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Abstract: Harmonics in power systems are responsible for several technical problems that justify the development of models to
study them. Well-established models exist to analyse the harmonic load-flow (HLF) from a deterministic point of view. Moreover,
models based on the probability theory have been developed to deal with the inherent variability and random nature of loads,
network configuration etc. In the last few years, possibility theory has arisen as an alternative tool that in many cases could
be better suited to describe and quantify the real nature of the uncertainty involved in harmonic studies. In this study a
methodology for HLF calculation based on the possibility theory is presented. Possibility distributions instead of probabilities
are the input used to describe the uncertainty in the magnitude and composition of the loads. Tests presented shows that the
results of the proposed model are consistent with those obtained with a probabilistic method, and that both models lead to the
same ranking of the risk that the bus harmonic voltages exceed a given level. Independent possibility distributions are
assumed at the development stage reported here; research is being carried out in order to overcome this constraint.
Nomenclature

x real scalar

x̃ complex number, phasor

V real vector or matrix

Ṽ vector or matrix of complex numbers, phasors

X classical set

X C complement of the classical set X

X̂ fuzzy set or fuzzy number

x̂ fuzzy vector

mX̂ membership function of the fuzzy set X̂

a a-value of a fuzzy set, membership degree

X (a) a-cut set of the fuzzy set X̂

x(a) lower boundary of an a-cut set

x̄(a) upper boundary of an a-cut set

v(h) hth harmonic bus voltage magnitude

1 Introduction

Harmonics distortion is a growing problem in power systems
because of the increasing use of non-linear loads [1].
Mathematical models have been developed to study problems
related to harmonics [2]. Harmonic load-flow (HLF)
calculations can be performed on a deterministic basis,
assuming that all the relevant parameters are well known and
non-random. However, such studies provide a static and
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certain image of a varying and uncertain situation. In fact, the
network configuration usually changes and its linear and non-
linear loads vary all the time; in addition, even if they were
constant their parameters are not usually well known. All
these features make harmonic distortion a phenomenon
involving uncertainty.

Methodologies based on the probability theory, with different
degrees of sophistication, have been developed to deal with
these uncertainties [3–9] (Romero et al. [8] and Ribeiro [9]
provide a complete review of the state of the art on this
subject). Practical application of them, however, often has to
face the lack of information to describe in probabilistic terms
the amount and type of medium-sized and small distributed
non-linear loads (NLLs), as well as the composition of linear
loads (LLs). This suggests that in many practical cases, the
available information for HLF can be described better through
fuzzy measures like possibility distributions.

Possibility measures are particularly well suited to integrate
the judgment of experts regarding the uncertainty or
likelihood. For example, an expert may describe a load saying
that it could be between 80 and 100 MVA, 90 MVA being the
most ‘possible’ value. He might estimate the power factor
between 0.87 and 0.9. In addition, he could guess that between
70 and 80% of the total load is linear and of this percentage,
about 30–40% may be because of the induction motors and so
on. In general, such information is incomplete, imprecise, even
contradictory or deficient in some other way. Possibility theory
is ideal to model this kind of fuzzy information.

Like models based on probability, those based on possibility
rely on measures that quantify uncertainties or likelihood and
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allow calculating how these propagate from the inputs or the
parameters of a system into its outputs. Possibilistic models
are usually simpler than their probabilistic counterparts, but
the key feature certainly is their ability to model expert
knowledge, opinions, incomplete information and other kinds
of evidence, very common in the area of harmonic studies,
which are difficult to handle through probabilistic models.

The first methodology in the area of fuzzy HLF has been
proposed by Hong et al. in [10]. An analysis of this
proposal reveals the following features:

1. The methodology relies on the classic fuzzy solution,
which could overestimate or underestimate the uncertainty
in the harmonic voltages.
2. Even though linear loads could have a major influence on
the HLF, [11], uncertainty in their composition is not
modelled and cannot be handled by the formulation.
3. Primary results are the fuzzy real and imaginary components
of harmonic voltages from which the more useful fuzzy
magnitudes have to be calculated. A measure of the
possibilistic dependence (An analogous to the probabilistic
dependence in the possibility theory.) between the
components should be known in order to not overestimate the
uncertainty, but the methodology does not provide this figure.
4. Possibilistic dependencies between uncertain parameters
describing the loads are not considered.

A recent paper by the authors [12] outlines an alternative
approach for a possibilistic HLF aimed at overcoming the
first three aforementioned drawbacks. After comparing the
classic fuzzy solution with other alternatives, a methodology
based on the marginal joint solution is proposed that avoids
uncertainty overestimation and/or underestimation and allows
the direct calculation of fuzzy harmonic voltage magnitudes.

A major weakness of this proposal is that the uncertainties
regarding the loads refer to the parameters of their equivalent
circuits (e.g. resistances and reactance modelling linear loads).
In the present paper whose basic proposal is substantially
improved by moving the uncertainties to a higher level; for
example, the uncertainty in the active and reactive bus load,
its percentage because of induction motors etc.

The basic objectives and hypotheses of the developed
methodology can be summarised as follows:

1. The configuration of the network does not vary and its
parameters are deterministic (certain).
2. The fuzzy load models are intended to describe the
uncertainties in the context of a specific load state of the
system (minimum or maximum daily load, for example). In
this context active and reactive bus loads, although uncertain,
vary in a narrow range (results obtained for different network
configuration and load levels can however be post-processed,
taking into account their relative possibility of obtaining
global figures).
3. Harmonic currents injected by non-linear loads are
assumed independent of the voltage waveform (harmonic
penetration approach).
4. Injected harmonic currents as well as admittances to
ground that model linear loads are functions of uncertain
parameters (more precisely defined below) such as the total
active and reactive bus load, the percentage of the active
and reactive bus load because of the ac/dc converters etc.
5. The uncertain parameters referred above are non-
interacting; roughly speaking, a concept analogous to
independent in probability theory.
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6. Node voltages are given by continuous functions of the
uncertain parameters, that is, no infinite voltage at the
analysed harmonic frequencies occurs when the loads vary
within the limits allowed by the possibility distributions.
Notice that owing to losses this is actually the case.
7. The paper has been organised as follows: in Section 2,
fundamental concepts of possibility theory are briefly
reviewed. In Section 3 the possibilistic HLF formulation is
developed. In Section 4 the load models are exposed: (i) the
circuit model of the loads is described; (ii) a set of fuzzy
parameters regarding the load magnitude and composition is
defined; and (iii) relationships between the fuzzy parameters
characterising the non-linear loads and their circuit models
are described, analogous relationships for linear loads are
summarised in an appendix. In Section 5, the possibilistic
HLF is numerically compared with Monte Carlo simulations
(MCS) using the IEEE 14-bus test system for harmonic
analysis of reference [13]. Finally, conclusions are given.

2 Key concepts regarding possibility theory

Possibility theory is a powerful mathematical tool which is
ideal for formalising incomplete information expressed in
terms of fuzzy propositions (which is usually the case for
data involved in HLF calculations), [14].

In possibility theory, available information is modelled
through possibility distributions which in some extent are
analogous to probability distributions in probability theory.
Moreover, possibility distributions can be suitably formulated
in terms of fuzzy sets (FS), hence taking advantage of many
of the developments in this area. In what follows, key
concepts of the possibility theory will be presented briefly.

2.1 Fuzzy sets

In classical sets, the characteristic function assigns a value of
either 1 or 0 to each individual x in the universal set X, thereby
discriminating members and non-members of the set. This
function can be generalised assigning values within the unit
interval [0, 1] to the elements of X, thus indicating the
membership grade of each element in the set, [15]. This
function, called the FS membership function, is denoted as

mÂ: X � [0, 1] (1)

Therefore an FS is a pair usually noted as

Â = {(x, mÂ(x)): x [ X } (2)

The FS, Â, can also be defined in terms of its a-cuts being the
subset

A(a) = {x|mÂ(x) ≥ a} (3)

We are particularly interested in fuzzy real numbers and fuzzy
real vectors. That is, fuzzy sets with X # R or X # Rn and
mÂ convex, at least segmentally continuous, and with
mÂ(x) = 1 for at least one element of X, that is, normal.
Fig. 1 shows a generic FS in order to introduce its basic
relation with possibility theory as well as the notation used
in what follows. It can be seen in the figure that the a-cuts
of an FS are intervals in the real axis.
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2.2 Possibility distributions and necessity
and possibility measures

A possibility distribution can be conveniently seen as a
sequence of nested confidence intervals, coincident with the
a-cuts A(a) = [x(a), �x(a)] of fuzzy set Â; each interval has an
associated confidence level regarding the truth of the
statement ‘the actual value of the uncertain magnitude belongs
to interval A(a)’, [16]. This belief measure, called necessity
(nec), is maximum for A(0) (i.e. nec(A(0)) ¼ 1) because it is
completely certain that the value of the magnitude is within
the 0-cut, and decreases as a increases (shorter a-cuts), that is,
nec(A(a)) ¼ 1 2 a.

Necessity is not defined only for the a-cuts of A, else for
any subset, S, of A. Then a second fuzzy measure, called
Possibility, which is related to Necessity can be defined
through the following relationships

pos(S) = 1 − nec(Sc) (4)

nec(S) = 1 − pos(Sc) (5)

Furthermore, possibility theory states that for any pair of
subsets S and T, it is

pos(S < T ) = max(pos(S), pos(T )) (6)

nec(S > T ) = min(nec(S), nec(T )) (7)

In particular, for any interval S = {x|x ≤ x ≤ �x}, it can be
written as

pos(S) = max
x[S

(pos(x)) (8)

From these basic definitions, it follows that (see Fig. 1)

pos(x) = mÂ(x) (9)

Therefore possibility and necessity of any interval S can be
evaluated from the membership function as

pos(S) = max
x[S

(mÂ(x)) (10)

nec(S) = 1 − max
x�S

(mÂ(x)) (11)

Analogous concepts apply to fuzzy vectors. The membership
function mP̂([x1, x2, . . . , xn]) is a convex function that maps
vectors in Rn to the interval [0, 1]; a-cuts are nested regions
in Rn, defined through P(a) = {X |mP̂(X ) ≥ a}; the degree of
belief (Necessity) that the actual vector belongs to a
specified a-cut is 1-a, and the possibility of a vector
X = [x1, x2, . . . , xn] is just its membership degree mP̂(X ).

Fig. 1 Representations of the membership function of a fuzzy
number Â
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For the methodology described here a specific fuzzy vector
is of interest: let X = [x1, x2, . . . , xn] be a vector of uncertain
magnitudes with possibility distributions, pos(xi) = mP̂i

(xi),
i ¼ 1. . .n, then, if the variables are non-interacting,
according to the possibility theory it is

pos(X ) = min{pos(x1), pos(x2), . . . , pos(xn)} (12)

or in terms of the membership functions

mP̂(X ) = min{mP̂1
(x1), mP̂2

(x2), . . . , mP̂n
(xn)} (13)

The fuzzy vector with membership functions defined by (13)
is called the fuzzy Cartesian product of P̂1, P̂2, . . . , P̂n and is
often denoted as P̂ = P̂1 × P̂2 × , . . . , P̂n. An important
feature of the fuzzy Cartesian product is that its a-cut P(a)

is the classic Cartesian product of the corresponding a-cuts
Pi

(a)(i ¼ 1, . . . , n). Fig. 2 illustrates this relationship with a
two-dimensional example.

Finally, both fuzzy measures of uncertainty, possibility and
necessity, are the basis of several techniques developed in areas
such as decision-making under uncertainties. To this purpose,
different ranking methods have been proposed for comparing
and ordering obtained FS, that is, for different scenarios [17].

3 Proposed possibilistic HLF

3.1 General formulation

The physical model of the network is based on the
deterministic harmonic penetration method, [18] (NLLs are
modelled as injected harmonic currents independent of the
voltage waveform). Harmonic voltages and injected currents
are related through the nodal admittance matrix calculated
at the corresponding harmonic frequency, that is

Ṽ (h) = [Ỹ (h)]
−1Ĩ (h) (14)

where h stands for the hth harmonic order and will be omitted
from here on for notational simplicity.

Injected harmonic currents as well as the diagonal elements
of the admittance matrix in (14) depend on the harmonic
order, the model of the LLs and NLLs and on a number of
parameters describing their magnitudes and compositions.
For the sake of generality, in this section no hypotheses

Fig. 2 Fuzzy Cartesian product defined on R2
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will be made regarding these aspects as the development of a
specific model is postponed to the next section.

Let us assume, however, that a generic vector P ¼ (p1,
p2, . . . , pnp) of np real parameters completely describes the
loads of the system, determining accordingly all the injected
currents and the bus admittance matrix in (14)

Ṽ (P) = [Ỹ (P)]−1Ĩ (P) (15)

By denoting Z̃ j(P) the jth row of Z̃(P) = [Ỹ (P)]−1, the
amplitude of the harmonic voltage at a generic bus j, can be
written as

vj(P) = abs(Z̃ j(P)Ĩ (P)) (16)

or using a simpler notation

vj(P) = fj(P) (17)

with fj(P) = |Sk z̃j,k(P)ĩk (P)|.
When the components of P, parameters (p1, p2, . . ., pnp), are

uncertain and described through possibility distribution
associated with fuzzy sets P̂1, P̂2, . . . , P̂np, the harmonic
voltage amplitude vj in (17) becomes a possibilistic variable too.

If there were only one vector P for which vj attains a specific
value, it is clear that the possibility of this value of vj is the same
as possibility of that particular vector. In general, however, there
is a set of vectors that yields the same voltage and the possibility
of the voltage is the possibility that the actual vector of
parameters belongs to that set; thus, according to (6), the
highest among the possibilities of the vectors in that set is

pos(vj) = max
fj(P)=vj

{pos(P)} (18)

On the other hand, since according to the hypothesis stated
above the uncertain parameters are non-interacting, then

pos(P) = min{pos(p1), pos(p2), . . . , pos(pnp)} (19)
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and therefore

pos(vj)= max
fj([p1,p2, ...,pnp])=vj

{min{pos(p1), pos(p1), . . . , pos(pnp)}}

(20)

or in terms of membership functions

mV̂j
(vj)= max

fj([p1,p2,...,pnp])=vj

{min{mP̂1
(p1),mP̂2

(p2), ... ,mP̂np
(pnp)}}

(21)

Equation (21) provides an expression of the membership
function associated to the voltage at node j at a certain
harmonic order omitted for the sake of simplicity (notice that
fj(p1, p2, . . . , pnp) in (21) depend on the harmonic order as it
affects the injected harmonic currents and the impedances to
ground modelling the LLs).

Two well-known approaches can be applied to obtain mV̂j
.

The first one, based on the ‘extension principle’, is to solve
directly the maximisation problem stated by (21). The
second one, based on the ‘resolution principle’, entails
solving the dual-optimisation problem of finding a set of
a-cuts of m from which the membership function can be
obtained. The authors follow the second approach which is
V̂j better explained with Fig. 3 and refers to a simple case
with two parameters.

The rectangle shown in Fig. 3 encloses thea0-cut (for a generic
a0) of P̂ (see Fig. 2). Also the contour level C1: fj([p1, p2]) ¼ vj1
with points inside the rectangle has been drawn. The function fj
maps the points of the rectangle within the corresponding node
voltages vj ¼ fj([p1, p2]). Since the node voltages are given by
continuous functions of the parameters (see hypotheses 6 in
Section 1), the entire a0-cut is mapped into a single interval of
the vj axis, which clearly should contain vj1

.
Now we ask about the possibility of the specific voltage vj1

;
according to (20) it is

pos(vj1
) = max

[p1,p2][C1

{min{pos(p1), pos(p2)}} (22)

but inside and over the rectangle it is pos(p1) ≥ a0 and
pos(p2) ≥ a0, and thus min{pos(p1), pos(p2)} ≥ a0}
and since there are points of C1 then it follows that
pos(vj1

) = max
[p1,p2][C1

{min {pos(p1), pos(p2)}} ≥ a0.
Fig. 3 Extension principle for a continuous function defined on R2
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Hence vj1
belongs to the a0-cut of V̂j and the same happens

with any voltage whose contour level pass through the
rectangle or touch its boundary. Conversely, a voltage whose
contour level does not pass through or touch the rectangle
does not belong to the a0-cut, because min{pos(p1),
pos(p2)} ≥ a0 is not true at any point of this contour level.

From this reasoning it is clear that the upper and lower
limits of the a0-cut of V̂j, are the maximum and minimum
voltages mapped by fj from the a0-cut of P̂, and thus

V (a)
j = [v(a)

j , �v(a)
j ]

=
min

p1[P
(a)
1

..

.

pnp[P
(a)
np

fj([p1, . . . , pnp]), max
p1[P

(a)
1

..

.

pnp[P
(a)
np

fj([ p1, . . . , pnp])
⎡
⎢⎣

⎤
⎥⎦
(23)

3.2 Possibilistic HLF algorithm

Equations (21) and (23) are equivalent, if the first is based on the
extension principle and directly provide the membership function

or possibility distribution mV̂j
(vj), the second provides its a-cuts.

The developed methodology is based on calculating sets ofa-cuts
of the fuzzy node voltages according to the second approach.

The basic algorithmic sequence is as shown in Fig. 4.
Optimisation problems involved have been implemented in

TOMLABw, [19]. The optimisation algorithm needs the
values of the function and its partial derivatives with
respect to the uncertain parameters (gradient). Irrespective
of the set of parameters chosen, there are, in general, m
parameters associated with the load of each bus, that is,
total np ¼ n.m parameters in a network with n buses. Let
then pk,j be the ith parameters associated with the load of
bus k. It can be shown that

∂|ṽ(h)j|
∂pk,i

= Re
ṽ∗(h)j

|ṽ(h)j|
z̃(h),j,k

∂ĩ(h)k

∂pk,i

−
∂ỹ(h)k

∂pk,i

ṽ(h)k

( )( )
(24)

where ṽ(h)j is the hth harmonic voltage at node j; z̃(h),j,k is the
transfer impedance from bus j and k at the harmonic order h;

Fig. 4 Algorithm for the new fuzzy harmonic load-flow approach
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ĩ(h)k is the hth harmonic current injected at node k; ỹ(h)k is
the hth harmonic admittance to ground modelling the LLs
connected at node k.

Clearly, derivatives on the right-hand side of (24) depend
on the models implemented for the LLs and NLLs which
are developed in Section 4.3 and Appendix.

4 Fuzzy modelling of linear and non-linear
harmonic loads

4.1 Deterministic aggregate model for bus loads

Standard load models for HLF calculations are parallel
connections of impedances and harmonic injected currents,
[11, 18, 20–23]. Results of different studies suggest the
deterministic load model shown in Fig. 5, where each
branch represents an aggregate of homogeneous loads
connected to a bus (Section IV in [11]).

Series resistance r(h)p and reactance x(h)p model aggregate
passive loads and small motors. The r(h)m and x(h)m model
large motors used in industrial applications (without power
electronic devices for control). Capacitive reactance x(h)c

models the capacitors for power factor correction and cable
capacitances. Finally, z̃(h)filter represents the impedance of
the filters for harmonic distortion mitigation.

The standard aggregate model of the NLLs connected to a
bus is a set of harmonic current sources with different
amplitudes and phases ĩ(h)nl. Under the assumption of
harmonic non-interaction, these currents do not depend on
the voltage wave shape [18].

4.2 Fuzzy model parameters

The circuit parameters in the load model of Fig. 5 are
uncertain and in principle they could be described through
possibility distribution functions. In practice, however, the

Fig. 5 Electrical model of the harmonic loads connected to a PS’s
node
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available information usually refers to other characteristics
of the load, such as its total active and reactive power, the
percentage of it owing to non-linear devices etc. Different
sets of parameters could be used to describe the loads;
the model implemented by the authors is based on the
parameters listed in Table 1 although other choice could be
accommodated in the general formulation of Section 3.
Possibility distribution functions of these parameters are the
data and they are usually obtained on the basis of typical
information regarding the active and reactive power of the
loads and the expert judgment regarding their composition.

4.3 Relationships between model parameters
and aggregate load model

4.3.1 Some remarks: Relationships between model
parameters in Table 1 and circuit parameters of Fig. 5 link
the model parameters with harmonic voltage (23) through
the circuit admittances and injected currents.

Models of NLLs will be analysed in this section while
analogous relationships for the models of LLs are
summarised in the Appendix. Some previous remarks related
to hypotheses 1 and 2 stated on Section 1 are, however, in
the following order:

1. There are no parameters in Table 1 referring to the system
load as a whole or stating relationships between loads
connected at different buses, for example, loads in different
buses are independent of each other. This seems to be a
reasonable assumption for calculating the harmonic voltage
for a specific load state and well-known network
configuration, since, in this context, uncertainties mainly
refer to each bus load and do not influence the amount and
characteristics of the loads connected to other buses.
2. For a specific load state the active and reactive power
consumption varies within narrow limits. Thus, the
amplitude and phase of the power frequency bus voltages
are almost certain and can be calculated only once at the
beginning, for the most possible value of the bus loads and
by means a standard power frequency ac load flow. Notice
that this is a key feature because the phase angles of the
injected harmonic currents modelling the NLLs depend on
the phase angle of the power frequency component.

4.3.2 Model of NLLs: NLLs are usually classified into two
groups according to their prevailing application: residential–
commercial and industrial. Residential and commercial
Table 1 Fuzzy model parameters for the harmonic load-flow calculation

Model parameter Description

pt active bus load

qt reactive bus load

kp composition factor of passive loads (fraction of the passive loads in the total active bus load)

pfp power factor of passive loads

km composition factor of induction motors (fraction of the induction motors in the total active bus load)

pfm power factor of the induction motors

knl composition factor of NLLs (fraction of the NLL in the total active bus load)

pfnl power factor of NLLs

ang(h) phase angles of the harmonic currents injected (for the aggregate model of several small and medium

power devices)

xLR locked rotor reactance in pu (xLR typically ranges from 0.15 to 0.25 pu)

fqLR quality factor of the locked rotor circuit. From experience, this value is approximately 8

qc reactive power because of the capacitors for power factor correction and cables
IET Gener. Transm. Distrib., 2011, Vol. 5, Iss. 4, pp. 393–404
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NLLs are low-power devices, distributed in the low-voltage
networks. Individually they do not represent major problems
for the network but, acting together, they can become an
important source of harmonic distortion. Typical NLLs of
this kind are: devices fed through single-phase diode bridge
rectifiers or small switched power supplies (personal
computers, television sets etc.), discharge lamps etc.

The group of industrial NLLs is mainly composed of static
rectifiers and power converters, electronic power devices at
transmission voltage level, arc furnaces and so on.

Accurate modelling of NLLs is a difficult issue because of
their inherent complexity and diversity. However, in general,
harmonic currents injected by a specific device can be
expressed as

ĩ(h)nl = g(h)|ĩ(1)nl| exp(ja(h)angle(ĩ(1)nl)) (25)

where g(h) harmonic order h and ĩ(h)nl is the phasor of the
hth harmonic order current modelling the NLL.

These relationships are not always well known, except for
some especially important kind of apparatus.

At present only models for six and 12 pulse bridges have
been implemented in the methodology, for large NLLs.
Detailed models of other devices are described in [1, 18,
20–24], which in principle can be implemented in the
present proposal by means expressions like (25).

In particular, for six and 12 pulse bridges a(h) ¼ h and,
respectively

g(h) = +1/h where h = 6n + 1, with n = 1, 2, . . .
0 otherwise

{
(26)

and

g(h) = +1/h where h = 12n + 1, with n = 1, 2, . . .
0 otherwise

{
(27)

with the power frequency current: ĩ(1)nl = (pnl + jqnl/ṽ(1))
∗

(per unit values); or in terms of model parameters at bus j

ĩ(1)nl =
pt · knl

pfnl

pfnl − j
���������
1 − pf 2

nl

√( )
ṽ∗(1)

⎛
⎝

⎞
⎠ (28)

The phases of the currents in (25) are finally shifted to take
into account the winding connection of the transformers
between the power electronic apparatus and the bus load.

On the other hand, expressions like (25) or similar ones
provide accepted estimates of the amplitude of the total
harmonic current injected by several small non-linear
devices. It is rather difficult, however, to obtain a good
approximation of its phase. In the developed methodology,
the aggregate harmonic currents are first computed as in the
case of the six pulse bridges (although other expressions for
g(h) could be easily implemented) and then the resulting
phases are shifted by the fuzzy parameter ang(h)nl, in order
to take this additional uncertainty into account.

In practice for those buses with large connected non-linear
devices, the effect of small NLLs can usually be neglected
and very narrow limits in the uncertainty of ang(h)nl are
adopted.
IET Gener. Transm. Distrib., 2011, Vol. 5, Iss. 4, pp. 393–404
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5 HLF calculation in a 14-bus test system

In this section the proposed possibilistic HLF method will be
tested on the well-known IEEE 14-bus harmonic test system
[13]. Results of MCS with probability distribution consistent
with the possibility distribution assigned to the uncertain
variables will be used to validate the possibilistic proposal.
The following remarks may clarify some aspects of this
validation:

In a broad sense, a probability distribution contains more
information and needs more information to be properly
defined than a possibility distribution. Despite this fact, and
in order to use available probabilistic information in
possibilistic models, several techniques have been developed
to transform probability distributions in consistent possibility
distributions. Although various consistency criteria may
be stated, the weakest and usually imposed to such
transformations is

pos(L) ≥ p(L) ≥ nec(L) (29)

where p(L) is the probability of the set L.
Equation (29) states that if it is probable to some degree

that the uncertain variable belongs to set L, then it must
also be possible at least to the same degree, [15].

In this sense, in [25], it is shown that the triangular
possibility distribution is a legitimate transformation of
bounded symmetric unimodal probability distributions, with
the same support. This consistency criterion can also be
used to compare the results of possibilistic and probabilistic
models when their inputs are related in this way.

On the basis of these remarks the following criteria will be
applied in the validation to be carried out:

1. There is enough information to characterise the uncertain
parameters by means of probability density distributions,
and normal distributions truncated at two standard
deviations (bounded symmetric unimodal probability
distributions) fit that information.
2. Triangular possibility distributions are used as the legitimate
probabilistic � possibilistic transformation for modelling the
same uncertainties in the possibilistic case. (It should be
remarked however, that the proposed possibilistic HLF
methodology can deal with any kind of possibility
distributions e.g. triangular, trapezoidal, normal, rectangular etc).
3. In validating the methodology it will be shown on an
empirical base that the possibilities of the harmonic voltages
obtained with the proposed methodology and their
probabilities, calculated by MCS, fulfil inequalities (29), thus
providing consistent information regarding the phenomenon.
4. Although the assessment of consistency is a sound
validation from the theoretical point of view, it does not
warrant that the results of the possibility-based
methodology provide enough information to make good
decisions. This is the subject of a second validation where
it will be shown that both results lead to the same rankings
of the bus harmonic voltages, and thus also to the same
decision, for example, the buses where measurement
equipment should be installed for monitoring purpose.

5.1 Description and modelling of the 14-bus
harmonic test system

Parameters of the test network, shown in Fig. 6, are defined
in [13]. Generators, lines and transformers have been
modelled according to the recommendation in reference
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[22]. Harmonic filters (all single–tuned) have been modelled
as shunt harmonic impedances.

The deterministic values of active and reactive power
specified in [13] for the LLs and NLLs have been assigned
to their means (m) and to the most possible values (m). The
uncertainties of these parameters have been set in 5%, that
is, the 0-cuts of the possibility distributions are the intervals
[lb, ub] ¼ [(1 2 0.05)m, (1 + 0.05)m] and the standard
deviation of the probability distributions are s ¼ 0.025 m.

The test system has two six-pulse converters, one at bus 3
and the other at bus 8. No other loads are connected to these
buses. At buses 4, 5, 9 10, 11, 12, 13 and 14 the percentage of
induction motors and other linear loads have been chosen
quite arbitrarily. Fig. 7 shows the parameters describing the
uncertain LLs and NLLs.

Fig. 6 IEEE 14-bus standard test system for harmonic analysis
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5.2 Possibility and probability distributions of fifth
harmonic bus voltages

Possibility and probability distribution of the node voltages
magnitude at different harmonic order have been obtained.
To this purpose, 11 a-cuts and 10 000 shots in MCS have
been computed for each harmonic order. Results for the fifth
harmonic will be shown here although the same conclusions
can be drawn from the analysis of the other harmonics.

Fig. 8 shows the obtained possibility distributions
together with the histograms of the corresponding MCS
(dark areas).

From these results cumulative probability, possibility and
necessity measures for increasingly long intervals enclosing
the fifth-order harmonic voltage magnitudes have been
calculated and plotted in Fig. 9.

Uncertain measures for a specific interval, in fact, fifth-
order harmonic voltages magnitudes taking values higher
than 0.03 pu, have also been set down in Table 2, whose
rows have been sorted in descending order of probability
and in descending order of possibility and necessity (when
possibilities match). This ordering is a typical criterion for
ranking possibilistic variables in decision-making under
uncertainty, [15].

5.3 Discussion

Results of Fig. 8 show at first glance a qualitative agreement
between results obtained with the possibilistic HLF and MCS.

A deeper analysis shows that all the results of the MCS are
within the 0-cuts of the possibility distributions; this is clearly
an expected result since harmonic voltages outside that
interval have null possibility, thus null probability,
according to (29).
Fig. 7 Fuzzy parameters modelling linear and non-linear loads connected to the IEEE 14-bus power system
IET Gener. Transm. Distrib., 2011, Vol. 5, Iss. 4, pp. 393–404
doi: 10.1049/iet-gtd.2010.0361
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Fig. 8 Per unit fifth-order harmonic voltage magnitude at 14-buses of the power system

Right axes correspond to the relative frequency of occurrence ( f ) of the histograms from MCS and left axes correspond to the a values of the fuzzy voltages from
the possibilistic HLF

Fig. 9 Cumulative probability (bold continuous line), possibility (dotted line) and necessity (continuous line) measures for increasingly long
intervals enclosing the fifth-order harmonic voltages magnitudes at 14-buses of the power system
IET Gener. Transm. Distrib., 2011, Vol. 5, Iss. 4, pp. 393–404 401
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Table 2 Measures of uncertainty for the question: ‘may the fifth-order harmonic voltage magnitude take values higher than 3%?’

MCS Possibilistic HLF

Ranking Bus p(vj ≥ 0.03) Ranking Bus pos(vj ≥ 0.03) nec(vj ≥ 0.03)

1 3 1 1 3 1 1

2 4 1 2 4 1 0.7184

3 5 0.9976 3 5 1 0.5217

4 2 0.8574 4 2 1 0.2628

5 1 0.3282 5 1 0.9187 0

6 9 0.0118 6 9 0.6983 0

7 14 0.0028 7 14 0.6701 0

8 10 0.0014 8 10 0.6068 0

10 6 0 9 12 0.5308 0

10 7 0 10 13 0.5021 0

10 8 0 11 11 0.4676 0

10 11 0 12 6 0.2938 0

10 12 0 13 7 0.1699 0

10 13 0 14 8 0 0
Fulfilment of inequalities (29) for the set of increasingly
long intervals of harmonic voltage level is shown in Fig. 9
for all buses.

It is also apparent that the supports (0-cut) of some
possibility distributions are substantially wider than the
intervals between the maximum and minimum voltages
(vmax and vmin) obtained by MCS. Actually, the probability
of voltages higher vmax and lower than vmin are not null, but
negligible; there are combinations of parameters that lead to
them but they are so rare that very few (or any at all)
happened in 10 000 shots.

It may seem rather annoying that possibilities do not show
the very low-likelihood of these events. It should however, be
realised that such low likelihood is known here because much
more information than that used by the possibility-based HLF
has been assumed and provided to the probabilistic model.
Even if probability and possibility distributions have very
similar shapes (as it happens in this case with the
distribution of the uncertain input parameters), the amount
of information implicit in the first is notably much larger
than in the second. On the other hand, it could be argued
that despite the nature of the uncertainties, it could be better
to postulate some ‘reasonable’ probability distributions for
them in order to use probabilistic models that are more
accurate, but in proceeding this way the results themselves
are doubtful, increasing the calculated uncertainties and in
non-quantified extent.

The good news is that even if the underlying probabilistic
distributions of the inputs are unknown, the results obtained
with the possibilistic HLF are useful enough to make
good decisions, as the coincidence of the rankings that
Table 2 shows.

6 Conclusions

A methodology for HLF calculation based on the possibility
theory has been developed, which improves a former proposal
of the authors. Possibility-based models seem to be an
interesting alternative for situations where the information is
too vague to define reliable probability distributions; a
common situation in the context of harmonic studies.

The proposed model allows for uncertainties in the loads
that directly refers to their magnitude and composition,
instead of the parameters of their circuit model (resistances,
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inductances and amplitude of harmonic sources), as was the
case in the former proposal.

The methodology has a general formulation, quite
independent of the specific set of uncertain parameters
chosen and of the circuit used to model the loads. A
particular implementation based on standard circuit models
for aggregate loads has been developed.

The resulting implementation has been tested in the
standard IEEE 14-bus network for harmonic studies, by
comparing the obtained possibilities of the harmonic bus
voltages with their probabilities, calculated by MCS.
Results fulfil the theoretical consistency inequalities, and,
from a more practical point of view, it has been shown that
both lead to the same ranking of the risk that harmonic
voltages exceed a given level.

This suggests that the results of the possibilistic HLF can
be successfully used for making decisions under uncertainty
and can be applied in different areas where some measure
of the risk of harmonic resonance or high harmonic level
are relevant, such as in planning capacitive shunt
compensation, selecting measurement points for monitoring
of power quality etc.

In the developed model no interaction among the uncertain
parameters has been assumed. This assumption can lead to an
undesirable uncertainty overestimation. Research aimed at
overcoming this constraint is underway.
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8 Appendix

8.1 Model of LLs

LLs are modelled by the parallel RL and C branches
connected to ground in Fig. 5. Total admittance to ground
owing to LLs can then be expressed as

y(h) = ỹ(h)p + ỹ(h)m + ỹ(h)c + ỹ(h)filters (30)

where p refers to passive load (linear and non-motor); m
denotes the induction motors; c denotes power factor
correction and cables and filters represents harmonic filters.
Expressions for the admittances in (30) in terms of the
parameters listed in Table 1 will be developed in what follows.

Passive loads: in general, its impedance at fundamental
frequency can be written as

z̃(1)p =
|ṽ(1)|2

s̃∗p
(31)
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where s̃p the complex apparent power because of passive
loads and (∗) indicates the conjugate of a complex number.
Then, writing the apparent power in terms of the active
power and the power factor pfj, the following expression
can easily be obtained.

z̃(1)p =
(|ṽ(1)|pfp)2

ptkp

(1 + j tan(cos−1 (pfp))) (32)

where the active power because of the passive load has been
expressed in terms of the total active bus power pt and the
composition factor of passive loads kp.

Now, in order to model the harmonic behaviour it is
necessary to include the influence of the frequency in
expression (32). Skin effect increases the resistance when
the frequency rises; this phenomenon is usually taken into
account by multiplying the resistance by the factor

p
h, (see

chapter 6 in [20]). On the other hand, the reactance
essentially varies linearly with the frequency, so that it can
be written x(h)p = x(1)ph.

Thus, the harmonic admittance because of the passive load
components will be

ỹ(h)p =
ptKp 1 − j

��
h

√
(tan(cos−1 ( pfp)))

( )
(|ṽ(1)|pfp)2

��
h

√
(1 + h(tan2(cos−1 ( pfp))))

(33)

Induction Motors: even basic models need some information
in addition to the aggregate active power and power factor.
The model implemented is a simple standard model that
assumes a high slip of the rotor at all harmonic orders.
Under this hypothesis, the harmonic inductance of the
induction motors is the locked rotor inductance xLR. In
addition, it is assumed that all motors are operating at full
apparent power, so that their aggregate nominal power can
be expressed as the quotient of the aggregate real power
and the power factor of the aggregate motor load. Under
these assumptions the locked rotor reactance of the
aggregate motor load becomes

xm =
xLRpfm|ṽ(1)|2

ptkm

(34)

Damping effects are considered by including a resistor rm

in series to xm. Typical figure of xm/fm is fqLR � 8 (model 6
in [11]).

The total locked rotor impedance at harmonic frequencies
becomes

z̃(h)m = xm(1/fqLR + j h) (35)

By replacing (34) within (35) inverting, the following
expression for the harmonic admittance because of the
motive load component is obtained

ỹ(h)m = ptkmfqLR

xLRpfm|ṽ(1)|2(1 + h2fq2
LR)

(1 − j(hfqLR)) (36)

More sophisticated models of induction motors [20] could also
be implemented in the general formulation of Section 3.1.
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Capacitive loads: Admittance modelling capacitors for
power factor improvement is

ỹ(h)pfc = j
qc

|ṽ(1)|2
h (37)

Passive filters: Passive filters are commonly associated with
medium- and large-power electronic devices in order to
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provide a low-impedance path for harmonic currents to
avoid their flow into the supply network. Filters are
designed for a single harmonic or for a broad band
depending on requirements and also supply part of the
reactive power consumed by the apparatus. Usually,
configuration and parameters of large harmonic filters are
well known and in the developed methodology they are
assumed as a certain (non-fuzzy) part of the network.
IET Gener. Transm. Distrib., 2011, Vol. 5, Iss. 4, pp. 393–404
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