Oxidation of o-xylene to phthalic anhydride on Sb-V/ZrO₂ catalysts C.L. Pieck*, S. del Val, M. López Granados, M.A. Bañares, and J.L.G. Fierro Instituto de Catálisis y Petroleoquímica, CSIC, Campus Cantoblanco, E-28049 Madrid, Spain Received 14 August 2002; accepted 17 April 2003 Zirconia-supported and bulk-mixed vanadium-antimonium oxide catalysts were used for the oxidation of *o*-xylene to phthalic anhydride. X-ray diffraction, Raman spectroscopy and photoelectron spectroscopy were used for characterization. It was found that vanadium promotes the transition of tetragonal to monoclinic zirconia. The simultaneous presence of Sb and V on zirconia at low coverage led to a preferential interaction of individual V and Sb oxides with the zirconia surface rather than the formation of a binary Sb-V oxide, while at higher Sb-V contents the formation of SbVO₄ took place. Sb-V/ZrO₂ catalysts showed high activity for *o*-xylene conversion and better selectivity to phthalic anhydride as compared to V/ZrO₂ catalysts. However, their selectivity to phthalic anhydride was poor in comparison to a V/TiO₂ commercial catalyst. The improved selectivity of the Sb-containing catalysts is attributed to the blocking of non-effective surface sites of ZrO₂, the decrease of the total amount of acid sites and the formation of surface V-O-Sb-O-V structures. KEY WORDS: o-xylene oxidation; phthalic anhydride; Sb-V/ZrO₂ catalysts. #### 1. Introduction Aromatic carboxylic anhydrides are produced in large quantities through the partial oxidation of hydrocarbon feedstocks; in particular, phthalic anhydride from ortho-xylene. Phthalic anhydride is useful for reactions with alcohols, such as oxo-alcohols, to form the corresponding phthalic anhydride alcohol esters, which are used as plasticizers and lubricants. Phthalic anhydride is obtained industrially via single-stage selective oxidation of o-xylene with a 100% conversion and a selectivity to phthalic anhydride of 80% [1,2]. Some byproducts, such as CO and CO₂, are formed during the reaction. The catalyst used in the process— VO_x/TiO_2 anatase—has been explored with regard to its structure–activity relationships [3–6] and reaction mechanism [1,2]. A previous work has revealed that the VO_x/ZrO_2 system is active for o-xylene oxidation to phthalic anhydride [7]. Nevertheless, surface V is excessively active and drives the formation of deep oxidation products (CO and CO₂). We have also reported that activity decreases with V-loading while selectivity to phthalic anhydride passes through a maximum [7]. In this paper, we undertake the study of $V-Sb/ZrO_2$ catalysts for oxidation of o-xylene to phthalic anhydride. We have been mainly motivated by the appearance of many patents that point out the importance of Sb_2O_3 in improving the performance of the V_2O_5/TiO_2 (anatase) catalysts [8–12] and by the chemical similarity between TiO2 and ZrO2. Zr and Ti are column neighbors in the periodic table with the d^2s^2 electronic configuration. Both ZrO₂ and TiO₂ oxides have d⁰ configuration in their outer shell and they tend to develop unstoichiometry (oxygen deficiency) and n-type semiconductivity. Redox interactions between catalyst surface species and adsorbates through the conduction band have been postulated mainly for TiO₂ catalysts, e.g., V₂O₅-TiO₂ catalysts, but also for ZrO₂ catalysts, e.g., WO₃-ZrO₂ or SO₄²⁻-ZrO₂. The successful oxidation of o-xylene to phthalic anhydride has indeed been reported for V₂O₅/ZrO₂-TiO₂ catalysts [13]. Zirconia itself has long attracted the interest of the scientific community for different catalytic uses, including redox reacting systems: isomerization of light hydrocarbons [14], toluene oxidation [15], oxidative dehydrogenation [16], three-way catalysts [17], fuel cells and electrocatalysis [18], etc. Regarding the effect of Sb, though the information in patents is most of the time scarce and deceiving, the agreement between many authors about the positive effect of Sb drew our attention. It has been reported that total oxidation occurs over strong acid sites [19] and Chiang and Lee [20] have proved by means of NH₃-TPD experiments that Sb reduces the acidity of V-supported catalysts. We expected Sb to improve the selectivity of V/TiO₂ catalysts since Spengler *et al.* [21] have recently shown that in the case of the oxidation of *o*-xylene to phthalic anhydride there exists an improvement in the selectivity to anhydride when Sb is added to the V₂O₅/TiO₂ catalyst owing to the intercalation of Sb into V-O-V-O-V clusters. They report that V-O-V-O-V species lead to overoxidation, Sb-O-Sb-O-Sb species are ^{*}To whom correspondence should be addressed. E-mail: pieck@fiqus.unl.edu.ar inactive, and isolated V-O-Sb-O-V species are ideal for selective (o-xylene) oxidation. Our present study on the Sb- V_2O_5 -Zr O_2 system is mainly aimed at obtaining fundamental information on the redox activity of the V_2O_5 -Zr O_2 catalyst, its selectivity to mild oxidation products and the influence of Sb loading. Catalytic reaction tests have been complemented with XRD and Raman spectra in order to characterize bulk and surface species. # 2. Experimental #### 2.1. Catalyst preparation The ZrO₂ support was prepared from a commercial Zr(OH)₄ sample (MEL Chemicals) by calcination in air at 650 °C for 4h. The TiO₂ (anatase) was supplied by Than and Mulhouse (pigment grade, BET surface area 10 m²/g). The catalysts' preparation procedure has been described elsewhere [22]. Basically, ternary Sb-V/ZrO₂ systems were prepared by impregnating the support (ZrO₂) with aqueous solutions of the two oxides. 200 cm³ of distilled water were acidified to a pH value of 2 with nitric acid. Then, tartaric acid was added (9 g), along with an adequate amount of Sb₂O₃. The Sb₂O₃ was dissolved while stirring gently at 80–90 °C. Then the solution was cooled to room temperature and NH₄VO₃ was added and dissolved. Finally, the support was added (4g) and the solution was vacuum-dried in a rotary evaporator at (80 °C, 0.3 atm) until a dried powder was obtained. The powder was dried in an oven at 120 °C overnight and was finally calcined in air at 650 °C for 4h. Two series of catalysts were prepared. One series had a fixed Sb/V atomic ratio and different loadings of (V + Sb). The other series had a constant loading of (V + Sb) and different Sb/V atomic ratios. The catalysts of the zirconia-supported series were named xSb_vV/ZrO_2 . x is the (Sb + V) content expressed in nominal monolayers and y is the Sb/V atomic ratio. The monolayer content was calculated by considering the surface density of (Sb + V) species and the original surface area of the zirconia support. V/ZrO₂, V/TiO₂ and Sb/ZrO₂ samples were prepared in a similar way. Bulk [Sb-V]^r samples were prepared by mixing aqueous solutions of Sb₂O₃ (in tartaric acid) with NH₄VO₃ in the appropriate concentration to yield atomic ratios r = Sb/V of 0.5, 1 and 3. Drying and calcination steps were the same as above. Reference ZrV₂O₇ was also prepared, as described elsewhere [22]. A stoichiometric amount of Zr(OH)₄ was added to a solution of NH₄VO₃ to obtain an atomic ratio of V/Zr = 2. Excess water was removed in a rotary evaporator at 80 °C. Then, the dried precursor was kept in an oven at 120 °C for 16 h and finally calcined at 650 °C for 24 h. Table 1 shows a list of catalysts used in this work. Table 1 Catalysts composition (wt%), specific surface area and Sb/V surface atomic ratios (from XPS data) | | | | | Atomic ratio | | | | |-----------------------|-----------------------------------|------------------------------------|------------------------------|-----------------------|------------------------|--|--| | Catalysts | V ₂ O ₅ (%) | Sb ₂ O ₃ (%) | BET area (m ² /g) | (Sb/V) _{xps} | (Sb/V) _{bulk} | | | | ZrO ₂ | _ | _ | 86 | | _ | | | | ZrV_2O_7 | | | < 1 | | | | | | Sb/ZrO_2 | _ | 13.7 | 64 | _ | _ | | | | V/TiO ₂ | 7.16 | _ | 9 | _ | _ | | | | V/ZrO_2 | 9.05 | _ | 10 | _ | _ | | | | $2Sb_{0.5}V/ZrO_2$ | 10.71 | 8.58 | 12 | 0.29 | 0.50 | | | | $2Sb_1V/ZrO_2$ | 7.90 | 12.67 | 17 | 0.89 | 1.00 | | | | $2Sb_3V/ZrO_2$ | 4.40 | 21.11 | 28 | 2.91 | 2.99 | | | | $0.5Sb_3V/ZrO_2$ | 1.09 | 5.23 | 69 | 2.04 | 2.99 | | | | $1Sb_3V/ZrO_2$ | 2.17 | 10.46 | 52 | 2.04 | 3.01 | | | | Bulk catalysts | | | | | | | | | [Sb-V] ^{0.5} | | | 7 | 0.88 | 0.50 | | | | [Sb-V] ¹ | | | 6 | 1.19 | 1.00 | | | | [Sb-V] ³ | | | 5 | 3.34 | 3.00 | | | #### 2.2. Catalyst characterization Chemical analysis of the samples to determine V, Sb, Ti and Zr composition was carried out by ICP using Perkin-Elmer Optima 3300 DV apparatus. The surface area of the catalysts was calculated from nitrogen adsorption isotherms (-196°C) using the BET method. X-ray diffraction patterns were recorded in a Siemens Krystalloflex D-500 diffractometer using $CuK\alpha$ radiation ($\lambda = 0.15418 \, nm$) and a graphite monochromator. Raman spectra were recorded on a Renishaw System 1000 apparatus equipped with a single monochromator, a CCD detector refrigerated at -73 °C and a holographic super-Notch filter. Spectra were obtained with a 514-nm excitation line (9 mW) under dehydration conditions (dry air at 120°C) in a hot stage device (Linkam TS-1500). Photoelectron spectra were recorded in a Fisons Escalab 200R apparatus, equipped with a hemispherical electron analyzer and an Mg K α (1253.6 eV) X-ray source. Residual pressure in the analysis chamber was less than 5.10⁻⁹ mbar during data acquisition. The binding energy of the C_{1s} peak of adventitious carbon at 284.9 eV was taken as internal standard. Temperatureprogrammed-desorption of ammonia with mass spectrometry analysis (TPD-MS-NH₃) was performed in a flow equipment connected in series to a mass spectrometer (Balzers QMG 421C quadrupole). The samples were first treated at 500 °C with a mixture of 8% oxygen in He for 2h. Then, NH₃ was adsorbed at 120 °C for 150 min from a flowing mixture of 5% NH₃ in He. Finally, the temperature was raised at a rate of 10°C/min and a stream of pure He was injected into the reactor. The desorbed species were analyzed on-line. #### 2.3. Catalytic activity Catalytic activity measurements were carried out in a plug-flow glass fixed-bed reactor heated by a cylindrical oven. The apparatus has been previously described [23]. The reactor catalyst load consisted of 0.06 g of catalyst diluted with carborundum (0.42–0.50 mm particles) in a 1:7 weight ratio. The contact time (W/F) was $42 g \cdot s/L$. The molar concentrations of o-xylene and oxygen in the feed were 0.8 and 20.8% respectively (78.4% nitrogen). The inlet lines were heated to 180 °C in order to ensure the evaporation of alkyl aromatics. An ice-bath trap was placed between the GC and the reactor outlet to condense part of the products. The lines connecting the reactor and the trap were heated to 250 °C. The temperature of the bottom of the reactor, downstream the catalyst bed, was higher than 350 °C. A gas chromatograph (GC) (Varian Star 3400CX) was connected on-line with the reactor outlet in order to analyze volatile fractions and permanent gases. The rest of the products, which were condensed in the ice-trap, were dissolved in acetone and analyzed by syringe injection. The GC was equipped with thermal conductivity and flame ionization detectors. Organic products were separated by an RTX-5 capillary column, and O₂, H₂O, CO and CO₂ were separated by two packed columns connected in series (HayeSep D and 5A molecular sieve). # 3. Results and discussion Table 1 shows the composition (wt%), specific surface area and Sb/V atomic ratio of the catalysts, as obtained by XPS. The bulk [Sb-V] catalysts had low BET areas that decreased with the Sb/V atomic ratio. A similar trend was reported by Chian and Lee [20]. Regarding the surface Sb/V atomic ratio, bulk catalysts showed a surface enrichment in Sb with respect to the theoretical Sb/V ratio. In the case of the supported catalysts, it can be seen that the addition of V or Sb to the zirconia support decreased the surface area. This effect was more pronounced in the case of V/ZrO₂. BET areas of the Sb-V/ZrO₂ series had intermediate values, and the specific surface area decreased when the Sb/V atomic ratio increased. The V/TiO₂ catalyst had a small surface area. The incorporation of V to TiO₂ (anatase) produced only a little decrease in the BET area (from 10 to $8 \,\mathrm{m}^2/\mathrm{g}$), which was probably due to V blocking of the anatase pores. The XPS intensity ratios V/Zr, V/Ti and Sb/Zr of the supported catalysts had higher values than that corresponding to the bulk one, as expected for supported oxides. The supported catalysts also exhibited lower Sb/V atomic ratios than the theoretical value, indicating a surface enrichment in V. This phenomenon can be explained taking into account the stronger interaction of vanadia on a zirconia support. Figure 1 shows the XRD patterns of the V/TiO₂ (anatase), Sb/ZrO₂, V/ZrO₂ and bulk catalysts. The XRD pattern of the ZrO₂ support is also included for comparison. It is clear from the diffraction at 30.5° that the ZrO₂ support had a fluorite-type structure. The absence of diffractions peaks at 28.2 and 31.5° further confirms that the monoclinic phase was not formed [24]. The diffractograms of the V/ZrO₂ catalyst indicate that the incorporation of vanadium induces a transformation of the ZrO₂ phase. The 30.5° peak disappears while the peaks due to the monoclinic phase appear. The pattern is completed by other peaks 16°, 20°, 22.5° and 24.8°, characteristic of the ZrV₂O₇ phase [25]. The tetragonal phase is still present in the Sb/ZrO₂ catalyst, while the development of the monoclinic phase is only incipient (reflection peaks at 28.2 and shoulder at 31.5°). The V/TiO₂ catalyst only yielded diffraction peaks at 25.3, 37.0, 37.8, 38.6, 48.0, 53.9, 55.1, 62.7 and 68.8°, which can be attributed to the anatase phase of TiO₂ [26]. No diffraction peaks due to V₂O₅ crystals or to the rutile phase of TiO₂ could be found. The diffraction pattern of the bulk [Sb-V]¹ catalyst had peaks at 27.5, 35.3, 39.3, 40.5, 53.8, 56.1, 65.1 and 68.7°, which correspond to the SbVO₄, rutile-type phase [27–29]. Two very little peaks at 25.8° and 29° could also be distinguished and were readily attributed to the Sb₂O₄ cervantite phase [30]. Regarding the [Sb-V]³ sample, it is evident that the SbVO₄ phase is accompanied by Sb₂O₄ and α -Sb₂O₄ cervantite because the diffraction angles at 25.8 and 29° are more intense. The Figure 1. X-ray diffraction spectra of unsupported [Sb-V] catalyst, $ZrO_2, V/ZrO_2, Sb/ZrO_2 \ and \ V/TiO_2 \ catalysts.$ [Sb-V]^{0.5} samples has peaks at 15.4, 20.3 and 31.0° due to V_2O_5 crystallites [31] and peaks corresponding to a SbVO₄ phase. The XRD data of the bulk catalysts are in agreement with those reported by Nilsson *et al.* [32]. They reported that bulk Sb-V with high Sb/V ratio exhibited a SbVO₄ rutile-type structure and that the excess of Sb produced superficial α -Sb₂O₄ while catalysts with lower Sb/V showed crystalline V_2O_5 . Figure 2 shows the XRD spectra of the zirconiasupported Sb-V oxide catalysts. The 0.5Sb₃V/ZrO₂ and 2Sb_{0.5}V/ZrO₂ catalysts display both tetragonal and monoclinic phases but the tetragonal former predominates (peak at 30.5°). Only the tetragonal phase is developed in the catalysts with higher Sb contents. The XRD spectra of the 2Sb_{0.5}V/ZrO₂ and 0.5Sb₃V/ZrO₂ catalysts show some little diffraction peaks at 16, 20, 22.5 and 24.8°, characteristic of ZrV₂O₇. The 2Sb_{0.5}V/ ZrO₂ catalyst also exhibits some peaks that could be attributed to V_6O_{13} [33] and the $2Sb_1V/ZrO_2$ catalysts some other peaks related to the VO₂ paramontroseite phase [34]. The stabilizing effect of the tetragonal phase of ZrO₂ at high Sb-V contents suggests the existence of some interaction between the two oxides, although no zirconia with Sb and V can generate the diffraction pattern of the SbVO₄ phase. Therefore, if SbVO₄ was formed in these samples, it must be distributed in very small domains that cannot be detected by X-ray diffraction. The Raman spectra of bulk Sb-V catalysts, as well as those of the ZrO₂, Sb/ZrO₂, V/TiO₂ and V/ZrO₂ samples, are shown in figure 3. The results confirm (ne) (3.5Sb₃V/Zr (3.5Sb₃V/Zr (2.5Sb₃V/Zr (2.5Sb₃V Figure 2. X-ray diffraction spectra of supported Sb-V/ZrO₂ catalyst. that ZrO₂ support has a tetragonal structure because the characteristic peaks of this phase can be seen at 143, 263, 325, 474, 608 and 640 cm⁻¹ [35]. The incorporation of vanadium to zirconia promotes the appearance of the monoclinic phase. The spectrum of V/ZrO₂ has bands related to this phase at 175, 190 and 477 cm⁻¹. It must also be noted that the V/ZrO2 spectra also has a broad band at 780 and 990 cm⁻¹ due to ZrV_2O_7 [22] and bands at 143, 283, 302, 405, 526, 698 and 994 cm⁻¹ corresponding to crystalline V₂O₅ [36–38]. The Raman spectra of V/TiO₂ show anatase bands at 143, 199, 395, 516 and $638 \,\mathrm{cm}^{-1}$ [38,39] and V_2O_5 bands 144, 196, 284, 304, 406, 484, 528, 702 and 996 cm⁻¹ [36–38]. Finally, the spectrum of bulk [Sb-V]³ oxide has bands at 190 and 397 cm⁻¹, associated with α -Sb₂O₄ [32], and a broad peak at 750-950 cm⁻¹, presumably due to the presence of rutile-type phase of SbVO₄ [32]. On the contrary, [Sb-V]^{0.5} and SbVO₄ (i.e., [Sb-V]¹) showed peaks at 143, 283, 523, 694 and 994 cm⁻¹, related to Figure 4 shows the Raman spectra of the Sb-V/ZrO₂ catalysts. The spectrum of 2Sb₃V/ZrO₂ exhibits bands at 452 cm⁻¹ and 750–950 cm⁻¹ (broad), which can be ascribed to the appearance of the SbVO₄ phase, and bands at 263, 325, 472 and 640 cm⁻¹, attributed to the tetragonal phase of zirconia. The spectra of 1Sb₃V/ZrO₂ and 0.5Sb₃V/ZrO₂ exhibit bands due to Sb₂O₄ (190 and 400 cm⁻¹), dispersed vanadium oxide (1030 cm⁻¹), SbVO₄ (750–950 cm⁻¹ and 452 cm⁻¹) and the monoclinic phase of ZrO₂. V forms ZrV₂O₇ (peaks Figure 3. Raman spectra of dehydrated unsupported [Sb-V] catalyst, $ZrO_2, V/ZrO_2, Sb/ZrO_2 \ and \ V/TiO_2 \ catalysts.$ at 780 and $990\,\mathrm{cm^{-1}}$) [22] since the Sb/V atomic ratio decreased for $2\mathrm{Sb_{0.5}V/ZrO_2}$ catalyst. $2\mathrm{Sb_1V/ZrO_2}$ exhibits a large and broad Raman band between 900 and $1000\,\mathrm{cm^{-1}}$, which could be ascribed to the SbVO₄ phase [32]. It can be concluded from the results that the incorporation of Sb modified the tetragonal structure of the ZrO₂ support and decreased the specific area moderately. The addition of V promoted the tetragonalto-monoclinic transition of the support, a great surface area reduction and the formation of ZrV₂O₇. On the other hand, the simultaneous promotion with Sb and V beyond monolayer coverage stabilized the tetragonal phase and minimized the formation of the ZrV₂O₇ phase. At low Sb + V loading, dispersed V oxide species were present. These surface species promoted the tetragonal-to-monoclinic transition of the support. At high Sb + V loading, the interaction between V and Sb limited the capacity of V to transform the ZrO₂ support because of the formation of SbVO₄. Moreover, the excess of V or Sb leads to formation of surfaces oxides of V or Sb on the catalyst. The bulk catalysts had a bulk SbVO₄ rutile structure with Sb₂O₄ or V₂O₅ oxides on the surface depending on the Sb/V ratio. With respect to the catalytic activity tests, a preliminary screening of the reaction temperature was first done in order to find the optimum one. A value was searched that could give a conversion close to 100% with good selectivity to phthalic anhydride. At low conversion the selectivity was poor. Too many intermediate Figure 4. Raman spectra of dehydrated supported Sb-V/ZrO₂ catalyst. products were found among the reaction products. Total conversion conditions had to be carefully tuned because they could lead to deep oxidation of the hydrocarbons to CO and CO₂. This usually happens when the temperature is too high. Some heavily oxidized products were detected, e.g., o-, p-methyl-diphenyl methanone, diphenyl methanone or other high boiling point products. Their concentration was only important at low values of o-xylene conversion (ZrO₂ and ZrV₂O₇ at 400 °C and Sb/ZrO₂ at 440 °C). These products are indicated as "others" in tables 2 and 3. Table 2 shows activity and selectivity values corresponding to the bulk catalysts, the support and the reference compound ZrV₂O₇. Some amounts of maleic anhydride and o-toluic acid were formed during the reaction, but except for ZrV2O7, the selectivity to phthalic anhydride was small (< 3%). The activity of ZrV₂O₇ was similar to that of the ZrO₂ support. The latter produced mainly deep oxidation products, while ZrV₂O₇ exhibited a lower activity for deep oxidation, selectivity to phthalic anhydride being similar. In the case of the bulk Sb-V catalysts, it was observed that the activity decreased as the Sb/V atomic ratio was increased, but the selectivity to phthalic anhydride remained unaffected. It is important to stress that the catalyst with ratio Sb/V = 3 had the highest selectivity to intermediate products and the lowest selectivity to CO_x products. Probably this catalyst would have had more selectivity at phthalic anhydride at higher conversion values. This fact can be related to the different surface species. In the case of the bulk catalysts [Sb-V]^{0.5} and [Sb-V]¹, the Raman results point to the presence of surface vanadium oxide, which seems to be active for the oxidation of o-xylene. In the case of the $[Sb-V]^3$ catalyst, the formation of V₂O₅ was not detected and the excess of Sb led to the formation of surface α -Sb₂O₄, but it is not active for the reaction. According to Spengler et al. [21], V-O-Sb-O-V species are ideal for selective o-xylene oxidation. This structure was formed in all the bulk Sb-V catalysts but only in the case of $[Sb-V]^3$, the V_2O_5 crystals responsible of CO_x formation were absent. It can be seen in table 2 that the V/TiO₂ catalyst, which had a similar composition as the commercial ones, had both higher activity and selectivity to phthalic anhydride than the bulk Sb-V catalysts and the V/ZrO₂ catalyst. This better performance must be due to the different interface on which surface vanadia species disperse, i.e., the anatase interface [24]. The poor performance of the V/ZrO₂ catalyst as compared to V/TiO₂ can also be explained by taking into account that when supported on ZrO₂, V reacted with the support to form ZrV₂O₇, a compound with little activity and little selectivity to phthalic anhydride. Figure 5 shows values of conversion of *o*-xylene and selectivities to phthalic anhydride, CO₂, CO, phthalide and *o*-tolualdehyde as a function of the Sb-V loading for the catalysts supported on ZrO₂ with an atomic ratio of $Table\ 2$ Activity and selectivity of bulk Sb-V catalysts, zirconia, zirconia vanadate and V/TiO₂, during the oxidation of phthalic anhydride | Catalyst | T | Conversion (%) | Selectivity | | | | | | | | |-----------------------|---------------|----------------|-------------|-----------------|------|------|-----|-----|-------|--------| | | Temp.
(°C) | | PA | CO ₂ | СО | o-t | ph | MA | o-t A | Others | | [Sb-V] ^{0.5} | 420 | 97.0 | 48.0 | 33.2 | 13.3 | 0.8 | 1.8 | 2.8 | 0.0 | 0.1 | | [Sb-V] ₁ | 420 | 95.0 | 50.0 | 33.7 | 11.6 | 1.1 | 1.1 | 2.4 | 0.1 | 0.0 | | $[Sb-V]^3$ | 440 | 57.0 | 49.0 | 23.2 | 4.0 | 14.4 | 6.9 | 1.2 | 0.5 | 0.8 | | ZrV_2O_7 | 400 | 23.9 | 6.7 | 26.1 | 0.0 | 22.2 | 3.5 | 0.6 | 9.5 | 31.4 | | V/TiO ₂ | 380 | 85.5 | 61.8 | 23.9 | 5.5 | 4.3 | 2.7 | 1.2 | 0.0 | 0.6 | | ZrO_2 | 400 | 25.7 | 4.4 | 70.0 | 0.0 | 12.7 | 5.0 | 1.7 | 0.0 | 6.2 | Note: PA: phthalic anhydride, o-t: o-tolualdehyde, ph: phthalide, MA: maleic anhydride, o-t A: o-toluic acid. $Sb/V = 3(xSb_3V/ZrO_2)$. The ZrO_2 support exhibited both low conversion and selectivity towards the desired product (phthalic anhydride). Conversion and selectivity to phthalic anhydride increased with the loading with Sb-V. Selectivity to CO remained almost constant and selectivity to CO₂ decreased upon increasing the Sb-V loading. This result can be explained if we consider the surface structure of the Sb-V/ZrO₂ catalysts, as elucidated by our Raman and XRD results. At low Sb-V loadings, zirconia Sb and V surface dispersed oxide species are formed. Surface VO_x is very active and highly selective to CO and CO2 [7]. At coverage values higher than one monolayer, Sb and V coordinate to form SbVO₄ at the expense of surface VO_x species [22]. In the case of the V₂O₅/TiO₂ (anatase) catalyst, it has been reported that exposed titania sites may lead to complete oxidation of C₈-oxygenates [40]. This effect would account for the increase in selectivity to phthalic anhydride with the increase in Sb-V loading. Another factor contributing to the improvement in selectivity is the formation of Sb-V loading mixed oxides at high loading values of V and Sb. According to Spengler et al. [21] the V-O-Sb-O-V structures are more selective than the V-O-V-O-V ones. Moreover, the Sb promotion decreases the acidity of the catalysts, as it can be inferred from the results of table 3. The reduced surface acidity could lead to a weaker interaction of the catalyst with oxylene, the reaction intermediates and the products, and hence to a shorter residence time on the surface. It has Table 3 Total acidity of the supported catalysts as obtained by the $\mathrm{NH}_3\text{-TPD}$ technique | Catalyst | NH ₃ (a.u./m | | | | |------------------------------|-------------------------|--|--|--| | ZrO_2 | 0.81 | | | | | Sb/ZrO ₂ | 0.47 | | | | | V/ZrO ₂ | 2.70 | | | | | $0.5Sb_3V/ZrO_2$ | 1.25 | | | | | $1\text{Sb}_3\text{V/ZrO}_2$ | 1.41 | | | | | $2Sb_3V/ZrO_2$ | 1.14 | | | | been reported previously that strong acid sites are responsible for over oxidation [19]. The results of table 4 indicate that the V/ZrO_2 catalyst is more active and selective towards phthalic anhydride than the Sb/ZrO_2 catalyst. Moreover, when the selectivity to phthalic anhydride and the total conversion of the Sb/ZrO_2 and ZrO_2 samples are compared, it results that the support is more active and selective and that their selectivity to CO_x is almost the same. It therefore seems that Sb blocks some active sites of the ZrO_2 support and increases the selectivity to anhydride by destroying those responsible for deep oxidation. Figure 5. Catalytic activity data for the reaction of o-xylene oxidation as a function of the Sb+V monolayers supported on ZrO_2 . (\bigcirc), conversion; (\bullet), selectivity to phthalic anhydride; (\square), selectivity to CO; (\triangle), selectivity to phthalide; (\triangle), Selectivity to o-tolualdehyde. Reaction temperature: $440\,^{\circ}$ C. Monolayers of Sb+V Table 4 Conversion and selectivity obtained in the oxidation of o-xylene. Supported catalysts with two Sb-V monolayers | Catalyst | Temp. | Conversion (%) | Selectivity | | | | | | | | |--|------------|----------------|-------------|--------------|-------------|-------------|------------|------------|------------|------------| | | | | PA | CO_2 | СО | o-t | ph | MA | o-tA | Others | | 2Sb _{0.5} V/ZrO ₂ | 390 | 94.9 | 48.3 | 34.0 | 11.9 | 2.3 | 1.5 | 1.9 | 0.0 | 0.1 | | $2Sb_1V/ZrO_2$ | 400 | 96.2 | 43.5 | 37.1 | 15.3 | 0.4 | 0.5 | 3.2 | 0.0 | 0.0 | | $2Sb_3V/ZrO_2$ | 440 | 95.5 | 43.3 | 39.9 | 8.0 | 1.9 | 1.1 | 5.7 | 0.0 | 0.1 | | $\begin{array}{c} Sb/ZrO_2 \\ V/ZrO_2 \end{array}$ | 440
410 | 13.2
99.2 | 0.9
35.2 | 59.1
45.8 | 9.9
15.7 | 20.8
1.2 | 2.9
0.7 | 1.1
1.4 | 0.0
0.0 | 5.3
0.0 | Note: PA: phthalic anhydride, o-t: o-tolualdehyde, ph: phthalide, MA: maleic anhydride, o-t A: o-toluic acid. Since the best conversion and selectivity values to phthalic anhydride were obtained with the catalyst with two monolayers, we decided to study the influence of the Sb/V ratio on a series of catalysts with a constant loading of two Sb + V monolayers. The reaction temperature was varied in order to reach the same conversion value. Table 4 shows that when the Sb/V ratio was increased the catalyst became less active, in agreement with the lower activity of Sb, while selectivity to phthalic anhydride decreased slightly. Again, as the Sb/V ratio was increased, the excess of Sb inhibited the formation of surface vanadia species and decreased the activity to CO_x products. The results of figure 5 indicate that the bulk catalyst (Sb/V = 3) is less active than the supported catalyst with two monolayers. This result seems to be related to the difference in specific surface area. #### 4. Conclusions Supported Sb-V/ZrO₂ and bulk Sb-V catalysts have the capacity to selectively transform o-xylene into phthalic anhydride. However, they require a higher operation temperature than a commercial V_2O_5/TiO_2 catalyst, if a similar conversion value is to be achieved. Their selectivity to phthalic anhydride is also lower. The incorporation of Sb to the V_2O_5/ZrO_2 catalyst improves its selectivity and the effect seems to be related to the three causes: (a) blocking of non-selective surface sites in zirconia, (b) formation of superficial V-O-Sb-O-V species, and (c) the decrease of the total amount of acid sites. # Acknowledgments C.L.P. thanks the Spanish Ministry of Education for a grant to fund his stay in Spain. This research was partly funded by the EU under Project BE-1169. CICYT grant IN96-0053 funded the acquisition of the Raman spectrometer. Thanks are due to Professor M.A. Vicente for XRD experiments. ### References - V. Nikolov, D. Klissurski and N. Anastasov, Catal. Rev. Sci. Eng. 33 (1991) 319. - [2] C.R. Dias, M.F. Portela and G.C. Bond, Catal. Rev. Sci. Eng. 39 (1997) 169. - [3] G.C. Bond, J.P. Zurita and S. Flamers, Appl. Catal. 27 (1986) 353. - [4] R.S. Saleh, I.E. Wachs, S.S. Chan and C.C. Chersich, J. Catal. 98 (1986) 102. - [5] J.C. Vedrine (ed.), Catal. Today 20 (1994). - [6] G.C. Bond and S.F. Tahir, Appl. Catal. 71 (1991) 1. - [7] C.L. Pieck, S. del Val, M. López Granados, M.A. Bañares and J.L.G. Fierro, Langmuir 18 (2002) 2642. - [8] I.E. Wachs and R.S. Saleh, U.S. Patent 4,582,912 (1986) to Exxon Res. & Eng. - [9] M. Felice, U.S. Patent 4,397,768 (1983) to Oxidaciones Organicas, C.A. "OXIDOR". - [10] Y. Nakanishi, Y. Akazawa, N. Ikeda and T. Suzuki, U.S. Patent 4,356,112 (1982) to Nippon Shukubai Kagaku Kogyo Co. Ltd. - [11] S.R. Dollyi, E.L. Milberger and J.F. White, U.S. Patent 4,075,231 (1978) to The Standart Oil Co. - [12] T. Heidemann, H. Arnold, G. Hefele and H. Wanyek, U.S. Patent 6,362,345 (2002) to BASF Aktiengesellschaft. - [13] R.S. Saleh and I.E. Wachs, U.S. Patent 4,728,744 (1988) to Exxon Chem. Res. Co. - [14] J.M. Parera, Catal. Today 15 (1992) 481. - [15] M. Sanati, A. Andersson, L.R. Wallenberg and B. Rebenstorf, Appl. Catal., A 106 (1993) 51. - [16] A. Khodakov, J. Yang, S. Su, E. Iglesia and A.T. Bell, J. Catal. 177 (1998) 343. - [17] G. Balducci, P. Fornasiero and G. Graziani, Catal. Lett. 33 (1995) 193 - [18] C.G. Vayenas and S. Bebelis, Catal. Today 51 (1999) 581. - [19] T.J. Kim, Y.H. Kim and H.I. Lee, Hangop Hwahak 2 (1991) 330. - [20] H.B. Chiang and M.D. Lee, Appl. Catal., A 154 (1998) 55. - [21] J. Spengler, F. Anderle, E. Bosh, R.K. Graselli, B. Pillep, P. Behrens, O.B. Lapina, A.A. Shubin, H.-J. Eberle and H. Knoezinger, J. Phys. Chem. B 105 (2001) 10772. - [22] C.L. Pieck, M.A. Bañares, M.A. Vicente and J.L.G. Fierro, Chem. Mater. 13 (2001) 1174. - [23] S. del Val, M. López Granados, J.L.G. Fierro, J. Santamaría-González and A. Jiménez-López, J. Catal. 188 (1999) 203. - [24] JCPDS-International Center For Diffraction Data, Cards No. 13-307 and No. 24-1164, Selected Power Diffraction Data For Metals and Alloys, Data Book, 1st ed., Vol. II (Swarthmore, USA). - [25] JCPDS-International Centre for Diffraction Data, Card No. 16-0422. - [26] JCPDS-International Centre for Diffraction Data, Card No. 21-1272. - [27] T. Birchall and A.W. Sleight, Inorg. Chem. 15 (1976) 868. - [28] S. Hansen, K. Ståhl, R. Nilsson and A. Andersson, J. Solid State Chem. 102 (1993) 340. - [29] G. Centi, P. Mazzoli and S. Perathoner, Appl. Catal., A 165 (1997) 273. - [30] JCPDS-International Centre for Diffraction Data, Card No. 32-0042. - [31] JCPDS-International Centre for Diffraction Data, Card No. 41-1426. - [32] R. Nilsson, T. Lindblad and A. Andersson, J. Catal. 148 (1994) 501. - [33] JCPDS-International Centre for Diffraction Data, Card No. 27-1318. - [34] JCPDS-International Centre for Diffraction Data, Card No. 31-1438 - [35] J. Miciukiewicz, T. Mang, and H. Knözinger, Appl. Catal., A 122 (1995) 151. - [36] G.T. Went, S.T. Oyama and A.T. Bell, J. Phys. Chem. 94 (1990) 4240. - [37] G. Deo and I.E. Wachs, J. Phys. Chem. 95 (1991) 5889. - [38] T.J. Dines, C.H. Rochester and A.M. Ward, J. Chem. Soc., Faraday Trans. 87 (1991) 653. - [39] M.A. Vuurman and I.E. Wachs, J. Phys. Chem. 96 (1992) 5008. - [40] I.E. Wachs, R.Y. Saleh, S.S. Chan and C.C. Chersich, Appl. Catal. 15 (1985) 339.