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Recently, active galactic nuclei (AGN) have been proposed as “standardizable candles,” thanks to an
observed nonlinear relation between their x-ray and optical-ultraviolet (UV) luminosities, which
provides an independent measurement of their distances. In this paper, we use these observables for
the first time to estimate the parameters of fðRÞ gravity models (specifically, the Hu-Sawicki and the
exponential models) together with the cosmological parameters. The importance of these types of
modified gravity theories lies in the fact that they can explain the late time accelerated expansion of the
universe without the inclusion of a dark energy component. We have also included other observable data
to the analyses such as estimates of the Hubble parameter HðzÞ from cosmic chronometers (CCs), the
Pantheon Type Ia (SnIa) supernovae compilation, and baryon acoustic oscillation (BAO) measurements.
The 1σ inferred constraints using all datasets are b ≤ 0.276,Ωm ¼ 0.304þ0.010

−0.011 , andH0 ¼ 67.553þ1.242
−0.936 for

the Hu-Sawicki model, and b ¼ 0.785þ0.409
−0.606 Ωm ¼ 0.305þ0.011

−0.010 andH0 ¼ 68.348þ0.959
−0.760 for the exponential

one, but we stress that for both fðRÞ models results within 2σ are consistent with the Λ cold dark matter
(CDM) model. Our results show that the allowed space parameter is restricted when both AGN and BAO
data are added to CC and SnIa data, with the BAO dataset being the most restrictive one. We can conclude
that both the ΛCDMmodel and small deviations from general relativity given by the fðRÞmodels studied
in this paper are allowed by the considered observational datasets.

DOI: 10.1103/PhysRevD.105.103526

I. INTRODUCTION

The late time accelerated expansion of the Universe is still
one of the most intriguing conundrums that any successful
cosmological model has to explain. In 1998, two international
teams (Riess et al. [1,2] and Perlmutter et al. [3]) showed
independently observational evidence of this phenomena.
Since then, great efforts have been made in order to explain
the physical mechanism responsible for it. In the standard
cosmological model [Λ cold dark matter (ΛCDM)], a
cosmological constant Λ is added to the Einstein equations
of general relativity,

Rμν −
R
2
gμν þ Λgμν ¼ κTμν; ð1Þ

where Rμν is the Riemann tensor, R is the Ricci scalar,
gμν is the metric, κ ¼ 8πG (for c ¼ 1), and Tμν is the

energy-momentum tensor. However, this proposal has
several problems that have been discussed in the literature.
For instance, the observational value of the cosmological
constant Λ does not match the value that is expected from
theoretical estimations by 60–120 orders of magnitude
[4–7]. In this context, alternative cosmological models
have been considered to provide an explanation for the
dynamics of the Universe’s expansion. These models can
be classified into two families [8]: those which incorporate
scalar fields with minimal coupling to gravity and matter
(for example, quintessence or k-essence fields [9,10]) and
those which are based in alternative gravity theories. In the
last group we find theories like Gauss-Bonnet, Horndeski,
and the so-called fðRÞ theories [8,11–14], among many
others. Another motivation for studying alternative cos-
mological models is the Hubble tension. Specifically, the
value of the current Hubble parameter H0 that has been
obtained using cosmic microwave background (CMB)
data and assuming a standard cosmological model [15] is
not in agreement with the one using model-independent*mleize@df.uba.ar

PHYSICAL REVIEW D 105, 103526 (2022)

2470-0010=2022=105(10)=103526(14) 103526-1 © 2022 American Physical Society

https://orcid.org/0000-0002-6438-2285
https://orcid.org/0000-0002-1137-592X
https://orcid.org/0000-0003-2645-9197
https://orcid.org/0000-0002-3565-4771
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.105.103526&domain=pdf&date_stamp=2022-05-19
https://doi.org/10.1103/PhysRevD.105.103526
https://doi.org/10.1103/PhysRevD.105.103526
https://doi.org/10.1103/PhysRevD.105.103526
https://doi.org/10.1103/PhysRevD.105.103526


observations, such as the luminosity from supernovae
Ia [16].1

fðRÞ theories [14], despite originally being proposed by
Starobinsky [19] in the 1980s to describe the inflation
mechanism, have recently become relevant for explaining
the late time accelerated expansion of the Universe. In these
models, the Ricci scalar R on the Einstein-Hilbert action is
replaced by a scalar function of R. Although many fðRÞ
were proposed in the past, the vast majority of them have
been ruled out by theoretical reasons such as antigravity
regimes [20] or by experimental and observational con-
straints such as local gravity tests [14,21,22] and solar
system tests [23–27]. Two models that are still considered
viable are the Hu-Sawicki [28] and the exponential ones
[29–31]. Recently, Desmond and Ferreira [32], by using
morphological indicators in galaxies to constrain the strength
and range of the fifth force, have claimed that the
Hu-Sawicki fðRÞ model can be ruled out. In their method-
ology, they use general relativity (GR)-based mock catalogs
to which the effects of the fðRÞ model are added. However,
the results obtained by superimposing analytical expressions
for the fðRÞ effects to a ΛCDM cosmology are different
from those obtained from a modified-gravity-based simu-
lation, such as those presented in [33].
In Nunes et al. [34] different fðRÞ models (including

the Hu-Sawicki and the exponential models) have been
tested using cosmic chronometers (CCs), baryon acoustic
oscillations (BAOs), joint light curves samples from
supernovae Ia (SnIa), and astrophysical estimates of
H0. Also, Farugia et al. [35] have analyzed the same
fðRÞ models using several of the observational data
mentioned above (but updated) plus redshift space dis-
tortions (RSD) dataset and model-dependent CMB data.
In D’Agostino and Nunes [36,37], the Hu-Sawicki model
has been tested with newer datasets such as gravitational
waves and lensed quasars from the H0LiCOW
Collaboration. In Odintsov et al. [30] a change of variables
to express Friedmann equations for the exponential model
has been proposed, while in Ref. [38] a comparison between
their numerical solution and the latest updates of the
aforementioned observational data has been made. In the
present work, we constrain the Hu-Sawicki and the expo-
nential models using a large set of cosmological observa-
tions, including, for the first time for these models, a recently
released dataset of active galactic nuclei (AGN) compiled
from Lusso et al. [39] and taking the astrophysical param-
eters β, γ, and δ from Li et al. [40]. This dataset together with
SnIa and BAO data has recently been considered by
Bargiacchi et al. [41] to constrain the ΛCDM model as

well as extensions of the latter and to discuss implications for
nonflat cosmological models.
This paper is organized as follows: In Sec. II we briefly

describe the main aspects of the fðRÞ models in the
cosmological context, we recall the modified Friedmann
equations, and we present the fðRÞ models that are
analyzed in this paper. In Sec. III, we describe the
observational data that are used to test the predictions
of the theoretical models. We also explain the statistical
treatment that we have chosen for the AGN data, which is
based on the one proposed in Ref. [40]. In Sec. IV, we
present the results of the statistical analyses. Comparison
with similar works is discussed in Sec. V, while the
conclusions are presented in Sec. VI. Each fðRÞ model
considered in this paper requires a specific change of
variables to solve Friedmann equation. We describe the
details of this procedure the Appendix.

II. THEORETICAL MODELS

The fðRÞ theories refer to a set of gravitational theories
whose Lagrangian is given by a function of the Ricci scalar
R, where each fðRÞ defines a different model. Therefore,
the Einstein-Hilbert action for these theories is

S ¼ 1

2κ

Z
d4x

ffiffiffiffiffiffi
−g

p
fðRÞ þ Sm þ Sr; ð2Þ

where Sm and Sr represent the matter and radiation actions,
respectively. The field equations are obtained by varying
the action S with respect to the metric gμν such that

RμνfR −
1

2
gμνfðRÞ þ ðgμν□ −∇μ∇νÞfR ¼ κTμν; ð3Þ

where fR ¼ df
dR, □ is the d’Alembertian operator, ∇μ is the

covariant derivative, and Tμν is the energy-momentum
tensor.
In this work we assume a spatially flat Friedmann-

Lemaître-Robertson-Walker (FLRW) cosmology, so the
metric is given by

ds2 ¼ −dt2 þ a2ðtÞðdr2 þ r2dΩ2Þ; ð4Þ
where aðtÞ is the scale factor of the Universe and H ¼ _a=a
is the Hubble parameter (the dot represents the derivatives
with respect to the cosmic time). Then, the Ricci scalar can
be written as

R ¼ 6ð2H2 þ _HÞ: ð5Þ

Considering the energy-momentum tensor of a perfect
fluid Tμ

ν ¼ diagð−ρ; P; P; PÞ (where ρ ¼ ρm þ ρr and
P ¼ Pm þ Pr), the field equations (3) become

−3H2 ¼ −
1

fR

�
κρþ RfR − f

2
− 3H _RfRR

�
; ð6aÞ

1There is also no agreement within the scientific community of
the amount of this tension. While some authors claim that there is
a 4-σ tension [16], others claim lower amounts or even no
disagreements [17,18].
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−2 _H ¼ 1

fR
½κðρþ PÞ þ fRRR _R

2 þ ðR̈ −H _RÞfRR�; ð6bÞ

where fRR and fRRR are the second and third derivative
with respect to R, respectively. It has been shown that the
latter equations can be expressed as a set of first-order
equations, which results in a more stable system from the
numerical point of view [30,42]. There are numerous
proposals in this regard. In this article we assume the
change of variables proposed in Ref. [30] for the expo-
nential model and the one used by de la Cruz-Dombriz
et al. [42] for the Hu-Sawicki model. Both settings are
described in the Appendix.
The continuity equations of matter and radiation for a flat

FLRW metric can be expressed as

_ρþ 3Hðρþ PÞ ¼ 0: ð7Þ

At redshifts between 0 ≤ z ≤ 104, considering pressureless
(nonrelativistic) matter and radiation (relativistic particles),
the solution is ρ ¼ ρ0ma−3 þ ρ0ra−4.
Viable fðRÞ models must fulfill some theoretical con-

straints, such as having a positive gravitational constant,
stable cosmological perturbations, and avoiding ghost
states, among many others [28,34,43]. Therefore, to elude
instabilities when curvature becomes too large at high
densities,2 it is necessary that

fR > 0 and fRR > 0; for R ≥ R0; ð8Þ

where R0 is the current value of the Ricci scalar. Moreover,
as discussed previously, a successful cosmological model
must provide an explanation for the late accelerated expan-
sion of the Universe. For this, it is required that fðRÞ →
R − 2Λ when R ≥ R0, where Λ is an effective cosmological
constant. On the other hand, bounds from local tests of
gravity such as solar system and equivalence principle tests
require that a viable fðRÞ model shows a “chameleon like”
mechanism [44–46]. Lastly, the stability of a late time de
Sitter solution must be guaranteed. Consequently,the follow-
ing condition has to be fulfilled:

0 <
RfRR
fR

ðrÞ < 1 at r ¼ −
RfR
f

¼ −2: ð9Þ

Accounting for all these restrictions, the viable models can
be expressed as follows:

fðRÞ ¼ R − 2ΛyðR; bÞ; ð10Þ

with yðR; bÞ a function that quantifies the deviation fromGR
and b the distortion parameter that quantifies the effect of
that deviation.
As a consequence of the restrictions described above,

the behavior of these fðRÞ models tends asymptotically to
the one of the ΛCDM at large redshifts (z ≥ 104), when the
curvature R also becomes large [28,30,43,47]. However,
the late time evolution of these theories differs from
ΛCDM. Hence, if Ωi ¼ κρ0i =3H0

2 is the current critical
density, where H0 and ρ0i refer to the current values of the
Hubble parameter and density ρi, these quantities (Ωi and
H0) defined in fðRÞ models will be different from the
same quantities defined in the ΛCDM model. Still, all
these quantities are related through the physical matter
density [28],

ΩmH0
2 ¼ ΩΛCDM

m ðH0
ΛCDMÞ2 ¼ κ

3
ρ0m: ð11Þ

Besides, for the ΛCDM model it holds that

ΩΛCDM
m þ ΩΛCDM

Λ ¼ 1; ð12Þ

where ΩΛCDM
Λ ¼ Λ=3ðHΛCDM

0 Þ2. It should be noted that
the systems of differential equations that we use in this
paper are written in terms of ΩΛCDM

m andHΛCDM
0 , while the

results of the statistical analyses will be reported in terms
of the corresponding parameters defined in fðRÞ models.
Equations (11) and (12) will be useful to establish the
initial conditions of the Friedmann equations. For this, the
main assumption is that at high redshift the behavior of
HðzÞ in the ΛCDM and fðRÞmodels is the same. Since the
observational data used in this work are at redshifts z < 8,
the radiation terms can be neglected.
Next, we present the two fðRÞ models analyzed in

this paper:
(1) The exponential fðRÞ model was proposed by Cog-

nola et al. [29] and further discussed in [30,31,48],
among many others. In this model, the proposed fðRÞ
function can be expressed as

fðRÞ ¼ R − 2Λð1 − e−
R
ΛbÞ; ð13Þ

where b and Λ are the free parameters of the model.
(2) The currently known Hu and Sawicki model was

developed by these authors in 2007 [28]. The
proposed fðRÞ function can be expressed as

fðRÞ ¼ R −
c1RHSðR=RHSÞn
c2ðR=RHSÞn þ 1

; ð14Þ

where c1, c2, RHS, and n represent the free parameters
of the model. It is possible to rewrite the above
expression as the one proposed in Eq. (10),

2Other requirements that are usually asked to ensure stability in
scenarios with large curvatures are limR→0fðRÞ − R ¼ 0 and
limR→∞fðRÞ − R ¼ constant.
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fðRÞ ¼ R − 2Λ
�
1 −

1

1þ ð R
ΛbÞn

�
ð15Þ

with Λ ¼ c1RHS=2c2 and b ¼ 2c1−1=n2 =c1. It is easy
to see that, when b → 0, the model reduces to a
ΛCDM cosmology; fðRÞ → R − 2Λ. In this work,
we will restrict ourselves to analyze only the case
when n ¼ 1.

Finally, as mentioned above, the system of equations that we
choose to solve to obtain HðzÞ in each model as well as the
initial conditions and the details of dealing with numerical
instabilities will be described later in the Appendix.

III. OBSERVATIONAL DATA

In this section, we present the datasets that we use to
determine the values of the fðRÞ parameters that best fit the
different cosmological observations.

A. Cosmic chronometers

The CC is a method developed by Simon et al. [49] that
allows one to determine the Hubble parameter HðzÞ from
the study of the differential age evolution of old elliptical
passive-evolving3 galaxies that formed at the same time but
are separated by a small redshift interval. The method relies
on computing the Hubble factor HðzÞ from the following
expression:

HðzÞ ¼ −1
1þ z

dz
dt

; ð16Þ

where dz=dt can be calculated from the ratio Δz=Δt and Δ
refers to the difference between the two galaxies whose
properties have been described above.
The galaxies chosen for this method were formed early

in the Universe, at high redshift (z > 2 − 3), with large
mass (Mstars > 1011 M⊙), and their stellar production has
been inactive since then. Hence, by observing the same
type of galaxies at late cosmic time, stellar age evolution
can be used as a clock synchronized with cosmic time
evolution. On the other hand, dz is determined by spectro-
scopic surveys with high precision. The goodness of this
method lies in the fact that the measurement of relative ages
dt eliminates the systematic effects present in the deter-
mination of absolute ages. Furthermore, dt is independent
of the cosmological model since it only depends on atomic
physics and not on the integrated distance along the line of
sight (redshift).
For this work, we use the most precise available

estimates of HðzÞ, which are summarized in Table I.

B. Supernovae type Ia

Type Ia supernovae are one of the most luminous events
in the Universe and are considered as standard candles due
to the homogeneity of both its spectra and light curves. As
we will explain below, the distance modulus μ can be
determined from the SnIa data, and alternatively, it can also
be described as

μ ¼ 25þ 5 log10ðdLðzÞÞ; ð17Þ

where dL the luminosity distance

dLðzÞ ¼ ð1þ zÞ
Z

z

0

dz0

Hðz0Þ : ð18Þ

Since the previous expression shows how this last magni-
tude depends on both the redshift z and the cosmological
model [via HðzÞ], it is possible to compare the distance
modulus predicted by the theories with the estimates from
observations.

TABLE I. HðzÞ estimates from the cosmic chronometers. Each
column stands for the redshift of the measurement, theHðzÞmean
value (and its standard deviation), and reference, respectively.

z HðzÞ ðkm s−1 Mpc−1Þ Reference

0.09 69� 12
0.17 83� 8
0.27 77� 14
0.4 95� 17
0.9 117� 23 [49]
1.3 168� 17
1.43 177� 18
1.53 140� 14
1.75 202� 40
0.48 97� 62 [50]
0.88 90� 40
0.1791 75� 4
0.1993 75� 5
0.3519 83� 14
0.5929 104� 13 [51]
0.6797 92� 8
0.7812 105� 12
0.8754 125� 17
1.037 154� 20
0.07 69� 19.6
0.12 68.6� 26.2 [52]
0.2 72.9� 29.6
0.28 88.8� 36.6
1.363 160� 33.6 [53]
1.965 186.5� 50.4
0.3802 83� 13.5
0.4004 77� 10.2
0.4247 87.1� 11.2 [54]
0.4497 92.8� 12.9
0.4783 80.9� 9

3Passive evolving means that there is no star formation or
interaction with other galaxies.
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In this case, we are considering 1048 SnIa at redshifts
between 0.01 < z < 2.3 from the Pantheon compilation
[55]. For this compilation, the observed distance modulus
estimator is expressed as

μ ¼ mB −M þ αx1 þ βcþ ΔM þ ΔB; ð19Þ

with mB being an overall flux normalization, x1 the
deviation from the average light-curve shape, and c the
mean SnIa B-V color index.4 Meanwhile, M refers to the
absolute B-band magnitude of a fiducial SnIa with x1 ¼ 0
and c ¼ 0, and ΔB refers to a distance correction based on
predicted biases from simulations. Coefficients α and β
define the relations between luminosity and stretch and
between luminosity and color, respectively.
On the other hand, ΔM represent a distance correction

based on the mass of the SnIa’s host galaxy. For this SnIa
compilation, it is obtained from

ΔM ¼ γ × ½1þ eð−ðm−mstepÞ=τÞ�−1; ð20Þ

wheremstep is a mass step for the split, γ is a relative offset in
luminosity, andm is the mass of the host galaxy. Parameter τ
symbolizes an exponential transition term in a Fermi
function that defines the relative probability of masses to
be on one side or the other of the split. Both mstep and τ are
derived from different host galaxies samples (for details, see
[55]). Finally, coefficients α, β, M, and γ are the so-called
nuisance parameters of the SnIa.
These parameters are usually determined through a stat-

istical analysis with supernovae data where a ΛCDM model
is assumed. In particular Scolnic et al. obtain for the Pantheon
sample [55] the following values: α ¼ 0.0154� 0.006,
β ¼ 3.02� 0.06, and γ ¼ 0.053� 0.009. To verify these
values, we have assumed the Hu-Sawicki model and per-
formed a statistical analysis with the same dataset allowing
both the nuisance and the model parameters to vary.5 Our
estimated nuisance parameters are consistent with those
computed by the Pantheon compilation within 1σ. This
agreement has been also obtained in a similar analysis carried
out assuming another alternative theory of gravity [57] and in
[55] where extensions of the ΛCDM models were assumed.
All those mentioned analyses confirm that the value of the
nuisance parameters are independent of the cosmological
model. Therefore, in all statistical analyses reported in
Sec. IV we fix the nuisance parameters to the values
published by the Pantheon compilation.

C. Baryon acoustic oscillations

Before the recombination epoch, photons and electrons
were coupled through Thomson scattering, generating
sound waves in the primordial plasma. Once the temper-
ature of the Universe has dropped sufficiently as for neutral
hydrogen to form, matter and radiation decouples, and the
acoustic oscillations are frozen, leaving an imprint both in
the cosmic microwave background and in the distribution
of matter at large scales. The maximum distance that the
acoustic wave could travel in the plasma before decoupling
defines a characteristic scale, named the sound horizon at
the drag epoch rd. Hence, BAOs provide a standard ruler to
measure cosmological distances. Several tracers of the
underlying matter density field provide different probes
to measure distances at different redshifts.
The BAO signal along the line of sight directly con-

strains the Hubble constant HðzÞ at different redshifts.
When measured in a redshift shell, it constrains the angular
diameter distance DAðzÞ,

DAðzÞ ¼
1

ð1þ zÞ
Z

z

0

dz0

Hðz0Þ : ð21Þ

To separate DAðzÞ and HðzÞ, BAOs should be measured in
the anisotropic 2D correlation function, for which
extremely large volumes are necessary. If this is not the
case, a combination of both quantities can be measured as

DVðzÞ ¼
�
ð1þ zÞ2D2

AðzÞ
z

HðzÞ
�
1=3

: ð22Þ

Currently, there are many precise measurements of
BAOs obtained using different observational probes. In
general, a fiducial cosmology is needed in order to measure
the BAO scale from the clustering of galaxies or any other
tracer of the matter density field. It is known that the
standard BAO analysis gives model-independent results,
and that it can be used to perform cosmological parameter
inference to constrain exotic models. In particular, Bernal
et al. [58] have demonstrated the robustness of the standard
BAO analysis when studying models whose extensions to
the ΛCDM model may introduce contributions not cap-
tured by the template used. They have found no significant
bias in the BAO analysis for the exotic models they studied.
The distance constraints presented in Table II include
information about rfidd , which is the sound horizon at the
drag epoch computed for the fiducial cosmology.
Here we describe the observations used in this work. In

Ross et al. [59], the main spectroscopic sample of Sloan
Digital Sky Survey data release 7 (SDSS-DR7) galaxies is
used to compute the large-scale correlation function at
zeff ¼ 0.15. The nonlinearities at the BAO scale are
alleviated using a reconstruction method. The first year
data release of the Dark Energy Survey [62] measured the
angular diameter distance DA=rd at zeff ¼ 0.81, from the

4ParametersmB, x1, and c are determined from a fit between a
model of the spectral sequence SnIa and the photometric data
(for details, see [55]).

5Given the strong degeneracies between the parameters when
only SnIa data are used, we have considered a fixed value for H0

(we have analyzed two cases: one with H0 ¼ 67.4 km s−1 Mpc−1

[15] and another one with H0 ¼ 73.5 km s−1 Mpc−1 [56]).
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projected two point correlation function of a sample of
1.3 × 106 galaxies with photometric redshifts, in an area of
1336 deg2. The final galaxy clustering data release of the
Baryon Oscillation Spectroscopic Survey [63] provides
measurements of the comoving angular diameter distance
DM=rd [related with the physical angular diameter distance
by DMðzÞ ¼ ð1þ zÞDAðzÞ] and Hubble parameter Hrd
from the BAO method after applying a reconstruction
method, for three partially overlapping redshift slices
centered at effective redshifts 0.38, 0.51, and 0.61.
Measurements of DV=rd at effective redshifts of 0.44,
0.6, and 0.73 are provided by the WiggleZ Dark Energy
Survey [60]. With a sample of 147,000 quasars from the
extended Baryon Oscillation Spectroscopic Survey
(eBOSS) [61] distributed over 2044 square degrees with
redshifts 0.8 < z < 2.2, a measurement of DV=rd at zeff ¼
1.52 is provided. The BAO can be also determined from the
flux-transmission correlations in Lyα forests in the spectra
of 157,783 quasars in the redshift range 2.1 < z < 3.5 from
the SDSS-DR12 [66]. Measurements of DM=rd and the
Hubble distance DH=rd [defined as DH ¼ c=HðzÞ] at
zeff ¼ 2.33 are provided. From the cross-correlation of
quasars with the Lyα-forest flux transmission of the final
data release of the SDSS-III [67], a measurement ofDM=rd
and DH=rd at zeff ¼ 2.4 can be obtained. From the
anisotropic power spectrum of the final quasar sample of
the SDSS-IVeBOSS survey [65], measurements forDM=rd
and DH=rd at zeff ¼ 1.48 are obtained. The analysis in the

configuration space of the anisotropic clustering of the final
sample of luminous red galaxies from the SDSS-IVeBOSS
survey [64] gives constraints on DM=rd and DH=rd
at zeff ¼ 0.698.

D. Quasar x-ray and UV fluxes

Quasars are among the most luminous sources in the
Universe. Besides, they are observable at very high
redshift and therefore they are regarded as promising
cosmological probes. In the last years, the observed
relation between the ultraviolet and x-ray emission in
quasars has been used to develop a new method to convert
quasars into standardizable candles [39,68,69]. In this
work, we will use the recent compilation provided by
Risaliti and co-workers [39] of x-ray and UV flux
measurements of 2421 quasars quasi-stellar object
(QSOs/AGN) which span the redshift range 0.009 ≤ z ≤
7.5413 to test the cosmological models based in alter-
native theories of gravity described in Sec. II. The relation
between the quasar UV and x-ray luminosities can be
described by the following equation:

logLX ¼ γ logLUV þ β1; ð23Þ

where LX and LUV refer to the rest-frame monochromatic
luminosities at 2 keV and 2500 Å, respectively. The
constants γ and β1 are determined with observational data
and should be independent of redshift in order to assure the
robustness of the method [39,68,69]. It was pointed out in
[39] that there is a strong correlation between the parameters
involved in the quasar luminosity relation and cosmological
distances; therefore, in order to test cosmological models,
luminosity distances obtained from quasar fluxes should be
cross-calibrated previously using, for example, data from
type Ia supernovae. In this work, we use the calibration
method proposed by Li et al. [40] which uses a Gaussian
process regression to reconstruct the expansion history of the
Universe from the latest type Ia supernova observations.6

Next, we will briefly describe how this method, which is
almost model independent, is implemented. Equation (23)
can be expressed in terms of the UV and x-ray fluxes as
follows:

logFX ¼ γ logFUV þ 2ðγ − 1Þ logðdLH0Þ þ β; ð24Þ

where dL refers to the luminosity distance and β¼β1þ
ðγ−1Þlog4π−2ðγ−1ÞlogH0.

7 From Eq. (24), the quantity
logFSN

X can be defined and computed, using quasar mea-
surements of FUV, while the quantity dLH0 is obtained from

TABLE II. Distance constraints from BAO measurements of
different observational probes. The table shows the redshift
of the measurement, the mean value, and standard deviation of
the observable, the observable that is measured in each case and
the corresponding reference.

zeff Value Observable Reference

0.15 4.473� 0.159 DV=rd [59]
0.44 11.548� 0.559 DV=rd
0.6 14.946� 0.680 DV=rd [60]
0.73 16.931� 0.579 DV=rd
1.52 26.005� 0.995 DV=rd [61]
0.81 10.75� 0.43 DA=rd [62]
0.38 10.272� 0.135� 0.074 DM=rd
0.51 13.378� 0.156� 0.095 DM=rd [63]
0.61 15.449� 0.189� 0.108 DM=rd
0.698 17.65� 0.3 DM=rd [64]
1.48 30.21� 0.79 DM=rd [65]
2.3 37.77� 2.13 DM=rd [66]
2.4 36.6� 1.2 DM=rd [67]
0.698 19.77� 0.47 DH=rd [64]
1.48 13.23� 0.47 DH=rd [65]
2.3 9.07� 0.31 DH=rd [66]
2.4 8.94� 0.22 DH=rd [67]
0.38 12044.07� 251.226� 133.002 Hrd ð km=sÞ
0.51 13374.09� 251.226� 147.78 Hrd ð km=sÞ [63]
0.61 14378.994� 266.004� 162.558 Hrd ð km=sÞ

6Within the Gaussian process, a theoretical model is assumed
but it has been discussed in [40] that the results are independent
from this choice.

7It should be stressed that the parameter β defined here is
different from the one defined in Refs. [39,69].
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a Gaussian process regression method with the latest SnIa
data [40]. Furthermore, the following likelihood is assumed:

lnL ¼ −
1

2

X
i

�
log ðFXðγ; βÞÞSNi − log ðFXÞQSOi

s2i

�
þ ln s2i ;

ð25Þ

where s2i ¼ σ2logFX
þ γ2σ2logFUV

þ δ2 and δ is an intrinsic
dispersion that is introduced to alleviate the Eddington bias
[39,69]. In such way, considering the x-ray fluxes from
quasar data (logFQSO

X ), Li et al. [40] obtained γ, β, and δ in a
model-independent way. Their results are consistent within
1σ with the ones obtained in [39] using Eq. (24). Moreover,
the independence of the LX − LUV relation with redshift has
been analyzed in previous works [39,68,69]. In such way, we
will test the cosmological models defined in Sec. II, using the
following likelihood and assuming the values of γ and β
obtained in [40] (γ ¼ 0.648� 0.007, β ¼ 7.730� 0.244)8:

lnL ¼ −
1

2

X
i

½logðdLH0ðθÞÞTHi − logðdlH0ÞQSOi �2
σ2logðdLH0Þ

; ð26Þ

where θ¼ ðΩΛCDM
m ;HΛCDM

0 ; bÞ, logðdLH0ðθÞÞTH refers to
the theoretical prediction of the luminosity distance,
logðdLH0ÞQSOi is calculated from Eq. (24), and

σ2logðdLH0Þ ¼
σ2FX

þ γ2σ2FUV
þ σ2β

½2ðγ − 1Þ�2

þ ðβ þ logFUV − logFXÞ2σ2γ
½2ðγ − 1Þ2�2 : ð27Þ

On the other hand, it has been argued recently that some
of the subsamples of the dataset provided in [39] are not
standardizable and have model and/or redshift dependence
[71–73]. First of all, the analysis used to reach such a
conclusion does not include any previous cross-calibration
with supernovae data. It should also be noted that the most
important differences in the values of γ and β obtained in
these works are for models with different geometries, i.e,
flat and nonflat models. Moreover, the present work is
restricted to flat fðRÞ models. Furthermore, these analyses
intend to constrain Ωm and H0 at the same time and it is
well known that this cannot be done when using only data
with information about the luminosity distances.

IV. RESULTS

In this section we present the results of our statistical
analysis for both models: Hu-Sawicki with n ¼ 1 (HS) and
the exponential fðRÞ (EM). As we have described in
Sec. II, the free parameters of these models are the
distortion parameter b, the mass density Ωm, and the
Hubble parameter H0. To do the statistical analysis, we
use a Markov chain Monte Carlo method and the obser-
vational data described in Sec. III. In cases where the SnIa
observational data are used, Mabs is also set as a free
parameter. The priors used in this work are H0 ∈ ½60; 80�,
Ωm ∈ ½0.01; 0.4�, Mabs ∈ ½−22;−18�, and b ∈ ½0; 5� for
EM, while for HS b ∈ ½0; 2�. To perform the numerical
integration and the statistical analyses, we developed our
own PYTHON code which uses SCIPY [74] and EMCEE [75]
PYTHON libraries and is publicly available in a GitHub
repository[76].
Table III and Fig. 1 show the results for the two fðRÞ

models detailed in Sec. II and the datasets described in
Sec. III. Furthermore, we include the results for the ΛCDM
model for comparison.

A. The Hu-Sawicki model

We emphasise that when the AGN or BAO data are
added to the CCþ SnIa analysis, the allowed parameter
space is considerably reduced. We note that the BAO
dataset is much more restrictive than AGN. Nevertheless,
the constraining power of AGN is clearly seen. Besides, the
AGN data shift the fitted value of Ωm to larger values (this
fact has been already mentioned in [40] for the ΛCDM
model) and the estimated H0 to lower values. We also
notice that the shift on Ωm (to larger values) and H0 (to
lower values) is much more pronounced for AGN than
for BAO.
Regarding the relation between b and H0, we mention

that BAO data constrain the parameter space in such a way
that there is a negative correlation between them. Besides, it
follows from Fig. 1 that Ωm and b show degeneracies when
CC and SnIa are considered and also where the AGN data
are added to the latter. We also remark that BAO reduces the
allowed region of Ωm considerably. Moreover, we note that
the correlation between Ωm and H0 changes sign when
BAO data are used, independent of whether the AGN data
are used or not.
Lastly, for all datasets detailed in Table III, the b values

presented are consistent with zero (ΛCDM prediction)
within 1σ, except for the case where CC, SnIa, and
BAO data were used together, in which the concordance
is given at 2σ. The rest of the estimated free parameters are
in agreement with those obtained for the ΛCDM model.

B. The exponential model

We note that the behavior of this model is very similar to
the Hu-Sawicki one regarding the constraining power of the

8It should be noted that the considered value of γ is in
agreement with the one obtained in Ref. [41,70], where also
the AGN, SnIa, and BAO datasets are used and extensions of
the ΛCDM cosmological models are considered. However, in the
statistical analyses of Ref. [41] γ is free to vary together with the
cosmological parameters. Regarding the parameter β, there is not
a fair comparison to be made since the parameter β in Ref. [41]
refers to the parameter β1 in Eq. (23) and it is necessary to fix the
value of H0 to relate both parameters.
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BAO and AGN datasets. In fact, the constraints on Ωm, b,
and H0 are considerably reduced when either dataset is
included in the analysis, BAO being the most restrictive
one. Also, we note that the values of Ωm and H0 are also
shifted when the AGN dataset is added in the same way
described previously for the HS model.

As regards the correlation between parameters, there is
no clear relation between b and H0 and the same is
observed for the case of b and Ωm. Conversely, the
inclusion of BAO data makes the correlation between
Ωm and H0 to change sign, the same effect we have
already discussed for the HS model.

TABLE III. Results from statistical analysis using data from CCs, luminosity distances reported by Pantheon Collaboration (SnIa),
AGN UVand x-ray luminosities, and several datasets from cosmological distances of BAOs. For each parameter, we present the mean
value and the 68% (95%) confidence levels or the upper limits obtained.

Mabs Ωm b H0

ΛCDM CCþ SnIa −19.379þ0.056ð0.109Þ
−0.053ð0.104Þ 0.301þ0.019ð0.041Þ

−0.022ð0.038Þ
� � � 69.034þ1.687ð3.629Þ

−2.000ð3.648Þ
CCþ SnIaþ AGN −19.407þ0.058ð0.103Þ

−0.049ð0.107Þ 0.327þ0.016ð0.034Þ
−0.019ð0.036Þ

� � � 67.813þ1.728ð3.399Þ
−1.775ð3.465Þ

CCþ SnIaþ BAO −19.395þ0.024ð0.051Þ
−0.025ð0.049Þ 0.297þ0.010ð0.021Þ

−0.011ð0.021Þ
� � � 68.564þ0.689ð1.411Þ

−0.722ð1.428Þ
CCþ SnIaþ BAOþ AGN −19.384þ0.025ð0.048Þ

−0.025ð0.051Þ 0.306þ0.010ð0.020Þ
−0.011ð0.019Þ

� � � 68.786þ0.729ð1.469Þ
−0.729ð1.404Þ

HS CCþ SnIa −19.374þ0.054ð0.103Þ
−0.051ð0.105Þ 0.269þ0.036ð0.059Þ

−0.028ð0.062Þ
≤ 0.623ð1.348Þ 69.004þ1.746ð3.482Þ

−1.837ð3.602Þ
CCþ SnIaþ AGN −19.409þ0.052ð0.105Þ

−0.052ð0.100Þ 0.322þ0.018ð0.037Þ
−0.018ð0.035Þ

≤ 0.150ð0.398Þ 67.622þ1.656ð3.344Þ
−1.751ð3.403Þ

CCþ SnIaþ BAO −19.436þ0.037ð0.066Þ
−0.032ð0.071Þ 0.292þ0.012ð0.022Þ

−0.011ð0.022Þ 0.294þ0.084ð0.400Þ
−0.269ð0.294Þ 66.950þ1.389ð2.247Þ

−1.041ð2.436Þ
CCþ SnIaþ BAOþ AGN −19.414þ0.034ð0.060Þ

−0.029ð0.064Þ 0.304þ0.010ð0.020Þ
−0.011ð0.021Þ

≤ 0.276ð0.583Þ 67.553þ1.242ð2.029Þ
−0.936ð2.255Þ

EM CCþ SnIa −19.376þ0.055ð0.108Þ
−0.054ð0.109Þ 0.293þ0.025ð0.049Þ

−0.022ð0.051Þ
≤ 1.102ð2.015Þ 68.998þ1.880ð3.705Þ

−1.850ð3.621Þ
CCþ SnIaþ AGN −19.403þ0.055ð0.104Þ

−0.052ð0.105Þ 0.324þ0.019ð0.038Þ
−0.019ð0.037Þ

≤ 0.749ð1.272Þ 67.903þ1.699ð3.410Þ
−1.789ð3.434Þ

CCþ SnIaþ BAO −19.405þ0.031ð0.055Þ
−0.025ð0.056Þ 0.298þ0.011ð0.022Þ

−0.011ð0.021Þ
≤ 1.155ð1.928Þ 68.011þ1.136ð1.833Þ

−0.777ð2.079Þ
CCþ SnIaþ BAOþ AGN −19.393þ0.028ð0.053Þ

−0.026ð0.055Þ 0.305þ0.011ð0.020Þ
−0.010ð0.021Þ 0.785þ0.409ð0.760Þ

−0.606ð0.785Þ 68.348þ0.959ð1.704Þ
−0.760ð1.771Þ

FIG. 1. Results of the statistical analysis for the fðRÞ Hu-Sawicki model (left) and the exponential model (right). The darker and
brighter regions correspond to 65% and 95% confidence regions, respectively. The plots in the diagonal show the posterior probability
density for each of the free parameters of the model.
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On the other hand, we point out that the obtained intervals
for the distortion parameter b are larger than the ones of
the Hu-Sawicki model. This is expected since it is necessary
a bigger change on b (in EM) to notice a difference with the
ΛCDM model predictions. Furthermore, the constraints on
H0 and Ωm are in agreement with those obtained for ΛCDM
model for all statistical analyses carried out in this paper.
Besides, the estimated b constraints are consistent at 1σ with
the ΛCDM model (b ¼ 0), except for the case where the
CCþ SnIaþ BAOþ AGN data were used; for the latter the
consistency is within 2σ.
Figure 2 shows that the allowed parameter space for Ωm

andH0 is enlarged with respect of the ΛCDM case and also
the sign of the correlation changes when either the HS or
the exponential model are considered. Finally, we also note
that the parameter spaces obtained for the Hu-Sawicki and

the exponential fðRÞ models are compatible at 1σ in all the
studied cases.

V. DISCUSSION

Here we compare our results shown in the previous
section with others that have already been published by
other authors for the same fðRÞmodels using the same and/
or similar datasets ([35,37] for HS and [35,38] for EM). We
show in Fig. 3 a comparison of our results with the ones
obtained by other authors for the Hu-Sawicki model and the
same is done in Fig. 4 for the exponential model.
Our parameter estimates for the Hu-Sawicki model using

CCþ SnIa data are 1σ consistent with the ones published in
[37] for the same data compilations. The b values reported in
there are slightly smaller at 1σ and smaller at 2σ than ours.
These differences are due to the fact that, in that work, the
authors only use the series expansion proposed by Basilakos
et al. [78] to obtain an expression for HðzÞ [79], while we
use the combination of methods explained in Sec. B of the
Appendix. That series expansion only allows them to
explore a small range of b values (b < 1) which does not
deviate much from the ΛCDM prediction; this does not
happen in our analysis, where the parameter space to be
examined is much larger. Furthermore, in that article another
statistical analysis is performed incorporating data from six
systems of strongly lensed quasars analyzed by the
H0LiCOW Collaboration [77] to the data mentioned before
(CCþ SnIa). Comparing the results of this analysis with our
own, it is noticed that (i) the ranges of H0 are in agreement
within 2σ except for our study of CCþ SnIaþ BAO and
CCþ SnIaþ BAOþ AGN; (ii) the Ωm intervals are con-
sistent at 1σ except for our CCþ SnIaþ AGN analysis,
where they are consistent at 2σ; and (iii) all the b ranges are
compatible at 1σ. Another interesting result to compare with
is the one published by Farugia et al. [35]. Although their
results are in agreement with ours with 1σ, their estimated
range of b values is very small (of the order 10−4). They use
the same data compilations as we do for CC and SnIa but our
BAO dataset is different, plus they add data from RSD and

FIG. 2. Results for the matter density Ωm and the Hubble
parameter H0 using all the datasets (CCþ SnIaþ BAOþ
AGN). The plots show the 68% and 95% confidence region
together with the posterior probability density for each parameter
obtained for the two fðRÞmodels considered in this paper and the
ΛCDM model.

FIG. 3. Constraints on the free parameters of the Hu-Sawicki model. Comparison between the 1σ confidence intervals obtained in this
work and the ones reported by other authors.

TESTING fðRÞ GRAVITY MODELS WITH QUASAR X-RAY … PHYS. REV. D 105, 103526 (2022)

103526-9



CMB. It should be noted that the CMB data used in [35]
refer to the acoustic scale lA, the shift parameter R, and the
current baryon density ωb ¼ Ωbh2. However, these observ-
ables are obtained through a statistical analysis where a
ΛCDMmodel is assumed. Therefore, in our opinion, it is not
correct to use these data to constrain alternative cosmological
models.
On the other hand, the estimates we have obtained for the

parameters of the exponential fðRÞ model using CC and
SnIa data are consistent at 1σ with the values of Ωm and H0

reported in [38] for the same dataset. However, in that paper,
the b interval is not reported, but it is for an associate
quantity β ¼ 2=b. In order to compare it with our predic-
tions, we tried to construct the posterior distribution for β
based on our distribution for b. Since the results are located
near b ¼ 0, the distribution for β tends to infinity on the
ranges of interest (as it is noticed in that article), so it cannot
be sampled correctly. These authors also perform statistical
tests using data from HBAO (a BAO dataset different than
ours) and CMB, which both further restrict the parameter
space. Their estimates using CCþ SnIaþHBAO are com-
patible with ours (for CCþ SnIaþ BAO dataset) at 1σ,
while their predictions using CCþ SnIaþHBAO þ CMB
are consistent with ours (using CCþ SnIaþ BAOþ AGN)
within 1σ only for the H0 intervals, since the CMB data
greatly reduce the Ωm interval. Finally, in article [35] a
statistical analysis is also performed for the exponential
model using the CCþ SnIaþ BAO2 þ RSDþ CMB data
(BAO2 is a BAO dataset different than ours), whose results
are consistent within 1σ with ours (using CCþ SnIaþ
BAOþ AGN) but their parameter intervals are narrower
than ours. It should not be overlooked that the CMB data
used in both papers [35,38] are biased as explained above.
Finally, from all the statistical analyses that have been
performed in this paper, it is noted that, for the models
studied here, the estimatedH0 parameters are consistent with
the latest result reported by the Planck Collaboration [15]
within 1σ but not with the ones published by Riess et al.

([16,56]). Besides, the obtained Ωm confidence intervals
are consistent with the ones obtained by the Planck
Collaboration [15] within 1σ except for our CCþ SnIa
and CCþ SnIaþ BAOþ AGN analyses with the Hu-
Sawicki model, where the agreement is within 2σ.

VI. CONCLUSIONS

In this article we have analyzed two fðRÞmodels (HS and
EM) in a cosmological context. For this, we have solved the
corresponding Friedmann equations and we have performed
statistical analyses considering recent datasets from SnIa,
BAO, AGN, and CC in order to constrain the free parameters
of the models. The originality of this work lies in the use of
AGN (not previously used for these particular theories) as
standard candles to put bounds to the proposed models and
the inclusion of the latest BAO data from the eBOSS
Collaboration (2020). Furthermore, we have previously
verified the consistency between the SnIa nuisance param-
eters published by the Pantheon Collaboration assuming a
ΛCDM cosmological model and those estimated from the
fðRÞ models studied here.
Our results show that, although AGN narrow down the

parameter space of cosmological models more than the
SnIa and CC data, the baryon acoustic oscillation data
continue to be the most restrictive ones. On the other
hand, all our estimates for the different combinations of
datasets are in accordance within 2σ with the values
reported by other authors for the same cosmological
models but with different datasets. Moreover, we have
found that the H0 estimates are consistent with the value
reported by the Planck Collaboration. The 1σ obtained
constraints when using the CCþ SnIaþ BAOþ AGN
dataset for the Hu-Sawicki model are b ≤ 0.276,
Ωm ¼ 0.304þ0.010

−0.011 , and H0 ¼ 67.553þ1.242
−0.936 , and for the

exponential model, b ¼ 0.785þ0.409
−0.606 , Ωm ¼ 0.305þ0.011

−0.010 ,
and H0 ¼ 68.348þ0.959

−0.760 . We stress that results within 2σ
are in agreement with the ΛCDM model.

FIG. 4. Constraints on the free parameters of the exponential model. Comparison between the 1σ confidence intervals obtained in this
work and the ones reported by other authors.
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In summary, we have analyzed the Hu-Sawicki and the
exponential fðRÞ predictions with different and new data-
sets. Moreover, although the b estimates are in agreement
with the ΛCDM prediction at 2σ, the allowed region of the
parameter space leads us to conclude that both HS and
exponential fðRÞ models are not yet ruled out by current
data to explain the late time accelerated expansion of the
Universe.
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APPENDIX: SOLVING THE FRIEDMANN
EQUATIONS

In general, the Friedmann equations (6) are not easy to
solve. In fact, it is a usual procedure to resolve them
numerically. For this reason, it is desirable to improve the
system stability and to speed up the computation time by
choosing an appropriate parametrization for each model. In
the following, we provide details of the numerical inte-
gration in each case including the initial conditions and the
way of dealing with numerical instabilities.

1. The exponential model

For the exponential model, it is very useful to express the
Friedmann equations in terms of a new set of variables as
follows [30]:

dH
dx

¼ R
6H

− 2H; ðA1aÞ

dR
dx

¼ 1

fRR

�
κρ

3H2
− fR þ RfR − f

6H2

�
; ðA1bÞ

dρ
dx

¼ −3ðρþ PÞ: ðA1cÞ

Here x ¼ loga ¼ − logðzþ 1Þ is the number of e-folds,
with aðt0Þ ¼ 1 at the present time t0. Using the following
dimensionless change of variables,

E ¼ H
H0

ΛCDM ; R ¼ R
2Λ

; ðA2Þ

the field equations are expressed in terms of the parameters
ΩΛCDM

m , ΩΛCDM
Λ , and H0

ΛCDM as

dE
dx

¼ ΩΛCDM
Λ

R
E
− 2E; ðA3aÞ

dR
dx

¼ 2Λ
fRR

�
ΩΛCDM

m
a−3 þ XΛCDMa−4

E2

−
fR
2Λ

þ RfR − f
6ðHΛCDM

0 Þ2E2

�
; ðA3bÞ

where XΛCDM ¼ ΩΛCDM
r =ΩΛCDM

m , and fR and fRR are the
first and second derivativewith respect toR. This system of
equations is solved numerically by establishing appropriate
initial conditions.
It has been already discussed that there are two situations

in which the behavior of the model tends asymptotically to
the ΛCDM solution: (i) high redshifts (large curvature) and
(ii) b → 0. Therefore, to perform the numerical integration
we can assume initial conditions that match the ΛCDM
model at a redshift zi [xi ¼ − logðzi þ 1Þ], i.e.,

E2ðxiÞ ¼ ΩΛCDM
m ðe−3xi þ XΛCDMe−4xiÞ þ ΩΛCDM

Λ ; ðA4aÞ

RðxiÞ ¼ 2þ ΩΛCDM
m

2ΩΛCDM
Λ

e−3xi : ðA4bÞ

In order to determine zi, we assume that fðRðziÞÞ≃
R − 2Λ. This condition can be expressed as follows [30]:

e−
RðziÞ
Λb ≃ ϵ ¼ 10−10: ðA5Þ

In turn, this implies

zi ¼
�
ΩΛb
Ωm

�
ln ϵ−1 −

4

b

��
1=3

− 1: ðA6Þ

Thus, when z > zi we consider the solution of the expo-
nential model as the ΛCDM one and when z < zi the
prediction of the model is calculated from the numerical
integration of Eqs. (A3a) and (A3b).

2. Hu-Sawicki model

For this model, the numerical integration of HðzÞ
performed with the change of variables proposed in [30]
is much more computationally expensive than the one
accomplished with the proposal of de la Cruz-Dombriz
et al. [42].9 Consequently, we implement the latter such that

x ¼
_RfRR
HfR

; ðA7aÞ

9Besides, the system of equations proposed in [42] is also not
the most appropriate for the exponential model.
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y ¼ f
6H2fR

; ðA7bÞ

v ¼ R
6H2

; ðA7cÞ

Ω ¼ 8πGρm
3H2fR

; ðA7dÞ

Γ ¼ fR
RfRR

; ðA7eÞ

r ¼ R=R�; ðA7fÞ

where the constant R� has the same units as the Ricci scalar
R (in this case, R� ¼ RHS). From this change of variables,
the FLRW equations (6) and (7) become

dH
dz

¼ H
zþ 1

ð2 − vÞ; ðA8aÞ

dx
dz

¼ 1

zþ 1
ð−Ω − 2vþ xþ 4yþ xvþ x2Þ; ðA8bÞ

dy
dz

¼ −1
zþ 1

ðvxΓ − xyþ 4y − 2yvÞ; ðA8cÞ

dv
dz

¼ −v
zþ 1

ðxΓþ 4 − 2vÞ; ðA8dÞ

dΩ
dz

¼ Ω
zþ 1

ð−1þ 2vþ xÞ; ðA8eÞ

dr
dz

¼ −
xΓr
zþ 1

: ðA8fÞ

The latter system of equations is also solved numerically
by defining the proper initial conditions.
When b tends to zero, the numerical integration of

Eqs. (A8) is particularly computationally expensive, becom-
ing unstable for certain combinations of the parameters b and
Ω0

m. This occurs because, when the models fðRÞ resemble
ΛCDM, fRR tends to zero. To avoid this problem, Basilakos
et al. [78] proposed a method to obtain a series expansion of
H(z) around b ¼ 0 (theΛCDMmodel solution). In this way,
there is no need to perform the numerical integration in those
regions of the parameter space that require large computa-
tional times. This approach was also used in many works
such as [34,36,37]. The general idea of this procedure is
as follows: letting N ¼ − logð1þ zÞ be the number of
e-foldings at redshift z, then the Hubble parameter of the
ΛCDM model can be written as

H2
ΛCDMðNÞ ¼ ðHΛCDM

0 Þ2½ΩΛCDM
m e−3N

þ ð1 −ΩΛCDM
m Þ�; ðA9Þ

and an expansion around it will be given by

H2ðNÞ ¼ H2
ΛCDMðNÞ þ

XM
i¼1

biδH2
i ðNÞ; ðA10Þ

where M is the number of terms that are used for the
expansion. It has been studied that, for the Hu-Sawicki
model with n ¼ 1, the error in assuming expression (A10)
just keeping the first two nonzero terms of the expansion
(instead of the numerical integration) is of order of 0.001%
for all redshifts and b ≤ 0.5 (for details, see [78]).
Unfortunately, this method cannot be applied to the expo-
nential fðRÞ model since it cannot be expanded in series
around b ¼ 0.
In a nutshell, for b ≤ 0.15, we use Eq. (A10) up to order

2 in b, while for other values of b we solve Eqs. (A8)
numerically. For this last case, as we did for the exponential
model, the initial conditions of the system of Eqs. (A8) are
established so that the behavior of the fðRÞ model matches
the one of the ΛCDM model,

xi ¼ 0; ðA11aÞ

yi ¼
ðRi − 2ΛÞ

6H2
i

; ðA11bÞ

vi ¼
Ri

6H2
i
; ðA11cÞ

Ωi ¼ 1 − vi þ xi þ yi; ðA11dÞ

ri ¼ Ri=RHS; ðA11eÞ

where Ri ¼ RΛCDMðziÞ andHi ¼ HΛCDMðziÞ are the values
of the Ricci tensor and the Hubble parameter on the initial
condition, respectively. In this paper, the initial redshift for
the Hu-Sawicki model is set at zi ¼ 10. For both models,
we have checked that the obtained solutions of the
Friedmann equations do not depend on the particular
choice of the initial redshift provided zi is sufficiently
large (zi ≥ 5).10

10In fact, the percentage difference between solutions
where 5 ≤ zi < 10 and the one assumed in this paper is less
than 0.3%.
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