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ABSTRACT
For photoacoustic image reconstruction, certain parameters such as sensor positions and speed of sound have a major impact on the recon-
struction process and must be carefully determined before data acquisition. Uncertainties in these parameters can lead to errors produced by a
modeling mismatch, hindering the reconstruction process and severely affecting the resulting image quality. Therefore, in this work, we study
how modeling errors arising from uncertainty in sensor locations affect the images obtained by matrix model-based reconstruction algo-
rithms based on time domain and frequency domain models of the photoacoustic problem. The effects on the reconstruction performance
with respect to the uncertainty in the knowledge of the sensors location are compared and analyzed both in a qualitative and quantitative
fashion for both time and frequency models. Ultimately, our study shows that the frequency domain approach is more sensitive to this kind
of modeling errors. These conclusions are supported by numerical experiments and a theoretical sensitivity analysis of the mathematical
operator for the direct problem.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0065966

I. INTRODUCTION

Photoacoustic tomography (PAT) is a non-invasive hybrid
imaging modality based on the photoacoustic (PA) effect. By using
laser excitation and acoustic detection, PAT takes advantage of the
high contrast imaging present in purely optical modalities while
maintaining the great resolution given by ultrasonic detection.1 The
PAT technique relies on the generation of ultrasonic acoustic waves
(or PA waves) induced by the illumination of biological tissue with
short-pulsed non-ionizing laser light. The absorbed energy leads to a
rapid increase in temperature and to the formation of pressure waves
due to a transient thermoelastic expansion of the illuminated object.
The PA waves travel through the tissue and are sensed by a series of
ultrasonic transducers placed at a number of fixed positions around
the sample. The received signals can then be analyzed and pro-
cessed to recover the initial pressure distribution. Optical absorption
is closely related to several important physiological properties, such
as oxygen saturation and hemoglobin concentration. Thus, in the
past few decades, PAT has been successful in obtaining high fidelity

images of vascular anatomy in small animals and functional images
of blood oxygenation.2,3 Unfortunately, the PAT inverse problem
(the reconstruction of the 2D or 3D initial pressure distribution
from the PA signals) is typically ill-posed. This means that even
small errors in the measurements or inaccuracies in the modeling
of the system can lead to an erroneous solution or a significantly
distorted image.4 These modeling errors have different sources
and can occur due to several reasons: non-homogeneous speed of
sound, the presence of noise in the measurements, sensor responses
not sufficiently broadband or not omni-directional, limited-view
detection, undersampling in space or time due to hardware con-
straints, etc.5 Furthermore, algorithms require precise information
of the geometry of the experimental setup used for detecting the
PA waves. Therefore, inaccuracies in the knowledge of the position,
shape, and size of the ultrasonic transducers can also lead to faulty
modeling.4,6

Previously, some studies have analyzed how acoustic hetero-
geneities7–10 and finite transducer size11,12 affect the solution of
the inverse problem. The effect of different discretizations of the
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forward problem on image reconstruction was discussed in brief in
Ref. 13. More recently, Salhström et al.6 studied the usefulness of
using a Bayesian framework for taking into account some of the
inherent modeling errors in PAT when approaching the inverse
problem.

Several reconstruction algorithms have been employed in
the estimation of the initial pressure distribution.3,6 A distinction
between analytic inversion formulas and algebraic inversion proce-
dures, both in time- and frequency domain, can be made.14 Ana-
lytic reconstruction techniques use the mathematical model of the
PA pressure propagation in order to perform the exact inversion
of the mathematical operator of the forward problem.15–17 Alge-
braic reconstruction techniques differ conceptually from analytic
formulas as the inversion is typically performed from a numerical
approximation to the forward or inverse problem. The most relevant
approaches of each group are the universal back-projection (BP)18

and model-based algorithms,19 respectively. The back-projection
(BP) algorithms are based on approximate analytical inversion for-
mulas, and they are closely related to the (inverse) spherical Radon
transform.20 Due to this, BP algorithms are limited to a specific
reconstruction geometry (e.g., cylindrical21) and require that the PA
signals be densely sampled along the detection surface.14 Further-
more, practical implementation of these closed-form solutions may
lead to the appearance of significant streak-type artifacts and blur-
ring and negative values in the reconstructed images.18,22 In contrast,
the matrix model-based (MM) image reconstruction algorithms are
based on a discrete representation of the acoustic forward model
describing the propagation of pressure and not a particular analyti-
cal solution such as BP type approaches. This allows the construction
of a matrix, which jointly represents the forward operator and the
PAT measurement system and which is strongly dependent on the
characteristics of the experimental setup. With this approach,
the image reconstruction is performed by numerically minimizing
the error (usually quantified by a quadratic loss function) between
the measured acoustic signals and those predicted using the acoustic
forward model.14 Typically, the minimization is carried out through
a least squares based inversion of the model matrix. As this matrix
could be ill-conditioned, regularization techniques such as Tikhonov
regularization are typically used to stabilize the numerical inver-
sion.20 MM frameworks tend to be more computationally intensive
than BP algorithms since they require calculation and manipula-
tion of large matrices.23 Nevertheless, they can be more versatile,
given that they can be applied to arbitrary measurement geome-
tries and that many additional linear effects can be added to the
model.13

The accuracy or fidelity of the model used for representing an
experimental setup is crucial for the success of MM algorithms.12

Since the construction of the matrix depends heavily on certain
parameters of a given measurement geometry, care must be taken
in the characterization of the PAT system to ensure good image
reconstruction quality.4 However, in typical measurement setups,
eliminating all the sources that give rise to modeling errors can
be a difficult task.6 For example, temperature variations during the
measurement process may cause slight drifts in the speed of sound
of a medium,7 or the measurement setup may be built in such
a way that the exact determination of transducer locations could
be challenging.6 Hence, it is of interest to analyze the behavior of
MM algorithms when some of the measurement setup parameters

suffer from uncertainties in their values. In particular, such an anal-
ysis may show if some MM schemes prove to be more robust than
others or if some lead to better overall image quality when faced with
uncertain parameters.

In this paper, we analyze how uncertain knowledge of sensor
locations in a typical experimental setup can lead to unsatisfactory
image reconstruction quality due to modeling errors. Two common
MM algorithms are tested: one working in the time domain24 and
another in the frequency domain.25 Through simulations, uncer-
tainty is added to the model matrices in a controlled manner, allow-
ing us to qualitatively and quantitatively analyze the quality of the
resulting reconstructed images. In particular, it is shown that it is
advantageous to use a time domain model over a frequency domain
model when the knowledge of the sensor positions becomes moder-
ately uncertain. In other words, the time domain model proves to be
more robust to modeling errors than the frequency domain model
when the value of a key parameter in the measurement setup such as
the transducer locations is not accurately known. The same behav-
ior is then observed when attempting to reconstruct an image from
experimental measurements from a PAT setup in which the sensor
positions are only known to ∼1% of their nominal value. Moreover,
we discuss how uncertainties in the speed of sound in an acoustically
homogeneous medium lead to a similar behavior for the frequency
domain MM method.

The remainder of this paper is organized as follows: Secs. II A
and II B introduce the forward and inverse acoustic problems in
PAT. Sections II C and II D explain the methodology for the sim-
ulations and experimental reconstructions. Then, in Sec. III, the
obtained results are presented. In Sec. IV, a theoretical sensitiv-
ity analysis of the mathematical operator for the direct problem is
provided. Finally, the conclusions of this paper are in Sec. V.

II. METHODS
A. Forward problem

According to PA theory, for an acoustically non-absorbing
homogeneous medium, the acoustic pressure p(r, t) at position r
∈ R3 and time t that originated from the optical absorption of a
sample excited by an electromagnetic pulse δ(t) satisfies the homo-
geneous wave equation21

( ∂2

∂t2 − v2
s ∇2)p(r, t) = 0, (1)

with the initial conditions

p(r, 0) = p0(r) , (∂p/∂t)(r, 0) = 0,

where p0(r) is the initial OA pressure and vs represents the speed of
sound in the medium. Moreover, if thermal confinement and acous-
tic confinement are fulfilled, that is, when the laser pulse duration is
short enough that the heat conduction and acoustic propagation into
neighboring regions of the illuminated region can be neglected, the
initially induced pressure p0(r) is proportional to the total absorbed
optical energy density.3

By solving the wave equation using Green’s function in free
space, the forward solution of the PA pressure detected by an ideal
point detector at position rd placed on a surface S surrounding the
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volume of interest V can be written as26

pd(rd, t) = 1
4π v2

s

∂

∂t∭V
p0(r)

δ(t − ∣rd − r∣/vs)
∣rd − r∣ d3r. (2)

The goal of the PAT inverse problem is to reconstruct the initial
pressure p0(r) from the measured PA signals pd(rd, t) at different
positions rd on a surface S surrounding the volume of interest.3

Taking the Fourier transform with respect to vst, the forward
operator (2) can be rewritten in the frequency domain as1

p̄d(rd, k) = −i k∭
V

p0(r)
exp(−i k ∣rd − r∣)

4π∣rd − r∣ d3r, (3)

where k = ω/vs, ω is the angular frequency equal to 2πf , and f is the
signal temporal frequency.

B. Acoustic inverse problem
Analytical inversion formulas were used for image reconstruc-

tion tasks in most PA systems in the past.14,27 The reconstruction
approach most favored in several articles are BP type algorithms
due to their simple implementation and applicability to most prac-
tical imaging scenarios.14 As mentioned in Sec. I, one of the most
prominent formulations of the BP approach is the universal back-
projection algorithm.18 In a homogeneous medium with a constant
vs, the universal back-projection formula directly links p0(r) to
pd(rd, t) on the detection surface S that encloses the PA source,18

p0(r) = ∫
Ωs

b(rd, t = ∣rd − r∣/vs)
dΩs

Ωs
, (4)

where b(rd, t) = 2pd(rd, t) − 2t∂pd(rd, t)/∂t is the back-projection
term related to the measurement at position rd, Ωs is the solid angle
of the whole surface S with respect to the reconstruction point inside
S, dΩs = dS cos θs/∣rd − r∣, and θs denotes the angle between the out-
ward pointing unit normal of S and (rd − r). The above-mentioned
formula is exact for cylindrical, planar, and spherical geometries
and assumes point detectors with infinite bandwidth and a uniform
angular response.13,14,28 However, in practice, the transducers can-
not be considered point-like, are band limited, and do not have flat
angular responses. In these non-ideal imaging scenarios, the ana-
lytical inverse formulas significantly deviate from reality, generating
imaging artifacts (e.g., appearance of negative values that have no
physical interpretation) and distorted images.13,14

A different reconstruction approach is based on the MM algo-
rithms. In this technique, the forward solution is represented by
a matrix equation, which is used for solving the inverse problem.
One of the advantages of this approach is that any linear effect
in the system may be considered. Therefore, any spatiotemporal
detection response that can be modeled or measured may be taken
into account in the inversion process.14,24,29 In the ideal case of
point detectors and a homogeneous lossless acoustic medium, the
model matrix in the time domain may be calculated by discretizing
the integral relation in (2),14

pd = A p0, (5)

where pd ∈ R
Nd ⋅Nt×1 is a column vector representing the measured

pressures at a set of detector locations rdl (l = 1 . . .Nd) and time

instants tk (k = 1 . . .Nt), p0 ∈ R
N×1 is a column vector representing

the values of the initial acoustic pressure on the imaging region grid,
and A ∈ RNd ⋅Nt×N is the model matrix. The j-th element (j = 1 . . .N)
in p0 contains the average value of the initial pressure within a vol-
ume element of size ΔV at position rj. Once the discrete formulation
has been established, the inverse problem is reduced to the alge-
braic problem of inverting (5). The matrix A can be written as the
multiplication of two matrices Aoa and As, where As represents the
point response function of the imaging system for an ideal point-like
sensor and Aoa is a time derivative operator. The matrix As is defined
as9,19,29,30

As
lkj =

1
4πv2

s

ΔV
Δt2

d(tk, rj)
∣rdl − rj∣

, (6)

d(tk, rj) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1, si ∣tk −
∣rdl − rj∣

vs
∣ < Δt/2,

0, else ,
(7)

where Δt is the time step at which pd(rd, t) are sampled and Aoa

is a square matrix with replications of the basic “N-shape” signals
grouped in columns along its main diagonal.29

In the frequency domain, the matrix representation of the for-
ward model is similar to that of the time domain model described
above.25,31 From (3), we can obtain

p̄d = K p0, (8)

where p̄d ∈ CNd ⋅N f ×1 is a column vector representing the measured
pressures at rdl positions (l = 1 . . .Nd) and frequency samples f p

(p = 1 . . .N f ) and K ∈ CNd ⋅N f ×N is the model matrix in the frequency
domain, which can be written as25,31

Klpj = −i kp ΔV
exp(ikp ∣rdl − rj∣)

4π∣rdl − rj∣
, (9)

where kp = 2πf p/vs.
In the case of a finite-size detector, the spatial impulse response

(SIR) of the sensor must be taken into account.12 For the numerical
calculation of the SIR, the area of the detector is divided into sur-
face elements (treated as point detectors), which are then added up.
Second, in (6) and (9), a weight factor to take the size of surface ele-
ments and the directional sensitivity of the detectors into account is
included.29

As already mentioned above, once a model matrix for the ideal
case is constructed, the MM approach allows the model matrix to be
modified in order to refine the forward model so as to include the
frequency or time response of the detector or the time/frequency
properties of the illumination pulse.14,29 Furthermore, the MM
approach enables imposing constraints on the PA source to regu-
larize the solution of the inverse problem. A typical regularization
scheme is the so called Tikhonov regularization, which involves a
square error minimization criterion coupled with a term weighing
the ℓ2 norm of the solution,9,25

p̂0 = min
p0
∥A p0 − pd∥

2
ℓ2 + α ∥p0∥

2
ℓ2, (10)
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where α ≥ 0 is the regularization parameter. Given a fixed α, the
solution to (10) is unique and is called the Tikhonov-regularized
pseudo-solution,25

p̂0 = (AH A + αI)−1AH pd, (11)

where I is the identity matrix and H denotes the conjugate transpose
operator. The value of the regularization parameter α can affect the
solution and must be carefully chosen. For example, higher regular-
ization tends to over-smooth the image while lower α values amplify
the noise in the images. In order to obtain the inverse equations for
the frequency domain, A and pd should be replaced by K and p̄d in
(10) and (11).

C. Simulations
The effect of uncertainties in ultrasound sensor locations was

studied using the simulation geometry of the PA data acquisition
setup shown in Fig. 1 with increasing levels of uncertainty. The setup
presented in Fig. 1 represents a two-dimensional PAT system imple-
mented with a sensor rotating around the imaging region where the
sample, uniformly illuminated, is placed. This single-detector based
PAT system was demonstrated to be very useful for proof-of-concept
studies due to its simplicity, low cost, and effectiveness.4,32 A square
imaging region having a size of 30 × 30 mm2 and a resolution of
64 × 64 pixel2 was used, and the sensor (black circle) was placed on
a circle of 22.5 mm radius. The PA signals were detected over 120
locations placed equidistantly around this circumference. Although
large area detectors are typically used in practice, for simplicity, we
assumed the sensor to be point-like with a bandwidth of 20 MHz. For
data collection, the time step Δt was 50 ns with Nt = N f = 420 sam-
ples. The speed of sound was set to vs = 1500 m/s, and the medium
was assumed to be homogeneous with no absorption or dispersion
of sound. The transducer frequency response was modeled using a
band-pass filter with upper and lower cutoff frequencies of 0.1 and
20 MHz, respectively. In order to simulate data with uncertainties in

FIG. 1. Simulation geometry of the PA data acquisition setup.

sensor locations, the ultrasound sensor locations rd were perturbed
as illustrated in Fig. 1. These altered sensor locations were drawn
from generalized uniform distributions for the radial values. The
simulation conducted can be summarized into three steps:

(1) Construct A and K with a radial value R = 22.5 mm. Generate
pd and p̄d from a phantom p0 using these model matrices.

(2) Construct AN and KN using a radial value in the uniform
interval [R − X%, R + X%], where X represents the uncer-
tainty introduced in the radius of the circumference of the
sensor location. AN and KN are the matrices assumed by the
reconstruction algorithm to be the real ones.

(3) Solve (10) employing the data obtained in step 1 and the
model matrices constructed in step 2 with an iterative
method to approximate the solution using the lsqr algorithm
provided in the Python module scipy.sparse.linalg.

In order to perform a statistical analysis, for each value of X, we
performed 50 reconstructions with different radial sensor locations
randomly obtained within the range [R − X%, R + X%].

As the initial pressure distribution p0, we used the standard
Shepp–Logan numerical phantom.33 In all cases, Gaussian uncor-
related noise with zero mean and a standard deviation of 1% of the
maximum simulated peak amplitude, resulting in a signal to noise
ratio (SNR) of 40 dB, was added to the data. Moreover, for compar-
ison, we also reconstructed the image using the BP approach based
on (4).18 The simulations were carried out in the Python framework.

D. Experimental setup
In order to obtain experimental PA signals for comparing the

performance between the different reconstruction algorithms under
study, we used a 2D PAT system whose capabilities have been
demonstrated in a previous study.34 A diagram of the experimen-
tal setup is presented in Fig. 2. A polymer piezoelectric sensor and a
sample were immersed in a vessel filled with deionized water. The
water temperature was measured with a calibrated thermocouple
to determine the speed of sound (vs = 1479 m/s). A Nd:YAG laser
with second harmonic generation (Continuum Minilite I, 532 nm),
5 ns pulse duration, 10 Hz repetition rate, and pulse energy less than
1 mJ was the light source. A diverging lens adapted the diameter
of the laser beam to a size larger than the sample, trying to achieve
homogeneous illumination. The ultrasonic detector was fixed and
pointed to the center of the rotating sample stage using an xyz
translation stage, and it was oriented along the z axis, perpendic-
ular to the image plane xy. The distance between the sensor and
the center of the rotating sample was (8.35 ± 0.05) mm (a posi-
tion uncertainty of about 1%). The phantom was fixed to a rotatory
stage (Newport PR50CC) and rotated 360○ in 3○ steps. The sen-
sor output was amplified with a transimpedance amplifier (FEMTO
HCA-100MHz-50K-C), digitized by an oscilloscope (Tektronix TDS
2024), and processed on a personal computer. The PA signals were
recorded and averaged 16 times. A pyroelectric detector (Coherent
J-10MB-LE) measured the laser pulse energy.

The ultrasonic sensor used in this experiment is an integrating
line detector with an active detection area of ∼0.7 × 24 mm2. The
detection system (sensor + amplifier) has a pressure sensitivity of
1.6 mV/Pa, a noise equivalent pressure (NEP) of 0.4 mPa/

√
Hz, and

a bandwidth of 20 MHz.34
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FIG. 2. Experimental setup.

The sample consists of an ink pattern laser (three capital letters
reading UBA) printed on a transparent film embedded in agarose
gel. The agarose gel was prepared with 2.5% (w/v) agarose in distilled
water. First, a cylindrical base of the agarose gel with a diameter of
14 mm and a height of ∼20 mm was prepared. Then, the object (ink
pattern on transparent film) was placed in the middle of the cylinder
and fixed with a few drops of the gel. Finally, another layer of gel
with a thickness of ∼1 mm was formed on top of the sample object.
A picture of the sample is shown in Fig. 7(a).

III. RESULTS
A. Simulations

Following the steps detailed in Sec. II C, we simulated radial
uncertainties X% in the range between 0.01% and 10%. Figures 3–5

FIG. 3. Average images obtained for X = 0.1%. (a) BP. (b) TDMM. (c) FDMM.

FIG. 4. Average images obtained for X = 1%. (a) BP. (b) TDMM. (c) FDMM.

show the averaged images obtained by the MM approaches for three
different radial uncertainty values in the range under study. As a
benchmark, the reconstructed images using the BP method based
on (4) are also presented.

FIG. 5. Average images obtained for X = 5%. (a) BP. (b) TDMM. (c) FDMM.

FIG. 6. Correlation value between the reconstructed image and the original image
as a function of uncertainty X .
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FIG. 7. Images obtained employing the different reconstruction algorithms using 120 locations with ∼1% sensor position uncertainty. The phantom (ink pattern in agarose
gel) reads UBA, and its size is 3.0 × 2.5 mm2. The calculated PC values are (b) PC = 0.612, (c) PC = 0.723, and (d) PC = 0.123.

As can be seen in Fig. 3, the phantom can be perfectly recog-
nized in the reconstructed images for X = 0.1%. However, as the
value of X increases, the images obtained with the frequency domain
model matrix (FDMM) method are more affected than the recon-
structions obtained by the time domain model matrix (TDMM)
and BP approaches. For example, in the image obtained by the
frequency approach for X = 1% [Fig. 4(c)], almost no appreciable
detail of the original image can be found. On the other hand, the
images reconstructed using time domain methods [Figs. 4(a) and
4(b)] are comparable to that achieved for X = 0.1%. For higher val-
ues of X, the images obtained with the time domain approaches are
also affected as shown in Fig. 5. However, even for X = 5%, we are
still able to observe a diffuse version of the phantom reconstructed
with the TDMM and BP [Fig. 5(a) and 5(b)], while for the FDMM
approach, it is not possible to observe any vestige of the original
image [Fig. 5(c)].

In order to carry out a quantitative performance analysis of
the reconstructed images, we use the Pearson Correlation (PC)
coefficient as an evaluation metric. The PC is a measure of lin-
ear correlation between two entities; here, they are the original
image and the reconstructed image.35 It has a value between −1
and 1, meaning either extreme signifying perfect correlation (or
anti-correlation), and a value of 0, meaning no correlation between
the images. Figure 6 shows the calculated PC values vs the simu-
lated radial uncertainties X% (on a logarithmic scale) for the three
reconstruction methods. It can be observed that the value of the
PC remains relatively constant up to an uncertainty of 0.3% for the
time domain methods (TDMM and BP) and begins to fall sharply
after X% exceeds 1%. In the case of the FDMM algorithm, the PC
is approximately constant up to 0.03% and starts to decrease rapidly
for X% values greater than 0.1%.

B. Experiment
In order to verify the results of the simulations, we carried out

measurements with the 2D PAT system detailed in Sec. II D. As the
sensor of the experimental setup is not a point detector, we made
modifications to the reconstruction algorithms used in the simula-
tions. In the MM approach, for the numerical calculation of the SIR
of the detector, its area is divided into surface elements, which are
then added up. Moreover, in order to take into account the size of
surface elements and the directional sensitivity of the detectors, a
weight factor is included in (6) and (9).29

On the other hand, based on Ref. 21, we implemented a tem-
poral BP algorithm for integrating line detectors. The reconstructed
images from the measured pressures with a radial location uncer-
tainty of ∼1% are presented in Fig. 7. As it is mentioned in Sec. III B,
the location uncertainty arises from the xyz translation stage used to
position the sensor. The reconstructions presented in Fig. 7 show a
behavior similar to that found in Sec. III A where the time domain
methods obtain a better quality image than the FDMM. With the
TDMM [Fig. 7(c)] and BP [Fig. 7(b)], it is possible to distinguish
the capital letters UBA in the center of the image. However, with the
FDMM, it is not possible to see any detail of the original phantom
[Fig. 7(d)]. The failure of the latter method can be attributed to the
uncertainty in the sensor position. The time domain approaches also
show some artifacts characteristic of the methods themselves. For
example, the BP [Fig. 7(b)] shows some streak-type artifacts caused
by the finite number of angles used in the reconstruction.14 On the
other hand, the fuzzy edges seen in the image corresponding to the
TDMM [Fig. 7(c)] are due to the effect of the Tikhonov regular-
ization.25 The calculated PC values of this image, indicated in the
caption of Fig. 7, are in agreement with the values presented in Fig. 6.

IV. DISCUSSION
As observed via simulations in Sec. III A, the FDMM approach

showed higher sensitivity to slight variations in sensor positions than
time domain methods. We attributed this sensitivity to the failure of
the FDMM approach in recovering an image using experimentally
obtained data in Sec. III B. These results may indicate that when
using a traditional pulsed laser experimental setup as the one used in
Sec. II D, time domain reconstruction techniques may be preferred
over frequency domain model-based approaches.

A possible explanation accounting for the greater sensitivity of
the FDMM algorithm comes from looking at the entries of matrix K
given by (9). One of the terms in (9) is a complex exponential whose
argument is i f p 2 π

vs
∣rd − r∣. In a typical PAT setting, the frequency

values f p range from a few 100 kHz to several tens of MHz. There-
fore, any small error in the value of the sensor position rd is amplified
through its multiplication with f p, leading to a drastic change in the
value of the high frequency complex exponential (or phasor). This
phenomenon can be shown through a simple numerical example.
Taking f p = 1 MHz, vs = 1500 m/s, and r = (0 x̂ + 0 ŷ + 0 ẑ)mm, if a
detector is placed on a point with coordinates rd = 22.500 x̂ mm, the
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complex exponential evaluates to 1.00 + i0.00. Now, suppose that,
due to a measurement error, the detector position is considered to
be at r̃d = 22.275 x̂ mm (only a 1% difference with respect to rd).
Using r̃d, the value of the complex exponential becomes 0.59 − i0.81.
Finally, the term exp(i fp 2 π ∣rd−r∣)

∣rd−r∣ in (9) computes to roughly (44.44
+ i0.00) m−1 when using rd and to (26.4 − i36.3) m−1 when using
r̃d: a substantial difference. The frequency domain matrix K is highly
dense (i.e., not sparse), and every entry in it depends on the value of
the complex exponential present in (9). As a consequence, any tiny
error inside the high frequency phasor affects every value in K, lead-
ing to a matrix that does not accurately represent the system at hand.
This effect only gets worse with higher values of fp, meaning that
higher bandwidth systems will be much more sensitive to uncertain-
ties in rd. Nonetheless, even for typical detectors operating between
1 and 5 MHz, this simple numerical example shows that the error
generated by this effect is noticeable.

On the other hand, the time domain model given by (5), whose
characteristic matrix A is defined by (6), is also affected by this
problem but in a less extreme manner due to the lack of an expo-
nential term. Instead, the term involving the detector position is
d(tk ,r)
∣rd−r∣ , where d(tk, r) is a discrete representation of the delta term

in (2), and can only be either 1 or 0, which does not drastically affect
the numerical value of the matrix entry. Using the same numerical
example as before, this term evaluates to 44.4 m−1 when using rd
and 44.9 m−1 when using r̃d: only a small difference. Slight changes
in rd also correspond to a slight shift in the position of the matrix
entries in A due to the d(tk, r) term. This tiny shifting in the matrix
entries is the cause of the blurring observed in the TDMM recon-
structions in Sec. III A since the pressures measured at the detectors
are interpreted as originating from different (but nearby) pixels in
the image.

Incidentally, note that since the speed of sound vs is present in
the same complex exponential (for the FDMM algorithm) and delta
term (for the TDMM one) as rd, any uncertainties in this param-
eter will have a similar effect on the matrices and lead to similar
problems.

We can provide some more analysis regarding the sensitivity of
frequency and time domain models. Both models are linear ones as
shown in Eqs. (5) and (8). In the following, we will denote the dis-
cretized forward operator present in those equations (either matrix
A or K) with M. The presence of uncertainties in the measure-
ment system implies the existence of a deviation in operator M with
respect to a nominal situation. In more precise terms, the measured
pressures at the detector locations can be written as

pd =M p0 + n
=MN p0 + ΔM p0 + n, (12)

where M is the actual discretized forward operator; MN is the nom-
inal model, assumed by the reconstruction algorithm to be the true
one; ΔM is the deviation from that nominal model induced by the
uncertainties of the measurement system; and n is an additive mea-
surement noise (i.e., white noise in the detectors). From the previous
equation, it can be seen that the uncertainties of the measurement
system can be interpreted as an additional source of noise, ΔM p0,
which is dependent on the ground truth p0 in the forward model.

This additional perturbation makes reconstruction of the image
harder. A simple characterization of the influence of this quantity
is the norm of this term: ∥ΔM p0∥. Clearly, the precise influence of
this quantity depends not only on ΔM but also on the specific details
of p0. For example, if p0 is aligned with a particular bad direction of
ΔM, the influence of that term will be significant. From a practical
point of view, it is better to have a quantitative measure of the influ-
ence of that term but also independent of the true value of p0. In that
sense, we can look for a worst-case criterion given by

∥ΔM∥2 ≡ sup
p0≠0

∥ΔMp0∥
∥p0∥

. (13)

Equation (13) is the mathematical definition of the spec-
tral norm of matrix ΔM and requires obtaining its singular value
decomposition in order to be computed.36

Finally, using these definitions, a quantitative measure of the
effect of the uncertainties, with respect to the case of the perfect
knowledge of the measurement system (i.e., M =MN ), can be given
by

δM=Δ ∥ΔM∥2

∥M∥2
= ∥M −MN∥2

∥M∥2
. (14)

The idea behind this metric is to allow us to understand what
happens to model matrices A and K as the percentage error X%
in the detector position rd increases. The term ∥M −MN∥2 in (14)
quantifies the difference between the true forward operator M (the
one that correctly models the system) and the operator MN that
contains the modeling errors (and it is assumed to be true by the
reconstruction algorithm). Thus, if δM is low over increasing val-
ues of X%, it would mean that MN can accurately model the system
even in the face of uncertainty in its transducer position. On the
other hand, if δM were to increase rapidly, it would mean that the
model is sensitive to slight changes in rd since the difference term
∥M −MN∥2 grows quickly. Intuitively, this means that using MN to
invert data would lead to a poor quality and highly distorted image
for even relatively low values of X%.

Computing the δ metric is straightforward through simulation.
First, the true model A or K is constructed [via (6) or (9)] by using
a fixed value for the detector position rd. Then, AN or KN is cal-
culated with a corresponding detector position rd + X%, where X%
is the percent error manually introduced to represent faulty mod-
eling of the system. Finally, using the corresponding matrices, the
δ metric is computed according to (14). Figure 8 shows a graph of
δA and δK for increasing values of X% plotted on a logarithmic
scale. As can be clearly seen, δK increases faster than δA, indicating
that the matrix entries present in KN are vastly different from those
present in K, even when the percent difference in the value in rd is
small. This means that even a slight difference between the exper-
imentally measured and true values of rd will lead to a matrix that
cannot accurately represent the system and, consequently, will not
be able to reconstruct a good quality image. As mentioned before,
we attribute this behavior to the high frequency phasor present in
(9), whose value changes drastically, given tiny changes in the value
of rd used to construct the FDMM matrix. Figure 8 was obtained
using the same bandwidth and vs and rd values as those used in the
simulations in Sec. III A.
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FIG. 8. δ metric [Eq. (14)] for TDMM and FDMM model matrices A and K as a
function of uncertainty in the transducer positions.

Two other phenomena can be observed in Fig. 8. First, the vari-
ations in the value of δK after it reaches its peak value are due to
the oscillatory nature of the complex exponential that make up the
entries in K. Second, both δA and δK will seem to decrease and con-
verge to the same value when X% increases sufficiently. This can
be easily explained recalling the definition for the δ metric (14) and
the expressions for the matrix entries given in (6) and (9). Both (6)
and (9) contain a term of the form 1/∣rd + r∣, which diminishes in
value as rd increases, making every matrix entry smaller in absolute
value. Thus, as X% increases, rd + X% increases, and the coefficients
in MN get smaller. As a result, the value of ∥M −MN∥2 will approach
∥M∥2, making δM approach 1 for large enough X%. It is interest-
ing to note that when uncertainties in the speed of sound of the
medium are present, a qualitatively similar behavior as in Fig. 8 is
obtained. Once again, as it occurs with rd, this is due to the presence
of the speed of sound vs in the high frequency complex exponential
in (9).

The authors acknowledge other articles in which the FDMM
has been successfully applied. In Refs. 25, 37, and 38, a setup with
a pulsed laser is employed, and the image is obtained using a pro-
cess similar to the one described in II; however, no detail is given on
the relative uncertainties in the measurement systems. As shown in
Sec. III A, if the uncertainty in the transducer position is low enough,
little modeling error is introduced, and both the time domain and
frequency domain approaches are able to reconstruct good quality
images. Other articles in which the FDMM has been applied success-
fully exist but contain some noteworthy differences. For example, in
Ref. 39, a frequency domain PAT system is presented in which the
sample is excited by an amplitude modulated continuous-wave laser
operating at different frequencies, allowing for the retrieval of phase
and amplitude measurements. This fundamentally changes the data
processing and image reconstruction steps and may be the key to
a more robust setup, but again, no mention of the uncertainties in
the system is given, and a specialized setup different from the usual
pulsed laser approach is used.

V. CONCLUSIONS
In this paper, the robustness of time and frequency domain

model-based reconstruction algorithms was compared and ana-
lyzed. It was shown that in the presence of modeling errors caused
by uncertain transducer positions in a typical PAT setup, the time
domain approach proved to be more robust than the frequency
domain one, which was unable to recover an image even when the
uncertainty was moderately low.

The robustness of the different approaches was first studied
through simulations, where modeling errors were deliberately added
to the matrices used for reconstruction. This allowed for the qual-
itative and quantitative analysis of the obtained images, and this
clearly showed the deterioration present in the frequency domain
reconstructions. The experimental reconstructions carried out using
a typical pulsed laser PAT setup with a ∼1% uncertainty in its trans-
ducers positions showed similar results. The analysis provided in
Sec. IV supports the conclusion that the frequency domain approach
is less robust and points to a high frequency complex exponential
as a possible source for its sensitivity. The model mismatch caused
by uncertainties can be interpreted as an additional source of noise,
causing distorted reconstructions. Overall, the results indicate that
when using a standard pulsed laser PAT setup, time domain recon-
struction approaches should be used instead of frequency domain
ones due to their robust characteristics.

Even though the frequency domain approach suffers from
severe robustness issues when model uncertainties are present, it has
proven useful when employing more advanced image reconstruc-
tion algorithms, such as the application of the compressed-sensing
paradigm PAT image reconstruction.25 Such cases would require
experimental setups with very low working uncertainty to obtain
good quality images. This opens the path, analyzing the frequency
model’s limitations and studying ways to improve its robustness
more closely, such as using a Bayesian approach6 for solving the
inverse problem. Another possible alternative, more suited for the
frequency domain approach, is to study the implementation of a sig-
nal processing based calibration approach in order to estimate the
uncertainties in the measurement setup in a similar way to the pro-
cedures typically used in MIMO (multiple-input multiple-output)-
optical frequency division multiplexing (OFDM) communication
systems.40
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