data, for i = 0, 1, ...,m.

This kind of QCQP problems can also be posed in the infinite dimensional
setting, in particular in reproducing kernel Hilbert spaces (RKHS), see e.g.
[15, 27, 41]. There, these problems stand as

minimize f(x) = 〈T0x, x〉+ 〈c, x〉+ α0

subject to gi(x) = 〈Tix, x〉 + 〈yi, x〉+ αi ≤ 0, i = 1, 2, ...,m,

where the optimization variable x varies in a complex Hilbert space (H, 〈 ·, · 〉),
and the data is composed of bounded operators Ti : H → H, vectors yi ∈ H
and scalars αi ∈ C, for i = 0, 1, ...,m.

On the one hand, if the operators Ti are positive semidefinite, then the
objetive and the restriction are convex functions and the problem can be solved
using a generalized Lagrangian and a dual maximization problem, with the
Karush-Kuhn-Tucker conditions, see e.g. [9, 10, 38, 43].

On the other hand, if the operators Ti are neither positive nor negative
semidefinite, then the objetive and the restrictions are not convex. Since the
definiteness of the inner product in H plays no role at all, the aim of this work
is to pose a similar QCQP problem with only one quadratic equality constraint
(QP1QEC), but using indefinite inner product spaces as codomains of the op-
erators involved. More precisely, this paper is devoted to studying the following
abstract indefinite least squares problem (ILSP) with a quadratic constraint:

Problem 1. Given a Hilbert space (H, 〈 ·, · 〉), and Krein spaces (K, [ ·, · ]K) and
(E , [ ·, · ]E), let T : H → K and V : H → E be bounded operators. Also, assume
that T has closed range and V is surjective. Given (w0, z0) ∈ K × E, analyze
the existence of

min [Tx− w0, T x− w0 ]K , subject to [V x− z0, V x− z0 ]E = 0,

and if the minimum exists, find the set of arguments at which it is attained.

One motivation for studying this problem is related with practical issues
derived from machine learning theory. The classical literature is formulated in
RKHS, and the positive definiteness of the kernel implies that the objective
functions involved in the QCQP are convex, see [18, 30, 45]. However, the main
obstacle arising in the applications is to achieve the Mercer condition for the
kernel, i.e. to verify that the kernel is positive definite. Numerically, this is
a painful condition to verify. In [11, 12, 32, 33] different authors propose to
use reproducing kernel Krein spaces (RKKS) instead of RKHS (avoiding the
necessity of verifying the Mercer condition), which turns into a more efficient
solving tool from the numerical point of view. The indefinite kernel techniques
have been also applied to pattern recognition problems, see [25, 42].

Since [ ·, · ]K and [ ·, · ]E are indefinite inner products, the objective func-
tion x 7→ [Tx− w0, T x− w0 ]K is not convex while the equality constraint
[V x− z0, V x− z0 ]E = 0 is sign indefinite.
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If (E , [ ·, · ]E) is a Hilbert space, the above constrained ILSP consists in ana-
lyzing the existence of

min [Tx− w0, T x− w0 ]K , subject to V x = z0.

In this case, the quadratic form x 7→ [Tx− w0, T x− w0 ]K is minimized over
the affine manifold x0 + N(V ) where x0 ∈ H is a solution to V x = z0, see
[21, 22].

In the general setting, the objective function is minimized over a set given by
a quadratic constraint. Denote CV the set of neutral elements of the quadratic
form x 7→ [V x, V x ]E , i.e.

CV = { u ∈ H : [V u, V u ]E = 0 } .

Then, given any x0 ∈ H such that V x0 = z0, Problem 1 can be restated in the
following way:

Problem 1’. Given x0 ∈ H and w0 ∈ K, analyze the existence of

min
y∈CV

[T (x0 + y)− w0, T (x0 + y)− w0 ]K ,

and if the minimum exists, find the set of arguments at which it is attained.

A significant difficulty that arises is that CV is not a convex set. Moreover,
the convex hull of CV is the complete Hilbert space H, thus replacing CV by its
convex hull trivializes the problem.

The paper is organized as follows. Section 2 introduces the notation used
along the work, as well as a brief exposition on Krein spaces and linear op-
erators on Krein spaces. Its main purpose is to present in Proposition 2.1 a
version of Farkas’ Lemma (or S-procedure), and some of its consequences that
are used repeatedly. Given linear operators T : H → K and V : H → E act-
ing between Krein spaces, let T# and V # denote the adjoints of T and V ,
respectively, with respect to the indefinite inner products. If the quadratic form
x 7→ [V x, V x ]E is indefinite, Proposition 2.1 says that T maps CV into a non-
negative set of K if and only if there exists ρ ∈ R such that T#T + ρV #V
is positive semidefinite. Moreover, if such ρ exists, there is a closed interval
[ρ−, ρ+] of admissible values for ρ. If P±(V ) denote the subsets of H where the
quadratic form x 7→ [V x, V x ]E takes positive and negative values, respectively,
the extremal values ρ± are determined by

ρ− := − inf
x∈P+(V )

[Tx, Tx ]

[V x, V x ]
and ρ+ := − sup

x∈P−(V )

[Tx, Tx ]

[V x, V x ]
,

see Corollary 2.2.
Section 3 starts describing under which conditions the objective function is

bounded from below over the set x0 + CV , see Proposition 3.1. This implies
that in order to have solutions to Problem 1 it is necessary that T (CV ) is a
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nonnegative set of K. The rest of the section is devoted to presenting necessary
and sufficient conditions for the existence of solutions to Problem 1 for a fixed
initial data (w0, z0) ∈ K × E , see Proposition 3.3 and Theorem 3.5.

Along Section 4 we find a set of necessary and sufficient conditions for the
existence of solutions to Problem 1 for every initial data (w0, z0) ∈ K × E . We
start by showing that T mapping CV into a uniformly positive subset of K is
a necessary condition. Although it is not enough for our purposes, it leads us
into an extra necessary condition: the attainment of

sup
x∈P−(V )

[Tx, Tx ]

[V x, V x ]
and inf

x∈P+(V )

[Tx, Tx ]

[V x, V x ]
.

Finally, we show that the above condition together with T (CV ) being a
uniformly positive set of K are not only necessary but sufficient for the existence
of solutions for every initial data (w0, z0) ∈ K × E . This result is stated in
Theorem 4.10.

In Section 5 we present a full description of Z(w0, z0). By Theorem 3.5,
given (w0, z0) ∈ K × E the set of solutions to Problem 1 is

Z(w0, z0) = x0 +Ω,

where x0 ∈ H is any vector such that V x0 = z0 and

Ω :=
{
y ∈ CV : (T#T+λV #V )(x0+y) = T#w0+λV #z0 for some λ ∈ [ρ−, ρ+]

}
.

We show how the structures of Ω and Z(w0, z0) depend on the location of λ
in the interval [ρ−, ρ+]. The main result of this section asserts that the set of
solutions to Problem 1 is an affine manifold parallel to N(T ) ∩N(V ) for every
initial data (w0, z0) belonging to an open and dense subset of the vector space
K × E .

As an application of the previous results, Section 6 presents a generalization
of the abstract mixed splines problem.

2. Preliminaries

Along this work H denotes a complex (separable) Hilbert space. If K is an-
other Hilbert space then L(H,K) is the vector space of bounded linear operators
from H into K and L(H) = L(H,H) stands for the algebra of bounded linear
operators in H.

If T ∈ L(H,K) then R(T ) stands for the range of T and N(T ) for its
nullspace. The Moore-Penrose inverse of an operator T ∈ L(H,K) is denoted
by T †. Recall that T † ∈ L(K,H) if and only if T has closed range. For detailed
expositions on the Moore-Penrose inverse, see [6, 31].

The reduced minimum modulus γ(T ) of an operator T ∈ L(H) is defined by

γ(T ) = inf
{
‖Tx‖ : ‖x‖ = 1, x ∈ N(T )⊥

}
.
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An operator T 6= 0 has closed range if and only if γ(T ) > 0. In this case,
γ(T ) = ‖T †‖−1.

An operator A ∈ L(H) is positive semidefinite if 〈Ax, x 〉 ≥ 0 for all x ∈ H;
and it is positive definite if there exists α > 0 such that 〈Ax, x 〉 ≥ α‖x‖2 for
every x ∈ H. The cone of positive semidefinite operators is denoted by L(H)+.
We say that a selfadjoint operator A ∈ L(H) is indefinite if it is neither positive
nor negative semidefinite, i.e. if there exist x+, x− ∈ H such that 〈Ax+, x+ 〉 > 0
and 〈Ax−, x− 〉 < 0.

2.1. Krein spaces

In what follows we present the standard notation and some basic results on
Krein spaces. For a complete exposition on the subject (and the proofs of the
results below) see [2, 5, 8, 17, 39].

An indefinite inner product space (F , [ ·, · ]) is a (complex) vector space F
endowed with a Hermitian sesquilinear form [ ·, · ] : F × F → C.

A vector x ∈ F is positive, negative, or neutral if [x, x ] > 0, [x, x ] < 0,
or [x, x ] = 0, respectively. Likewise, a subspace M of F is positive if every
x ∈ M, x 6= 0 is a positive vector in F ; and it is nonnegative if [x, x ] ≥ 0 for
every x ∈ M. Negative, nonpositive and neutral subspaces are defined mutatis
mutandis.

If S is a subset of an indefinite inner product space F , the orthogonal com-
panion to S is defined by

S [⊥] = {x ∈ F : [x, s ] = 0 for every s ∈ S } .

It is easy to see that S [⊥] is always a subspace of F .

Definition. An indefinite inner product space (H, [ ·, · ]) is a Krein space if
it can be decomposed as a direct (orthogonal) sum of a Hilbert space and an
anti Hilbert space, i.e. there exist subspaces H± of H such that (H+, [ ·, · ]) and
(H−,− [ ·, · ]) are Hilbert spaces,

H = H+ ∔H−, (2.1)

and H+ is orthogonal to H− with respect to the indefinite inner product. Some-
times we use the notation [ ·, · ]H instead of [ ·, · ] to emphasize the Krein space
considered.

A pair of subspaces H± as in (2.1) is called a fundamental decomposition of
H. Given a Krein space H and a fundamental decomposition H = H+ ∔ H−,
the direct (orthogonal) sum of the Hilbert spaces (H+, [ ·, · ]) and (H−,− [ ·, · ])
is denoted by (H, 〈 ·, · 〉).

If H = H+∔H− and H = H′
+∔H′

− are two different fundamental decompo-

sitions of H, the corresponding associated inner products 〈 ·, · 〉 and 〈 ·, · 〉′ turn
out to be equivalent on H. Therefore, the norm topology on H does not depend
on the chosen fundamental decomposition.
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A set M of a Krein space (H, [ ·, · ]) is uniformly positive if there exists α > 0
such that

[x, x ] ≥ α‖x‖2 for every x ∈ M,

where ‖ · ‖ is the norm of any associated Hilbert space. Uniformly negative sets
are defined mutatis mutandis.

If (H, [ ·, · ]H) and (K, [ ·, · ]K) are Krein spaces, L(H,K) stands for the vector
space of linear transformations which are bounded with respect to any of the
associated Hilbert spaces (H, 〈 ·, · 〉H) and (K, 〈 ·, · 〉K). Given T ∈ L(H,K),
the adjoint operator of T (in the Krein spaces sense) is the unique operator
T# ∈ L(K,H) such that

[Tx, y ]K =
[
x, T#y

]
H
, x ∈ H, y ∈ K.

We frequently use that if T ∈ L(H,K) and M is a closed subspace of K then

T#(M)[⊥]
H = T−1(M[⊥]

K).

2.2. A version of Farkas’ Lemma

Let (H, 〈 ·, · 〉) be a Hilbert space, and (K, [ ·, · ]K), (E , [ ·, · ]E) be two Krein
spaces. Let T ∈ L(H,K) and V ∈ L(H, E). Recall that CV denotes the set of
neutral vectors of the quadratic form associated to V #V :

CV =
{
y ∈ H : [V y, V y ] = 0

}
.

If V #V is a positive (or negative) semidefinite operator in H, then CV co-
incides with N(V ). But, if V #V is indefinite, the set CV is strictly larger than
N(V ). From now on V #V is assumed to be indefinite; i.e. neither positive nor
negative semidefinite.

The following result can be interpreted as another manifestation of the S-
Lemma (or Farkas’ lemma), see [36, 44]. It first appeared in [28]. For its proof,
see Lemma 1.35 and Corollary 1.36 in [5, Chapter 1, §1].

Proposition 2.1. Given T ∈ L(H,K) and V ∈ L(H, E), the following condi-
tions are equivalent:

i) T (CV ) is a nonnegative set of K;

ii) there exists ρ ∈ R such that T#T + ρV #V is positive semidefinite.

Let us also consider the subsets of H where the quadratic form associated
to V #V takes positive and negative values:

P+(V ) := {x ∈ H : [V x, V x ] > 0 } and P−(V ) := {x ∈ H : [V x, V x ] < 0 } .

Corollary 2.2. If T (CV ) is a nonnegative set of K, then

ρ− := − inf
x∈P+(V )

[Tx, Tx ]

[V x, V x ]
< +∞ , ρ+ := − sup

x∈P−(V )

[Tx, Tx ]

[V x, V x ]
> −∞,

and ρ− ≤ ρ+. In this case,

T#T + ρV #V is positive semidefinite if and only if ρ ∈ [ρ−, ρ+].
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If ρ− 6= ρ+, the positive operators T#T + ρV #V with ρ ∈ (ρ−, ρ+) share
many properties. We collect here some of the results from [24], which are used
along the paper.

Lemma 2.3. Assume that T (CV ) is a nonnegative set of K and that ρ− 6= ρ+.
Then

N(T#T + ρV #V ) = N(T#T ) ∩N(V #V ), for every ρ ∈ (ρ−, ρ+).

Proposition 2.4. Assume that T (CV ) is a nonnegative set of K and that ρ− 6=
ρ+. Then

R
(
(T#T+ρV #V )1/2

)
= R

(
(T#T+ρ′V #V )1/2

)
, for every ρ, ρ′ ∈ (ρ−, ρ+).

Also, R
(
(T#T +ρ±V

#V )1/2
)
⊆ R

(
(T#T +ρV #V )1/2

)
, for every ρ ∈ (ρ−, ρ+).

Proposition 2.5. The following conditions are equivalent:

i) there exists α > 0 such that [Ty, T y ] ≥ α‖y‖2 for every y ∈ CV ;

ii) there exists ρ ∈ R such that T#T + ρV #V is a positive definite operator.

In this case, CT ∩ CV = { 0 }.

3. Indefinite least squares problems with a quadratic constraint

From now on (H, 〈 ·, · 〉) denotes a Hilbert space, (K, [ ·, · ]K) and (E , [ ·, · ]E)
denote Krein spaces; and T ∈ L(H,K) has closed range and V ∈ L(H, E)
is surjective. The quadratically constrained ILSP under consideration is the
following:

Problem 1’. Given x0 ∈ H and w0 ∈ K, analyze the existence of

min
y∈CV

[T (x0 + y)− w0, T (x0 + y)− w0 ]K ,

and if the minimum exists, find the set of arguments at which it is attained.

Problem 1 is equivalent to Problem 1’. In fact, Problem 1’ with initial data
(w0, x0) is the same as Problem 1 with the initial data (w0, z0) where z0 := V x0.
Conversely, Problem 1 with initial data (w0, z0) can be rephrased as Problem
1’ with initial data (w0, x0) where x0 ∈ H is any vector such that V x0 = z0.

Moreover, the set of solutions to both problems is the same and we refer to
them indistinctly as Z(w0, z0).

We begin by studying under which conditions the infimum among the values
of the objective function x 7→ [Tx− w0, T x− w0 ] over the set x0 + CV is finite.

Proposition 3.1. Given x0 ∈ H and w0 ∈ K, the following conditions are
equivalent:

i) inf
y∈CV

[T (x0 + y)− w0, T (x0 + y)− w0 ] > −∞; (3.1)
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ii) there exists a constant c ≥ 0 such that

| [Tx0 − w0, T y ] |
2 ≤ c [Ty, T y ] , for every y ∈ CV . (3.2)

Proof. Suppose that infy∈CV
[T (x0 + y)− w0, T (x0 + y)− w0 ] = k > −∞.

Then, for every y ∈ CV ,

[Ty, T y ] + 2Re [Tx0 − w0, T y ] + [Tx0 − w0, T x0 − w0 ]− k ≥ 0. (3.3)

Replacing y by ty for a fixed y ∈ CV and t ∈ R, (3.3) gives

at2 + bt+ c ≥ 0 for every t ∈ R, (3.4)

where a = [Ty, T y ], b = 2Re [Tx0 − w0, T y ] and c = [Tx0 − w0, T x0 − w0 ]−
k ≥ 0. But (3.4) holds if and only if a ≥ 0 and b2 − 4ac ≤ 0, i.e.

(
Re [Tx0 − w0, T y ]

)2
≤ c [Ty, T y ] , for every y ∈ CV .

Now, if [Tx0 − w0, T y ] = eiθ | [Tx0 − w0, T y ] |, with θ ∈ [0, 2π), set v := eiθy ∈
CV , then [Tv, T v ] = [Ty, T y ] and Re [Tx0 − w0, T v ] = | [Tx0 − w0, T y ] |.
Therefore,

| [Tx0 − w0, T y ] |
2 ≤ c [Ty, T y ] , for every y ∈ CV .

Conversely, let c ≥ 0 be such that (3.2) holds. Then [Ty, T y ] ≥ 0 for every
y ∈ CV and

(
Re [Tx0 − w0, T y ]

)2
≤ | [Tx0 − w0, T y ] |

2 ≤ c [Ty, T y ] .

For an arbitrary (fixed) vector y ∈ CV define a and b as above. Therefore, a ≥ 0,
b2 − 4ac ≤ 0, and (3.4) follows. Or equivalently,

[T (x0 + ty)− w0, T (x0 + ty)− w0 ] ≥ [Tx0, T x0 ]− c,

where y ∈ CV and t ∈ R. Since y ∈ CV is arbitrary, (3.1) holds.

In view of Proposition 3.1, we assume that the following hypotheses hold for
the rest of this section.

Hypotheses 3.2. T#T and V #V are indefinite operators on H and

T (CV ) is a nonnegative set of K.

If T#T is a semidefinite operator then Problem 1’ turns out to be a least-
squares problem with a quadratic constraint instead of an indefinite least-
squares problem, and the results below also hold in this case with some minor
adjustments.

The existence of solutions to Problem 1’ is equivalent to the existence of a
vector y0 ∈ CV such that c := [Ty0, T y0 ] satisfies (3.2). This is expressed in
the next proposition; the proof follows the lines of the proof of [23, Proposition
3.1].
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Proposition 3.3. Given (w0, z0) ∈ K × E, let x0 ∈ H be such that V x0 = z0.
Then, Z(w0, z0) 6= ∅ if and only if there exists y0 ∈ CV such that

| [Tx0 − w0, T y ] |
2 ≤ [Ty0, T y0 ] [Ty, T y ] , for every y ∈ CV , (3.5)

with equality when y = y0.
In this case, x0 + y0 ∈ Z(w0, z0) if and only if y0 ∈ CV satisfies (3.5) and

[T (x0 + y0)− w0, T y0 ] = 0. (3.6)

Another characterization of the existence of solutions to Problem 1’ can be
given by means of a normal equation. We study first the case of solutions x̃
satisfying the stronger constraint V x̃ = z0.

Lemma 3.4. Given (w0, z0) ∈ K × E, let x̃ ∈ H such that V x̃ = z0. Then,

x̃ ∈ Z(w0, z0) if and only if T#T x̃ = T#w0.

In this case, Z(w0, z0) = x̃+ CT ∩ CV .

Proof. Suppose that x̃ ∈ Z(w0, z0), and let y ∈ CV . By Proposition 3.3,

| [T x̃− w0, T y ] |
2 ≤ [T ỹ0, T ỹ0 ] [Ty, T y ] , for all y ∈ CV ,

where ỹ0 is any vector in CV such that

min
y∈CV

[T (x̃+ y)− w0, T (x̃+ y)− w0 ] = [T (x̃+ ỹ0)− w0, T (x̃+ ỹ0)− w0 ] .

But since x̃ ∈ Z(w0, z0), we can take ỹ0 = 0 and thus [T x̃− w0, T y ] = 0 for all
y ∈ CV . Hence, T#(T x̃− w0) ∈ C⊥

V = { 0 }.
Conversely, assume that T#T x̃ = T#w0. Let y ∈ CV , then

[T (x̃+ y)− w0, T (x̃+ y)− w0 ]

= [T x̃− w0, T x̃− w0 ] + [Ty, T y ] + 2 Re [T x̃− w0, T y ]

= [T x̃− w0, T x̃− w0 ] + [Ty, T y ]

≥ [T x̃− w0, T x̃− w0 ] ,

because T (CV ) is a nonnegative set. Then x̃ ∈ Z(w0, z0). Moreover, the mini-
mum is attained if and only if y ∈ CT ∩ CV .

The following theorem establishes the normal equation that characterizes
the solutions to Problem 1 in the general case. According to Hypothesis 3.2,
the parameters ρ± introduced in Corollary 2.2 are well-defined.

Theorem 3.5. Given (w0, z0) ∈ K × E, let x̃ ∈ H. Then, x̃ ∈ Z(w0, z0) if and
only if there exists λ ∈ [ρ−, ρ+] such that

(T#T + λV #V )x̃ = T#w0 + λV #z0, (3.7)

and
[V x̃− z0, V x̃− z0 ] = 0.
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Proof. Consider the function F : H → R given by F (x) = [Tx− w0, T x− w0 ].
This function is Fréchet differentiable at every x ∈ H and its Fréchet derivative
at x is given by:

DF (x) ∆x = 2Re([Tx− w0, T∆x ]), ∆x ∈ H.

Indeed, given x ∈ H,

|F (x+∆x)− F (x) −DF (x)∆x|

‖∆x‖

=
|2Re([Tx− w0, T∆x ]) + [T∆x, T∆x ]− 2Re([Tx− w0, T∆x ])|

‖∆x‖

=
|[T∆x, T∆x ]|

‖∆x‖
≤ ‖T ‖2‖∆x‖ → 0,

as ‖∆x‖ → 0. Analogously, the function G : H → R given by G(x) =
[V x− z0, V x− z0 ] is Fréchet differentiable at every x ∈ H and its Fréchet
derivative at x is given by:

DG(x) ∆x = 2Re([V x− z0, V∆x ]), ∆x ∈ H.

In the same fashion, the second order Fréchet derivatives at x ∈ H are given by

D2F (x)(∆x1,∆x2) = 2Re([T∆x1, T∆x2 ]), ∆x1,∆x2 ∈ H,

D2G(x)(∆x1 ,∆x2) = 2Re([V∆x1, V∆x2 ]), ∆x1,∆x2 ∈ H.

Now, assume that x̃ ∈ Z(w0, z0). If V x̃ = z0, then the result follows from
Lemma 3.4, choosing an arbitrary λ ∈ [ρ−, ρ+]. On the other hand, if V x̃ 6= z0
then DG(x̃) 6= 0. Hence, by [29, §7.7 Thm. 2] there exists λ ∈ R such that
DF (x̃) + λDG(x̃) = 0, i.e.

Re([T x̃− w0, T∆x ] + λ [V x̃− z0, V∆x ]) = 0, for every ∆x ∈ H.

Replacing ∆x by −i∆x, the imaginary part is also zero. Thus,

[T x̃− w0, T∆x ] + λ [V x̃− z0, V∆x ] = 0, for every ∆x ∈ H.

Therefore,
(T#T + λV #V )x̃ = T#w0 + λV #z0.

Moreover, by [1, Prop. 2.4.19], for every ∆x ∈ H,

0 ≤ D2 (F + λG ) (x̃) · (∆x,∆x) = 2Re [T∆x, T∆x ] + λ2Re [V∆x, V∆x ]

= 2
〈
(T#T + λV #V )∆x,∆x

〉
.

Hence T#T +λV #V ∈ L(H)+, or equivalently, λ ∈ [ρ−, ρ+] (see Corollary 2.2).
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Conversely, assume that [V x̃− z0, V x̃− z0 ] = 0 and that there exists λ ∈
[ρ−, ρ+] such that (T#T +λV #V )x̃ = T#w0+λV #z0. Given x0 ∈ H such that
V x0 = z0 there exists y0 ∈ CV such that x̃ = x0 + y0. Then,

(T#T + λV #V )y0 = −T#(Tx0 − w0), (3.8)

and [Tx0 − w0, T y0 ] = −
〈
(T#T + λV #V )y0, y0

〉
= − [Ty0, T y0 ]. Hence, x̃ =

x0 + y0 satisfies (3.6).
Since T#T + λV #V is positive semidefinite for λ ∈ [ρ−, ρ+],

| [Tx0 − w0, T y ] |
2 =

∣∣ 〈−(T#T + λV #V )y0, y
〉 ∣∣2

≤
〈
(T#T + λV #V )y0, y0

〉 〈
(T#T + λV #V )y, y

〉

= [Ty0, T y0 ] [Ty, T y ] ,

because
〈
(T#T + λV #V )y, y

〉
= [Ty, T y ], for all y ∈ CV . Then, the result

follows from Proposition 3.3.

The next example shows how Z(w0, z0) depends on the initial data (w0, z0),
even in the situation in which the spectral decompositions determined by T#T
and V #V are very simple.

Example 1. Assume that H is decomposed as H = H1⊕H2⊕H3 and consider
operators T ∈ L(H,K) and V ∈ L(H, E) such that T#T and V #V can be
represented by

T#T =



I 0 0
0 − 1

2I 0
0 0 I


 and V #V =



4I 0 0
0 I 0
0 0 −I


 .

The operator T#T + ρV #V is positive semidefinite if and only if 1 + 4ρ ≥ 0,
ρ− 1

2 ≥ 0 and 1− ρ ≥ 0. Hence, it is readily seen that

ρ− =
1

2
and ρ+ = 1.

In the following we show that Z(w0, z0) 6= ∅ for every (w0, z0) ∈ K×E, and we
describe Z(w0, z0) in each case. Since [V x, V x ] = 4‖x1‖2 + ‖x2‖2 −‖x3‖2, the
set CV can be described as

CV =
{
y1 + y2 +

(
4‖y1‖

2 + ‖y2‖
2
)1/2

y3 : y1 ∈ H1, y2 ∈ H2, y3 ∈ S3

}
,

where Si stands for the unit sphere in Hi for i = 1, 2, 3.
Given (w0, z0) ∈ K × E, let x0 ∈ H be such that V x0 = z0. If y ∈ CV ,

Theorem 3.5 assures that x̃ = x0 + y ∈ Z(w0, z0) if and only if there exists
λ ∈ [ 12 , 1] such that (3.7) holds, or equivalently, if

(T#T + λV #V )y = −T#(Tx0 − w0). (3.9)
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Writing −T#(Tx0−w0) = x1+x2+x3, with xi ∈ Hi, and decomposing y ∈ CV
as

y = y1 + y2 + (4‖y1‖
2 + ‖y2‖

2)1/2y3,

with y1 ∈ H1, y2 ∈ H2, and y3 ∈ S3, (3.9) reads as

(1 + 4λ)y1 = x1, (3.10)

(λ− 1
2 )y2 = x2, (3.11)

(1− λ)
(
4‖y1‖

2 + ‖y2‖
2
)1/2

y3 = x3. (3.12)

Since λ ∈ [ 12 , 1], (3.10) says that y1 = 1
1+4λx1. If x1 + x2 + x3 = 0, it is easy to

see that Z(w0, z0) = {x0 }. In the following, we study the situations where this
is not the case.

• Case 1: x3 = 0.

Since y3 6= 0, (3.12) yields λ = 1. Moreover,

Z(w0, z0) = x0 +
1
5x1 + 2x2 +

(
4
25‖x1‖

2 + 4‖x2‖
2
)1/2

S3.

• Case 2: x3 6= 0 and x2 6= 0.

In this case, (3.11) and (3.12) yield λ ∈ (12 , 1). Therefore,

Z(w0, z0) =

{
x0 +

1
1+4λx1 +

1

λ−
1
2

x2 +
1

1−λx3

}
.

• Case 3: x3 6= 0 and x2 = 0.

In this case, two different situations have to be considered. Indeed, (3.11)
implies that either y2 = 0 or λ = 1

2 . Also, (3.12) says that

4

(1 + 4λ)2
‖x1‖

2 + ‖y2‖
2 =

1

(1− λ)2
‖x3‖

2.

Denoting γ = ‖x1‖
‖x3‖

, we can distinguish between two different cases:

i) if γ > 3 then λ := 2γ−1
2γ+4 is contained in the interval (12 , 1), hence

y2 = 0 and

Z(w0, z0) =
{
x0 +

1
1+4λx1 +

1
1−λx3

}
;

ii) if γ ≤ 3 then λ = 1
2 and

Z(w0, z0) = x0 +
1
3x1 + 2‖x3‖

(
1− γ2

9

)1/2
S2 + 2x3.
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Remark 3.6. The above example can be easily generalized, replacing the con-
stants 4 and 1

2 appearing in the block matrix representations of V #V and T#T
by arbitrary reals α and β such that α > 1 and 0 < β < 1, respectively.

Given α and β such that α > 1 and 0 < β < 1, the parameter λ varies

between ρ− = β and ρ+ = 1. Then, Case 3 splits into two according to ‖x1‖
‖x3‖

≥ γα

or ‖x1‖
‖x3‖

< γα, where γα is a constant depending of α. If ‖x1‖
‖x3‖

≥ γα then

λ ∈ (β, 1), and if ‖x1‖
‖x3‖

< γα then λ = β.

In the example above, Problem 1’ admits solution for every (w0, z0) ∈ K×E ,
mainly due to the invertibility of the operator T#T + ρV #V for ρ ∈ (ρ−, ρ+).
The next section presents necessary and sufficient conditions for the existence
of solutions to Problem 1 for arbitrary initial data.

4. Necessary and sufficient conditions for the existence of solutions

for arbitrary initial data

The aim of this section is to characterize under which conditions Problem
1 admits a solution for every (w0, z0) ∈ K × E . To do so we suppose that
N(T ) ∩N(V ) = { 0 }. Later on we express the results for the general case. We
assume the following:

Hypothesis 4.1. T#T and V #V are indefinite operators on H, such that

N(T ) ∩N(V ) = { 0 } .

We first show some necessary conditions.

Lemma 4.2. Assume that Z(w, z) 6= ∅ for every (w, z) ∈ K × E. Then:

i) ρ− 6= ρ+;

ii) N(T#T ) ∩N(V ) = { 0 };

iii) H = N(T#T )⊥ +N(V )⊥.

Proof. i) Assume that ρ− = ρ+ = ρ. Then, by Theorem 3.5, for any (w, z) ∈
K × E there exists x̃ ∈ H such that

(T#T + ρV #V )x̃ = T#w + ρV #z.

Since (w, z) is arbitrary, R(T#) ⊆ R(T#T +ρV #V ). But this is a contradiction
to [24, Thm. 4.17]. Therefore, ρ− 6= ρ+.

ii) By Lemma 2.3, ρ− 6= ρ+ implies that CT ∩ CV = N(T#T ) ∩ N(V ). Given
x0 ∈ H and w0 ∈ K, by Proposition 3.3 there exists y0 ∈ CV such that

| [Tx0 − w0, T y ] |
2 ≤ [Ty0, T y0 ] [Ty, T y ] , for all y ∈ CV .
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Hence, Tx0 − w0 ∈ T (CT ∩ CV )[⊥]. Since x0 and w0 are arbitrary,

T
(
N(T#T ) ∩N(V )

)[⊥]
= T (CT ∩ CV )

[⊥] = K,

and thus N(T#T ) ∩N(V ) ⊆ N(T ). Consequently, N(T#T ) ∩N(V ) = N(T ) ∩
N(V ) = { 0 }.

iii) By item ii, we only need to show that N(T#T ) +N(V ) is closed. Assume
that (xn)n∈N is a sequence in N(T#T ) and (un)n∈N is a sequence in N(V ) such

that xn + un → x0 ∈ N(T#T ) +N(V ). Since Z(0, V x0) 6= ∅, by Theorem 3.5
there exist λ ∈ [ρ−, ρ+] and y0 ∈ CV such that

(T#T + λV #V )y0 = −T#Tx0. (4.1)

In what follows we prove that in this case, y0 ∈ N(V ); then, by (4.1) x0+y0 ∈
N(T#T ), or equivalently, x0 ∈ N(T#T ) +N(V ).

On the one hand, since xn ∈ N(T#T ),

T#Tun = T#T (un + xn) → T#Tx0 = −(T#T + λV #V )y0. (4.2)

On the other hand, since un ∈ N(V ) and y0 ∈ CV ,
〈
V #V (un + y0), un + y0

〉
=

0 for every n ∈ N. Then for any ρ ∈ (ρ−, ρ+), ρ 6= λ, it holds that

(T#T + ρV #V )1/2(un + y0) → 0.

In fact,

‖(T#T + ρV #V )1/2(un + y0)‖
2 =

〈
T#T (un + y0), un + y0

〉

=
〈
T#T (un + y0), un

〉
+
〈
T#T (un + y0), y0

〉
.

Also, since y0 ∈ CV ,

〈
T#T (un + y0), y0

〉
=

〈
T#Tun + (T#T + λV #V )y0, y0

〉
→ 0,

and

〈
T#T (un + y0), un

〉
=

〈
T#T (xn + un + y0), xn + un

〉

→
〈
T#T (x0 + y0), x0

〉
= 0,

because T#T (x0 + y0) = −λV #V y0 ∈ N(T#T )⊥ ∩N(V )⊥, see (4.1).
Therefore (T#T+ρV #V )(un+y0) → 0, or equivalently, T#Tun → −(T#T+

ρV #V )y0, for every ρ ∈ (ρ−, ρ+) But, by (4.2), T#Tun → −(T#T +λV #V )y0.
Hence, (T#T + ρV #V )y0 = (T#T + λV #V )y0. So that V #V y0 = 0, and thus
y0 ∈ N(V ) and

T#Ty0 = (T#T + λV #V )y0 = −T#Tx0.

Then x0 + y0 ∈ N(T#T ), or x0 ∈ N(T#T ) +N(V ) as claimed.
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Lemma 4.2 allows us to prove the following necessary condition for Problem
1 admitting a solution for every initial data point.

Proposition 4.3. Assume that Z(w, z) 6= ∅ for every (w, z) ∈ K × E. Then
there exists α > 0 such that [Ty, T y ] ≥ α‖y‖2 for every y ∈ CV

Proof. By Lemma 4.2 ρ− 6= ρ+, N(T#T )∩N(V ) = { 0 } and H = N(T#T )⊥+
N(V )⊥ ⊆ N(T )⊥ + N(V )⊥. Given ρ′ ∈ (ρ−, ρ+), we claim that N(T )⊥ ⊆
R(T#T + ρ′V #V )1/2. In fact, let x0 ∈ N(T )⊥ = R(T#), and let w0 ∈ K
be such that T#w0 = x0. Since Z(w0, 0) 6= ∅, by Theorem 3.5 there exist
λ ∈ [ρ−, ρ+] and y0 ∈ CV such that

(T#T + λV #V )y0 = T#w0.

By Proposition 2.4,

x0 = T#w0 = (T#T + λV #V )y0 ⊆ R
(
(T#T + ρ′V #V )1/2

)
.

Since x0 is arbitrary, we have that N(T )⊥ ⊆ R
(
(T#T +ρ′V #V )1/2

)
. Using this

fact, it holds that

N(V )⊥ = R(V #V ) ⊆ R(T#) +R(T#T + ρ′V #V ) ⊆ R
(
(T#T + ρ′V #V )1/2

)
,

which implies

H = N(T )⊥ +N(V )⊥ = R
(
(T#T + ρ′V #V )1/2

)
,

and thus H = R(T#T + ρ′V #V ), see [16]. Hence, T#T + ρ′V #V is a positive
definite operator, or equivalently, by Proposition 2.5, there exists α > 0 such
that [Ty, T y ] ≥ α‖y‖2 for every y ∈ CV .

Next we establish the conditions that guarantee the existence of solutions
for arbitrary initial data. For the rest of this section we assume the following
hypothesis:

Hypothesis 4.4. Given T ∈ L(H,K) and V ∈ L(H, E) such that T#T and
V #V are indefinite operators on H, assume that there exists α > 0 such that

[Ty, T y ] ≥ α‖y‖2, for every y ∈ CV .

This implies that CT ∩ CV = { 0 } (which in turn implies the condition in
Hypothesis 4.1). Later on, we modify Hypothesis 4.4 appropriately to express
the results for the general case.

Hypothesis 4.4 is not sufficient to ensure the existence of solutions for every
initial data point, as the next example shows.

Example 2. Assume that H = K = E = ℓ2(N), and consider the indefinite
inner products

[x, y ]K = x1y1 −
∑

k≥2

xkyk, x = (xk)k∈N, y = (yk)k∈N ∈ ℓ2(N),
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[x, y ]E = −x1y1 +
∑

k≥2

xkyk, x = (xk)k∈N, y = (yk)k∈N ∈ ℓ2(N).

Then, (K, [ ·, · ]K) and (E , [ ·, · ]E) are Krein spaces.
If {ek}k∈N denotes the standard canonical basis of ℓ2(N), and α > β > 0,

consider the linear operators T : H → K and V : H → E given by

Te1 = αe1, T ek = ek if k ≥ 2,

V e1 = βe1, V ek = (1 + 1
k )

1/2ek if k ≥ 2.

Both T and V are trivially surjective, N(T ) = N(V ) = { 0 }, and a few calcu-
lations show that, for x = (xk)k∈N =

∑
k≥1 xkek ∈ ℓ2(N),

T#Tx = α2x1e1 −
∑

k≥2

xkek,

V #V x = −β2x1e1 +
∑

k≥2

xk(1 +
1
k )ek.

Hence, T#T and V #V are two indefinite operators acting on H. Moreover,

T#T + ρV #V is positive semidefinite if and only if 1 ≤ ρ ≤ α2

β2 , i.e. ρ− = 1

and ρ+ = α2

β2 . Also,

γ(T#T + ρV #V ) =





ρ− 1 , 1 ≤ ρ < α2+1
β2+1 ,

α2 − ρβ2 , α2+1
β2+1 ≤ ρ < α2

β2 ,
α2

β2 − 1 , ρ = α2

β2 .

Then, R(T#T + ρV #V ) is closed for every ρ ∈ (1, α
2

β2 ]. Given ρ ∈ (1, α2

β2 ],

N(T#T + ρV #V ) = { 0 } = N(T ) ∩N(V ),

and T#T + ρV #V is a positive definite operator, or equivalently there exists
γ > 0 such that [Ty, T y ] ≥ γ‖y‖2 for every y ∈ CV .

However, Problem 1 does not admit solutions for every (w0, z0) ∈ K×E. In
fact, consider the vector (0, V e1) = (0, βe1) ∈ K×E. By Theorem 3.5, Problem

1 admits a solution for (0, βe1) if and only if there exist λ ∈ [1, α2

β2 ] and y ∈ CV
such that

(T#T + λV #V )(e1 + y) = λV #V e1,

or equivalently,
(T#T + λV #V )y = −T#Te1. (4.3)

On the one hand, note that y = (yk)k∈N ∈ CV if and only if

∑

k≥2

(1 + 1
k )|yk|

2 = β2|y1|
2.
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On the other hand, (4.3) is equivalent to

(α2 − λβ2)y1 = −α2,
[
λ(1 + 1

k )− 1
]
yk = 0, for k ≥ 2.

In this case there is no y ∈ CV satisfying (4.3) because the above equations imply

0 =
∑

k≥2

(1 + 1
k )|yk|

2 = β2|y1|
2,

and thus 0 = −α2, leading to a contradiction.

Hypothesis 4.4 allows us to study a simpler equivalent problem, because in
this case the operator pencil P (λ) = T#T + λV #V is regular: by Proposition
2.5 and [24, Cor. 4.14], T#T +ρV #V is positive definite for every ρ ∈ (ρ−, ρ+).
Let us fix ρ = ρ−+ρ+

2 for convenience, and define the following indefinite inner
product on K × E :

[ (w, z), (w′, z′) ]ρ = [w,w′ ]K + ρ [ z, z′ ]E , w, w′ ∈ K and z, z′ ∈ E . (4.4)

It is easy to see that (K × E , [ ·, · ]ρ) is a Krein space. Define the operator
L : H → K× E by

Lx = (Tx, V x), x ∈ H.

The adjoint operator of L with respect to the indefinite inner product [ ·, · ]ρ in
K × E is given by

L#(w, z) = T#w + ρV #z, (y, z) ∈ K × E ,

and it is immediate that L#L = T#T + ρV #V . Now consider the selfadjoint
operator G ∈ L(H) given by

G := (L#L)−1/2V #V (L#L)−1/2. (4.5)

Then P (λ) can be rewritten as

T#T + λV #V = (L#L)1/2
(
I + (λ− ρ)G

)
(L#L)1/2.

Hence, the operator pencil T#T + λV #V is congruent to the pencil I + γG,
where γ = λ− ρ. If κ = ρ+−ρ−

2 , then I + γG is positive semidefinite if and only
if γ ∈ [−κ, κ], and positive definite if and only if γ ∈ (−κ, κ), see [24, Prop.
3.11]. This reduction technique is very common in the operator pencils context,
since the auxiliary pencil P ′(γ) = I + γG is easier to analyze, see e.g. [19]. A
similar procedure is also applied in [26] for a constrained quadratic optimization
problem in a finite dimensional setting.

Consider the neutral elements of the quadratic form x 7→ 〈Gx, x 〉, i.e.

Q(G) := {x ∈ H : 〈Gx, x 〉 = 0 } .
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Next, we determine sufficient conditions under which there exist y ∈ Q(G) and
γ ∈ [−κ, κ] such that

(I + γG)y = u0, (4.6)

for every vector u0 ∈ H. Later on, we show that this implies that Problem
1 admits a solution for every initial data point. Solving (4.6) is equivalent to
finding the vectors in Q(G) which minimize the distance to the vector u0 ∈ H:

min ‖y − u0‖
2 subject to y ∈ Q(G).

In fact, the normal equation (4.6) is just the corresponding version of (3.8) for
this minimal distance problem.

Consider the canonical decomposition of G as the difference of two positive
operators: there exist unique subspaces H± ⊆ H and positive definite operators
G± ∈ L(H±) such that

H = H+ ⊕H− ⊕N(G), (4.7)

and G =

(
G+ 0 0
0 −G− 0
0 0 0

)
with respect to (4.7).

If u0 = u+
0 + u−

0 + u0
0 with u±

0 ∈ H± and u0
0 ∈ N(G), (4.6) translates into





(I+ + γG+)y
+ = u+

0

(I− − γG−)y
− = u−

0

y0 = u0
0

, (4.8)

where y = y+ + y− + y0 with y± ∈ H± and y0 ∈ N(G).

Consider the subspaces

N± := N(I ∓ κG). (4.9)

It is easy to check that N± = N(I± − κG±). Since N± is invariant for G± ∈
L(H±), its orthogonal complement in H±,

D± := H± ⊖N±,

is also an invariant subspace for G±. We call D± the positive (negative) defect
subspace of N±.

Lemma 4.5. Given u ∈ H±, decompose it as u = v + w with v ∈ N± and
w ∈ D±. Then, for every τ ∈ (−κ, κ),

‖(I± ± τG±)
−1u‖2 =

κ2

(κ± τ)2
‖v‖2 + ‖(I± ± τG±)

−1w‖2.

Proof. Given τ ∈ (−κ, κ), considering that ‖G±‖ = 1
κ we have that I+ + τG+

is invertible, see [24, Prop. 3.11]. N+ and D+ are both invariant subspaces for
I+ + τG+. Also, since N+ = N(I+ − κG+), if v ∈ N+ then

(I+ + τG+)v = (I+ − κG+)v + (κ+ τ)G+v =
κ+ τ

κ
v.

18



Now, let u = v + w ∈ H+ with v ∈ N+ and w ∈ D+. Then,

(I++τG+)
−1u = (I++τG+)

−1v+(I++τG+)
−1w =

κ

κ+ τ
v+(I++τG+)

−1w,

and it is immediate that

‖(I+ + τG+)
−1u‖2 =

κ2

(κ+ τ)2
‖v‖2 + ‖(I+ + τG+)

−1w‖2.

The proof of the remaining norm equality is similar.

As a consequence of Lemma 4.5, if u = v+w ∈ H± with v ∈ N± and w ∈ D±

is such that v 6= 0, then limτ→∓κ ‖(I± ± τG±)
−1u‖ = +∞.

Lemma 4.6. Given u ∈ H±, if limτ→κ ‖(I± − τG±)
−1u‖ < +∞, then u ∈

R(I± − κG±).

Proof. In the following we prove the statement for a vector in H+, the proof for
vectors inH− is analogous. Let u ∈ H+ be such that limτ→κ ‖(I+−τG+)

−1u‖ <
+∞. Then

u ∈ D+ = R(I+ − κG+).

Consider the sequence (xn)n∈N in D+ defined by xn =
(
I+ − (κ − 1

n )G+

)−1
u,

with n ∈ N. By hypothesis, (xn)n∈N is bounded. Assume that M > 0 is such
that ‖xn‖ ≤ M for every n ∈ N. Then,

∥∥(I+ − κG+)xn − u
∥∥ =

1

n

∥∥G+

(
I+ − (κ− 1

n )G+

)−1
u
∥∥ ≤

M

n
‖G+‖ → 0. (4.10)

We claim that (xn)n∈N is a Cauchy sequence. To prove it consider the
sequence of positive definite operators (∆n)n∈N defined by

∆n =
(
I+ −

(
κ− 1

n

)
G+

)−1

.

By the functional calculus for selfadjoint operators, given m,n ∈ N , m ≥ n
implies that ∆n ≤ ∆m, and ∆n commutes with ∆m, see e.g. [14]. Then,

0 ≤ ‖xn‖
2 = 〈∆nu,∆nu 〉 =

〈
∆n

(
∆1/2

n u
)
,∆1/2

n u
〉

≤
〈
∆m

(
∆1/2

n u
)
,∆1/2

n u
〉
= 〈∆mu,∆nu 〉 = 〈xm, xn 〉 .

Hence,

‖xn − xm‖2 = ‖xn‖
2 − 2Re

(
〈xn, xm 〉

)
+ ‖xm‖2

≤ ‖xn‖
2 − 2‖xn‖

2 + ‖xm‖2 = ‖xm‖2 − ‖xn‖
2 → 0,

as m,n → ∞.
Since D+ is closed, there exists x ∈ D+ such that ‖xn − x‖ → 0 as n → ∞.

Thus, (4.10) says that u = (I+ − κG+)x, i.e. u ∈ R(I+ − κG+).

19



Lemma 4.7. If there exist y ∈ Q(G) and γ ∈ [−κ, κ] such that (I + γG)y ∈
H± \ { 0 }, then N∓ 6= { 0 }.

Proof. Suppose that (I + γG)y = u−
0 , with u0 ∈ H− \ { 0 }, y ∈ Q(G) and

γ ∈ [−κ, κ], and assume that N+ = { 0 }. If y = y+ + y− + y0 with y± ∈ H±

and y0 ∈ N(G), by (4.8) we get y+ = 0 and y− 6= 0. But since y ∈ Q(G),

0 = 〈Gy, y 〉 =
〈
Gy−, y−

〉
= −

〈
G−y

−, y−
〉
< 0.

Then N+ 6= { 0 }.
A similar argument for a vector u+

0 ∈ H+ \ { 0 } proves that N− 6= { 0 }.

Proposition 4.8. For every u0 ∈ H there exist y0 ∈ Q(G) and γ ∈ [−κ, κ]
such that

(I + γG)y0 = u0,

if and only if N+ 6= { 0 } and N− 6= { 0 }.

Proof. The necessity follows by Lemma 4.7. To prove the converse, assume
that N+ 6= { 0 } and N− 6= { 0 }. Let u0 ∈ H, and consider the decomposition
u0 = u+

0 +u−
0 +u0

0 with u±
0 ∈ H± and u0

0 ∈ N(G), and the real valued functions
f± defined by

f±(τ) = ‖G
1/2
± (I± ± τG±)

−1u±
0 ‖, τ ∈ (−κ, κ).

If there exists τ0 ∈ (−κ, κ) such that f+(τ0) = f−(τ0), then setting y0 = (I+ +
τ0G+)

−1u+
0 + (I− − τG−)

−1u−
0 + u0

0 yields y0 ∈ Q(G) and (I + τ0G)y0 = u0.
On the other hand, assume that f+(τ) > f−(τ) for every τ ∈ (−κ, κ). By

the functional calculus for selfadjoint operators, f− is a monotone increasing
function of τ on the interval [0, κ). Since the extension of f+ is a continuous
function of τ on the compact interval [0, κ], it follows that

lim
τ→κ

‖(I− − τG−)
−1u−

0 ‖ ≤ lim
τ→κ

‖G
−1/2
− ‖ f−(τ) < +∞.

Lemma 4.6 then assures that u−
0 ∈ R(I− − κG−). Now, since N− 6= { 0 },

let us choose y ∈ N− with ‖y‖ = 1. Hence, considering that G−y = 1
κy and

(I− − κG−)
†u−

0 ⊥y, and setting

y0 = (I+ + κG+)
−1u+

0 + (I− − κG−)
†u−

0 + α−y + u0
0,

with

α− :=

(
κ
(
‖G

1/2
+ (I+ + κG+)

−1u+
0 ‖

2 − ‖G
1/2
− (I− − κG−)

†u−
0 ‖

2
))1/2

, (4.11)

yields y0 ∈ Q(G) and (I + κG)y0 = u0.
A similar argument holds if we assume that f+(τ) < f−(τ) for every τ ∈

(−κ, κ), and thus the proof is complete.
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Lemma 4.9. Under Hypothesis 4.4,

N± ⊆ (L#L)1/2
(
N(T )

)⊥
.

Proof. We prove the statement for N+, a similar argument holds for N−. On
the one hand, from

T#T + ρ−V
#V = (L#L)1/2(I − κG)(L#L)1/2,

it follows that N+ = (L#L)1/2
(
N(T#T + ρ−V

#V )).
On the other hand, if x ∈ N(T#T + ρ−V

#V ) and y ∈ N(T ), then

ρ−
〈
x, V #V y

〉
=

〈
x, (T#T + ρ−V

#V )y
〉
=

〈
(T#T + ρ−V

#V )x, y
〉
= 0,

i.e., x ∈ V #V
(
N(T )

)⊥
= L#L

(
N(T )

)⊥
. Hence, we have that N(T#T +

ρ−V
#V ) ⊆ L#L

(
N(T )

)⊥
. Applying (L#L)1/2 to both sides of the inclusion,

N+ ⊆ (L#L)1/2
(
(L#L)−1

(
N(T )⊥

))
= (L#L)1/2

(
N(T )

)⊥
.

We are now in conditions to state the main result of this section, establishing
the necessary and sufficient conditions for Problem 1 to admit a solution for
every initial data point. We no longer assume that Hypothesis 4.4 hold.

Theorem 4.10. Assume that N(T ) ∩N(V ) = { 0 }. The following conditions
are equivalent:

i) Z(w, z) 6= ∅ for every (w, z) ∈ K × E;

ii) there exists α > 0 such that [Ty, T y ] ≥ α‖y‖2 for every y ∈ CV , and

sup
x∈P−(V )

[Tx, Tx ]

[V x, V x ]
and inf

x∈P+(V )

[Tx, Tx ]

[V x, V x ]
(4.12)

are attained.

Proof. ii)→i): Suppose that item ii holds and let (w0, z0) ∈ K × E . Since the
supremum and infimum in (4.12) being attained is equivalent to N+ 6= { 0 } and
N− 6= { 0 }, by Proposition 4.8 for every u0 ∈ H there exist γ ∈ [−κ, κ] and
ỹ0 ∈ Q(G) such that

(I + γG)ỹ0 = u0.

Setting u0 = (L#L)−1/2T#(TV †z0 − w0), applying (L#L)1/2 to both sides of
the equation, and taking y0 = (L#L)−1/2ỹ0 and λ = γ + ρ the result follows.

i)→ii): Assume that Z(w, z) 6= ∅ for every (w, z) ∈ K × E . By Proposition
4.3, it suffices to show that the infimum and supremum in (4.12) are attained,
or equivalently, that N+ 6= { 0 } and N− 6= { 0 }. By Theorem 3.5, for every
w0 ∈ K there exist λ ∈ [ρ−, ρ+] and y ∈ CV such that (T#T+λV #V )y = T#w0.
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Equivalently, (I+γG)ỹ = u0, where γ = λ−ρ ∈ [−κ, κ], ỹ = (L#L)1/2y ∈ Q(G)
and u0 = (L#L)−1/2T#w0. Hence, for every

u0 ∈ (L#L)1/2
(
N(T )

)⊥
,

there exist γ ∈ [−κ, κ] and ỹ ∈ Q(G) such that (I + γG)ỹ = u0.
We now show that H+∩ (L#L)1/2(N(T ))⊥ and H−∩ (L#L)1/2(N(T ))⊥ are

non trivial subspaces, which by Lemma 4.7 in turn implies that N− 6= { 0 } and
N+ 6= { 0 }. Let us assume that ρ > 0. It holds that (L#L)1/2

(
N(T#T )

)
⊆ H+.

In fact, T#Tx = 0 if and only if L#Lx = ρV #V x, or equivalently, (L#L)1/2x =
ρ(L#L)−1/2V #V x = ρG(L#L)1/2x. If (L#L)1/2x = x+ + x− + x0, with x± ∈
H± and x0 ∈ N(G), then

x+ = ρG+x+, x− = −ρG−x−, and x0 = ρ · 0.

The last equation says that x0 = 0, and x− = 0 because ρ > 0 and G− ∈
L(H−)

+. Therefore, (L#L)1/2x = x+. Then

(L#L)1/2
(
N(T )

)
⊆ (L#L)1/2

(
N(T#T )

)
⊆ H+.

Hence,

H− ⊆ (L#L)1/2
(
N(T )

)⊥
,

and, by Lemma 4.7, N+ 6= { 0 }. But by Lemma 4.9

N+ ⊆ H+ ∩ (L#L)1/2
(
N(T )

)⊥
.

Then H+ ∩ (L#L)1/2
(
N(T )

)⊥
6= 0, which implies that N− 6= { 0 }. A similar

argument holds for the case ρ < 0, and thus the proof is complete.

5. Description of the set of solutions

In this section we consider a selfadjoint operator G ∈ L(H). Decomposing
it as the sum of two positive operators with orthogonal ranges G = G+ −
G−, by [24, Prop. 3.11] we have that I + γG is positive semidefinite if and
only if γ ∈ [−‖G+‖−1, ‖G−‖−1], and it is positive definite if and only if γ ∈
(−‖G+‖−1, ‖G−‖−1).

For simplicity, we assume that κ := ‖G+‖ = ‖G−‖. Hence, I+γG is positive
semidefinite if and only if γ ∈ [−κ, κ].

Also, we assume that the subspaces N+ and N− given by (4.9) are non
trivial, ensuring that for every u ∈ H there exist y ∈ Q(G) and γ ∈ [−κ, κ] such
that

(I + γG)y = u. (5.1)

From now we consider a fixed vector u0 ∈ H. If (I + γG)y = u0, for some
γ ∈ [−κ, κ] and y ∈ Q(G), then from (4.8) it holds that y0 = u0

0, and
{

(I+ + γG+)y
+ = u+

0

(I− − γG−)y
− = u−

0
.
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If u0 ∈ N(G) then y = u0 is the unique solution. On the other hand, if
u0 /∈ N(G), then there is a unique γ ∈ [−κ, κ] for any solution, as the next
proposition shows.

Proposition 5.1. If u0 /∈ N(G) then there exists a unique γ ∈ [−κ, κ] such
that (I + γG)y = u0 admits a solution y ∈ Q(G).

Proof. Let u0 /∈ N(G), and assume there exist γ1, γ2 ∈ [−κ, κ] and y1, y2 ∈ Q(G)
such that

(I + γ1G)y1 = u0,

(I + γ2G)y2 = u0. (5.2)

On the one hand, since 〈Gyi, yi 〉 = 0 for i = 1, 2, 〈u0, yi 〉 = ‖yi‖
2. On the

other hand,

‖y1‖
2 = 〈u0, y1 〉 = 〈 (I + γ2G)y2, y1 〉 = 〈 y2, y1 〉+ γ2 〈Gy2, y1 〉 ,

‖y2‖
2 = 〈u0, y2 〉 = 〈 (I + γ1G)y1, y2 〉 = 〈 y1, y2 〉+ γ1 〈Gy1, y2 〉 . (5.3)

This implies that

(γ1 − γ2) 〈Gy1, y2 〉 = ‖y1‖
2 − ‖y2‖

2. (5.4)

By Cauchy-Schwarz inequality,

‖y1‖
2 = | 〈u0, y1 〉 | = | 〈 (I + γ2G)y2, y1 〉 | ≤ ‖y2‖‖y1‖,

‖y2‖
2 = | 〈u0, y2 〉 | = | 〈 (I + γ1G)y1, y2 〉 | ≤ ‖y1‖‖y2‖,

and consequently ‖y1‖ = ‖y2‖. By (5.4), this implies that γ1 = γ2 or 〈Gy1, y2 〉 =
0. However, if 〈Gy1, y2 〉 = 0, then from (5.3) it is easy to see that y1 = y2,
which in turn, by (5.2), implies that (γ1 − γ2)Gy1 = 0. But y1 /∈ N(G) because
u0 /∈ N(G), and hence γ1 = γ2.

For u0 /∈ N(G), consider the set of solutions to (5.1),

Θ := { y ∈ Q(G) : (I + γG)y = u0 } ,

for the unique suitable γ ∈ [−κ, κ]. The following proposition describes the
structure of the set Θ, depending on whether γ is an interior point of the interval
or γ = ±κ. Denote by S the unit sphere in H, i.e.

S =
{
x ∈ H : ‖x‖ = 1

}
.

Lemma 5.2. Let u0 /∈ N(G) and consider the unique γ ∈ [−κ, κ] given by
Proposition 5.1.

i) If γ ∈ (−κ, κ), then
Θ =

{
(I + γG)−1u0

}
.
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ii) If γ = κ, then there exists α− ≥ 0 such that

Θ = (I + κG)†u0 + α− · N− ∩ S.

iii) If γ = −κ, then there exists α+ ≥ 0 such that

Θ = (I − κG)†u0 + α+ · N+ ∩ S.

Proof. i) If γ ∈ (−κ, κ) then I + γG is invertible. Hence, y0 = (I + γG)−1u0.

ii) Suppose that γ = κ. Since

Q(G) =
{
y = y+ + y− + y0 : ‖G

1/2
+ y+‖ = ‖G

1/2
− y−‖ , y± ∈ H±, y

0 ∈ N(G)
}
,

writing u0 = u+
0 + u−

0 + u0
0 the condition (I + κG)y0 = u0 leads to

(I+ + κG+)y
+
0 = u+

0 , (I− − κG−)y
−
0 = u−

0 and y00 = u0
0.

Then,
y+0 = (I+ + κG+)

−1u+
0 and y−0 = (I− − κG−)

†u−
0 + v,

where v ∈ N−. If v = 0, set α− = 0. Otherwise, if v 6= 0, setting α− := ‖v‖ > 0
and y− := v

‖v‖ ∈ N− ∩ S, we have that

y0 = (I + κG)†u0 + α−y−.

It only remains to show that α− is the same for every y ∈ Θ. But, since

‖G
1/2
+ y+‖ = ‖G

1/2
− y−‖, α− is given by (4.11), and it does not depend on y0 but

only on u0. Thus,
Θ = (I + κG)†u0 + α− · N− ∩ S.

An analogous procedure for the case γ = −κ completes the proof.

As a consequence, as in Example 1, we can describe Θ by only analyzing
which components of u0 are null according to the decomposition H = N+ ⊕
D+ ⊕N− ⊕D− ⊕N(G).

Proposition 5.3. Consider u0 /∈ N(G) and write u0 = v++w++v−+w−+u0
0,

with v± ∈ N±, w
± ∈ D± and u0

0 ∈ N(G).

i) If u0 ∈ H±, then there exists α± > 0 such that

Θ = (I ± κG)†u0 + α∓ · N∓ ∩ S.

ii) If v+ 6= 0 and v− 6= 0, then γ ∈ (−κ, κ) and

Θ =
{
(I + γG)−1u0

}
.
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Proof. i) Assume that u0 ∈ H+ and consider y0 = y+0 + y−0 + y00 ∈ Θ with
y±0 ∈ H± and y00 ∈ N(G). If γ ∈ [−κ, κ] is such that (I + γG)y0 = u0, then

(I+ + γG+)y
+
0 + (I− − γG−)y

−
0 + y00 = u0 = v+ + w+ + u0

0.

Since (I− − γG−)y
−
0 = 0 and y−0 6= 0, it holds that γ = κ. The result then

follows from Lemma 5.2. The proof is analogous when u0 ∈ H−.

ii) Assuming that v+ 6= 0 and v− 6= 0, following the same ideas of Proposition
4.8, we show that there exists γ ∈ (−κ, κ) such that

‖G
1/2
+ (I+ + γG+)

−1(v+ + w+)‖ = ‖G
1/2
− (I− − γG−)

−1(v− + w−)‖,

which implies that the vector y0 := (I + γG)−1u0 belongs to Θ (because y0 ∈
Q(G) and (I + γG)y0 = u0).

Consider the real valued functions g± defined by

g±(τ) = ‖G
1/2
± (I± ± τG±)

−1(v± + w±)‖2, τ ∈ (−κ, κ).

Since G
1/2
± and (I± ± τG±)

−1 commute, and G
1/2
± v± = κ−1/2v±, Lemma 4.5

implies that

g±(τ) =
κ2

(κ± τ)2
‖G

1/2
± v±‖2 + ‖(I± ± τG±)

−1G
1/2
± w±‖2

=
κ

(κ± τ)2
‖v±‖2 + ‖G

1/2
± (I± ± τG±)

−1w±‖2, for every τ ∈ (−κ, κ).

Since the operator I− + κG− is invertible, it follows that g− is bounded on
(−κ, 0). Analogously, g+ is bounded on (0, κ). On the other hand, since v± 6= 0,
it is immediate that

lim
τ→−κ

g+(τ) = +∞ and lim
τ→κ

g−(τ) = +∞.

Hence, it is readily seen that there exists γ ∈ (−κ, κ) such that g−(γ) = g+(γ),
or equivalently,

‖G
1/2
+ (I+ + γG+)

−1(v+ + w+)‖ = ‖G
1/2
− (I− − γG−)

−1(v− + w−)‖.

Thus, Θ =
{
(I + γG)−1u0

}
.

As it is illustrated by Case 3 in Example 1, if u0 does not belong to H+ nor
to H− and also v− = 0 or v+ = 0 (which is the only situation not covered by
Proposition 5.3), it is not possible to assert whether Θ is a singleton.

To end this section, we show how these previous results can be applied to
describe the set of solutions to Problem 1. We assume that N(T )∩N(V ) = { 0 }
and Z(w, z) 6= ∅ for every (w, z) ∈ K × E .
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Consider an initial data point (w0, z0) ∈ K × E and a fixed vector x0 ∈ H
such that V x0 = z0. By Theorem 3.5, the set of solutions to Problem 1 is
Z(w0, z0) = x0 +Ω with the set Ω given by

Ω :=
{
y ∈ CV : (T#T + λV #V )y = −T#(Tx0 −w0) for some λ ∈ [ρ−, ρ+]

}
.

Considering the operatorG given by (4.5) and setting u0 := −(L#L)−1/2T#(Tx0−
w0), Ω can be alternatively described as

Ω =
{
y ∈ CV : (I + γG)(L#L)1/2y = u0 for some γ ∈ [−κ, κ]

}
,

Since (L#L)1/2(CV ) = Q(G), it follows that Ω = (L#L)−1/2(Θ) and thus

Z(w0, z0) = x0 + (L#L)−1/2(Θ).

We establish now the main result of this section.

Theorem 5.4. There exists an open and dense subset M of K × E such that
Z(w, z) is a singleton for every (w, z) ∈ M.

Proof. The set

M̃ =
{
u = v++w++v−+w−+u0 ∈ H : v± ∈ N±\{ 0 } , w± ∈ D± , u0 ∈ N(G)

}

is non empty, open and dense in H. In fact, M̃ is non empty as a consequence
of the assumption that N± 6= ∅ and Lemma 4.9, while the remaining conditions

follow immediately. By Proposition 5.3, Θ is a singleton for every u ∈ M̃.
Finally, considering the operator A : K × E → H given by

A(w, z) = −(L#L)−1/2T#(TV †z − w), (w, z) ∈ K × E ,

yields R(A) = (L#L)1/2
(
N(T )

)⊥
is a closed subspace, and consequently M :=

A−1
(
M̃

)
is an open and dense subset of K × E . Hence, Z(w, z) is a singleton

for every (w, z) ∈ M.

Remark 5.5. An immediate consequence of Hypothesis 4.4 is that N(T ) ∩
N(V ) = { 0 }. However, the condition in this hypothesis can be slightly modified
in order to address the case in which this intersection is non trivial. Indeed, the
following conditions are equivalent:

i) Z(w, z) 6= ∅ for every (w, z) ∈ K × E;

ii) there exists α > 0 such that

[Ty, T y ] ≥ α‖y‖2, for every y ∈ CV ∩
(
N(T ) ∩N(V )

)⊥
,

and

sup
x∈P−(V )

[Tx, Tx ]

[V x, V x ]
and inf

x∈P+(V )

[Tx, Tx ]

[V x, V x ]

are attained.
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As a result, there exists an open and dense subset M of K×E such that, instead
of a singleton, the set of solutions to Problem 1 is an affine manifold parallel to
the subspace N(T ) ∩N(V ) i.e. for every (w, z) ∈ M,

Z(w, z) = x̃(w,z) +N(T ) ∩N(V ),

where x̃(w,z) is a particular solution to Problem 1 with initial data (w, z).

6. Application: Indefinite abstract mixed splines

The abstract mixed problem in Hilbert spaces was originally proposed by
A. I. Rozhenko and V. A. Vasilenko in [40], and it can be stated as follows.
Let (H, 〈 ·, · 〉H), (K1, 〈 ·, · 〉K1

), (K2, 〈 ·, · 〉K2
) and (E , 〈 ·, · 〉E) be Hilbert spaces,

and consider (bounded) surjective operators U : H → K1, W : H → K2 and
V : H → E . Given (w0, z0) ∈ K2 × E and µ ∈ R, analize the existence of

min
x∈H

(
‖Ux‖2K1

+ µ‖Wx− w0‖
2
K2

)
, subject to V x = z0,

and if the minimum exists, find the set of arguments at which it is attained.
The abstract mixed splines problem is a generalization of the abstract in-

terpolating and smoothing splines problems proposed by Atteia in [3]. For a
complete exposition on these subjects see [4, 7, 13].

Generalizations to Krein spaces of the abstract interpolating and smoothing
splines problems have been studied before [20, 23]. in particular, a generalization
of the abstract mixed splines problem was also proposed in [20].

The following indefinite abstract mixed splines problem follows as a natural
generalization of this family of problems. Given a Hilbert space (H, 〈 ·, · 〉H),
and Krein spaces (K1, [ ·, · ]K1

), (K2, [ ·, · ]K2
) and (E , [ ·, · ]E), let U ∈ L(H,K1),

W ∈ L(H,K2) and V ∈ L(H, E) be (bounded) surjective operators.

Problem 2. Given µ 6= 0, and (w0, z0) ∈ K2 × E, analyze the existence of

min
x∈H

(
[Ux,Ux ]K1

+ µ [Wx− w0,Wx− w0 ]K2

)
,

subject to [V x− z0, V x− z0 ]E = 0,

and if the minimum exists, find the set of arguments at which it is attained.

If V #V is semidefinite then Problem 2 becomes the abstract mixed splines
problem analyzed in [20]. We proceed now to describe how this problem can
be studied in the context of the ILSP analyzed in this paper, in the case when
V #V is indefinite.

Given µ 6= 0, define the inner product on K1 × K2 as in (4.4) and assume
that U#U +µW#W is indefinite. Also, defining the operator T : H → K1 ×K2

by
Tx := (Ux,Wx), x ∈ H, (6.1)
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it is immediate that Problem 2 is equivalent to the following: given (w0, z0) ∈
K2 × E , analyze the existence of

min
x∈H

[Tx− (0, w0), T x− (0, w0) ]µ , subject to [V x− z0, V x− z0 ]E = 0,

(6.2)
and if the minimum exists, find the set of arguments at which it is attained.
Hence, it is clear that this is a particular case of Problem 1. Moreover, if w0 = 0
and T is surjective, then (6.2) reduces to the indefinite abstract splines problem
considered in [23] with initial data z0 ∈ E . The following proposition provides
a necessary and sufficient condition for this particular case.

Proposition 6.1. The operator T defined in (6.1) is surjective if and only if

H = N(U) +N(W ).

Proof. Assume R(T ) = K1 × K2, and let (u, 0) ∈ K1 × K2. Then there exists
y ∈ H such that (Uy, 0) = Ty = (u, 0). Consequently, y ∈ N(W ) and since
u ∈ K1 is arbitrary K1 = U(N(W )) follows. Thus, H = U−1 (U(N(W )) ) =
N(U) +N(W ).

Conversely, assume that H = N(U)+N(W ). Then N(U)⊥∩N(W )⊥ = { 0 }.
Given (u,w) ∈ N(T#), we have that

U#u = −µW#w ∈ R(U#) ∩R(W#) = N(U)⊥ ∩N(W )⊥ = { 0 } ,

and (u,w) = (0, 0) because U# and W# are injective. Therefore, N(T#) = { 0 }
and R(T ) = K1 ×K2.

Since U(N(W )) = U(H) = K1, it follows that U(N(W )) is closed. Now,
consider a sequence (xn)n∈N in H such that Txn → (y, z) for some (y, z) ∈
K1 × K2. Then, for each n ∈ N consider un = PN(W )⊥xn and vn = PN(W )xn.

Then, Wun = Wxn = zn → z and, since un ∈ N(W )⊥, un = W †Wun → W †z.
Therefore, Uun → UW †z and

Uvn = Uxn − Uun → y − UW †z.

The closedness of U(N(W )) implies that there exists u ∈ N(W ) such that
y − UW †z = Uu. Hence, U(W †z + u) = y and W (W †z + u) = z +Wu = z.
Thus, T (W †z + u) = (y, z) and the range of T is closed, thus completing the
proof.

Now for a fixed ρ 6= 0 we define a new indefinite inner product on K1×K2×E .
If u, u′ ∈ K1, w,w

′ ∈ K2 and z, z′ ∈ E ,

[ (u,w, z), (u′, w′, z′) ]ρ := [u, u′ ]K1
+ µ [w,w′ ]K2

+ ρ [ z, z′ ]E .

It is easy to see that the space K1×K2×E is a Krein space with this indefinite
inner product. Also, defining the operator L : H → K1 × K2 × E by

Lx := (Tx, V x) = (Ux,Wx, V x), x ∈ H, (6.3)
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it is immediate that

L#L = U#U + µW#W + ρV #V.

By means of the operators T and L defined in (6.1) and (6.3) respectively,
the results concerning the ILSP analyzed in this paper can be directly applied.
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