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ABSTRACT

The Schoenberg-Muir theory states that an equivalent,
homogeneous and anisotropic medium can be constructed
from a layered medium composed of several thin layers,
each anisotropic, under the assumption of stationarity. To
test the theory we considered single transversely isotropic
layers with different orientations of the symmetry axis and
performed numerical simulations of wave propagation with
a full-wave solver. The equivalent media have orthorhombic
and monoclinic symmetries, respectively. The theory per-
formed very well from the kinematical and dynamical points
of view, even for strong anisotropy and layers described by
media whose symmetry axes have different orientations.

INTRODUCTION

The field of effective anisotropy as industrial practice has
increased substantially during the last twenty years due to improve-
ments in seismic acquisition (multicomponent data and azimuthal
coverage), the advent of more accurate prestack depth migration
methods, a wider range of source-receiver offsets, and the develop-
ment of practical parameter-estimation algorithms. The subject of
effective media theories for fractured reservoirs is important in
exploration seismology because it may reveal information
about permeability anisotropy and therefore, about the preferred di-
rection of the fluid flow (Grechka and Kachanov, 2006a, b). The
complexity of the reservoir structure (layering and fracture orienta-
tions) requires the use of realistic rheologies, so the future trend
is to go beyond transverse isotropy and employ lower-symmetry
models, such as orthorhombic and monoclinic (Tsvankin et al.,
2010).
Thin transversely isotropic layers with a vertical symmetry axis

(VTI media) behave as a homogeneous, transversely isotropic

medium when the wavelength is much longer than the thicknesses.
To our knowledge, the first to study the problem using VTI layers
was Bruggeman (1937). Other investigators analyzed the problem
using different approaches, e.g., Riznichenko (1949) and Postma
(1955), who considered a two-constituent periodically layered med-
ium. Later, Backus (1962) showed that periodicity is not necessary
and also obtained the effective elasticity constants with a strict
formulation of averages by integrals. He assumed stationarity,
i.e., in a given length of composite medium much smaller than
the wavelength, the proportion of each material is constant (see
Helbig, 1963).
Schoenberg and Muir (1989) extended Backus’ approach to sin-

gle layers of arbitrary anisotropy using group theory and a matrix
formalism. However, this generalization has been questioned by
Hudson and Crampin (1991), who argue that the theory cannot
be applied to oblique sets of cracks (even for weak anisotropy), be-
cause the structure is no longer 1D, and Backus’ assumptions are
invalidated (see response in Schoenberg and Muir, 1991). More re-
cently, Helbig (1999) solved the problem of Schoenberg and Muir
(1989) without recourse to group theory, but he did not discuss its
validity.
Backus averaging has been verified numerically by Carcione et

al. (1991), who found that the minimum ratio between the P-wave
dominant pulse wavelength and the spatial period of the layering
depends on the contrast between the constituents. For instance,
for a periodic sequence of epoxy-glass it is around eight, and for
sandstone-limestone (which has a lower reflection coefficient) it
is between five and six. In any case, a minimum ratio can be found
above which the equivalence between a finely layered medium and
a homogeneous, transversely isotropic medium is valid.
The purpose of this paper is to verify, by way of numerical

example, the Schoenberg-Muir theory against the criticism of
Hudson and Crampin (1991). We consider a periodic sequence
of VTI-ψTI layers, where ψTI is the VTI medium rotated by an
angle ψ about the y-axis. In particular, we consider ψ ¼ π∕2
and π∕4. The resulting equivalent media have orthorhombic and
monoclinic symmetries, respectively. We compute the wavefield
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with a modeling method used by Carcione et al. (1991), generalized
to the anisotropic case. Details of this space-time-domain direct
method can be found in Carcione et al. (1988).

SCHOENBERG-MUIR THEORY

Let us consider a finely layered medium composed of N arbitra-
rily anisotropic layers (Figure 1), with the z-axis perpendicular to
the layering plane. Each layer is defined by the density ρ, the pro-
portion pn, and the elastic constants cIJ . The stress-strain relation of
each layer can be written as
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where σI denotes stress component and eI denotes strain component
in the Voigt notation (e.g., Carcione, 2007). The stiffness
matrix involved in equation 1 can be rewritten in terms of four sub-
matrices as

�
CTT CTN

C⊤
TN CNN

�
: (2)

According to Schoenberg and Muir (1989), the equivalent homo-
geneous medium is defined by the following matrix:

�
C̄TT C̄TN

C̄⊤
TN C̄NN

�
; (3)

where

C̄NN ¼ hC−1
NNi−1;

C̄TN ¼ hCTNC−1
NNiC̄NN;

C̄TT ¼ hCTTi − hCTNC−1
NNCNTi þ C̄TNhC−1

NNCNTi; (4)

where the thickness weighted average of a quantity C is defined as

hCi ¼
XN
n¼1

pnCn: (5)

In this work, we consider periodic systems of equal composition
whose single layers have transversely isotropic symmetry (VTI) or
rotated versions of this medium, ψTI, where ψ is the rotation angle
of the symmetry axis from the vertical. Specifically, we consider
VTI ¼ 0TI, HTI ¼ 90TI, and 45TI media as shown in Figure 1.
The new elasticity matrix after rotation of a medium is given in
Appendix A.
The equivalent elasticity matrices for VTI-HTI and VTI-45TI

periodic systems are given in Appendix B, where p1 ¼ p2 ¼ 1∕2
and HTI and 45TI indicate the same VTI medium whose symmetry
axis is rotated by the angles ψ ¼ π∕2 and ψ ¼ π∕4, respectively.

TIME-DOMAIN MODELING
IN MONOCLINIC MEDIA

We consider the symmetry plane of a monoclinic medium, say,
the ðx; zÞ-plane, and recast the equation of motion in the particle-
velocity/stress formulation (Carcione, 2007). In this plane, we
identify two sets of uncoupled differential equations:

_v1 ¼ ρ−1ð∂1σ11 þ ∂3σ13 þ f1Þ;
_v3 ¼ ρ−1ð∂1σ13 þ ∂3σ33 þ f3Þ;
_σ11 ¼ c11∂1v1 þ c13∂3v3 þ c15ð∂1v3 þ ∂3v1Þ;
_σ33 ¼ c13∂1v1 þ c33∂3v3 þ c35ð∂1v3 þ ∂3v1Þ;
_σ13 ¼ c15∂1v1 þ c35∂3v3 þ c55ð∂1v3 þ ∂3v1Þ; (6)

and

_v2 ¼ ρ−1ð∂1σ12 þ ∂3σ23 þ f2Þ;
_σ23 ¼ c44∂3v2 þ c46∂1v2;

_σ12 ¼ c46∂3v2 þ c66∂1v2; (7)

where vi are the particle-velocity components, ρ is the density, fi
are external forces, a dot above a variable denotes time differentia-
tion and ∂i indicates the spatial partial derivative with respect to the
variable xi. The strain vector and the particle-velocity components
are related as

z

x

a)

b)

Figure 1. Stack of thin (compared to the wavelength) strata com-
posed of HTI and VTI layers (a) and 45TI and VTI layers (b). The
percentage of each constituent is assumed to be stationary with re-
spect to the vertical coordinate.
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1
CCCCCCA
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The first set of equations 6 describes in-plane particle motion while
the second set 7 describes cross-plane particle motion, that is, the
propagation of a pure shear wave. The uncoupling implies that a
cross-plane shear wave exists at a plane of mirror symmetry. The
plane-wave analysis, including the calculation of the phase and
group velocities, is given in Appendix C.
The numerical algorithm used to solve the

equation of motion is based on the Fourier
pseudospectral method for computing the spatial
derivatives and a fourth-order Runge-Kutta tech-
nique for calculating the wavefield recursively in
time (e.g., Carcione, 2007).

SIMULATIONS

We consider the qP-qS case and

0
@ c11 c13 c15

c13 c33 c35
c15 c35 c55

1
A ¼

0
@ 46 18 0

18 30 0

0 0 7

1
A;

(9)

in GPa. In this case, c12 needs not to be specified
because it has no influence on the results. The
velocity-anisotropy coefficient for P-waves is
defined as the fractional difference between the
horizontal and vertical velocities:

A ¼ 100

ffiffiffiffiffiffi
c11

p − ffiffiffiffiffiffi
c33

p
ffiffiffiffiffiffi
c33

p :

Its value is A ¼ 24% for the elasticity matrix de-
fined in equation 9. According to equations B-1
and B-5, rotations of π∕2 and π∕4 yield

0
@ 30 18 0

18 46 0

0 0 7

1
A and

0
@ 35 21 −4

21 35 −4
−4 −4 10

1
A;

(10)

respectively. From equations B-4 and B-6, the
effective VTI-HTI and VTI-45TI media have the
following elasticity matrices:

0
@ 38 18 0

18 36.3 0

0 0 7

1
A and

0
@ 40 19 −1.6

19 31.9 −1.5
−1.6 −1.5 8.1

1
A;

(11)

respectively. We take ρ ¼ 2600 kg∕m3. Figure 2
shows the group (energy) velocity curves corre-

sponding to the orthorhombic (Figure 2a) and monoclinic
(Figure 2b) effective media. The VTI medium is rotated to obtain
the HTI (45TI) medium and then the VTI and HTI (45TI) are aver-
aged to obtain the effective orthorhombic (VTI-HTI) and monocli-
nic (VTI-45TI) media.
The source used in the simulations is a vertical force (f1) with the

following time history:

hðtÞ ¼
�
u −

1

2

�
expð−uÞ; u ¼

�
πðt − tsÞ

tp

�
2

; (12)

where tp is the period of the wave, fp ¼ 1∕tp is the central
frequency and we take ts ¼ 1.4tp.

+ +

= =

VTI
VTI

HTI

45TI

VTI-45TIVTI-HTI

1

a) b)

Figure 2. Group (energy) velocity curves corresponding to the orthorhombic (a) and
monoclinic (b) effective media. The VTI medium is rotated to obtain the HTI
(45TI) medium and then the VTI and HTI (45TI) are averaged to obtain the effective
orthorhombic VTI-HTI (monoclinic VTI-45TI) medium.
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The simulations use a 455 × 455mesh with 1-m grid spacing and
the central frequency of the source is fp ¼ 80 Hz. The force is lo-
cated at the center of the mesh. The Runge-Kutta algorithm has a
time step of 0.1 ms and snapshots of the vertical particle-velocity v3
are computed at 70 ms. The snapshots corresponding to the group-
velocity curves shown in Figure 2 are displayed in Figure 3, where it
is verified that the modeling code reproduces correctly the predic-
tions of the plane-wave analysis.
The wavelength/thickness ratio can be defined as

R ¼
ffiffiffi
c
ρ

r
1

fpP
; (13)

where c is c11 for P-waves and c55 for S (the maximum velocity
has been considered, see equation 9) and P is the period of the
stratification, in this case, P ¼ 2 m, i.e., each layer has 1-m thick-
ness. In this specific simulation, R ¼ 26 for P-waves and R ¼ 10

for S-waves.
Figure 4 shows the snapshots in the orthorhombic (Figure 4a) and

monoclinic (Figure 4b) effective (Schoenberg-Muir) media (upper
pictures). The lower pictures display the simulations in the finely
layered media. As can be seen, the snapshots are indistinguishable,
indicating that the Schoenberg-Muir theory provides a good ap-
proximation to fine layering at long wavelengths.
To better appreciate the similarity of the results, Figure 5 shows

the seismogram at ðx; zÞ ¼ ð57; 57Þ m from the source location for

= =

+ +

Distance (m) Distance (m)
a) b)Figure 3. Snapshots corresponding to the group-

velocity curves shown in Figure 2. The lower ones
refer to the equivalent (Schoenberg-Muir) media.
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the VTI-HTI orthorhombic (Figure 5a) and VTI-45TI monoclinic
(Figure 5b) media. The solid line corresponds to the effective
(Schoenberg-Muir) monoclinic medium and the dots to the simula-
tions in the finely layered medium. As can be seen, the agreement is
excellent.
We have also considered a VTI medium defined by

0
@ c11 c13 c15

c13 c33 c35
c15 c35 c55

1
A ¼

0
@ 60 3 0

3 30 0

0 0 7

1
A; (14)

which has an anisotropy coefficient A ¼ 41% (see group-velocity in
Figure 6) and obtained an excellent match between the results of the
theory and the simulations in layered media. This can be appre-
ciated in Figure 7, where a snapshot (Figure 7a) and the seismogram
(Figure 7b) at ðx; zÞ ¼ ð52; 52Þ m from the source location for the
VTI-45TI monoclinic medium are shown. In this case, the source
central frequency is fp ¼ 50 Hz and its highest significant fre-
quency component is approximately 100 Hz.
Finally, we perform a simulation with a receiver outside the sym-

metry planes. In this case, we use a 3D modeling code based on the
Fourier pseudospectral method (Helbig and Carcione, 2009). We do
not implement any absorbing boundary at the sides of the grid, so
that the medium is periodic. This means that a wave impinging on
the left boundary of the grid will return from the right boundary.

We consider the VTI-HTI composite medium, with

c11 ¼ 46; c12 ¼ 12; c13 ¼ 18; c33 ¼ 30; c55 ¼ 7 and

c66 ¼ 17ðVTImediumÞ;
c11 ¼ 30; c12 ¼ c13 ¼ 18; c23 ¼ 12;

c22 ¼ c33 ¼ 46; c44 ¼ 17; and

c55 ¼ c66 ¼ 7ðHTImediumÞ

(in GPa). The velocity-anisotropy coefficient for SH waves in VTI
media, defined as 100ð ffiffiffiffiffiffi

c66
p − ffiffiffiffiffiffi

c55
p Þ∕ ffiffiffiffiffiffi

c66
p

, is 36%. The effective
medium is orthorhombic with the stiffness coefficients

c11 ¼ 38; c12 ¼ 15; c13 ¼ 18; c22 ¼ 45.8;

c23 ¼ 15.6; c33 ¼ 36.3; c44 ¼ 9.9; c55 ¼ 7; and

c66 ¼ 12ðin GPaÞ:

The simulations use a 813 mesh with a cell size of 1 m and the
central frequency of the source is fp ¼ 80 Hz. A vertical force is
located at the center of the mesh and the seismogram (z-component,
see Figure 8) is computed at ðx; y; zÞ ¼ ð10; 10; 10Þ m from the
source location. The solid line corresponds to the effective medium
and the dots to the simulations in the finely layered medium. The
agreement is as good as in the symmetry planes.

Distance (m) Distance (m)a) b)

Equivalent

Layered

Equivalent

Layered

Figure 4. Snapshots in the orthorhombic (a) and
monoclinic (b) effective (Schoenberg-Muir) media
(upper panels). The lower panels display the simu-
lations in the finely layered media. The outer and
inner wavefronts correspond to the qP- and qS-
waves, respectively.
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These simulations show that the theory performs very well, no
matter the degree of anisotropy. The only limitation is that the layers
have to be very thin compared to the minimum wavelength of the
signal; to be rigorous, the theory is exact at zero frequency. The
theory performs equally well for amplitudes, going beyond the ex-
pectations of the authors because they state (Schoenberg and Muir,
1989), “The real limitation is the long-wavelength one, which says,
in effect, that it is concerned with kinematics arrival times-alone. It
does not address the important dynamical question of how high-
frequency energy is lost from the coherent to the scattered field.”
It is evident in Figures 5, 7, and 8 that at long wavelengths, the
theory performs equally well for amplitudes.

a)

z
z

b)

Figure 5. Seismogram at ðx; zÞ ¼ ð57; 57Þ m from the source loca-
tion. The solid line corresponds to the effective (Schoenberg-Muir)
medium and the dots to the simulations in the finely layered med-
ium. (a) Orthorhombic medium; (b) monoclinic medium. The VTI
thin layer has 24% anisotropy.

Figure 6. Group-velocity curve corresponding to a strongly aniso-
tropic VTI medium. The VTI thin layer has 41% anisotropy. This
medium and its rotated version (45TI) are used to obtain the effec-
tive VTI-45TI medium.

Distance (m)

D
is

ta
nc

e 
(m

)

a)

b)

Figure 7. Snapshot in the effective monoclinic medium at 70 ms (a)
and seismogram at ðx; zÞ ¼ ð52; 52Þ m from the source location (b).
The solid line corresponds to the effective (Schoenberg-Muir)
monoclinic medium (VTI-45TI) and the dots to the simulations
in the finely layered medium. The VTI thin layer has 41% aniso-
tropy (see Figure 6). The arrow and the triangle indicate the source
and receiver, respectively.

C32 Carcione et al.

Downloaded 17 Aug 2012 to 157.92.4.71. Redistribution subject to SEG license or copyright; see Terms of Use at http://segdl.org/



CONCLUSIONS

We performed numerical simulations (snapshots and time his-
tories) of wave propagation in a layered medium whose layers
are anisotropic and thin compared to the wavelength, and compared
the results to similar simulations in an equivalent medium obtained
from the Schoenberg-Muir theory. The assumptions of the theory
(Backus’s assumptions) state that the model works for layer thick-
nesses small compared to the wavelength, small crack aspect ratios,
and very long flat parallel fractures and fracture spacings. Under
these conditions, the Schoenberg-Muir theory is valid from the ki-
nematic (traveltimes) and dynamic (amplitudes) points of view, no
matter how anisotropic are the single constituent layers. Even for
constituent transversely isotropic layers with tilted axis (e.g., obli-
quely aligned cracks [the monoclinic case]), the theory performs
equally well. The theory is not limited to cracks and fractures,
but the anisotropy of the single layers can be due to other causes,
such as fine layering.
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APPENDIX A

ELASTICITY MATRIX OF A ROTATED MEDIUM

AVTI medium with symmetry axis along the z-axis has the fol-
lowing stiffness matrix

C ¼

0
BBBBBB@

c11 c12 c13 0 0 0

c12 c11 c13 0 0 0

c13 c13 c33 0 0 0

0 0 0 c55 0 0

0 0 0 0 c55 0

0 0 0 0 0 c66

1
CCCCCCA
;

2c66 ¼ c11 − c12:

(A-1)

A clockwise rotation of the vertical symmetry axis through an angle
ψ about the y-axis has the orthogonal transformation matrix:

0
@ cos ψ 0 sin ψ

0 1 0

− sin ψ 0 cos ψ

1
A: (A-2)

The corresponding Bond transformation matrix is (Carcione, 2007)

M ¼

0
BBBBBB@

cos2 ψ 0 sin2 ψ 0 sinð2ψÞ 0

0 1 0 0 0 0

sin2 ψ 0 cos2 ψ 0 − sinð2ψÞ 0

0 0 0 cos ψ 0 − sin ψ
− 1

2
sinð2ψÞ 0 1

2
sinð2ψÞ 0 cosð2ψÞ 0

0 0 0 0 0 cos ψ

1
CCCCCCA
:

(A-3)

Then, the stiffness matrix with the rotated symmetry axis is given by
(Carcione, 2007),

C 0 ¼ M · C · M⊤: (A-4)

APPENDIX B

EFFECTIVE ELASTICITY MATRIX FOR VTI-HTI
AND VTI-45TI MEDIA

First, we consider a periodic system of VTI and HTI layers,
where the HTI medium, labeled 2, is the same VTI medium, labeled
1. Using A-4, an angle ψ ¼ π∕2 transforms a VTI medium into an
HTI medium,

0
BBBBBBBBB@

c11 c12 c13 0 0 0

c12 c11 c13 0 0 0

c13 c13 c33 0 0 0

0 0 0 c55 0 0

0 0 0 0 c55 0

0 0 0 0 0 c66

1
CCCCCCCCCA

→

0
BBBBBBBBB@

c33 c13 c13 0 0 0

c13 c11 c12 0 0 0

c13 c12 c11 0 0 0

0 0 0 c66 0 0

0 0 0 0 c55 0

0 0 0 0 0 c55

1
CCCCCCCCCA
: (B-1)

According to equations 1, 3, and B-1,

z

Figure 8. Seismogram at ðx; y; zÞ ¼ ð10; 10; 10Þ m (outside the
symmetry planes) from the source location. The solid line corre-
sponds to the effective orthorhombic medium and the dots to the
simulations in the finely layered medium.
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Cð1Þ
TT ¼

0
B@

c11 c12 0

c12 c11 0

0 0 c66

1
CA; Cð1Þ

TN ¼

0
B@

c13 0 0

c13 0 0

0 0 0

1
CA;

Cð1Þ
NN ¼

0
B@

c33 0 0

0 c55 0

0 0 c55

1
CA; (B-2)

and

Cð2Þ
TT ¼

0
B@

c33 c13 0

c13 c11 0

0 0 c55

1
CA; Cð2Þ

TN ¼

0
B@

c13 0 0

c12 0 0

0 0 0

1
CA;

Cð2Þ
NN ¼

0
B@

c11 0 0

0 c66 0

0 0 c55

1
CA; (B-3)

with c66 ¼ 1
2
ðc11 − c12Þ.

Using equation 3, the effective medium composed of VTI-HTI
layers has orthorhombic symmetry and is given by the following
symmetric elasticity matrix

0
BBBBBBBBB@

c11þc33
2

c12þc13
2

c13 0 0 0

� c11 −
ðc12−c13Þ2
2ðc11þc33Þ

c11c13þc12c33
c11þc33

0 0 0

� � 2c11c33
c11þc33

0 0 0

� � � 2ðc11−c12Þc55
c11−c12þ2c55

0 0

� � � � c55 0

� � � � � 1
4
ðc11 − c12 þ 2c55Þ

1
CCCCCCCCCA
:

(B-4)

Now, we consider a periodic system of VTI and 45TI layers,
where the 45TI medium, labeled 2, is the same VTI medium,
but rotated by 45°. An angle ψ ¼ π∕4 transforms a VTI medium
into an 45TI medium, whose (symmetric) elasticity matrix is

0
BBBBBBBBB@

aþ c55
1
2
ðc12 þ c13Þ a − c55 0 1

4
ðc33 − c11Þ 0

� c11
1
2
ðc12 þ c13Þ 0 1

2
ðc13 − c12Þ 0

� � aþ c55 0 1
4
ðc33 − c11Þ 0

� � � b 0 1
4
ð−c11 þ c12 þ 2c55Þ

� � � � 1
4
ðc11 − 2c13 þ c33Þ 0

� � � � � b

1
CCCCCCCCCA
;

(B-5)

with

4a ¼ c11 þ 2c13 þ c33; 4b ¼ c11 − c12 þ 2c55:

Combining the 45TI and VTI media, the effective medium has
monoclinic symmetry and is given by the following symmetric
elasticity matrix

0
BBBBBB@

c̄11 c̄12 c̄13 0 c̄15 0

� c̄22 c̄23 0 c̄25 0

� � c̄33 0 c̄35 0

� � � c̄44 0 c̄46
� � � � c̄55 0

� � � � � c̄66

1
CCCCCCA
; (B-6)

where

Dc̄11 ¼ c211ðc33 þ c55Þ þ c11C

þ c33½−c213 þ c55ðc33 þ 4c55Þ�;
Dc̄12 ¼ c13½c33ð−c13 þ c55Þ þ c11ðc33 þ c55Þ�

þ c12½Cþ c33ðc11 − c13Þ þ c55ðc11 − c33Þ�;
−Dc̄13 ¼ ðc13 þ c33Þðc213 − c11c33Þ þ 2c55½−c13ðc11 þ 3c33Þ

þ 2c55ðc33 − c13Þ�;
Dc̄15 ¼ c55ð−c11 þ c33Þðc13 þ c33 þ 2c55Þ;
c̄22 ¼ c11 − ðc12 − c13Þ2ðc33 þ c55ÞD−1;

c̄23 ¼ c13 − c33ðc12 − c13Þðc13 − c33 − 2c55ÞD−1;

−Dc̄25 ¼ c55ðc12 − c13Þðc13 þ 3c33 þ 2c55Þ;
Dc̄33 ¼ 2c33½−c213 þ ðc11 þ 2c55Þðc33 þ 2c55Þ�;
Dc̄35 ¼ 2c33c55ð−c11 þ c33Þ;
Fc̄44 ¼ 2c55ðc11 − c12 þ 2c55Þ;
Dc̄46 ¼ c55ð−c11 þ c12 þ 2c55Þ;
Dc̄55 ¼ 2c55½−c213 þ ðc33 þ c55Þðc33 − 2c13Þ

þ c11ð2c33 þ c55Þ�;
4Fc̄66 ¼ ðc11 − c12Þ2 þ 4c55½3ðc11 − c12Þ þ c55�;

C ¼ −c213 þ c233 þ 6c33c55 þ 4c255;

D ¼ C − 2c13c33 þ 2c11ðc33 þ c55Þ;
F ¼ c11 − c12 þ 6c55: (B-7)

APPENDIX C

PHASE AND GROUP VELOCITIES OF THE
EFFECTIVE ANISOTROPIC MEDIUM

In the symmetry plane of a monoclinic medium there is a pure
shear wave and two coupled waves. The respective phase velocity
surfaces in the ðx; zÞ-plane are

Γ22 − ρv2p ¼ 0; ðΓ11 − ρv2pÞðΓ33 − ρv2pÞ − Γ2
13 ¼ 0;

(C-1)

where

Γ11 ¼ c11l21 þ c55l23 þ 2c15l1l3;

Γ22 ¼ c66l21 þ c44l23 þ 2c46l1l3;

Γ33 ¼ c33l23 þ c55l21 þ 2c35l1l3;

Γ13 ¼ c15l21 þ c35l23 þ ðc13 þ c55Þl1l3 (C-2)

(Carcione, 2007), where vp is the phase velocity and l1 ¼ sin θ and
l3 ¼ cos θ, with θ the phase propagation angle. The SH-wave
group-velocity is
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vg ¼
1

ρvp
½ðc66l1 þ c46l3Þê1 þ ðc44l3 þ c46l1Þê3�: (C-3)

On the other hand, the qP and qS group-velocity components are

vg1 ¼
�

1

vp

� ðΓ33 − ρv2pÞðc11l1 þ c15l3Þ þ ðΓ11 − ρv2pÞðc55l1 þ c35l3Þ − Γ13 ½2c15l1 þ ðc13 þ c55Þl3�
ρðΓ11 þ Γ33 − 2ρv2pÞ

(C-4)

and

vg3 ¼
�

1

vp

� ðΓ33 − ρv2pÞðc55l3 þ c15l1Þ þ ðΓ11 − ρv2pÞðc33l3 þ c35l1Þ − Γ13 ½2c35l3 þ ðc13 þ c55Þl1 �
ρðΓ11 þ Γ33 − 2ρv2pÞ

:

(C-5)
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