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Catastrophic slab loss in southwestern Pangea
preserved in the mantle and igneous record
Guido M. Gianni 1,2,3✉ & César R. Navarrete 1,2

The Choiyoi Magmatic Province represents a major episode of silicic magmatism in south-

western Pangea in the mid-Permian-Triassic, the origin of which remains intensely debated.

Here, we integrate plate-kinematic reconstructions and the lower mantle slab record beneath

southwestern Pangea that provide clues on late Paleozoic-Mesozoic subducting slab con-

figurations. Also, we compile geochronological information and analyze geochemical data

using tectono-magmatic discrimination diagrams. We demonstrate that this magmatic event

resulted from a large-scale slab loss. This is supported by a paleogeographic coincidence

between a reconstructed 2,800-3,000-km-wide slab gap and the Choiyoi Magmatic Province

and geochemical data indicating a slab break-off fingerprint in the latter. The slab break-off

event is compatible with Permian paleogeographic modifications in southwestern Pangea.

These findings render the Choiyoi Magmatic Province the oldest example of a geophysically

constrained slab loss event and open new avenues to assess the geodynamic setting of silicic

large igneous provinces back to the late Paleozoic.
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After more than 30 years of scientific debate, the geody-
namic setting of the Choiyoi Magmatic Province1, one of
the largest silicic magmatic events of Pangea, is still not

understood (Fig. 1a, b). This magmatic province is composed of
mesosilicic and silicic rocks of Lower Permian to Lower Triassic
age that record a compositional change from calc-alkaline/tran-
sitional in the lower section to alkaline in the upper section2,3. Due
to the areal extent (909,250 km2), volume (947,553 km3), and time
span [ca. 40 million years (Myr)], the Choiyoi Magmatic Province
was classified as a silicic large igneous province (SLIP)1,3,4. This
SLIP was emplaced between ca. 286 and 247Ma (million years
ago)2, with local expressions as early as ca. 290-295Ma, and
records a magmatic flare-up stage from ca. 275–250 Ma3. The
magmatic activity took place in an overall extensional to trans-
tensional regime along the southwestern Pangea margin4–7

(Fig. 1a). However, the magmatism was locally punctuated by
shortening events in the southernmost Andean and North Pata-
gonian Massif regions of this magmatic province (e.g., 8,9)
(Fig. 1b). Understanding the origin of the Choiyoi Magmatic
Province has global implications as this SLIP might have con-
tributed to the Permian-Triassic mass extinction5,10,11, one of the
most severe ecosystems collapses of the Phanerozoic12.

There are two end-member hypotheses proposed to explain the
development of the Choiyoi Magmatic Province. One suggests an
origin associated with a very slow convergence or halted sub-
duction scenario produced by slab break-off episodes1,13–18 [i.e., a
detachment of the subducting plate caused by horizontal slab
tearing19]. The other hypothesis envisions a continued subduc-
tion scenario3,20–25 associated with changes in slab dip5,24–26.
Other studies have included components from both proposals
suggesting a convergent setting at ca. 280Ma that experienced a
slab break-off event after ca. 260 Ma4,8,27–30. These works have
also attributed variable roles to the gravitational collapse of the
Early Permian fold and thrust belts along the southwestern
Pangea margin1,2,6,8,13–15,30, and the concomitant NE–SW ten-
sional stresses linked to the prelude of the Pangea
breakup6,13,14,22. Most recent studies have favored a subduction-
related setting for part or the totality of the Choiyoi Magmatic
Province based on the documentation of a geochemical mag-
matic arc signature that is locally diluted at the top of this SLIP
showing characteristics of a within-plate or post-orogenic envir-
onment (e.g., 3–5,8,20,21,23,25,26,29,31,32). In the intracratonic mag-
matic belt of this igneous province, this geochemical change is not
documented, and a clear within-plate affinity is dominant33,34

(Fig. 1b). The subduction-related hypothesis has been recently
favored by δ18O and Lu–Hf in zircons and Sr–Nd–Pb isotopic
data indicating a shift from mainly crustal-derived sources in the
pre-Choiyoi magmatism, to mantle-like and mixtures of these
two end-members in the Choiyoi Magmatic Province22,25,35–37.

An unappreciated record that may shed light on the origin of
the Choiyoi Magmatic Province is the mantle structure.
Improvements in tomographic techniques and the correlations of
geological subduction records to imaged fossil slabs reveal that
the lower mantle preserves information of ancient subduction
configurations (e.g., 38–40). As the tomographic visibility of the
lower mantle lies around ca. 200–300 Ma39,41–44, deep slab
remnants provide an alternative and independent constraint to
test the contrasting hypotheses for formation of this SLIP.

In this work, we evaluate these hypotheses by integrating the
lower mantle structure corresponding to the southwestern Pangea
margin as imaged by P-wave global seismic tomography45 and
Paleozoic plate-kinematic reconstructions using different refer-
ence frames39,46–51. Our reconstructions show a palaeogeo-
graphic coincidence between the Choiyoi Magmatic Province and
a major slab gap in the lower mantle. This observation along with
an analysis of a large geochemical dataset evidencing a slab break-

off magmatic signature in this SLIP indicates a large-scale mid-
Permian-Early Triassic slab loss event. These results not only
have implications for understanding the origin of one of the
drivers of the most severe mass extinction on Earth, but also for
the formation of SLIPs. Finally, this study illustrates an inter-
disciplinary approach to solve geological problems testing geo-
dynamic hypotheses in ancient convergent settings back to the
late Paleozoic.

Results and discussion
Linking deep slabs to the igneous record of the southwestern
Pangea margin. We analyze the lower mantle structure below the
southwestern Pangea margin to a depth corresponding to the
subduction configuration in the middle Permian to Late
Triassic42,43. This was accomplished by overlapping the recon-
structed positions of the southwestern Pangea margin at these
times using the plate kinematic model of Matthews et al.46, with
tomographic slices from the UU-P07 P-wave global seismic
tomography model45 (see “Methods” section). The Paleozoic
plate kinematic model of Matthews et al.46 is based on Domeier
and Torsvik47. The latter study implemented a paleomagnetic
absolute reference frame corrected for true polar wander and built
models with paleolongitude controls by considering the plume
generation zone method48. Also, we carried out additional
reconstructions of Pangea using the lower mantle slab reference
frame of van der Meer et al.39, the supercontinent orthoversion
model of Mitchell et al.49, and the Paleozoic plate kinematic
model of Young et al.50, which adopts a purely paleomagnetic
reference frame51 (Supplementary Fig. S1). The UU-P07 P-wave
seismic model has been previously used to build plate recon-
structions from late Paleozoic to Mesozoic and to identify deep
fossil slabs worldwide39,42,43. As in previous tomotectonic
studies38–40,42,43,52, we assumed a vertical slab sinking and con-
sidered minor lateral migration in the lower mantle, by only
~100–200 km every 100 Myr53. Although, slabs can be dragged
laterally if remain attached in plate collisions54, this assumption
has produced well-constrained tectonic models in several ancient
convergent settings, where tomographically imaged slabs have
been integrated consistently with geological data in plate
margins38–40,42,52,55,56. A vertical slab sinking hypothesis is sui-
table for our analysis because the examined fossil slabs beneath
the southwestern Pangea margin present wall-like geometries,
which form in steeply dipping and quasi-stationary subduction
zones40 (Supplementary Fig. S2). Also, we considered a constant
slab sinking rate in our reconstructions. Although slabs may
experience a transient stagnation at the 660 km discontinuity and
subduct at different velocities in the upper and lower mantle43,44,
as demonstrated in previous work38–40,42,52,55,56 and our analysis,
this assumption captures the overall subduction evolution and
leads to a robust correlation between the mantle structure and the
geological record. Furthermore, penetration of the mantle tran-
sition is facilitated by slowly retreating or stationary slabs57 that
form wall-like geometries40 as those associated with the fossil
slabs studied here (Supplementary Fig. S2).

We conducted an analysis of tomographic slices at depths of
2790, 2450, and 2250 km considering a whole-mantle slab sinking
rate of 1 cm/yr, which is identical to optimal values determined in
previous studies38,40,42,52,55,56. Hence, these depths would
correspond to three representative subduction stages in the
southwestern Pangea margin at ca. 280, 245, and 225Ma
(Fig. 2a–c). We carried out a broader analysis including further
average slab sinking rates determined in additional studies
(1.1 cm/year58; 1.2 cm/year43; and 1.3 cm/year44) (Supplementary
Fig. S3). Noteworthy, the latter average values are within the
range of lower mantle slab sinking rates considered the most
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compatible with the surface geological record linked to the Meso-
Cenozoic subduction history beneath South America (1 cm/
year52; ~1–1.1 cm/year56; and ~1.3 cm/year59) (Supplementary
Fig. S2). To identify consistent mantle structures resolved in
several seismic tomography models, we built lower mantle vote
maps that allow a straightforward comparison of multiple
models58 (see “Methods” section). Vote maps are generated by

stacking different seismic tomography models at a specified
mantle depth and detecting, where the models agree based on an
increasing vote count. In high-velocity vote maps, higher vote
counts help to highlight robust high-velocity structures across the
analyzed models that are interpreted as the subducted oceanic
lithosphere58.

To better understand the origin of the Choiyoi Magmatic
Province, we also compiled and analyzed a large geochemical
dataset (total n > 700; filtered n= 379; see “Methods” section and
supplementary Data file S1) including igneous rocks encompass-
ing the three main geographical divisions of the Choiyoi
Magmatic Province3 corresponding to Andean region (ca.
286–247Ma), the intracratonic magmatic belt (ca. 276–239Ma),
and the slightly older North Patagonian massif region (ca.
295–248Ma) (Fig. 1b). The dataset also includes samples from
the Late Carboniferous-Early Permian (ca. 330–290Ma) and the
Late Triassic-Jurassic (ca. 230–155Ma) magmatic stages along the
southwestern Pangea margin. The geochemical dataset is
analyzed in recent tectonomagmatic discrimination diagrams
that allow distinguishing slab break-off, arc, and within-plate
magmatism60,61 (see “Methods” section). To test previous
hypotheses linking arc dynamics and extension to slab-rollback
and slab steepening in the Andean region of the Choiyoi
Magmatic Province5,22,24,25,35, we also evaluate the late Paleozoic
to Mesozoic spatiotemporal magmatic evolution. For this
analysis, we used four previous compilations of available radio-
metric ages in the Andean region (U/Pb, Ar/Ar, K/Ar, Rb/Sr;
n= 122) of Carboniferous to Lower Triassic igneous rocks from
21°S to 42°S from Navarrete et al.62, del Rey et al.5,22, and Ramos
and Folguera63 (supplementary Data file S2). In the spatiotem-
poral diagram, distance to igneous rock ages was plotted
perpendicular to the current margin. These values were later
corrected for subduction erosion considering a long-term
(~70Ma) rate of continental margin retreat equal to 1 km/
Ma64. We did not consider shortening in the plate margin or
possible strike-slip motion in the forearc region, and hence,
plotted arc-to trench distances represent a minimum value.

The tomotectonic analysis shows two main high-velocity
anomalies beneath the reconstructed southwestern Pangea
margin previously interpreted by van der Meer et al.39,43 as fossil
slabs reaching the core-mantle boundary (Fig. 2a–c). Both high-
velocity anomalies are located between ~1950 and 2350 km from
the current Andean trench (Fig. 2d). The anomaly beneath the
northern area of the southwestern Pangea margin is referred to as
the São Francisco anomaly and has been associated with ca.
245–225Ma arc magmatism that took place in an Andean-type
margin43. Recent geological studies by Spikings et al.65 and Chew
et al.66 indicate a longer subduction record in this area linked to
arc magmatism and metamorphism between ca. 290 and 220Ma,
attesting to protracted subduction associated with the formation
of the São Francisco slab wall. The other mantle structure is
located in the southern area of the reconstructed southwestern
Pangea margin below Patagonia, South Africa, and the Antarctic
Peninsula, and is referred to as the Georgia Islands anomaly43.
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This anomaly has been interpreted as a fossil slab wall associated
with arc and metamorphic records spanning from ca.
290–185Ma in the western Patagonia-Antarctic Peninsula
segment of the southwestern Pangea margin (43,52,62 and
references therein) (Fig. 2).

Reconstructions in Fig. 2a, b with tomographic mantle depths
corresponding to the Permian-Early Triassic subduction stage

indicate a first-order segmentation of the southwestern Pangea
margin. A vote map including the analysis of 26 global P-wave
and S-wave tomography models at a representative depth of
2,600 km confirms the high-velocity discontinuity along the
southwestern Pangea margin (Fig. 2d). Information about the
seismic tomography models used for this analysis is presented in
supplementary Table S1 and additional vote maps at different
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lower mantle depths are presented in supplementary Figure S4.
Cross-sections indicate a lateral extent for this discontinuity of
~2,000 km (Fig. 2e). The reconstructed size along these cross-
sections, achieved by a surface projection of the lower mantle
velocity discontinuity in our tomotectonic reconstructions,
indicates an originally larger size of ~2,800-3,000-km (Fig. 2a).
Notably, the high-velocity discontinuity coincides with the
reconstructed position of the Choiyoi Magmatic Province
(Fig. 2a,b). We consider that the lateral extent of this high-
velocity discontinuity is not compatible with a local thermal
anomaly within the slab and hence, it is here interpreted as a
large-scale slab gap. The slab discontinuity mostly disappears at
mantle depths corresponding to the ca. 230-225Ma subduction
stage (Fig. 2c). Additional tomotectonic analyses implementing
plate kinematic reconstructions with different reference
frames39,49,51 yield similar results indicating a robust connection
between the mantle structure and the southwestern Pangea
margin in the late Paleozoic (Supplementary Fig. S1). The only
exception is the Triassic stage in reconstructions implementing
the orthoversion model of Mitchell et al.49, where the south-
western Pangea margin is reconstructed to the east of the lower
mantle slabs. Although not highlighted nor explained in terms of
geodynamics, this high-velocity discontinuity can also be
observed in previous global tomotectonic analyses39.

The timing and origin of the slab gap can be further
constrained by the ages and geochemistry of the Choiyoi
Magmatic Province. Tectonic discrimination diagrams designed
to distinguish between magmatic arc and slab break-off
geodynamic contexts and tested in ancient and current
convergent settings60,61 indicate a clear affinity with slab break-
off magmatism in the three regions of the Choiyoi Magmatic
Province (Fig. 3 and Supplementary Figs. S5 and S6). The La/YbN
vs. YbN diagram67 shows that part of the magmatism classifies as
adakitic, which is particularly evident for the North Patagonian
Massif region and the intracratonic magmatic belt (Supplemen-
tary Fig. S7). The preceding Late Carboniferous-Early Permian
magmatism is distributed in the arc and slab break-off fields.
However, a dominant tendency towards the magmatic arc field is
observed in this case (Supplementary Fig. S8). Also, the Upper
Triassic-Jurassic igneous record exhibits a strong tendency for the
magmatic arc field (Supplementary Fig. S9). Thus, the geochem-
istry of the Choiyoi Magmatic Province is compatible with the
development of a slab gap likely resulting from slab break-off
events between ca. 286 and 247Ma as indicated by the lifespan of
this SLIP. However, this process seems to have begun locally
earlier at ca. 295Ma in the North Patagonian Massif (Fig. 3 and
Supplementary Figs. S5 and S6). The pre-Choiyoi and post-
Choiyoi Magmatic Province magmatism are compatible with
subduction processes (Supplementary Figs. S8 and S9). The
spatiotemporal analysis of the Late Carboniferous-Early Triassic
magmatic activity in the Andean region reveals an eastwards
magmatic expansion of the Choiyoi Magmatic Province between
ca. 286 and 247Ma (Fig. 4). During this stage, magmatic activity
in the Andean region reached as far as ~560 km from the
reconstructed paleo-trench axis and broadened up to ~300 km.

Additional tomotectonic analyses including a slab sinking rate
of ~1.1 cm/year58, within the range of previous estimates obtained
from a similar analysis of subduction zones40,68, yield a scenario
compatible with the slab break-off magmatism of the Choiyoi
Magmatic Province, but with a preserved slab gap up to ca.
265Ma (Supplementary Fig. S3). Reconstructions with faster
lower mantle slab sinking rates shift this evolution towards
younger times and are not compatible with the clear arc
geochemistry in the igneous record along the southwestern
Pangea margin in Late Triassic-Jurassic times indicated in
previous studies25,31,69 and confirmed in our geochemical

analysis (Supplementary Fig. S9). Independent of the assumed
slab sinking rates, the tomotectonic analysis reveals the presence
of a large-scale slab-free area beneath the reconstructed south-
western Pangea margin.

The origin of the Choiyoi Magmatic Province. To test the
competing hypotheses for the origin of the Choiyoi Magmatic
Province, we have linked the surface and mantle slab records
through plate-kinematic reconstructions and analyzed geochem-
ical data and the spatiotemporal igneous record. Our tomotectonic
maps reveal a ~2800–3000 km-wide high-velocity discontinuity
along the southwestern Pangea margin, documenting a palaeo-
geographic coincidence between the mid-Permian-Lower Triassic
Choiyoi Magmatic Province and a slab-free area (Fig. 2). This
spatiotemporal co-occurrence is also observed in reconstructions
that employ alternative reference frames with different paleo-
longitude constraints39,49 and average lower mantle slab sinking
rates42,44,58 that are compatible with the younger subduction
evolution beneath the South American-Caribbean region52,55,56

(Supplementary Figs. S1, S2, and S3). This observation in con-
junction with a marked slab break-off geochemical signature in
the Choiyoi Magmatic Province indicates that SLIP emplacement
was caused by a large-scale slab loss event (Fig. 3). Slab thickening
during transit in the lower mantle, expected to have taken place in
the São Francisco and Georgia Islands slab walls43, could have
narrowed the imaged lower mantle slab gap. However, thermal
erosion at slab edges possibly partially compensated for this
effect70. We suggest the recent proposal to exclude the intracra-
tonic magmatic belt from the Choiyoi Magmatic Province based
on a within-plate geochemical signature34, must be reconsidered.
Our results indicate a shared slab break-off geochemical signature
in the Andean region, the intracratonic magmatic belt, and the
North Patagonian massif, suggesting a common origin for the
three geographic areas of this SLIP (Fig. 3 and Supplementary
Figs. S5 and S6). In general, these findings are not compatible with
a subduction-related setting for the totality or part of the Choiyoi
Magmatic Province3–5,8,20–26,29–31. The recognition of a Permian-
Triassic slab beneath southern South America and the Antarctic
Peninsula39,43 reinforces a subduction-related origin as suggested
for the Permian magmatism in that area18,37 (Fig. 2 and Supple-
mentary Fig. S1). The latter does not support extension of the
Choiyoi Magmatic Province into Antarctica11, where age equiva-
lent but significantly less voluminous calc-alkaline igneous rocks
have been previously described71.

For the Andean region, which comprises the most extensive area
of the Choiyoi Magmatic Province, previous studies suggested a slab
rollback and/or steepening scenario and subsequent mantle upwelling
to explain the prevailing extensional regime and the increasing
mantle imprint on magmatism5,22,24,25,35. However, in addition to
our results which challenge major subduction, the record of an up to
~560 km inland magmatic migration is not compatible with the
typical syn-extensional trenchward arc retreat produced by slab
rollback and steepening (e.g., 62,63) (Fig. 4). If the intracratonic
magmatic belt is considered part of the Choiyoi Magmatic Province,
as indicated here and in previous studies2,33, the latter magmatic
migration would have reached up to ~1000 km from the paleo-trench
(Fig. 1b). Alternatively, we interpret this magmatic expansion as the
result of the opening and eastward enlargement of the slab gap
associated with the Panthalassa slab destruction.

The slab break-off geochemical signature is interpreted as
produced by the partial melting of eclogite in subducted oceanic
crust at depths of >2 GPa during slab detachment60. As melts
ascend through the upper-plate they may be contaminated and if
the mantle lithosphere is enriched they may develop crustal-like
Sr and Nd isotopic signatures60,61. An alternative explanation is
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the differentiation of high-K mafic magmas produced by melting
of an enriched lithospheric mantle within the stability field of
garnet with heat supplied by slab break-off-related and extension-
related asthenosphere upwelling72. These models are not
mutually exclusive, in either scenario the rocks generated by slab
break-off are enriched in Sr, Nb, Ta, and Eu, and depleted in the
HREEs and Y relative to arc rocks and exhibit variable isotopic
signatures60,61 (see “Methods” section). The fact that most of the
Choiyoi Magmatic Province was emplaced during an extensional-
transtensional tectonic regime that collapsed the Lower Permian
orogenic crust4–8,25,33,34 precludes attributing rocks with high La/
Yb, Sr/Y, Gd/Yb, and Sm/Yb ratios to partial melting of a
thickened lower crust or high-pressure fractional crystallization
(e.g., 73). This is particularly evident for the intracratonic
magmatic belt, where the above-mentioned geochemical char-
acteristics appear in rocks emplaced in a region with normal crust
thickness and negligible Permian shortening33,34. In orogenic
settings resulting in significant crustal thickness, such as in the
Central Andes, high and low values of the ratios discussed above
are equally common, as fractional crystallization and crustal
assimilation can also occur at shallow crustal depths74.

Underplating of these melts would have also prompted melting of
a hydrous mafic lower crust inherited from previous subduction
stages3,22,75 and magma hybridization5,20,29,34,35. Incorporation of
older continental crust and arc basement is evident by the presence of
inherited zircons (e.g., Andean region 420–1440 Ma35; North
Patagonian massif region 320–1000 Ma16). Increased extensional
activity in the Andean region during the upper section of the Choiyoi
Magmatic Province (ca. 265–247Ma)4–7,21, favored asthenospheric
decompression melting increasing the volume of the underplated
melts and the mantle input5,22,25,35–37. As previously suggested for
this SLIP, upper mantle warming produced by supercontinental
thermal insulation may have acted as an additional heat source
enhancing partial melting in this region1. According to the
geochemical analyses of MORB basalts formed immediately after
the Pangea break-up, this process resulted in upper mantle
temperatures 150 °C higher than the present-day average76.

The origin of the large-scale slab loss event in the southwestern
Pangea margin is intriguing. In the North Patagonian Massif
segment of the Choiyoi Magmatic Province south of 39°S,
Permian-Triassic slab break-off events have been proposed after
the Late Carboniferous accretion of the Southern Patagonia
terrane16 and the Early-Middle Permian accretion of the North
Patagonia terrane to the southwestern Pangea margin27 (Figs. 1b

and 5). The Southern Patagonia terrane formed a continental
microplate separated from Gondwana in the Cambrian that was
accreted back to the margin in the Mid-Carboniferous16. The
origin of the North Patagonia terrane is a topic of a longstanding
debate for which several hypotheses have been put forward. The
allochthonous hypothesis suggests that this continental terrane
was attached to East Antarctica and drifted away in the Silurian27.
Following subduction interpreted as recorded by Permian
magmatism of the North Patagonian Massif, the continental
terrane was accreted to the southwestern Pangea margin in the
Early-middle Permian9,27. Contrasting studies have suggested
that the North Patagonia terrane is autochthonous to Gondwana
and that the subduction-related Permian magmatism instead
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represents slab break-off associated with the previous accretion of
the southern Patagonia terrane to the southwest16,18. The
parautochthonous hypothesis suggests that the North Patagonia
terrane was separated by rifting during the opening of an early
Paleozoic oceanic basin that was closed in the middle-Late
Permian. This is based on paleomagnetic evidence indicating a

potential separation ≤1500 km of this terrane in pre-Permian
times77. Recently, a short-traveled parautochthonous hypothesis
has been favored based on new paleomagnetic poles indicating a
reconstructed position of the North Patagonia terrane from ca.
450–250Ma close to its current location78. In this model, the
North Patagonia terrane was located close to the Pangea margin
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in the westernmost area and was separated to the east by a
200–600 km-wide V-shaped basin78 (Fig. 6a). Mid-Permian silicic
magmatism in the region coexisted in part with shortening
associated with the accretion of one or both terranes16,27 (Fig. 1b).
Syn-magmatic transpression in the lower section of the Choiyoi
Magmatic Province was locally described in the southernmost
Andean region8, likely indicating the far-field influence of these
deformational events. Our results have direct implications
regarding the origin of the North Patagonia terrane. The lack of
magmatic arc affinity in the Permian-Triassic igneous rocks of the
North Patagonian Massif and the overall slab break-off magmatic
signature in the area are not compatible with an allochthonous
North Patagonia terrane27 (Fig. 3 and Supplementary Figs. S5,
and S6). These observations also negate a far-traveled para-
autochthonous origin for this terrane (i.e., separation ≤ 1500 km
previous to accretion77), which necessitates a pre-accretion
subduction stage as well. One possibility is that the North
Patagonia terrane was autochthonous in the Permian and slab
break-off magmatism in the North Patagonian Massif resulted
from slab detachment after the Late Carboniferous accretion of
the Southern Patagonia terrane16,18 (Fig. 1b). Alternatively, the
North Patagonia terrane could have been a short-traveled para-
autochthonous domain78, where the lack of arc magmatism
before the terrane accretion and the subsequent slab break-off
magmatism would suggest the closure of a narrow proto-oceanic
basin. In this context, a short proto-oceanic lithosphere, which
upon subduction would have not reached the critical slab
dehydration depth (120 ± 40 km79), would explain the lack of
arc magmatism before the accretion process. A short slab would
have not been dehydrated enough to trigger substantial hydrous
melting of a mantle wedge, thus precluding magmatic arc
development. Nevertheless, it would have still provided enough
negative buoyancy to eventually detach, driving syn-accretion to
post-accretion slab break-off magmatism60,61. As proposed for
the Pyrenees and Alpine pre-collision stage, the lack of
subduction-related magmatism in the North Patagonian massif
could also be explained by the subduction of a hyperextended
margin and a dry oceanic mantle lithosphere80. In this way, both
accretionary processes would have been involved in the slab loss
event in the North Patagonian Massif region of the Choiyoi
Magmatic Province (Fig. 5).

For the Andean region of the Choiyoi Magmatic Province,
Mpodozis and Kay15 suggested a slab break-off event associated
with the Early Permian accretion of the Equis terrane. Previous
studies have argued against this hypothesis based on the lack of
concrete evidence of an allochthonous basement in this
area22,25,81. Although speculative, evidence of the Equis terrane
could be absent due to subsequent forearc subduction erosion in
the Andes15,64. According to Pankhurst et al.16, an alternative to
the Equis terrane hypothesis is a fast northward propagation of a
rupture in the slab initially induced by the Southern Patagonia
terrane collision. Alternatively, this process could have taken
place in an ocean-continent subduction setting, as suggested

locally throughout the Andean region8,14,17. A potential explana-
tion is slab detachment caused by the subduction of a mid-ocean
ridge leading to the formation of a slab window28,70. The
emplacement of alkaline to tholeiitic backarc plateaus or calc-
alkaline rocks with intraplate geochemical signatures would be
diagnostic of slab window development (e.g., 70,82). This typical
slab window record in the backarc area is not observed; instead,
the Choiyoi Magmatic Province comprises large volumes of
mesosilicic to silicic magmatism with slab break-off geochemical
signature (Fig. 3). In subduction settings, the interaction of a
buoyant oceanic feature (e.g., oceanic plateau or seamount) can
drive slab break-off of the oceanic lithosphere and the formation
of large slab gaps83, with subduction reestablishment demanding
variable times and up to ~40Ma depending on plate-
kinematics84. A diachronous accretion of oceanic topographic
features between ~300 and ~270Ma from 26°S to 39°S is
documented in relicts of accretionary prisms along the Andean
margin17,81,85,86 (Fig. 1b). These mafic rocks share similar
geochemical and isotopic characteristics from northern to
south-central Chile, involving an enriched mantle source linked
to plume activity or plume-ridge interactions81,85 (Fig. 2). Hence,
one possibility is that the accretion of these thickened/buoyant
oceanic features would have initiated local slab gaps83 that later
coalesced and propagated laterally, driving a massive slab loss in
the Andean region of the Choiyoi Magmatic Province (Fig. 5).
The incipient formation of slab gaps could have begun in Late
Carboniferous-Early Permian times, as indicated by the early
arrival of oceanic features at around 300Ma to the west of the
Andean region81,85 and the detection of some influence of slab
break-off magmatism at this time (Supplementary Fig. S8). We
suggest that a deeper slab detachment in a context of shallow
subduction between 35°S and 40°S would explain the easternmost
location of the slab break-off magmatism in the intracratonic
magmatic belt and the local persistence of an accretionary
prism8,87,88 (Fig. 1b). This context supports the notion of a series
of Equis terranes formed by several oceanic pieces accreted to the
southwestern margin of Pangea instead of the docking of a single
continental fragment. As suggested by numerical models and
tomographic observations89,90, after slab break-off the detached
slab fragments likely sunk faster in the mantle than the São
Francisco and Georgia Islands slabs. As small fragments are more
effectively heated by conduction, at the core-mantle boundary,
these relict slabs would have been assimilated or become
thermally invisible. Subduction activation along most of the
southwestern Pangea margin may have taken place since
~230–220Ma. This is indicated by the progressive recovery of
the slab gap in the tomotectonic analysis and the magmatic arc
signatures in the Upper Triassic-Jurassic rocks from the Andean
region of the Choiyoi Magmatic Province (Fig. 2c and
Supplementary Fig. S9).

Therefore, the Choiyoi Magmatic Province would have resulted
from continental terrane collisions during the assembly of
Patagonia16,27 and the accretion of buoyant oceanic highs to

Fig. 6 Late Carboniferous to Early Jurassic paleogeographic reconstructions of southwestern Pangea. a Maps illustrating the paleogeographic
modifications of the plate margin before, during, and after the emplacement of the Choiyoi Magmatic Province. These maps show the spatiotemporal
relation between the emplacement of the early magmatic activity of the Choiyoi Magmatic Province and the marine disconnection between the Panthalassa
Ocean and the backarc basins in Pangea and the Late Permian continentalization during the Choiyoi magmatic flare-up3,92,93. These processes are here
interpreted as triggered by surface uplift ≥1 km caused by the large-scale slab-break-off associated with the emplacement of the Choiyoi SLIP. The maps
also illustrate the close spatiotemporal relation between the subduction restoration in the Late Triassic-Jurassic and the recovery of marine ingressions in
the Pangea margin98. The latter is here interpreted as produced in part by the reactivation subduction-related dynamic subsidence in this area. Inset in
Permian maps is a paleoclimatic simulation at the Kungurian (279.3–272Myr)95 reproducing orographic precipitation associated with the Choiyoi
paleotopography. b Averaged eustatic sea-level curve from Carboniferous to Jurassic times96 with references to the geological events discussed in this
study. Gray envelope corresponds to the extrema.
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north of 40°S17,81,85,86. These processes would have jointly
triggered a large-scale destruction of the subducting slabs (Fig. 5).
Except for a few older magmatic ages between ~295 and 290Ma
in the North Patagonian Massif16, the predominant age range
between ~286 and 247 Ma2,3 indicates roughly simultaneous slab
break-off processes in the three geographic areas of this SLIP. The
reduction in plate margin tectonic stresses caused by the
widespread slab loss event, the upper mantle warming produced
by supercontinent thermal insulation, and the first-order global
tensional stresses associated with the incipient breakup of
Pangea1,6,13,20 may have jointly promoted extension, orogenic
collapse, and protracted magmatism.

Implications for Permian climate change, paleogeography, pre-
Cenozoic SLIPs, and slab break-off processes. Geodynamic
changes during the mid-Permian-Early Triassic recorded in the
igneous record and the fossil mantle structure had an impact
beyond the tectono-magmatic evolution of the southwestern
Pangea margin. Previous studies suggested that extensive mag-
matic intrusion in organic-rich shales, peat, and carbonates that
accumulated in early Paleozoic backarc basins triggered the
release of large volumes of CO2 and CH4 into the Permian
atmosphere5,10 (Fig. 1b). The coeval emplacement of LIPs (e.g.,
Emeishan and Siberian Traps LIPs) amplified global warming
driving Earth’s most severe extinction5,10–12. Although the con-
nection between the Choiyoi Magmatic Province and Permian
global warming and extinction has been well-established, the role
of magmatic migration and broadening in triggering this process
has been overlooked. Contrary to slab shallowing that produces
inland arc migration with a decreasing magmatic volume63, slab
break-off processes drive inland migration of voluminous mag-
matic activity91. We suggest that the ~560–900 km magmatic
migration triggered by slab loss in the Andean and intracratonic
magmatic belt regions was a key process allowing distal magma
intrusion into organic-rich Paleozoic basins inland southwest
Pangea (Figs. 1b and 4). Otherwise, magmatic intrusion during
typical subduction-related stages25,79 would have been less
extensive and progressive, and hence, the impact on climate
change, probably weaker.

The Choiyoi Magmatic Province also had a major impact on the
paleogeographic evolution of southwestern Pangea. The emplace-
ment of this SLIP produced profound modifications in the late
Paleozoic plate margin along the Andean region in partially or
completely closing the marine connection of the backarc basins
with the Panthalassa Ocean92 (Fig. 6a). The magmatic activity was
accompanied by the progressive development of an extensive
orographic barrier in the Late Permian that divided the western
margin of Pangea into a western temperate region under marine
influence and an inland eastern region, where semiarid and arid
conditions prevailed93 (Fig. 6a). The positive relief would have
forced the rise of humid winds from the Panthalassa Ocean,
trapping their moisture in the coastal region and enhancing aridity
in the continental interior92,93. The Choiyoi orographic barrier
must have been ≥1 km, which is the minimum height to develop a
noticeable rain shadow effect (e.g., 94). The orographic precipitation
induced by the Choiyoi topography is reproduced in recent
paleoclimatic simulations including paleo-DEM reconstructions95

(see “Methods” section) (Fig. 6a).
How this positive topography was formed along the Andean

region is still poorly understood. Furthermore, it is difficult to
explain why backarc basins were disconnected from the
Panthalassa Ocean during a period of relatively high global sea
level96 (Fig. 6b). Our findings address these challenges. Conceptual
and numerical studies indicate that slab break-off can drive rapid
surface uplift above ~1 km19,97. Numerical models exploring the

topographic response of slab break-off indicate surface uplift at
rates between 0.1 and 0.8 km/Ma with post-break-off uplift lasting
between ~10 and 20 Myr97. The resultant topographic uplift from
massive slab break-off linked to the Choiyoi SLIP provides an
explanation for both the disconnection of backarc basins from the
Panthalassa Ocean and the Permian orographic barrier (Fig. 6a).
We note that the subduction reactivation stage in the Late
Triassic-Jurassic coincides with renewed marine inundation in the
southwestern Pangea margin (Fig. 6a). The marine ingression
began in the Late Triassic and is widely recognized since the Early
Jurassic98. This is often explained by increased plate margin
subsidence produced by backarc extension or thermal subsidence
in a context of relatively high global sea level14,98 (Fig. 6b). Plate
margin inundation could have been enhanced by the reactivation
of subduction-related dynamic subsidence. This process com-
monly produces about 1 km of downwarping in the upper-plate
that facilitates marine ingression99. The influence of dynamic
subsidence at this time is inferred from the close spatiotemporal
relation between subduction reactivation and marine ingression
(Figs. 2c and 6a, b).

Our results provide new avenues to assess the origin of SLIPs
dating back to the Permian. SLIPs are less abundant in the
geological record than mafic large igneous provinces and hence,
indicate exceptional conditions to drive large volumes of silicic
magmatism100. SLIPs are often restricted to continental margins
that contain a fertile, hydrous lower crust built up by preceding
subduction stages1,3,100. Previous studies have agreed on the
requirement of upper-plate extension to drive SLIPs, but the
precise geodynamic context is still widely debated101,102. SLIPs
have been associated with intraplate extension linked to continental
breakup (e.g., the Lower Cretaceous Whitsunday SLIP100), to active
backarc convergent settings (e.g., the Cenozoic Sierra Madre
Occidental SLIP103 and Taupo volcanic zone100), and to arc
settings (e.g., Upper Cretaceous Okhotsk-Chukotka Volcanic
Belt102). Similarly to the ongoing debate about the geodynamic
setting of the Choiyoi Magmatic Province, the origin of other SLIPs
remains under debate (e.g., Jurassic Chon Aike SLIP: Plume-related
model104 vs. subduction-related model105). Difficulties arise when
assessing the geodynamic setting of SLIPs in part due to the calc-
alkaline nature of silicic rocks. Discrimination between original
subduction-related signatures from those inherited from partial
melting of pre-existing arc basement is notoriously challenging100.
We suggest that the methodology followed in this study provides
new means to test the end-member models for post-Carboniferous
SLIPs. The presence/absence of ancient slabs beneath reconstructed
margins can provide independent evidence to constrain active/
inactive subduction during SLIP development. To illustrate this, we
carried out a simple tomotectonic analysis for the three pre-
Cenozoic SLIP examples mentioned above (Fig. 7 and Supple-
mentary Fig. S10). We followed the same procedure and
assumptions considered in our preferred reconstructions for the
Choiyoi Magmatic Province. For the Jurassic Chon Aike and the
Upper Cretaceous Okhotsk-Chukotka SLIPs, the reconstructed
margins are located nearby or above high-velocity anomalies
(Fig. 7a, b and Supplementary Fig. S10). We interpret this as
evidence of ongoing subduction during the development of both
SLIPs, supporting studies attributing variable roles to subduction
for their origin62,102,105. For the Whitsunday SLIP, the eastern
Australian margin is located in an area with no evidence of major
high-velocity anomalies that could be interpreted as slab relicts
(Fig. 7c and Supplementary Fig. S10). This is consistent with an
origin linked to plate-margin extension associated with continental
break-up100. Nevertheless, the absence of high-velocity anomalies
in this region could also result from slabs lying at mid-mantle
depths, where the resolution of tomography models in the
southern hemisphere is degraded relative to other regions58.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-28290-z

10 NATURE COMMUNICATIONS |          (2022) 13:698 | https://doi.org/10.1038/s41467-022-28290-z | www.nature.com/naturecommunications

www.nature.com/naturecommunications


The findings presented in this study have implications for the
role of slab break-off in the development of SLIPs associated with
convergent settings. Although localized slab break-off has been
proposed in the last stages of the Sierra Madre Occidental
Province103, SLIP development produced entirely by massive slab
break-off, as documented in the Choiyoi Magmatic Province, is
unprecedented. The latter would explain differences in lithologi-
cal composition, geochemical signature, and the anomalous
amount of intermediate (andesitic) rocks in the lower portion
of the Choiyoi Magmatic Province contrasting with typical
SLIPs3, where rhyolitic magmatism is more abundant and
exhibits within-plate or arc-like signatures100,103. We suggest

that slab break-off SLIPs are rather exceptional, possible only
when multiple slab break-off triggers act in concert, as for the
Choiyoi Magmatic Province (Fig. 5). These events would also be
favored during supercontinent assembly or breakup stages when
thermal insulation elevates upper mantle temperatures and
enhances partial melting1,76. If we accept that plate tectonics
was an ongoing process in the Archean-Paleoproterozoic,
voluminous slab break-off magmatism would have been facili-
tated by weaker slabs, thicker oceanic crust, and mantle potential
temperatures in excess of 150–250 °C at this time (see ref. 60 and
references therein). Potential candidates for slab break-off SLIPs
would be the granite-rhyolite provinces of North America
emplaced after supercontinent assembly (ca. 1500–1350Ma)1,
and the Cretaceous Whitsunday SLIP, where widespread
magmatism appeared during continental breakup after the
demise of a convergent stage100.

This study opens new possibilities for the documentation of
slab break-off processes in ancient convergent settings. Detection
of this process in pre-Cenozoic times is so far limited to the
surface geological record, which can be contradictory106. Our
study documents the oldest case of geophysical constraint on
slab-break-off process. We provide an example of how mantle
slabs, state-of-the-art plate kinematic reconstructions, and the
igneous record can be integrated to better constrain slab break-off
episodes back to the late Paleozoic. This approach can be helpful
to understand sudden paleogeographic modifications in active
margins and the formation and distribution of ore deposits in
these settings (e.g., 61,107). The formation of slab break-off-related
ore deposits is well illustrated in our case study by a distinct
mineralization event between ~285 and 250Ma where porphyry,
epithermal, polymetallic, and intrusion-related ore deposits
developed during the emplacement of the Choiyoi Magmatic
Province (see ref. 35 and references therein). Finally, future
studies assessing the evolution of the southwestern Pangea
margin should test this hypothesis by reproducing the mantle
structure beneath this area through integration of plate kinematic
data and seismic tomography models into subduction numerical
models108.

Methods
Tomotectonic analysis. For the integration of geology, tomographic slices, and the
plate kinematic model we used the Gplates 2.0 software freely available at
www.gplates.org109. The UU-P07 global tomography model and resolution tests for
the São Francisco and Georgia Islands slab walls can be downloaded from
www.atlas-of-the-underworld.org43. The slab gap in the UU-P07 tomographic
model was delineated considering general amplitudes above 0.2% for slab
boundaries as suggested by van der Meer et al.39,43.

Vote maps analysis. The vote maps were built with the plotting tools from the
submachine portal (https://www.earth.ox.ac.uk/∼smachine/cgi/index.php) of
Hosseini et al.110. To build positive wave speed vote maps we used 26 global models
(P-Wave and S-wave) with most of them differing in data selection and para-
metrization, and regularization of the inversion [GyPSuM-S111; DETOX P2 and
P3112; HMSL-P06 and S06113; PRI-P05 and -S05114; SPani-P and –S115; GAP-
P4116; LLNL_G3Dv3117; Hosseini2016118; SEISGLOB1119; MITP08120; UU-P0745;
TX2019Slab-P and S121; S362ANI+M122; S20RTS123; S40RTS124; SAVANI125;
SAW642ANb126; SEMUCB-WM1127; SEMum128; TX2011129; TX2015130; see
model details in Table S1]. To build lower mantle vote maps we implemented the
standard deviation threshold following Shephard et al.131. Also, we built high-
velocity votemaps applying a zero threshold (Supplementary Fig. S4). We built
these maps at depth between 2800 km and 1800 km at steps of 200 km, corre-
sponding to depths associated with late Paleozoic to Mesozoic subduction zones
beneath southwestern Pangea42,43.

Geochemical analysis. As suggested by Hildebrand et al.60 and Whalen and
Hildebrand61, the geochemical dataset of Upper Carboniferous-Jurassic igneous
rocks132–153 was filtered by SiO2 contents between 55 and 70% and aluminum
saturation index (ASI) < 1.1 (filtered n= 379) to be plotted in the arc-slab break-
off-within-plate tectonomagmatic discrimination diagrams. The filtered dataset
and the references are included in Data file S1 (Supplementary information).
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To build the tectono-magmatic discrimination diagrams, Hildebrand et al.60

and Hildebrand and Whalen61 compared intermediate and acidic I-type granitoids
of similar compositions (55–70% SiO2, Na2O+ K2O > 1; ASI < 1.1) using large
geochemical data compilations of several active and ancient post-collisional
settings. In Whalen and Hildebrand61, intraplate magmatism was also included in
the tectonomagmatic discrimination diagrams. Hildebrand et al.60, noted that
during the development of slab break-off events, the magmas mostly come from
the partial melting of a metabasaltic/gabbroic source (i.e., eclogite) compatible with
the upper portion of the subducted slab. The latter takes place in addition to
variable decompression melting of the sub-slab asthenosphere, which mainly
occurs in very shallow slab break-off events60. The slab break-off-related
magmatism, referred to as slab failure magmatism by the authors, has several
distinctive geochemical features that allow it to be distinguished from the arc and
A-type magmatism. The slab break-off magmas are enriched in Sr, Nb, Ta, Eu, and
depleted in HREE and Y relative to the arc magmatism (see ref. 61 and references
therein). These features are produced by the partial melting of an eclogitized slab
that leaves a garnet-bearing and plagioclase-free residue, partitioning the HREE
into the residual garnet, but not the Sr and Eu due to the absence of plagioclase (see
ref. 61 and references therein). For this reason, the slab break-off magmas have high
La/Yb (>10), Sm/Yb (2.5), Gd/Yb (>2), and Sr/Y (>20) ratios. Likewise, the
instability of rutile or another Ti-rich phase, added to the residual garnet, causes
the high Nb/Y (>0.4) and Ta/Yb (>0.3) ratios in the slab break-off rocks60,61.
Conversely, the arc magmatism is generated by the partial melting of a spinel-
plagioclase-bearing source, leaving a residue of pyroxene, plagioclase, and rutile,
and hence, the ratios mentioned above are lower (see ref. 61 and references therein).
To discriminate the slab break-off magmatism from A-Type granites, Whalen and
Hildebrand61 followed the suggestions of Pearce et al.154, who indicated that
Y+Nb and Yb + Ta are effective to distinguish orogenic from within-plate
granitoids. Considering the latter and a geochemical database, Whalen and
Hildebrand61 established the boundary values between these suites (Nb + Y: 60; Ta
+ Yb: 6).

Paleogeographic maps. To build the Late Carboniferous to Early Jurassic
paleogeographic maps, we used as a background the plate kinematic reconstruction
of Pangea from Matthews et al.46. We compiled paleogeographic data with greater
detail for the arc, backarc, and intracratonic basins in the study area from Limarino
and Spalletti92 and Limarino et al.93. For regions beyond the study area, we used
paleogeographic data from Ford and Golonka155 and Torsvik and Cooker156. To
run the paleoclimate simulation for the Permian we used the climatearchive.org
web-tool, which allows visualizing the results of model simulations for the Pha-
nerozoic from Valdés et al.95.

Data availability
All data needed to evaluate the conclusions in the paper are presented in this manuscript
and/or the Supplementary information.
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