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Abstract
Sparse covariates are frequent in classification and regression problems where the
task of variable selection is usually of interest. As it is well known, sparse statistical
models correspond to situations where there are only a small number of nonzero
parameters, and for that reason, they are much easier to interpret than dense ones.
In this paper, we focus on the logistic regression model and our aim is to address
robust and penalized estimation for the regression parameter. We introduce a family
of penalized weighted M-type estimators for the logistic regression parameter that are
stable against atypical data. We explore different penalization functions including the
so-called Sign penalty. We provide a careful analysis of the estimators convergence
rates as well as their variable selection capability and asymptotic distribution for fixed
and random penalties. A robust cross-validation criterion is also proposed. Through a
numerical study, we compare the finite sample performance of the classical and robust
penalized estimators, under different contamination scenarios. The analysis of real
datasets enables to investigate the stability of the penalized estimators in the presence
of outliers.
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1 Introduction

Sparse regression models assume that the number of actually relevant predictors, k,
is lower than the number of measured covariates. Hastie et al. (2015) describe that a
sparse statisticalmodel is one inwhich only a relatively small number of parameters (or
predictors) play an important role, leading to models that are much easier to interpret
than dense ones. This type of models has raised a paradigm shift in statistics, since the
traditional approach to classical issues such as regression or classification assumes that
no restrictions are imposed when estimating the parameters. In these circumstances,
penalized regression estimators are a useful tool when the practitioner is interested
in automatic variable selection. We refer to (Efron and Hastie 2016) for an overview
of adapted inference methods. For instance, the �1 regularization, which is related to
the LASSO estimators introduced in Tibshirani (1996), bets on the sparsity principle
and is effective for variable selection, but tends to choose too many features. Zou and
Hastie (2005) considered an alternative regularization, namely the Elastic Net penalty,
which combines both �1 and �2 norms. Elastic Net preserves the sparsity of LASSO
and maintains some of the desirable predictive properties of Ridge regression. Fan
and Li (2001) and Zhang (2010) proposed alternative penalties which lead to sparse
estimators.

Logistic regression is a widely studied problem in statistics and has been useful to
classify data. It is well known that in the non-sparse scenario the maximum likelihood
estimator (MLE) of the regression coefficients is very sensitive to outliers, meaning
that we cannot accurately classify a new observation based on these estimators, neither
identify those covariates with important information for assignation. Robust methods
for logistic regression bounding the deviance have been proposed in Bianco and Yohai
(1996). In particular, for the family of estimators defined therein, (Croux and Haes-
broeck 2003) introduced a loss function that guarantees the existence of the resulting
robust estimator when the maximum likelihood estimators do exist. The proposal due
to (Basu et al. 2017) on the basis of minimum divergence can also be seen as a par-
ticular case of the (Bianco and Yohai 1996) estimator with a properly defined loss
function. Other approaches were given in Cantoni and Ronchetti (2001) and Bondell
(2005, 2008). However, all these methods are not reliable under collinearity and they
do not allow for automatic variable selection when only a few number of covariates
are relevant. The previous ideas on regularization can be directly extended to logistic
regression.

In the last decade, some robust estimators for logistic regression in the sparse
regressors framework have been proposed in the literature. Among others, we can
mention (Chi and Scott 2014) who considered a least squares estimator with a Ridge
and Elastic Net penalty and (Kurnaz et al. 2018) who proposed estimators based on a
trimmed sum of the deviances with an Elastic Net penalty. It is worth noticing that the
least squares estimator in logistic regression corresponds to a particular choice of the
loss function considered in Bianco and Yohai (1996). Finally, Tibshirani andManning
(2013) introduced a real-valued shift factor to protect against the possibility of mis-
labelling, while (Park and Konishi 2016) considered a weighted deviance approach
with weights based on the Mahalanobis distance computed over a lower-dimensional
principal component space and included an Elastic Net penalty.Most of the asymptotic
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results for robust sparse estimators have been given under the linear regression model
(see, for example, Smucler and Yohai 2017) or when considering a convex loss func-
tion (see, for instance, van de Geer and Müller 2012). More recently, (Avella-Medina
and Ronchetti 2018) treated the situation of general penalized M-estimators in shrink-
ing neighbourhoods, when the parameter dimension p is fixed. In this setting, they
considered penalties that are a deterministic sum of univariate functions and showed
that penalized M-estimators based on loss functions with a bounded derivative behave
better in a neighbourhood of the model than the classical oracle estimator. Moreover,
they showed that the asymptotic bias of penalized M-estimators is of order O(ε) in ε

contamination neighbourhoods.
In this paper, we introduce a general family of robust estimators for sparse logistic

regression models, that involves both a loss and a weight function to control influential
points and also a general penalty term to produce sparse estimators. In contrast to
(Avella-Medina and Ronchetti 2018), our approach allows for penalties which may
be random and not necessarily a deterministic sum of univariate functions. Random
penalties give a more realistic scenario than deterministic ones, since the practitioner
usually selects the penalty parameter using a data-driven procedure. Furthermore,
they provide a general framework to include adaptive LASSO (ADALASSO). At this
point, the choice of the penalty does matter. It is worth noticing that, in the objective
function defining our estimators, the loss function keeps bounded the terms related to
the deviance. For this reason, it seems wise to consider a bounded penalty, otherwise,
the regularization term may tend to dominate in the minimization problem. In this
sense, SCAD or MCP, due to (Fan and Li 2001) and (Zhang 2010), respectively, are
appealing choices.We also consider as regularization the Sign penalty, that is bounded
and, unlike SCAD andMCP, does not depend on an extra parameter. This penalty acts
like LASSO applied to the direction of the regression vector, that is why, it does not
shrink the estimated coefficients to 0 as LASSO does. In the framework of sparse
representations in signal analysis, the Sign is known as the �1/�2 penalty and some
of its algorithmic aspects have been discussed among others in Esser et al. (2013),
Rahimi et al. (2019) and Wang et al. (2020). In opposition to our interests, these last
papers focus on signal analysis, thus, the statistical properties of the related estimators
are not studied. It is worth mentioning that the Sign penalty cannot be written as a
sumof univariate deterministic functions, so the asymptotic properties of the penalized
estimators cannot be derived from Theorem 2 in Avella-Medina and Ronchetti (2018).
In this sense, our results fill the gap.

A primary focus of this paper is to provide a rigorous theoretical foundation for our
approach to robust sparse logistic regression when the dimension of the covariates is
fixed. It should be highlighted that a similar strategy to the one proposed herein could
be followed in the high-dimensional scenario as done for robust quasi-likelihood-type
estimators in Avella-Medina and Ronchetti (2018). However, when the dimension
p increases with the sample size n, particular considerations and developments are
required to obtain theoretical properties. This interesting topic is beyond the scope of
the present paper and will be object of future research.

The rest of this paper is organized as follows. In Sect. 2, the robust penalized logis-
tic regression estimators are introduced. In particular, Sect. 2.1 introduces a robust
procedure to select the penalty parameter and discusses the importance of consider-
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ing a bounded loss in the cross-validation criterion. Sections 3 and 4 summarize the
asymptotic properties of the proposal. Section 5 reports the results of a Monte Carlo
study. In Sect. 6, we present the analysis of a real dataset related to breast cancer
diagnosis, while Sect. 7 contains some concluding remarks. Proofs are relegated to
the Supplementary file where we also describe an algorithm to effectively compute the
estimators and report some complementary simulation results. The analysis of dataset
related to tomography images is also presented in the online supplement.

2 Robust penalized estimators

Throughout this paper, we consider a logistic regression model, that is, we have a
sample of i.i.d. observations (yi , xi ), 1 ≤ i ≤ n such that xi ∈ R

p, yi ∈ {0, 1} is
a binary variable such that yi |xi ∼ Bi(1, F(xti β0)), where Bi(1, p) stands for the

Bernoulli distribution with success probability p, F(t) = exp(t)
[
1 + exp(t)

]−1 is the
logistic function and β0 ∈ R

p is the true logistic regression vector.
In the non-sparse setting, M-estimators were defined in Bianco and Yohai (1996)

andBasu et al. (2017),while in order to obtain bounded influence estimators aweighted
versionwas introduced inCroux andHaesbroeck (2003). For the sake of completeness,
we briefly recall their definition. Let ρ : R≥0 → R be a bounded, differentiable and
non-decreasing function with derivative ψ = ρ′ and define

Ln(β) = 1

n

n∑

i=1

φ(yi , xti β)w(xi ) , (1)

with

φ(y, t) = ρ(d(y, t)) + G(F(t)) + G(1 − F(t)) , (2)

where d(y, t) = − log(F(t))y − log(1 − F(t))(1 − y) is the deviance function
and G(t) = ∫ t

0 ψ(− log u) du is the correction factor needed to guarantee Fisher-
consistency. The weightsw(xi ) are usually based on a robust Mahalanobis distance of
the explanatory variables, that is, they depend on the distance between x�

i and a robust
centre of the data, where x = (1, x�t)t when an intercept is included in the model and
x = x� when no intercept is considered. The weighted M-estimators are then defined
as

β̂ = argmin
β∈Rp

Ln(β) . (3)

As for the maximum likelihood estimators, the weighted M-estimators do not lead to
sparse estimators. This entails that they do not allow to make variable selection and
may have a bad performance regarding robustness and efficiency. In this setting, a usual
way to improve the behaviour of existing estimators is to include a regularization term
that penalizes candidates without few nonzero components. The penalized estimators
are defined as

123



Penalized robust estimators in sparse logistic regression 567

β̂n = argmin
β∈Rp

1

n

n∑

i=1

φ(yi , xt
iβ) w(xi ) + Iλn (β) = argmin

β∈Rp
Ln(β) + Iλn (β), (4)

where Ln(β) is given in (1), φ is defined in (2) and Iλn (β) is a penalty function,
chosen by the user, depending on a tuning parameter λn which measures the estimated
logistic regression model complexity. The intercept is usually not penalized, when the
model contains one. For that reason and for the sake of simplicity, when deriving the
asymptotic properties of the estimators, wewill assume that themodel has no intercept.
If the penalty function is properly chosen, the penalized M-estimator defined in (4)
will lead to sparse models.

It is worth noticing that the estimators introduced in (4) represent a wide fam-
ily which includes the M-estimators defined in Bianco and Yohai (1996), by taking
w(x) = 1 and Iλn (β) = 0. In particular, the penalized maximum likelihood estimators
correspond to ρ(t) = t which is not bounded and a penalized version of the mini-
mum divergence estimators defined in Basu et al. (2017) taking ρ(t) = ρdiv(t) =
(1+ 1/c){1− exp(−ct)}. From now on, we denote ‖β‖qq = ∑p

j=1 β j , for q > 0. The
estimators defined in Chi and Scott (2014) belong to the family (4) just by choosing
ρ(t) = 1 − exp(−t) and Iλ(β) = λ

(
θ‖β‖1 + [(1 − θ)/2]‖β‖22

)
, with θ ∈ [0, 1], i.e.

the Elastic Net penalty. Note that Elastic Net reduces to the LASSO penalty for θ = 1
and to the Ridge penalty for θ = 0. The main drawbacks of this penalization is that it
introduces an extra parameter that must be chosen additionally to the penalty factor λ

and that it produces estimators of the non-null components with a large bias.
Some other penalties considered in the linear regression model are the Bridge

penalty introduced in Frank and Friedman (1993) and defined as Iλ(β) = λ‖β‖qq . For
linear models the Bridge penalty leads to sparse estimations when 0 < q < 1. Zou
(2006) has shown that LASSO may not be an oracle procedure for linear regression
models and introduced the adaptive LASSO from an initial consistent estimator β̃.
The penalty function for the ADALASSO estimator is chosen as Iλ(β) = λI �(β),
where I �(β) is a random function defined as

I �(β) =
p∑

j=1

|β j |
|β̃ j |γ , (5)

for some γ > 0, where we understand that |β j |/|β̃ j |γ = ∞ if |β̃ j | = 0 but |β j | 
= 0,
while |β j |/|β̃ j |γ = 0 if |β̃ j | = |β j | = 0. If we seek for a robust penalized procedure
using ADALASSO and to preserve robustness of the final estimator, β̃ can be chosen
as the non-penalized robust estimator, that is, the minimizer of Ln(β).

A distinguishing feature in logistic regression is that the response variable is
bounded. This implies that when considering the penalized least squares estimators
the first term in (4) is always bounded and hence, the penalty term may dominate the
behaviour of the objective function, unless the regularization function is also bounded.

This is the reason why, we will also consider bounded penalties such as the SCAD
penalty defined in Fan and Li (2001) as

123



568 A. M. Bianco et al.

Iλ(β) =
p∑

j=1

λ|β j | 1{|β j |≤λ} +
p∑

j=1

aλ|β j | − 0.5(β2
j + λ2)

a − 1
1{λ<|β j |≤aλ}

+
p∑

j=1

λ2(a2 − 1)

2(a − 1)
1{|β j |>aλ} ,

for a > 2, where 1A is the indicator function of the set A, and the MCP penalty
proposed by Zhang (2010) in the linear regression model which is given by

Iλ(β) =
p∑

j=1

(

λ|β j | − β2
j

2 a

)

1{|β j |≤a λ} + 1

2
a λ2 1{|β j |>a λ}.

Furthermore, a main objective under a sparse setting is variable selection, that is,
to identify variables related to non-null coefficients. Hence, it is more relevant to
determine the coefficients β j that are non-null than their size. For that purpose, we
also consider a penalty that shrinks the coefficients by pulling the vector β to the unit
Euclidean ball before applying a LASSO penalty. This results in the so-called Sign
penalty, also known as the �1/�2 penalization in signal analysis, which is defined as

Iλ(β) = λ
‖β‖1
‖β‖2

1β 
=0 = λ‖s(β)‖11β 
=0 ,

where s(β) = β/‖β‖2 is the sign function. In multivariate analysis, the sign function
has been extensively considered to construct robust estimators. Up to our knowledge,
this paper is the first one in deriving the asymptotic properties of penalized estimators
based on s(β). Note that the Sign penalty works like LASSO over all unit vectors and
in this sense, it enables the selection of a direction, more than raw variable selection.
The Sign penalty produces a thresholding rule, that is, it estimates some coefficients as
nonzero. It reaches the minimum when only one of its components is not zero and its
maximum when all its components are equal and different from zero. Two important
features of this penalty are that it is scale invariant, so it does not shrink the estimated
coefficients as the Elastic Net penalty does, and it does not require to select an extra
parameter as SCAD and MCP.

2.1 Selection of the penalty parameter

As it iswell known, the selectionof the penalty parameter is an important practical issue
when fitting sparse models, since in some sense it tunes the complexity of the model.
This problem has been discussed, among others, in Efron et al. (2004), Meinshausen
(2007) and Chi and Scott (2014). In this paper, a robust K -fold criterion is used to
select the penalty parameter.

As usual, first randomly split the dataset into K disjoint subsets of approximately
equal sizes, with indices C j , 1 ≤ j ≤ K , the j-th subset having size n j ≥ 2, so that
⋃K

j=1 C j = {1, . . . , n} and ∑K
j=1 n j = n. Let Λ̃ ⊂ R be the set of possible values
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for λ to be considered, and let β̂
( j)
λ be an estimator of β0, computed with penalty

parameter λ ∈ Λ̃ and without using the observations with indices in C j . For each

i = 1, . . . , n, the prediction residuals d̂i,λ are d̂i,λ = d(yi , xti β̂
( j)
λ ), for i ∈ C j and

j = 1, . . . , K . The classical cross-validation criterion constructs adaptive data-driven
estimators by minimizing

CV (λ) = 1

n

n∑

i=1

d̂i,λ , (6)

an objective function that is usually employed for the classical estimators which mini-
mize the deviance. However, this criterion is very sensitive to the presence of outliers.
In fact, even when β0 is estimated by means of a robust method, the traditional cross-
validation criterion may lead to poor variable selection results since atypical data may
have large prediction residuals that could be very influential on CV (λ). To overcome
this problem, when using robust estimators, it seems natural to use the same loss
function φ as in (4). Hence, the robust cross-validation criterion selects the penalty
parameter by minimizing over Λ̃

RCV (λ) = 1

n

∑

1≤ j≤K

∑

i∈C j

φ(yi , xti β̂
( j)
λ ) w(xi ) . (7)

The particular case K = n leads to leave-one-out cross-validation which is a popular
choice with a more expensive computational cost. In Section S.8.1 of the supplemen-
tarymaterial, we illustrate through a numerical example, the importance of considering
a bounded loss in the cross-validation criterion when performing the selection of the
penalty parameter in order to achieve reliable prediction.

3 Consistency and order of convergence

In this section, we study the asymptotic behaviour of the estimators defined in (4)
when p is fixed. Even though we are mainly concerned with bounded penalties, our
results are general and include among others the Bridge and Elastic Net penalties.

3.1 Assumptions

When considering the function φ given in (2), the following set of assumptions on the
loss function ρ are needed.

R1 ρ : R≥0 → R is a bounded, continuously differentiable function with bounded
derivative ψ and ρ(0) = 0.

R2 ψ(t) ≥ 0 and there exists some c ≥ log 2 such that ψ(t) > 0 for all 0 < t < c.
R3 ρ is twice continuously differentiablewith boundedderivatives, i.e.ψ andψ ′ = ρ′ ′

are bounded.
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Remark 1 Note that for the function φ(y, t) defined in (2), Ψ (y, t) = ∂φ(y, t)/∂t =
−[y − F(t)]ν(t) with ν(t) given by

ν(t) = ψ (− log F(t)) [1 − F(t)] + ψ (− log [1 − F(t)]) F(t) . (8)

Further, under R1 and R2, the function Ψ (y, ·) is continuous and strictly positive.
Denote as χ(y, t) = ∂Ψ (y, t)/∂t = F(t)(1 − F(t))ν(t) − (y − F(t))ν′(t) and

note that χ(0, s) = χ(1,−s). The function χ(y, t) always exists for the minimum
divergence estimators and is well defined for any function ρ satisfying R3.

It is worth noticing that when ψ(t) > 0 the constant c in R2 may be taken as ∞.
For instance, this happens when choosing the loss function ρ = ρdiv related to the
divergence estimators or the function ρ = ρc, with c > 0, defined as

ρc (t) =
{
te−√

c if t ≤ c

−2e−√
t
(
1 + √

t
) + e−√

c
(
2

(
1 + √

c
) + c

)
if t > c ,

(9)

which has been introduced in Croux and Haesbroeck (2003) to ensure the existence of
theM-estimators under the same conditions that guarantee existence for themaximum
likelihood estimators.Moreover,when considering the penalizedminimumdivergence
estimators, ρ automatically satisfies conditions R1, R2 and R3.

For the results in this section, the following assumptions regarding the distribution
of x are needed.

H1 For all α ∈ R
p, α 
= 0, we have P(xtα = 0) = 0.

H2 w is a non-negative bounded function with support Cw such that P(x ∈ Cw) > 0.
Without loss of generality, we assume that ‖w‖∞ = 1.

H3 E[w(x)‖x‖2] < ∞.

H4 The matrix A = E

(
F(xtβ0)

[
1 − F(xtβ0)

]
ν(xtβ0) w(x) xxt

)
, where ν(t) is

defined in (8), is non-singular.

Remark 2 AssumptionsH1 and H2 entail that the estimators defined in (3) are Fisher-
consistent and will allow to derive consistency results for the estimators defined in (4).
H1 holds for instance, when x has a density with support S such that S ∩ Cw 
= ∅.
In fact, the weaker assumption P(xtα = 0 ∪ w(x) = 0) < 1 for any α 
= 0 is
enough for obtaining Fisher-consistency. However, in order to ensure consistency
a stronger requirement is needed to guarantee that the infimum is not attained at
infinity. It is worth noticing that H1 and H2 entail that E[w(x) xxt] is a positive
definite matrix. Furthermore, when considering the minimum divergence estimators
the matrixA is non-singular, since P(ν(xtβ0) > 0) = 1, soH4 holds. Similarly, when
P(xtα = 0) < 1 for any α 
= 0, and φ is given by (2) with ψ(t) > 0 for all t , as is
the case with the loss function introduced in Croux and Haesbroeck (2003), A is non-
singular. On the other hand, whenR2 holds for some finite positive constant c ≥ log 2,
A is positive definite when H1 holds. Moreover, define Υ (t) = F(t)(1 − F(t))ν(t),
straightforward arguments allow to see that A is also non-singular when P(xtα =
0) < 1 holds, for any α 
= 0, and at least one of the following conditions is fulfilled:
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a) the function E[w(x)xxt1
Υ (xtβ0)≥η

] is continuous in η or b) there exists some c > 0 such

that P(Υ (xtβ0) > c) = 1.

Remark 3 It is worth mentioning that assumption H3 is weaker than Condition 3 in
Avella-Medina and Ronchetti (2018), while condition H4 is equivalent to the non-
singularity requirement in Condition 2 therein. Regarding Condition 1 of Avella-
Medina and Ronchetti (2018), the Fisher-consistency is automatically fulfilled due to
the correction factor G(·). Furthermore, instead of the uniformity condition asked by
those authors, we only require to the function ψ continuity and boundedness. Note
that when w ≡ 1 and the covariates are bounded or when considering hard rejection
weights, their Condition 1 is satisfied.

3.2 Consistency and rate of convergence

The next theorem states the strong consistency of the estimators defined in (4), when
considering as functionφ the function controlling large values of the deviance residuals
given in (2).

Theorem 1 Let φ : R
2 → R be the function given in (2), where the function ρ satisfies

R1 and R2. Then, if Iλn (β0)
a.s.−→ 0 when n → ∞ and H1 andH2 hold, we have that

the estimator β̂n defined in (4) is strongly consistent for β0.

It is worth noticing that, in Theorem 1, the penalty function Iλn may be determin-

istic or random, since the only requirement is that Iλn (β0)
a.s.−→ 0. In particular, for

the penalties LASSO, Sign, Ridge, Bridge, SCAD and MCP described in Sect. 2 this
condition holds when λn

a.s.−→ 0.Moreover, for the ADALASSO penalty, the condition
Iλn (β0)

a.s.−→ 0 is fulfilled when the initial estimator β̃ is consistent and λn
a.s.−→ 0.

In order to prove the
√
n-consistency of the proposed estimators, we need the

following assumption on the penalty function. From now on, B(β, ε) stands for the
closed ball, with respect to the usual ‖ · ‖2 norm, centred at β with radius ε, i.e.
B(β, ε) = {b ∈ R

p : ‖b − β‖2 ≤ ε}.
P1 Iλ(β)/λ is Lipschitz in a neighbourhood of β0, that is, there exists ε > 0 a

constant K , which does not depend on λ, such that if β1,β2 ∈ B(β0, ε) then
|Iλ(β1) − Iλ(β2)| ≤ λK‖β1 − β2‖1.

Remark 4 Note that penalties Ridge, Elastic Net, SCAD and MCP satisfy P1, since
‖β‖2 ≤ ‖β‖1 ≤ √

p ‖β‖2. Furthermore, the Sign penalty also satisfies P1 if ‖β0‖2 
=
0. Moreover, if Iλ(β) = λ

∑p
�=1 J�(|β�|), where J�(·) is a continuously differentiable

function, then Iλ satisfies P1, which implies that the Bridge penalty satisfies P1 for
q ≥ 1.

Theorem 2 Let β̂n be the estimator defined in (4) with φ(y, t) given in (2), where the

function ρ : R≥0 → R satisfies R3. Furthermore, assume that β̂n
p−→ β0 and that

assumptions H2 to H4 hold.
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(a) If assumption P1 holds, ‖β̂n − β0‖2 = OP(λn + 1/
√
n). Hence, if λn =

OP(1/
√
n), we have that ‖β̂n − β0‖2 = OP(1/

√
n), while if λn

√
n → ∞,

‖β̂n − β0‖2 = OP(λn).
(b) Suppose Iλn (β) = ∑p

�=1 J�,λn (|β�|) where the functions J�,λn (·) are twice con-
tinuously differentiable in (0,∞), take non-negative values, J ′

�,λn
(|β0,�|) ≥ 0 and

J�,λn (0) = 0, for all 1 ≤ � ≤ p. Let

an = max
{
J ′
�,λn

(|β0,�|) : 1 ≤ � ≤ p and β0,� 
= 0
}

and αn = 1√
n

+ an .

In addition, assume that there exists some δ > 0 such that

sup{|J ′ ′
�,λn

(|β0,�| + τδ)| : τ ∈ [−1, 1] , 1 ≤ � ≤ p and β0,� 
= 0} p−→ 0.

Then, ‖β̂n − β0‖2 = OP(αn).

Remark 5 Theorem 2(a) shows that, when the penalty satisfies assumption P1, the
estimator rate of convergence depends on the convergence rate of λn to 0. In particular,
if λn

√
n is bounded in probability, then the robust penalized consistent estimator has

rate
√
n, while if λn

√
n → ∞, the convergence rate of β̂n is slower than

√
n. This

result is analogous to the one obtained, under a linear regression model, in Zou (2006)
for the penalized least squares estimator when a LASSO penalty is considered. Note
that, for the LASSO penalty, the convergence rates obtained in (a) and ( b) are equal
since J�,λn (v) = λn v, for any 1 ≤ � ≤ p, which entails that an = λn and for any
β0,� 
= 0, τ ∈ [−1, 1], J ′′

�,λn
(|β0,�| + τδ) = 0 for a small enough δ > 0.

Penalties SCAD and MCP are not only Lipschitz, but also based on univariate
twice continuously differentiable functions J�,λn (t) = Jλn (t), for all 1 ≤ � ≤ p,
satisfying the requirements asked in Theorem 2(b) when λn → 0. Indeed, for these
penalties J ′

λn
(t) and J ′′

λn
(t) are 0 if t > a λn where a is their second tuning constant

which is assumed to be fixed. Hence, if λn
p−→ 0 for any δ > 0 there exists n0 such

that, for any n ≥ n0, we have that P(aλn < m0) > 1 − δ with m0 = min{|β0,�|) :
1 ≤ � ≤ p and β0,� 
= 0}. Thus, for n ≥ n0, P(an = 0 and bn = 0) > 1 − δ

and therefore, αn = OP(1/
√
n), implying that the root-n rate may be achieved only

assuming only that λn
p−→ 0. It is worth noticing that, even when, the Ridge penalty is

Lipschitz and it is also based on univariate twice continuously differentiable functions,
J ′
λn

(|β0,�|) = λn|β0,�|, so that an = O(1/
√
n + λn), leading to root-n consistency

rate with the additional requirement λn = OP(1/
√
n). The different behaviour of

the estimators related to Lipschitz penalties or penalties related to twice continuously
differentiable functions with null first derivative for n large enough plays an important
role regarding the variable selection properties of the procedure.

Furthermore, when considering the ADALASSO estimators, root-n estimators are
obtained when the initial estimator β̃ is consistent and

√
nλn = OP(1), since in this

case an = λn max j∈A |β̃ j |−γ , withA = { j : β0, j 
= 0}. In particular, for deterministic
bandwidths, this result holds if

√
nλn → 0 in concordance with Theorem 2 from (Zou

2006).
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4 Asymptotic distribution results

The first result in this section concerns the variable selection properties for our esti-
mator. As shown below, the result depends on the behaviour of the penalty function.
Without loss of generality, assume that β0 = (βt

0,A, 0tp−k)
t and β0,A ∈ R

k , k ≥ 1,
is the subvector with active coordinates of β0 (i.e. the subvector of nonzero elements
of β0). We will make use of the notation β = (βt

A,βt
B)t, where β A ∈ R

k with k ≥ 1
and βB ∈ R

p−k .
When the estimator automatically selects variables, we will be able to show an

oracle property, that is, that the penalized M-estimator of the non-null components
of β0, β̂n,A has the same asymptotic distribution as that of the estimator obtained
assuming that the last components of β0 are equal to 0 and using this restriction in
the logistic regression model. It is worth noticing that in the non-sparse scenario, the
asymptotic behaviour of the estimators β̂ defined in (3) has been studied in Bianco and
Martínez (2009), while Basu et al. (2017) consider the particular case of the minimum
divergence estimators and w(x) ≡ 1. More precisely, the above mentioned authors

have shown that
√
n(β̂ − β)

D−→ Np(0,Σ) with Σ = A−1BA−1, where

B = E

(
F(xtβ0)

[
1 − F(xtβ0)

]
ν2(xtβ0) w2(x) xxt

)
. (10)

with ν(t) defined in (8) and the matrix A is given in assumption H4.
For the sake of simplicity, throughout this section,wewill assume that the parameter

λn is deterministic. Similar results may be obtained when the penalty parameter is
random. However, we also admit Iλ(β) to be random, so in Sect. 4.1, we will treat
separately the case in which Iλ(β) is a deterministic or random function, leading to
Theorems 3 and 4, respectively.

4.1 Variable selection property

Theorem 3 Let β̂n = (β̂
t
n,A, β̂

t
n,B)t be the estimator defined in (4), where φ(y, t)

is given in (2) and the function ρ : R≥0 → R satisfies R3. Furthermore, assume
that H2 and H3 hold and that

√
n‖β̂n − β0‖2 = OP(1). Moreover, assume that for

every C > 0 and � ∈ {k + 1, . . . , p}, there exist a constant KC,� and NC,� ∈ N such
that if ‖u‖2 ≤ C and n ≥ NC,�, then

Iλn

(
β0 + u√

n

)
− Iλn

(

β0 + u(−�)

√
n

)

≥ KC,�

λn√
n

|u�|, (11)

where u(−�) is obtained by replacing the �-th coordinate of u with zero and u� is the
�-th coordinate of u.

(a) For every τ > 0, there exists b > 0 and n0 ∈ N such that if λn = b/
√
n, we have

that, for any n ≥ n0, P(β̂n,B = 0p−k) ≥ 1 − τ .
(b) If λn

√
n → ∞, then P(β̂n,B = 0p−k) → 1.
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To prove variable selection properties for our estimators, it only remains to show
that condition (11) holds for the different penalties mentioned above. First note that
(11) is clearly satisfied for the LASSO penalty. In the proof of Corollary 1, we show
that SCAD, MCP and the Sign penalty also verify (11).

Corollary 1 Let β̂n = (β̂
t
n,A, β̂

t
n,B)t be the estimator defined in (4) with φ(y, t) given

by (2) where the function ρ : R≥0 → R satisfies R3. Assume that H2 and H3 hold
and

√
n‖β̂n − β0‖2 = OP(1).

(a) If Iλn (β) is the Sign penalty, then for every τ > 0 there exist b > 0 and n0 ∈ N

such that if λn = b/
√
n, we have that, for any n ≥ n0, P(β̂n,B = 0p−k) ≥ 1 − τ .

(b) If Iλn (β) is taken as the SCAD orMCP penalties and
√
nλn → ∞, then P(β̂n,B =

0p−k) → 1.

Remark 6 It is noteworthy that when the penalty function Iλβ) is deterministic and
can we written as a sum of continuously differentiable univariate functions, inequality
(11) is equivalent to Condition 4 in Avella-Medina and Ronchetti (2018).

A consequence ofCorollary 1 is that the penalties SCADandMCPhave the property
of automatically selecting variables when

√
nλn → ∞. This states a difference with

(Avella-Medina and Ronchetti 2018) who require stronger rates on λn , see Remark 9.
In contrast, when using the LASSO and Sign penalties, we cannot ensure the variable
selection property when the estimator is root-n consistent. Recall that, for these two
penalties, Theorem2 entails that the estimator converges at a rate slower than

√
nwhen

λn
√
n → ∞. For that reason, we can only guarantee that for a given 0 < τ < 1, we

can choose a sequence of penalty parameters λn = b/
√
n (in order to ensure that the

estimator has a root-n rate) and such that the penalized M-estimator selects variables
with probability larger than 1 − τ .

The results in the asymptotic distribution given below will allow to conclude that,
for the LASSO and Sign penalties, when the estimator has convergence rate

√
n,

then lim supn P(An = A) < 1, where A = { j : β0, j 
= 0} = {1, . . . , k} and
An = { j : β̂n, j 
= 0} are the set of indexes related to the active components of β0 and
to the non-null coordinates of β̂n , respectively. This result is analogous to Proposition
1 in Zou (2006), which shows that the LASSO estimator leads to inconsistent variable
selection in the linear regression model, when λn = O(1/

√
n).

It is worth noticing that β̂n,B = 0p−k if and only if An ⊂ A, hence, if P(β̂n,B =
0p−k) → 1we have that P(An ⊂ A) → 1. Note that whenAn � A, the penalized M-
estimator may select a submodel with less predictors than the original one, shrinking
the estimation of some of the active to 0; however, the oracle property of the estimators
based onSCADorMCPgiven inTheorem8will allow to conclude thatP(An = A) →
1.

To derive the variable selection property for random penalties such as the
ADALASSO constructed from a root-n consistent initial estimator, we state the fol-
lowing result whose proof is omitted since it follows using similar arguments to those
considered in the proof of Theorem 3. As mentioned above, this property is crucial to
obtain the asymptotic distribution of β̂n,A in Sect. 5. Note that for the ADALASSO
penalty, the constant γ > 0 in Theorem 4 corresponds to the value of γ involved in
its definition in (5).
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Theorem 4 Let β̂n = (β̂
t
n,A, β̂

t
n,B)t be the estimator defined in (4), where φ(y, t) is

given in (2) and the function ρ : R≥0 → R satisfies R3. Assume that
√
n‖β̂n−β0‖2 =

OP(1) and that for some γ > 0, n(1+γ )/2 λn → ∞. Furthermore, assume that for
every C > 0, � ∈ {k+1, . . . , p} and τ > 0, there exist a constant KC,� and NC,� ∈ N

such that if ‖u‖2 ≤ C and n ≥ NC,�, we have that

P

(

Iλn

(
β0 + u√

n

)
− Iλn

(

β0 + u(−�)

√
n

)

≥ KC,�

λn√
n1−γ

|u�|
)

> 1 − τ, (12)

where u(−�) and u� are defined as in Theorem 3. Then, under H2 and H3, P(β̂n,B =
0p−k) → 1.

4.2 Asymptotic distribution

In this section, we derive separately the asymptotic distribution of our estimator
depending on the choice of the penalty. As the rate of convergence to 0 of λn required
to obtain root−n estimators for the Sign is different from that of SCAD or MCP
penalties, we will study these two situations separately. Even though most results on
penalized estimators assume that the sequence of penalty parameters is deterministic,
in this section, as in Theorem 2, we will allow random penalty parameters λn , having
in this sense a more realistic point of view.

It isworth noticing that, underH4, thematrixA defined in assumptionH4 is positive
definite, so the submatrix corresponding to the active coordinates of β0 is also positive
definite.

From now on, e� stands for the �-th canonical vector and sign(z) is the univariate
sign function, that is, sign(z) = z/|z| when z 
= 0 and sign(0) = 0.

Theorem 5 Let β̂n be the estimator defined in (4) with φ(y, t) given in (2), where the
function ρ : R≥0 → R satisfies R3. Assume that H2 to H4 hold,

√
n(β̂n − β0) =

OP(1) and
√
n λn

p−→ b. Consider the Sign penalty given by Iλ(β) = λ ‖β‖1/‖β‖2.
Then, if ‖β0‖ 
= 0,

√
n(β̂n−β0)

D−→ argminz R(z), where the process R : R
p → R is

defined as R(z) = ztw+(1/2)ztAz+b ztq(z), withw ∼ Np(0,B),A andB are given
in assumptionH4 and in equation (10), respectively, q(z) = ∑p

�=1 ∇�(β0)1{β0,� 
=0} +(
sign(z�)/‖β0‖2

)
1{β0,�=0} e� and∇�(β) = − (|β�|/‖β‖32

)
β + (sign(β�)/‖β‖2) e� .

The following result generalizes Theorem 5 to differentiable penalties and includes,
among others, the LASSO and Ridge penalties, and any convex combination of them,
in particular the Elastic Net.

Theorem 6 Let β̂n be the estimator defined in (4) with φ(y, t) given by (2), where
the function ρ : R≥0 → R satisfies R3 and let A and B be the matrices defined in
assumption H4 and in equation (10), respectively. Let us consider the penalty

Iλ(β) = λ

{

(1 − α)

p∑

�=1

J�(|β�|) + α

p∑

�=1

|β�|
}

, (13)

123



576 A. M. Bianco et al.

where J�(·) is a continuously differentiable function such that J ′
�(0) = 0. Assume

that H2 to H4 hold,
√
n(β̂n − β0) = OP(1) and that

√
n λn

p−→ b. Then, if

‖β0‖ 
= 0,
√
n(β̂n − β0)

D−→ argminz R(z) where the process R : R
p →

R is defined as R(z) = ztw + (1/2) ztAz + b ztq(z), with w ∼ Np(0,B)

and q(z) = (q1(z), . . . , qp(z))t being q�(z) = (1 − α)J ′
�(|β0,�|) sign(β0,�) +

α
{
sign(β0,�)1{β0,� 
=0} + sign(z�)1{β0,�=0}

}
.

Remark 7 Note that when
√
nλn

p−→ 0 (b = 0), the penalized estimators based on the
Sign penalty or on a penalty of the form (13) have the same asymptotic distribution
as the M-estimators defined through (3). If b > 0 and α > 0 in (13), analogous
arguments to those considered in linear regression by Knight and Fu (2000), allow to
show that the asymptotic distribution of the coordinates of β̂n corresponding to null
coefficients of β0, that is, the asymptotic distribution of β̂n,B puts positive probability
at zero. On the other hand, if α = 0 and b > 0, the amount of shrinkage of the
estimated regression coefficients increases with the magnitude of the true regression
coefficients. Hence, for “large” parameters, the bias introduced by the differentiable
penalty J�(·) may be large.

It is worth noticing that Theorem 6 implies that, when Iλ(β) = λ
∑p

�=1 J�(|β�|)
and

√
nλn

p−→ b,
√
n(β̂n −β0)

D−→ A−1 (w + ba), where a = (a1, . . . , ap)t is such
that a� = J ′

�(|β0,�|) sign(β0,�), which shows the existing asymptotic bias introduced
in the limiting distribution, unless b = 0. In particular, the robust Ridge M-estimator,
that provides a robust alternative under collinearity, is asymptotically distributed as
Np(2 bA−1β0,A

−1BA−1).

When considering the Sign and LASSO penalties, analogous arguments to those
considered in the proof of Proposition 1 in Zou (2006), together with Theorems 5
and 6 allow to see that, if the penalized M-estimator has a root−n rate of convergence,
then it is inconsistent for variable selection (see Corollary 2). Furthermore, from the

proof we may conclude that if
√
nλn

p−→ 0, then P(An = A) → 0, that is, we need
regularization parameters that converge to 0, but not too fast in order to select variables
with non-null probability.

Corollary 2 Let β̂n = (β̂
t
n,A, β̂

t
n,B)t be the estimator defined in (4), where φ(y, t) is

given through (2)with the functionρ : R≥0 → R satisfyingR3. Assume that‖β0‖ 
= 0,√
nλn

p−→ b,
√
n‖β̂n −β0‖2 = OP(1) and thatH2 toH4 hold. Then, for the Sign or

LASSO penalties, there exists c < 1 such that lim supn P(An = A) ≤ c < 1, where
A = { j : β0, j 
= 0} is the set of indexes corresponding to the active coordinates of
β0 and An = { j : β̂n, j 
= 0}.

Similar arguments to those used in the proof of Theorem 5, allow to obtain
the asymptotic distribution of the penalized M-estimator with Sign penalty, when√
nλn → ∞. A similar result holds for penalizations satisfying (13), as the LASSO

one.

Theorem 7 Let β̂n be the estimator defined in (4), where φ(y, t) is given through
(2) with the function ρ : R≥0 → R satisfying R3. Assume that ‖β0‖ 
= 0,
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√
nλn

p−→ ∞, β̂n − β0 = OP(λn) and that H2 to H4 hold. Let A be the matrix
defined in assumptionH4 and consider the Sign penalty Iλ(β) = λ ‖β‖1/‖β‖2. Then,
(1/λn) (β̂n − β0)

p−→ argminz R(z), where the function R : R
p → R is defined

through R(z) = (1/2) ztAz + ztq(z), with q(z) the function defined in Theorem 5.

Remark 8 Under a linear regression model, Lemma 3 in Zou (2006) provides a result
analogous to Theorem 7 for the LASSO least squares estimator. As in the referred
result, the rate of convergence of β̂n is slower than

√
n and the limit is a non-random

quantity. As noted in Zou (2006), the optimal rate for β̂n is obtained when λn =
OP(1/

√
n), but at expenses of not selecting variables.

Finally, the following theorem gives the asymptotic distribution of β̂n,A when the
penalty is consistent for variable selection, that is, when P(β̂n,B = 0p−k) → 1. For

that purpose, recall that β0 = (βt
0,A, 0tp−k)

t where β0,A ∈ R
k , k ≥ 1, is the vector of

active coordinates of β0 and for b ∈ R
k , define

∇ Iλ(b) =
∂ Iλ

(
(bt, 0tp−k)

t
)

∂b
.

Theorem 8 Let β̂n be the estimator defined in (4) with φ(y, t) given in (2), where the
function ρ : R≥0 → R satisfies R3 and assume that H2 and H3 hold. Suppose that
there exists some δ > 0 such that

sup
‖βA−β0,A‖2≤δ

‖∇ Iλn (β A)‖2 = oP

(
1√
n

)
, (14)

P(β̂n,B = 0p−k) → 1 and β̂n
p−→ β0. Let Ã and B̃ be the k×k submatrices ofA and

B, respectively, corresponding to the first k coordinates of β0, where A and B were
defined in assumption H4 and in equation (10), respectively. Then, if Ã is invertible,√
n(β̂n,A − β0,A)

D−→ Nk(0, Ã−1B̃Ã−1).

Remark 9 Penalties SCAD and MCP fulfil (14) when λn → 0. Effectively, recall
that any of them may be written as Iλ(β) = ∑p

j=1 Jλ(|β j |), where Jλ(t) is constant
in [aλ,∞), with a > 0 the second tuning constant of these penalties. Using that

Jλ(0) = 0, we obtain that, for any b ∈ R
k , Iλ

(
(bt, 0tp−k)

t
)

= ∑k
j=1 Jλ(|b j |) and

∇ Iλ(b) = ∑k
j=1 J

′
λ(|b j |). Since ‖β̂ − β0‖2 = OP

(
1/

√
n
)
, given δ > 0 there exists

C1 > 0 such that P(Dn) > 1 − δ for n ≥ n0, with Dn = {‖β̂ − β0‖2 ≤ C1/
√
n}.

Let n1 be such that C1/
√
n ≤ m0/2. Then, for any ω ∈ Dn , n ≥ n1 and 1 ≤ j ≤ k,

we have that |β̂ j | ≥ |β0, j |−|β̂ j −β0, j | ≥ m0−C1n−1/2 ≥ m0/2. Using that λn → 0
we get that for n ≥ max{n0, n1}, we have that j = 1, . . . , k, |β̂ j | > aλn , implying
that Dn ⊂ {‖∇ Iλn (β̂ A)‖2 = 0} as desired. Hence, using Corollary 1, we get that
the penalized M-estimators defined through (4) have the oracle property when using
SCAD or MCP and λn → 0 with

√
n λn → ∞ which are the same convergence rates

required in Fan and Li (2001).
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In contrast, when considering the ADALASSO regularization, the penalized M-
estimators have the oracle property when

√
n λn → 0 and n(1+γ )/2 λn → ∞, which

coincide with the penalty parameter rates required in Zou (2006).
Summarizing, in our results, the rates of convergence of the penalty parameter are in

concordancewith those required in Zou (2006) or Fan andLi (2001), when considering
ADALASSO or MCP, respectively. In particular, for SCAD and MCP penalties we
only require λn → 0 to obtain rates of convergence and

√
nλn → ∞ to derive variable

selection results and asymptotic distribution (see Corollary 1 and Theorem 8), while
(Avella-Medina and Ronchetti 2018) need that the penalty parameter goes faster to
0 (

√
nλn → 0 and n λn → ∞) mainly due to the fact that they obtain results in

shrinking neighbourhoods of the true model.

5 Monte Carlo study

In this section, we present the results of a Monte Carlo study designed to compare the
small sample performance of classical and robust penalized estimators. Section S.6 of
the supplementary file describes the algorithm used to compute the estimators. Com-
plementary results of the numerical experiment presented here are given in Section
S.8 of the supplementary file.

To compare the different proposals, throughout our numerical study, we considered
a training sample M of i.i.d. observations (yi , xi ), 1 ≤ i ≤ n, xi ∈ R

p and yi |xi ∼
Bi(1, F(γ0 + xti β0)), where the intercept γ0 = 0 and we vary the values of n, p
and β0. For clean samples, the covariates distribution is Np(0,Σ), where two choices
for Σ are taken. For brevity purposes, we report here the situation where Σ = Ip,
while the case of correlated covariates is described in Sect. S.8.3. This last case is of
particular interest since correlation among predictorsmay impact the variable selection
performance of a given penalized estimator, see for instance (Wang et al. 2020).

5.1 Numerical settings

To confront our estimators with some challenging situations, we considered cases
where the ratio p/n is large. More precisely, we choose the pairs (n, p), with n ∈
{150, 300} and p ∈ {40, 80, 120}. In order to generate a sparse scenario, we chose the
true regression parameter with only a few nonzero components. Herein, we present
the results corresponding to β0 = (1, 1, 1, 1, 1, 0, . . . , 0)t ∈ R

p, i.e. the regression
parameter has onlyfivenonzero components. InSectionS.8.3,we consider a regression
parameter with coordinates of different sizes combined with a non-diagonal matrix
Σ . Note that with these selections of the simulation parameters E(yi ) equals 0.50. In
all cases, the number of Monte Carlo replications was N R = 500.

Henceforth, the clean samples setting is denotedC0. To study the impact of contam-
ination, we have explored two settings by adding a proportion ε of atypical points. In
the first contamination scheme, namely outliers of classA, we generated misclassified
points (ỹ, x̃), where x̃ ∼ Np(0, 20 I) and ỹ = 1 when γ0 + x̃tβ0 < 0 and ỹ = 0, oth-
erwise. Besides, outliers of classB, were obtained as in Croux and Haesbroeck (2003).
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This means that given m > 0, we fixed w̃ = m
√
p β0/5 and set x̃ = w̃ + ũ, where

ũ ∼ Np(0, I/100) is introduced so as to get distinct covariate values. The response ỹ,
related to x̃, is always taken equal to 0. It is worth noticing that w̃tβ0 ≈ m

√
p, thus

the leverage of the added points increases with m. The selected values of m are 0.5,
1, 2, 3, 4 and 5.

Summarizing,we consider the scenariosCA1 andCA2which correspond to adding,
respectively, a proportion ε = 0.05 and 0.10 of outliers of class A and CB where we
add only 5% of outliers of class B, as in Croux and Haesbroeck (2003).

We compare the performance of the estimators based on the deviance, that is, when
ρ(t) = t , labelled ml in all tables, with those obtained by bounding the deviance
and also with their robust weighted versions constructed to control the leverage. The
three bounded loss functions considered are ρ(t) = 1−exp(−t) that leads to the least
squares estimators, the loss functions ρc introduced by Croux and Haesbroeck (2003),
given in (9), and ρ(t) = (c+1)(1+exp(−ct)) related to the divergence estimators. For
the last two loss functions, the tuning constant equals c = 0.5. These estimators are
indicated with the subscript ls,m and div, respectively. To consider weighted versions
of these estimators, define D2(x,μ,Σ−1) = (x − μ)tΣ−1(x − μ), the square of the
Mahalanobis distance. We take weights w(x) = W (D2(x, μ̂, Σ̂

−1
)), where to adjust

for robustness μ̂ is the �1-median, Σ̂
−1

is an estimator ofΣ−1 computed using a robust
graphical LASSO and W is the hard rejection weight function W (t) = 1[0,cw](t).
The tuning constant cw is adaptive and based on the quantiles of D2(xi , μ̂, Σ̂

−1
). To

compute Σ̂
−1

we used the procedure defined inÖllerer andCroux (2015) andTarr et al.
(2016).More precisely, letΣ i j = σiσ jρi j , where ρi i = 1. On one hand, to estimate σ j

we used the median of the absolute deviations with respect to the median (mad) of the
j-th component, that is, themad of {x1 j , . . . , xnj }, where xi = (xi1, . . . , xip)t. On the
other hand, to estimate ρi j we use the Spearman correlation. The matrix Σ̂ is defined
element-wise as Σ̂ i j = σ̂i σ̂ j ρ̂i j . Finally, we apply graphical LASSO (Friedman et al.

2008) to the matrix Σ̂ in order to obtain Σ̂
−1

. These weighted estimators are labelled
with the subscript wls, wm or wdiv, according to the loss function considered.

For each loss function, different penalties are considered: LASSO, Sign and MCP,
labelled with the superscript l, s and mcp, respectively. The non-sparse estimators
without any penalization term are indicated with no superscript. In Sect. S.8.2, we
include a comparison between SCAD and MCP penalties since in some regression
settings when considering the classical estimators, the first one outperforms the latter.
However, in our framework, as shown in the supplementary file, the results obtained
for both penalties are similar. For that reason, we do not report here the results obtained
with the SCAD penalty.

Under C0 and scenarios CA1 and CA2, we compare all described estimators.
However, in view of the results obtained for these three situations and for the sake of
brevity, under CB we only report the results for β̂ml, β̂m and β̂wm with penalties s
and mcp.

To evaluate the performance of a given estimator β̂, we consider three summary
measures. In the following, let T = {(yi,T , xi,T ), i = 1, . . . , nT }, nT = 100, be a
new sample generated independently from the training sample M and distributed as
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C0. Given estimates β̂ of the slope and γ̂ of the intercept computed from M and to
compare the performance of the estimators, we compute the probability mean squared
errors (PMSE), the true positive proportion (TPP) and the true null proportion (TNP)
defined, respectively, as

PMSE = 1

nT

nT∑

i=1

(
F(xti,T β0 + γ0) − F(xti,T β̂ + γ̂ )

)2

TPP = #{ j : 1 ≤ j ≤ p, β0, j 
= 0, β̂ j 
= 0}
#{ j : 1 ≤ j ≤ p, β0, j 
= 0} and

TNP = #{ j : 1 ≤ j ≤ p, β0, j = 0, β̂ j = 0}
#{ j : 1 ≤ j ≤ p, β0, j = 0} .

In all tables, we report the mean of the summary measures over 500 replications.

5.2 Results of the numerical study

Tables 1 and 2 sum up the results corresponding to C0, Tables 3, 4and 5 summarize
contaminations CA1 and CA2, while Tables 6, 7and 8 present the results obtained
under scenario CB.

Table 1 shows that, for samples without contamination, the estimators penalized
with MCP tend to achieve lower PMSE values than with the other penalties. In partic-
ular, for samples of size n = 300, the maximum likelihood estimators using the MCP
penalty come to have PMSE values that are less than a half of those obtained with
the LASSO penalty. That difference is even greater for the least squares estimator and
for the M-estimators calculated with the function ρ = ρc given in (9). Under C0, the
robust weighted estimators give similar results to the unweighted ones with respect
to all the considered measures (see Tables 1 and 2), showing that the weights do not
impact on the procedure performance when samples are not contaminated.

As Table 1 reveals, the M-estimator penalized with LASSO loses more efficiency
in terms of prediction than with the other penalties, reaching PMSE values that at least

double those obtained with β̂
l
ml. Indeed, when n = 300 and the sample is clean, the

Sign and MCP penalties give lower PMSE values than the LASSO penalty. This fact
can be explained by the non-negligible bias, already discussed in this paper, introduced
by the LASSO penalty even when the ratio n/p is large. For both bounded penalties,
all loss functions give very similar results.

As expected, in all situations, the non-penalized estimators give worse results than
those obtained by regularizing the estimation procedure. In addition, the PMSE errors
grow when the dimension increases. In particular, this growth is greater when using
the Sign penalty for n = 150 and p = 120, where PMSE values for the M-estimates
almost double those obtained with n = 150 and p = 40 for most estimators. As men-
tioned above, the case (n, p) = (150, 120) poses a great challenge to the estimation
of the regression parameter and to the selection of variables, as well.

Regarding the proportion of correct classifications and the proportions of true pos-
itive and null coefficients, all penalized estimators give similar results. It should be
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Table 2 True positive proportion/true null proportion. No contamination model: scenario C0. Means over
500 replications

p n = 150 n = 300

40 80 120 40 80 120

β̂ml 1.00/0.00 1.00/0.00 1.00/0.00 1.00/0.00 1.00/0.00 1.00/0.00

β̂
l
ml 1.00/0.61 1.00/0.68 0.99/0.73 1.00/0.69 1.00/0.71 1.00/0.72

β̂
s
ml 0.96/0.86 0.95/0.80 0.93/0.74 1.00/0.92 1.00/0.92 1.00/0.90

β̂
mcp
ml 0.95/0.95 0.93/0.93 0.88/0.92 1.00/0.97 1.00/0.92 1.00/0.92

β̂ls 1.00/0.10 1.00/0.19 1.00/0.25 1.00/0.05 1.00/0.10 1.00/0.14

β̂
l
ls 0.98/0.84 0.98/0.85 0.97/0.86 1.00/0.92 1.00/0.92 1.00/0.92

β̂
s
ls 0.86/0.95 0.85/0.96 0.81/0.95 1.00/0.95 1.00/0.96 1.00/0.96

β̂
mcp
ls 0.89/0.98 0.89/0.97 0.84/0.97 1.00/0.99 1.00/0.98 0.99/0.97

β̂div 1.00/0.05 1.00/0.05 1.00/0.04 1.00/0.01 1.00/0.06 1.00/0.05

β̂
l
div 1.00/0.61 1.00/0.67 0.99/0.71 1.00/0.68 1.00/0.71 1.00/0.72

β̂
s
div 0.93/0.91 0.92/0.86 0.90/0.82 1.00/0.93 1.00/0.94 1.00/0.93

β̂
mcp
div 0.93/0.95 0.91/0.93 0.86/0.93 1.00/0.98 1.00/0.94 1.00/0.93

β̂m 1.00/0.03 1.00/0.02 1.00/0.01 1.00/0.00 1.00/0.03 1.00/0.02

β̂
l
m 0.97/0.88 0.97/0.88 0.95/0.88 1.00/0.94 1.00/0.94 0.99/0.93

β̂
s
m 0.94/0.94 0.91/0.96 0.82/0.96 1.00/0.95 1.00/0.96 1.00/0.95

β̂
mcp
m 0.92/0.98 0.91/0.97 0.85/0.97 1.00/0.99 1.00/0.98 0.99/0.97

β̂wml 1.00/0.00 1.00/0.00 1.00/0.01 1.00/0.00 1.00/0.00 1.00/0.00

β̂
l
wml 1.00/0.62 1.00/0.68 0.99/0.72 1.00/0.69 1.00/0.71 1.00/0.72

β̂
s
wml 0.95/0.86 0.95/0.80 0.94/0.74 1.00/0.92 1.00/0.92 1.00/0.90

β̂
mcp
wml 0.94/0.95 0.92/0.93 0.88/0.92 1.00/0.97 1.00/0.92 1.00/0.92

β̂wls 1.00/0.11 1.00/0.20 1.00/0.25 1.00/0.05 1.00/0.10 1.00/0.15

β̂
l
wls 0.98/0.84 0.98/0.85 0.97/0.86 1.00/0.92 1.00/0.92 1.00/0.92

β̂
s
wls 0.85/0.96 0.85/0.96 0.79/0.95 1.00/0.95 1.00/0.96 1.00/0.96

β̂
mcp
wls 0.89/0.98 0.89/0.97 0.83/0.97 1.00/0.99 1.00/0.98 0.99/0.98

β̂wdiv 1.00/0.05 1.00/0.05 1.00/0.04 1.00/0.01 1.00/0.06 1.00/0.05

β̂
l
wdiv 1.00/0.61 1.00/0.67 0.99/0.71 1.00/0.68 1.00/0.71 1.00/0.72

β̂
s
wdiv 0.93/0.90 0.92/0.85 0.89/0.82 1.00/0.93 1.00/0.94 1.00/0.93

β̂
mcp
wdiv 0.93/0.96 0.91/0.93 0.86/0.93 1.00/0.98 1.00/0.93 1.00/0.93

β̂wm 1.00/0.03 1.00/0.02 1.00/0.01 1.00/0.00 1.00/0.03 1.00/0.03

β̂
l
wm 0.97/0.87 0.97/0.88 0.95/0.88 1.00/0.94 1.00/0.94 1.00/0.93

β̂
s
wm 0.93/0.94 0.91/0.96 0.82/0.96 1.00/0.95 1.00/0.96 1.00/0.95

β̂
mcp
wm 0.92/0.98 0.91/0.97 0.85/0.97 1.00/0.99 1.00/0.98 1.00/0.97
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Table 4 True positive proportion/true null proportion. 5% contaminationmodel: scenarioCA1. Means over
replications

p n = 150 n = 300

40 80 120 40 80 120

β̂ml 1.00/0.00 1.00/0.00 1.00/0.00 1.00/0.00 1.00/0.00 1.00/0.00

β̂
l
ml 0.77/0.69 0.75/0.76 0.72/0.79 0.90/0.65 0.89/0.71 0.90/0.74

β̂
s
ml 0.55/0.83 0.72/0.71 0.86/0.66 0.60/0.92 0.60/0.86 0.61/0.80

β̂
mcp
ml 0.69/0.79 0.69/0.82 0.67/0.84 0.78/0.78 0.75/0.81 0.73/0.82

β̂ls 1.00/0.08 1.00/0.17 0.99/0.25 1.00/0.03 1.00/0.08 1.00/0.12

β̂
l
ls 0.91/0.70 0.91/0.73 0.88/0.76 0.97/0.75 0.99/0.76 0.99/0.75

β̂
s
ls 0.70/0.95 0.68/0.95 0.62/0.95 0.98/0.87 0.98/0.94 0.97/0.94

β̂
mcp
ls 0.77/0.96 0.74/0.96 0.64/0.96 0.96/0.97 0.97/0.97 0.94/0.97

β̂div 1.00/0.05 1.00/0.06 1.00/0.05 1.00/0.00 1.00/0.05 1.00/0.08

β̂
l
div 0.96/0.50 0.95/0.57 0.94/0.63 0.99/0.48 1.00/0.52 1.00/0.54

β̂
s
div 0.78/0.85 0.80/0.80 0.82/0.78 0.98/0.79 0.98/0.86 0.96/0.84

β̂
mcp
div 0.83/0.89 0.82/0.89 0.78/0.89 0.96/0.90 0.97/0.89 0.95/0.88

β̂m 1.00/0.02 1.00/0.03 1.00/0.03 1.00/0.00 1.00/0.02 1.00/0.03

β̂
l
m 0.83/0.74 0.82/0.77 0.81/0.79 0.94/0.75 0.95/0.77 0.96/0.76

β̂
s
m 0.59/0.96 0.61/0.96 0.55/0.96 0.89/0.90 0.95/0.93 0.89/0.94

β̂
mcp
m 0.70/0.96 0.67/0.96 0.57/0.96 0.90/0.96 0.95/0.97 0.91/0.96

β̂wml 1.00/0.00 1.00/0.00 1.00/0.00 1.00/0.00 1.00/0.00 1.00/0.00

β̂
l
wml 1.00/0.61 1.00/0.68 1.00/0.72 1.00/0.69 1.00/0.72 1.00/0.72

β̂
s
wml 0.95/0.87 0.93/0.81 0.92/0.76 1.00/0.92 1.00/0.92 1.00/0.90

β̂
mcp
wml 0.95/0.95 0.90/0.92 0.85/0.92 1.00/0.97 1.00/0.93 0.99/0.92

β̂wls 1.00/0.10 1.00/0.19 1.00/0.22 1.00/0.05 1.00/0.10 1.00/0.13

β̂
l
wls 0.99/0.85 0.98/0.85 0.97/0.85 1.00/0.93 1.00/0.92 1.00/0.91

β̂
s
wls 0.86/0.95 0.81/0.95 0.76/0.95 1.00/0.95 1.00/0.96 1.00/0.95

β̂
mcp
wls 0.89/0.98 0.84/0.97 0.77/0.97 1.00/0.99 0.99/0.98 0.99/0.97

β̂wdiv 1.00/0.05 1.00/0.04 1.00/0.02 1.00/0.01 1.00/0.06 1.00/0.05

β̂
l
wdiv 1.00/0.61 1.00/0.67 0.99/0.71 1.00/0.69 1.00/0.71 1.00/0.72

β̂
s
wdiv 0.93/0.90 0.89/0.87 0.87/0.83 1.00/0.92 1.00/0.94 1.00/0.93

β̂
mcp
wdiv 0.94/0.95 0.89/0.93 0.83/0.92 1.00/0.98 1.00/0.94 0.99/0.93

β̂wm 1.00/0.03 1.00/0.02 1.00/0.01 1.00/0.00 1.00/0.03 1.00/0.02

β̂
l
wm 0.97/0.88 0.97/0.88 0.96/0.88 1.00/0.95 1.00/0.94 1.00/0.93

β̂
s
wm 0.86/0.89 0.83/0.95 0.77/0.95 0.99/0.90 1.00/0.93 1.00/0.93

β̂
mcp
wm 0.92/0.97 0.87/0.96 0.79/0.97 1.00/0.99 0.99/0.97 0.99/0.97
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Table 5 True positive proportion/true null proportion. 10% contamination model: scenario CA2. Means
over replications

p n = 150 n = 300

40 80 120 40 80 120

β̂ml 1.00/0.00 1.00/0.00 1.00/0.00 1.00/0.00 1.00/0.00 1.00/0.00

β̂
l
ml 0.45/0.78 0.45/0.84 0.42/0.87 0.56/0.76 0.58/0.83 0.55/0.86

β̂
s
ml 0.34/0.93 0.41/0.86 0.58/0.77 0.47/0.98 0.44/0.94 0.37/0.91

β̂
mcp
ml 0.36/0.80 0.36/0.87 0.35/0.88 0.41/0.82 0.35/0.89 0.37/0.91

β̂ls 0.99/0.06 0.99/0.14 0.99/0.20 1.00/0.01 1.00/0.06 1.00/0.09

β̂
l
ls 0.59/0.77 0.58/0.82 0.57/0.84 0.76/0.70 0.78/0.74 0.77/0.76

β̂
s
ls 0.48/0.96 0.42/0.97 0.43/0.96 0.79/0.86 0.79/0.94 0.73/0.95

β̂
mcp
ls 0.53/0.94 0.45/0.95 0.40/0.96 0.84/0.93 0.83/0.95 0.73/0.95

β̂div 1.00/0.03 1.00/0.07 1.00/0.07 1.00/0.00 1.00/0.04 1.00/0.06

β̂
l
div 0.65/0.63 0.66/0.70 0.65/0.74 0.83/0.55 0.81/0.61 0.80/0.65

β̂
s
div 0.49/0.89 0.51/0.86 0.56/0.82 0.71/0.79 0.72/0.86 0.67/0.86

β̂
mcp
div 0.64/0.81 0.59/0.86 0.55/0.88 0.85/0.77 0.86/0.83 0.82/0.85

β̂m 1.00/0.00 1.00/0.04 1.00/0.05 1.00/0.00 1.00/0.00 1.00/0.02

β̂
l
m 0.49/0.83 0.53/0.85 0.49/0.88 0.61/0.81 0.66/0.83 0.66/0.84

β̂
s
m 0.38/0.98 0.38/0.97 0.31/0.97 0.49/0.98 0.60/0.97 0.52/0.96

β̂
mcp
m 0.36/0.94 0.34/0.95 0.33/0.96 0.52/0.94 0.48/0.95 0.48/0.96

β̂wml 1.00/0.00 1.00/0.00 1.00/0.00 1.00/0.00 1.00/0.00 1.00/0.00

β̂
l
wml 1.00/0.61 1.00/0.67 1.00/0.71 1.00/0.69 1.00/0.71 1.00/0.72

β̂
s
wml 0.93/0.88 0.88/0.83 0.90/0.77 1.00/0.90 1.00/0.92 1.00/0.91

β̂
mcp
wml 0.94/0.94 0.88/0.93 0.81/0.92 1.00/0.97 1.00/0.95 0.99/0.93

β̂wls 1.00/0.10 1.00/0.18 1.00/0.19 1.00/0.05 1.00/0.10 1.00/0.12

β̂
l
wls 0.98/0.85 0.99/0.85 0.98/0.85 1.00/0.93 1.00/0.92 1.00/0.91

β̂
s
wls 0.85/0.93 0.78/0.94 0.71/0.95 1.00/0.94 1.00/0.95 1.00/0.95

β̂
mcp
wls 0.88/0.97 0.80/0.97 0.70/0.97 1.00/0.99 0.99/0.97 0.98/0.96

β̂wdiv 1.00/0.05 1.00/0.05 1.00/0.02 1.00/0.01 1.00/0.06 1.00/0.06

β̂
l
wdiv 1.00/0.60 1.00/0.66 0.99/0.70 1.00/0.68 1.00/0.70 1.00/0.71

β̂
s
wdiv 0.91/0.91 0.87/0.87 0.84/0.85 1.00/0.91 1.00/0.93 1.00/0.93

β̂
mcp
wdiv 0.93/0.94 0.87/0.93 0.80/0.92 1.00/0.98 1.00/0.95 0.99/0.94

β̂wm 1.00/0.03 1.00/0.02 1.00/0.00 1.00/0.00 1.00/0.03 1.00/0.03

β̂
l
wm 0.97/0.88 0.97/0.87 0.96/0.87 1.00/0.95 1.00/0.94 1.00/0.93

β̂
s
wm 0.75/0.88 0.74/0.94 0.69/0.95 0.93/0.87 0.98/0.89 0.98/0.91

β̂
mcp
wm 0.92/0.97 0.84/0.96 0.73/0.96 1.00/0.99 1.00/0.97 0.99/0.96
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Table 7 True positive proportions/true null proportions for scenario CB with n = 150. Means over repli-
cations

m 0.5 1 2 3 4 5

p = 40

β̂
s
ml 0.83/0.92 0.53/0.95 0.40/0.95 0.36/0.95 0.37/0.94 0.40/0.93

β̂
mcp
ml 0.85/0.92 0.66/0.90 0.50/0.84 0.47/0.77 0.45/0.74 0.45/0.73

β̂
s
m 0.78/0.94 0.57/0.96 0.44/0.97 0.42/0.96 0.44/0.96 0.47/0.95

β̂
mcp
m 0.82/0.96 0.70/0.96 0.57/0.96 0.57/0.95 0.61/0.95 0.68/0.95

β̂
s
wm 0.77/0.94 0.56/0.96 0.44/0.97 0.92/0.91 0.89/0.92 0.88/0.92

β̂
mcp
wm 0.81/0.96 0.70/0.96 0.57/0.96 0.92/0.97 0.93/0.96 0.92/0.97

p = 80

β̂
s
ml 0.62/0.93 0.45/0.93 0.38/0.91 0.46/0.84 0.54/0.81 0.51/0.86

β̂
mcp
ml 0.70/0.91 0.54/0.88 0.46/0.81 0.40/0.80 0.45/0.80 0.47/0.86

β̂
s
m 0.64/0.96 0.50/0.96 0.41/0.96 0.43/0.96 0.44/0.96 0.44/0.97

β̂
mcp
m 0.69/0.96 0.50/0.96 0.52/0.95 0.58/0.95 0.65/0.95 0.61/0.96

β̂
s
wm 0.64/0.96 0.50/0.96 0.40/0.96 0.78/0.95 0.79/0.95 0.79/0.95

β̂
mcp
wm 0.69/0.96 0.51/0.96 0.51/0.95 0.83/0.96 0.83/0.96 0.83/0.96

Table 8 True positive proportions/true null proportions for scenario CB with n = 300. Means over repli-
cations

m 0.5 1 2 3 4 5

p = 80

β̂
s
ml 0.97/0.95 0.73/0.96 0.57/0.96 0.60/0.95 0.65/0.95 0.62/0.97

β̂
mcp
ml 0.94/0.95 0.72/0.91 0.47/0.83 0.46/0.76 0.52/0.80 0.49/0.92

β̂
s
m 0.98/0.95 0.90/0.95 0.83/0.95 0.84/0.95 0.84/0.95 0.78/0.96

β̂
mcp
m 0.96/0.97 0.93/0.97 0.91/0.95 0.95/0.94 0.96/0.94 0.90/0.96

β̂
s
wm 0.97/0.95 0.90/0.95 0.81/0.95 1.00/0.95 1.00/0.95 1.00/0.95

β̂
mcp
wm 0.96/0.97 0.93/0.97 0.91/0.94 1.00/0.97 0.99/0.97 0.99/0.97

p = 120

β̂
s
ml 0.90/0.95 0.65/0.94 0.48/0.92 0.62/0.93 0.61/0.95 0.64/0.96

β̂
mcp
ml 0.87/0.93 0.63/0.89 0.41/0.82 0.48/0.81 0.45/0.92 0.50/0.96

β̂
s
m 0.95/0.95 0.83/0.95 0.80/0.95 0.82/0.95 0.75/0.96 0.75/0.96

β̂
mcp
m 0.94/0.96 0.89/0.96 0.92/0.93 0.96/0.93 0.89/0.96 0.81/0.97

β̂
s
wm 0.96/0.95 0.83/0.95 0.81/0.95 1.00/0.95 1.00/0.95 1.00/0.95

β̂
mcp
wm 0.94/0.96 0.88/0.96 0.93/0.93 0.98/0.97 0.98/0.97 0.98/0.97
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mentioned that, when the LASSO penalty is used, lower TNP values are obtained than
with other penalties, giving rise to less sparse estimators. This procedure seems to be
less skilled than MCP to identify as 0 those coefficients associated with explanatory
variables that are not involved in the model. This drawback is also observed, although
to a lesser extent, when considering the divergence estimator or the maximum likeli-
hood one, both combined with the Sign penalty (see Table 2).

The sensitivity to atypical data of estimators based on ρ(t) = t and w ≡ 1, com-
bined with any of the considered penalties, becomes evident all along the tables. On
one hand, Table 3 shows that, when outliers following schemes CA1 or CA2 are
introduced, the obtained PMSE are at least three times those obtained for uncontami-
nated samples. Note that, for instance, when n = 300 the reported values for PMSE
may be even 10 times larger under this contamination scheme than for clean samples.
The only exception is when n = 150 and p = 120, where as mentioned above the
maximum likelihood estimators combined with the Sign penalty already leads to large
values of PMSE under C0. Table 3 reveals that, under contamination patterns CA1
andCA2, the best behaviour, in terms of stability, is attained by the penalizedweighted
M-estimators. In fact, their probability mean squared errors (PMSE) are close to those
obtained for clean samples with the bounded penalties Sign and MCP. The benefits of
using weighted estimators are also reflected in the proportions of true positives and
zeros, as illustrated in Tables 4 and 5. In the case of these latter measures, the LASSO
penalty gives the highest values of the probability of true positives generally in detri-
ment of the TNP values since, as we mentioned, this penalty has more difficulties in
the identification of non-active explanatory variables.

It is worth noticing that, under CA1 and CA2, the unweighted estimators have
higher PMSE values than their weighted versions, especially when n = 150 (see
Table 3). Under CA2, these values can double those obtained with the estimators that
control the leverage of the covariates. Among the estimators with w ≡ 1, those that
give lower PMSE values are the procedures corresponding to ρ = ρdiv and those
based on the least squares method when combined with the Sign and MCP penalties,
in particular when n = 300.

In scenario CA1, the most stable estimators are those based on bounded loss func-
tions. For example, Table 4 shows that the procedure based on ρ(t) = t is the only
one having problems with this level of contamination. On the other hand, the loss
function introduced by Croux and Haesbroeck (2003) leads to more sparse estimators
than those obtained with ρ = ρdiv and ρ(t) = 1 − exp(−t).

Table 5 shows that as the level of contamination increases (scheme CA2), all esti-
mators seem to become more sparse since the values of TPP tend to decrease. This
effect directly impacts on measure TPP that decreases almost by half in unweighted
estimators. As expected, this behaviour is more pronounced when using the Sign and
MCP penalties combined with ρ(t) = t . Although to a lesser extent, the M-estimators
with ρ = ρc given in (9) are also affected by this contamination scheme. With respect
to the ability to detect active variables, in most cases, weighted estimators achieve
similar results to those obtained under C0.

With respect to the effect of the contamination CB on the penalized maximum
likelihood estimator, Table 6, which reports the PMSE under this scheme, illustrates
that the PMSE of the penalized maximum likelihood estimators is much larger than
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those obtained for the weighted or unweighted M-estimators. This effect is more evi-
dent when m is larger than 3. In contrast, the weighted M-estimators are more stable.
As expected, for mild outliers (m = 1, 2) the PMSE of the weighted M-estimators
increases and then decreases for larger values of the slope, attaining values similar to
those reported for clean samples. In all cases, Table 6 also shows the advantage of
combining weighted M-estimators with the MCP penalty. For n = 300, the perfor-
mance of weighted M-estimators is very similar when combined either MCP or the
Sign penalty.

Regarding the performance under CB in terms of measures TPP and TNP, as
observed in Tables 7 and 8, the true positive proportions are reduced compared to
those obtained for clean samples, attaining, in some cases, proportions smaller than
0.5. Similar conclusions are valid for the M-estimators, β̂

mcp
m and β̂

s
m. It is worth

noticing that the effect of adding outliers on the non-penalized maximum likelihood
estimator, β̂ml, has been studied in Croux et al. (2002) who observed that β̂ml never
explodes to infinity, but rather breaks down to zero when adding severe outliers to a
dataset. This fact may explain the TPP behaviour observed in Tables 7 and 8. Indeed,
similar arguments to those considered in the proof of Theorem 2 in Croux et al. (2002)
allow to show that the penalized maximum likelihood estimator also shrinks to zero
when adding outliers, which explains the behaviour of the measure TPP.

With respect to the weighted M-estimators, β̂
s
wm and β̂

mcp
wm , the measure TPP shows

some sensitivity for small values of the slope m (m = 1, 2) when n = 150, but
recovers values close to 1 when the slope m increases. Notice that the intermediate
values m = 1, 2 correspond to mild outliers that are the most difficult ones to be
detected. It is worth mentioning that the TNP values obtained under CB are similar to
those obtained for uncontaminated samples, except for estimator β̂

mcp
ml that seems to

be the most affected by this type of contamination.
Summarizing, for the studied contaminations, the weighted M-estimators based on

the function ρ = ρc given in (9) combined with the MCP and Sign penalties, turn out
to be the most stable and reliable among the considered procedures.

6 Real data analysis

In this section, we study a dataset corresponding to the Diagnostic Wisconsin
Breast Cancer Database which is available at https://archive.ics.uci.edu/ml/datasets/
Breast+Cancer+Wisconsin+%28Diagnostic%29. Based on the results obtained in the
numerical experiments reported in Sect. 5.1, we only illustrate the performance of the
M-estimators computed with the (Croux and Haesbroeck 2003) loss function and of
the classical ones by using different penalties. For the robust estimators, the tuning
constants are equal to those considered in Sect. 5.1.

Ten real-valued features are computed from a digitized image of a fine needle
aspirate (FNA) of a breast mass and they describe characteristics of the cell nuclei
present in the image. Measured attributes are related to: radius (mean of distances
from centre to points on the perimeter), texture (standard deviation of grey-scale
values), perimeter, area, smoothness (local variation in radius lengths), compactness
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Fig. 1 Grey-scale representation of measures Πa, j , 1 ≤ j ≤ 30 for each method and number of atypical
points introduced artificially

(perimeter2/area − 1.0), concavity (severity of concave portions of the contour),
concave points (number of concave portions of the contour), symmetry and fractal
dimension. For each of these features the mean, the standard deviation and the maxi-
mum among all the nuclei of the image were computed, generating a total of p = 30
covariates for each image. From the n = 569 tumours, 357 were benign and 212
malignant and the goal is to predict the type of tumour from the p = 30 covariates.

From this dataset, we want to assess the impact of artificial outliers on the vari-
able selection capability of different methods. For this purpose, we add n0 atypical
observations artificially. Each outlier (ỹ, x̃)was generated as follows. In a first step we
compute the weighted M-estimator withMCP penalty, (β̂

mcp
wm , γ̂mcp

wm ), with the original
points and then, we generate x̃ ∼ Np(0, 100 I) and define a bad classified observations
as ỹ = 1 when x̃t β̂

mcp
wm + γ̂mcp

wm < 0 and 0, otherwise. We add n0 = 0, 20, 40 and 80
outliers. Given each contaminated set, we split the data in 10 folds of approximately
the same size. For each estimation method and each subset i (1 ≤ i ≤ 10), we obtain

β̂
(−i)

and γ̂ (−i), the slope and intercept estimates computed without the observations
that lie in the i-th subset. Then, for each variable, we evaluate the fraction of times
that it is detected as active among the 10 folds as Πa, j = #{i : β̂

(−i)
j 
= 0}/10 for

1 ≤ j ≤ 30. Note that this quantity depends on the estimator that is used and on n0
and, regarding variable selection, it attempts to capture the stability of each method
against outliers. In each row of the plots of Fig. 1, for each estimator and each value
of n0, we show a grey-scale representation of the measures Πa,1, . . . ,Πa,30.
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As illustrated in Fig. 1, for the considered contamination, the non-robust estimators

β̂
l
ml and β̂

mcp
ml show a very unstable and erratic variable selection, making evident their

sensitivity to outliers. The results regarding β̂
s
ml are not included just for brevity since

they lead to similar conclusions. In contrast, the robust procedures based on the (Croux
andHaesbroeck2003) loss function select approximately the same subset of covariates,
regardless of the amount n0 of added outliers, showing a stable identification of active
variables. In particular, the hard rejection weighted estimators are more stable than
their unweighted counterparts, when using the Sign penalty. The robust estimators
with MCP penalty are more sparse than when using the Sign penalty, which can be
explained by means of the theoretical properties studied in Sect. 4.1.

7 Concluding remarks

The logistic regression model may be used for classification purposes when covariates
with predictive capability are observed. When the regression coefficients are assumed
to be sparse, i.e. when only a few explanatory variables are active, the problem of
joint estimation and automatic variable selection needs to be considered. In these
circumstances, the statistical challenge of obtaining sparse and robust estimators that
are computationally feasible and provide variable selection should be complemented
with the study of their asymptotic properties. For this reason, under a logistic regression
model, we accomplished the goal of obtaining more reliable estimators in the presence
of atypical data, which automatically selects variables, using weighted penalized M-
procedures. The obtained results are derived for a broad family of penalty functions,
which include the LASSO, ADALASSO, Ridge, SCAD and MCP penalties. Besides
these known penalties, we also consider the Sign penalization, which has an intuitive
motivation, a simple expression and has not been exploited in the framework of robust
variable selection.

An in-depth study of the theoretical properties of the proposedmethods is presented.
In particular, under very general conditions, we establish consistency results for a wide
family of penalty functions. Besides, to study variable selection and oracle properties,
we distinguish the case of Lipschitz functions, such as the Sign, from that of penalties
that can be written as a sum of twice differentiable univariate functions, eventually
random. These two points make a difference with respect to Sect. 2 in Avella-Medina
and Ronchetti (2018) where the conditions to obtain general results regarding sparsity
and asymptotic normality are more restrictive than those given herein for the logistic
regression model.

In addition to obtaining variable selection properties of the proposed estimators, we
derive expressions for their asymptotic distribution. In particular, it is shown that the
choice of the penalty function plays a fundamental role in this case. Specifically, we
obtain that by using the random penalty ADALASSO or penalties which are constant
fromone point onwards (such as SCADorMCP), the estimators have the desired oracle
property. The assumptions required to derive these results are very undemanding,
which shows that these methods can be applied in very diverse contexts.
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We also proposed a robust cross-validation procedure and numerically showed its
advantage over the classical one. Through an extensive simulation study, we com-
pared the behaviour of classical and robust estimators for different choices for the
loss function and penalty. The obtained results illustrate that robust methods have a
performance similar to the classical ones for clean samples and behave much better
in contaminated scenarios, showing greater reliability. On the other hand, we showed
that the results obtained when using penalties bounded as the Sign or MCP were
remarkably better than those obtained when using convex penalties such as LASSO.
The penalized weighted M-estimators based on the function ρ = ρc defined in Croux
and Haesbroeck (2003) combined with the MCP and Sign penalties were the most sta-
ble and reliable among the considered procedures. Finally, the proposed methods are
applied to two datasets, where the robust estimators combined with bounded penalties
showed their advantages over the classical ones.
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org/10.1007/s11749-021-00792-w.

Funding This research was partially supported by Grant 20020170100022BA from the Universidad de
BuenosAires and pict2018-00740 fromanpcyt atBuenosAires,Argentina, and also by theSpanishProject
MTM2016-76969P from theMinistry of Economy, Industry and Competitiveness (MINECO/AEI/FEDER,
UE) (Ana Bianco and Graciela Boente).

References

Avella-Medina M, Ronchetti E (2018) Robust and consistent variable selection in high-dimensional gener-
alized linear models. Biometrika 105:31–44

Basu A, Gosh A,Mandal A,Martin N, Pardo L (2017) AWald-type test statistic for testing linear hypothesis
in logistic regression models based on minimum density power divergence estimator. Electr J Stat
11:2741–2772

Bianco A, Martínez E (2009) Robust testing in the logistic regression model. Comput Stat Data Anal
53:4095–4105

Bianco A, Yohai V (1996) Robust estimation in the logistic regression model. Lecture Notes Stat 109:17–34
Bondell HD (2005)Minimum distance estimation for the logistic regressionmodel. Biometrika 92:724–731
Bondell HD (2008) A characteristic function approach to the biased sampling model, with application to

robust logistic regression. J Stat Plann Inference 138:742–755
Cantoni E, Ronchetti E (2001) Robust inference for generalized linear models. J Am Stat Assoc 96:1022–

1030
Chi EC, Scott DW (2014) Robust parametric classification and variable selection by a minimum distance

criterion. J Comput Graph Stat 23:111–128
Croux C, Flandre C, Haesbroeck G (2002) The breakdown behavior of the maximum likelihood estimator

in the logistic regression model. Stat Probabil Lett 60:377–386
Croux C, Haesbroeck G (2003) Implementing the Bianco and Yohai estimator for logistic regression.

Comput Stat Data Anal 44:273–295
Efron B, Hastie T (2016) Computer age statistical inference. Cambridge University Press, Cambridge
Efron B, Hastie T, Johnstone I, Tibshirani R (2004) Least Angle Regression. Annals Stat 32:407–499
Esser E, Lou Y, Xin J (2013) A method for finding structured sparse solutions to nonnegative least squares

problems with applications. SIAM J Imag Sci 6:2010–2046
Fan J, Li R (2001) Variable selection via non-concave penalized likelihood and its oracle properties. J Am

Stat Assoc 96:1348–1360
Frank LE, Friedman JH (1993) A statistical view of some chemometrics regression tools. Technometrics

35:109–135

123

https://doi.org/10.1007/s11749-021-00792-w
https://doi.org/10.1007/s11749-021-00792-w


594 A. M. Bianco et al.

Friedman J, Hastie T, Tibshirani R (2008) Sparse inverse covariance estimation with the graphical lasso.
Biostatistics 9:432–441

HastieT,TibshiraniR,WainwrightM (2015) Statistical learningwith sparsity: theLasso and generalizations.
Chapman and Hall, London

Hoerl AE, Kennard RW (1970) Ridge regression: biased estimation for nonorthogonal problems. Techno-
metrics 12:55–67

Knight K, Fu W (2000) Asymptotics for Lasso-type estimators. Annals Stat 28:1356–1378
Kurnaz FS, Hoffmann I, Filzmoser P (2018) Robust and sparse estimation methods for high-dimensional

linear and logistic regression. Chemomet Intell Lab Syst 172:211–222
Meinshausen N (2007) Relaxed Lasso. Comput Stat Data Anal 52:374–393
ÖllererV,CrouxC (2015)Robust high-dimensional precisionmatrix estimation. In:NordhausenK,Taskinen

S (eds) Modern nonparametric, robust and multivariate methods. Springer, Cham, pp 325–350
Park H, Konishi S (2016) Robust logistic regression modelling via the elastic net-type regularization and

tuning parameter selection. J Stat Comput Simul 86:1450–1461
Rahimi Y, Wang C, Dong H, Lou Y (2019) A scale invariant approach for sparse signal recovery. SIAM J

Sci Comput 41:3649–3672
Smucler E, Yohai VJ (2017) Robust and sparse estimators for linear regression models. Comput Stat Data

Anal 111:116–130
Tarr G, Müller S, Weber NC (2016) Robust estimation of precision matrices under cellwise contamination.

Comput Stat Data Anal 93:404–420
Tibshirani J, Manning CD (2013) Robust Logistic Regression using Shift Parameters. In: Proceedings of

the 52nd annual meeting of the association for computational linguistics, pp. 124-129
Tibshirani R (1996)Regression shrinkage and selection via the lasso. Journal of theRoyal Statistical Society.

Series B (Methodological) 58:267–288
van de Geer S, Müller P (2012) Quasi-likelihood and/or robust estimation in high dimensions. Stat Sci

27:469–480
Wang C, Yan M, Rahimi Y, Lou Y (2020) Accelerated schemes for the L1/L2 minimization. IEEE Trans

Signal Process 68:2660–2669
Wang F, Mukherjee S, Richardson S, Hill S (2020) High-dimensional regression in practice: an empirical

study of finite-sample prediction, variable selection and ranking. Stat Comput 30:697–719
Zhang CH (2010) Nearly unbiased variable selection under minimax concave penalty. Annals Stat 38:894–

942
Zou H (2006) The adaptive Lasso and its oracle properties. J Am Stat Assoc 101:1418–1429
Zou H, Hastie T (2005) Regularization and variable selection via the elastic net. J Royal Stat Soc: Series B

67:301–320

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	Penalized robust estimators in sparse logistic regression
	Abstract
	1 Introduction
	2 Robust penalized estimators
	2.1 Selection of the penalty parameter

	3 Consistency and order of convergence
	3.1 Assumptions
	3.2 Consistency and rate of convergence

	4 Asymptotic distribution results
	4.1 Variable selection property
	4.2 Asymptotic distribution

	5 Monte Carlo study
	5.1 Numerical settings
	5.2 Results of the numerical study

	6 Real data analysis
	7 Concluding remarks
	References




