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We performed microwave spectroscopy of an InAs nanowire between superconducting contacts
implementing a finite-length, multi-channel Josephson weak link. Certain features in the spectra,
such as the splitting by spin-orbit interactions of the transition lines among Andreev states, have
been already understood in terms of non-interacting models. However, we identify here additional
transitions, which evidence the presence of Coulomb interactions. By combining experimental mea-
surements and model calculations, we reach a qualitative understanding of these very rich Andreev
spectra.

Introduction: Electronic transport phenomena in
nanostructures are typically classified into those which
can be understood in terms of non-interacting quasi-
particles, such as conductance quantization or universal
conductance fluctuations, and those where interactions
play a dominant role, such as Coulomb blockade or the
Kondo effect [1]. In the presence of superconductivity
such simplifications are usually fruitful and have allowed
the understanding of complex transport properties in the
regime of multiple Andreev reflections, when interactions
can be neglected [2–7] or the interplay between pairing
and charging effects in superconducting quantum dots,
which can be analyzed in terms of a single level Anderson
model [8–10]. As we show in this work, microwave spec-
troscopy experiments on hybrid superconducting weak
links (WLs) are, however, challenging such idealized pic-
tures.

The physics of a Josephson weak link is governed by
the spectrum and occupation of its Andreev states. Using
circuit-QED techniques [11] it has been explored and un-
derstood in depth for the case of short weak links with a
single conduction channel, as in atomic-size contacts [12].
Lately, the case of long junctions with several channels is
being addressed owing to the development of high qual-
ity hybrid weak links based on semiconducting nanowires
[14–17]. Due to spin-orbit interaction, Andreev levels are
spin-split for all values of the superconducting phase dif-
ference δ across the link except at the degeneracy points
δ = 0, π, as schematically shown in Fig. 1, where the spec-
trum is given in the excitation representation. Within a
non-interacting model [15], two types of transition lines
are expected in the excitation spectrum: on the one hand,
single quasiparticle transitions (SQPT), where trapped
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FIG. 1. (a) Andreev spectra of a typical finite-length weak
link with spin orbit interaction. Colored arrows highlight the
possible microwave absorption lines depicted in (b). Transi-
tion lines are classified into pair (red) and mixed pair (blue)
transitions and inter- (solid green) and intra-manifold (dashed
green) single particle transitions. (c) Optical image of the
measured device, with a phase-biased nanowire (NW) weak
link (close wiew in SEM image (d), with underlying local back
gate) placed close to the shorted end of a microwave readout
resonator (full view in [19]). Left port connected to the gate is
devoted to tune the properties of the NW with a dc voltage Vg
and to drive microwave transitions with a tone at frequency
f1.

quasiparticles in the lower energy Andreev levels are ex-
cited into higher ones; on the other hand, pair transi-
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FIG. 2. Experimental results showing microwave two-tone spectra as a function of phase difference (δ) for a sequence of
decreasing gate voltages Vg = 5.563 V+δVg. The color lines on the right half of the spectra are guides to the eye indicating
what we identify as single quasiparticle (green), pair (red) and mixed pair (blue) transition lines. Note that a second group
of SQPT is visible around 20 GHz; it likely corresponds to single quasiparticle transitions from the first to the third Andreev
doublet (not highlighted here).

tions (PT), in which two quasiparticles are created on
the Andreev levels (see arrows in Fig. 1(a)). The differ-
ent transition energies are shown in Fig. 1(b), where the
green lines correspond to SQPTs while the red and blue
ones to the PTs. Lines of the red and green type were
identified in measured spectra and fitted accurately us-
ing such non-interacting models [15, 17]. However, mixed
pair transitions in which the two quasiparticles are cre-
ated in two different Andreev manifolds (depicted in blue
in Fig. 1(b)) were never identified.

Here we show that this type of transitions is highly
sensitive to electron-electron interactions, leading to a
modification of their spectral signatures. In contrast,
the typical shape of the SQPT lines is not affected by
interactions, even though their position with respect to
the PTs can change. To discuss the effect of interac-
tions we use different models, ranging from minimal ones
which can be solved exactly to an extended tight-binding
model where the effect of interactions is introduced in a
perturbative fashion. This extended model allows us to
predict spectra that have a close resemblance to those
obtained in the measurements.

Experiments: We present here experimental data taken
on the sample shown in Fig. 1(c,d). A full-shell InAs-Al
nanowire forms a suspended bridge between the central
line and the ground plane of a NbTiN quarter-wavelength
coplanar waveguide microwave resonator with resonance
frequency fr = 6.6 GHz. The Al shell is etched over a
L ∼ 550 nm-long section, defining a Josephson weak link
[18]. A gate placed under the weak link is d.c.-biased
at voltage Vg. Transitions between Andreev states are
driven by microwaves at frequency f1 applied on the gate,
and are detected as a change in the reflection coefficient
of the resonator. The nanowire shunts the ending part of
the resonator, hence defining a superconducting loop that
allows phase-biasing of the junction: the flux Φ through

this loop imposes the phase difference δ = 2πΦ/Φ0 across
the weak link (Φ0 = h/2e). The coupling between the
nanowire and the resonator results from the inductance
shared by the loop and the resonator.

We concentrate here on a series of spectra measured as
a function of phase δ and drive frequency f1, taken suc-
cessively in a narrow range of gate voltage (Fig. 2). The
gray scale represents the change of one quadrature of the
measured signal when the drive signal at f1 is applied.
Both measurement and drive tones are applied simultane-
ously. Each pixel corresponds to averaging over 150 ms.
In the series, certain generic features are observed. There
are groups of four lines, such as the ones highlighted in
green, which cross at phase 0 and π, and are identified as
SQPTs. One also finds regular, almost sine-shaped lines,
highlighted in red, attributed to PTs. Finally, there are
groups of four lines highlighted in blue. They remain
grouped together as the gate voltage is changed, never
cross each other, and like pair transitions they have a
minimum at δ = π. However, they have peculiarities, for
instance the “camel back” shape seen for the topmost
blue line at δVg = −13.8 mV. As discussed below, these
lines can be attributed to mixed pair transitions, in the
presence of Coulomb interactions in the nanowire.

Estimations on e-e interactions and their effect:
Coulomb interactions in the nanowires are strongly
screened by the nearby metallic electrodes, by free
charges in the nanowire and by the substrate. They can
thus be approximated by a contact potential

V̂ =
1

2

∑
σ,σ′

∫
WL

drdr′Ψ†σ(r)Ψ†σ′(r
′)u(r−r′)Ψσ′(r′)Ψσ(r)

(1)
where u(r−r′) = u0δ(r−r′) is non-zero only for r, r′ in
the junction region and Ψσ(r) are the field operators for
electrons with spin σ in the wire. As we discuss in detail
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below in the text and in the supplemental material (SM)
[19], we model the wire as a planar quasi-1D geometry.
Within this model a rough estimate of the u0 parameter
for the experimental situation in Fig. 1(c) yields a value
of the order of 3 eVnm2.

Some insight on the effect of interactions on the en-
ergy of Andreev excitations can be obtained by consid-
ering the analysis of Ref. [20] for an isolated mesoscopic
grain. In that work it was shown that an interaction as in

Eq. (1) leads to an effective exchange interaction −J ~S2,

where with ~S is the the total spin and J ∼ 2u0/A, A
being the area where the states are localized, which is
of the order of 0.1 µm2 in our experiments; leading to
J ∼ 60 µeV (i.e. ∼10 GHz). As suggested in [21], such
an interaction would lead to a splitting of a group of
four mixed pair transitions at δ = 0 into a degenerate
triplet at lower energy and a singlet state lying roughly
2J above. Although this rough analysis fails to explain
the full breaking of the degeneracies and the observed
complex patterns, one can clearly observe in Fig. 2 a
tendency of the lines highlighted in blue to group into
three lower and one higher sets, which is reminiscent of
a singlet-triplet splitting.

Tight binding model: A rather simple multi-channel
tight-binding (TB) model describing some of the ob-
served features in the ABS absorption spectrum was in-
troduced in Refs. [17, 22]. It corresponds to a discretized
version of the model in Ref. [15] and is given by

H0 =
∑
i,τ,σ

(εi,τ − µ)c†i,τ,σci,τ,σ + txc
†
i,τ,σci+1,τ,σ

+ σαxc
†
i,τ,σci+1,τ,σ̄ +

∑
i,τ

∆ici,τ,↓ci,τ,↑

+
∑
i,τ,σ

tyc
†
i,τ,σci,τ+1,σ + iαyc

†
i,τ,σci,τ+1,σ̄ + h.c. , (2)

where c†i,τ,σ creates an electron on longitudinal site i,
transverse site τ and spin σ, εi,τ,σ denotes the onsite po-
tential, tx,y and αx,y are spin-conserving and spin-flip
hopping amplitudes in the longitudinal and transverse
direction respectively, and ∆i is the pairing amplitude
which we choose to be zero for the sites describing the
wire and ∆e±iδ/2 for the left and right superconduct-
ing electrodes, respectively. This model can be adapted
to include the effect of interactions in the central nor-
mal region N by adding a Hubbard-like term Hint =∑
i∈N,τ Uini,τ,↑ni,τ,↓ while assuming perfect screening in

the superconducting regions. Here, ni,τ,σ = c†i,τ,σci,τ,σ.
Setting a given value for the lattice spacings in the x, y
directions, ax,y, one can get estimates for all the model
parameters appropriated for InAs wires coupled to Al
leads by discretizing the continuous model [19]. Ad-
ditionally, the Ui value, taken as a constant U in the
normal region, is related to the above u0 estimate by
U ∼ u0/(axay). One can also define an effective charg-
ing energy of the normal region when disconnected from
the leads Eeff

c =u0/AN , where AN denotes its area.
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FIG. 3. Transition lines within the four-site model without
(a) and with (b) the effect of Coulomb interactions. Within
this model effective singlet and triplet pairing, characterized
by parameters Γs and Γt, arise by assuming ∆ → ∞ in the
leads.

This model cannot be solved exactly in the presence of
interactions. However, we can get insight into their effect
on the subgap states by considering the infinite gap limit
(∆i →∞) [23] and restricting the normal region to four
sites only. Such a four-site model can be diagonalized
exactly including the Hubbard terms. The effect of the
superconducting pairing in the leads projected into the
central four sites (denoted by α = L,R (left,right) and
τ = ± (top, bottom)) leads to the following effective
pairing model [19]

Hpairing =
∑
α,τ=±

Γs,αc
†
α,τ,↑c

†
α,τ,↓ + (3)

i
∑
α

Γt,α

(
c†α,+,↑c

†
α,−,↑ − c

†
α,+,↓c

†
α,−,↓

)
+ h.c.

where Γs,α and Γt,α are effective singlet and triplet pair-
ing amplitudes for the α=L,R sites arising from the
combination of s-wave pairing and spin-orbit interac-
tions in the multi-channel leads. We do not expect
that the scaling used to determine the parameters in
Eq. (2) would hold for such a minimal system. However,
setting reasonable parameters (e.g. εi,τ/2=Γs=−tx=−ty
and Γt=αx=αy=0.8Γs, we get the results shown in Fig. 3
for the effect of interactions on the transition lines which
have some resemblance with the experimental observa-
tions.

As expected, interactions lift the degeneracy of the
mixed pair transitions (blue lines in Fig. 3) at δ = 0
and π. Moreover, in contrast to the simple argument
based on the emergent exchange interaction, which splits
the transition lines into triplet and singlet [21], there is
a complete splitting of the four lines. This is due to
the presence of a significant spin-orbit interaction which
breaks spin symmetry.
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FIG. 4. Evolution with the weak link effective charging energy Eeff
c of the spectral lines as a function of phase difference

as obtained from the extended TB model with 31 sites in the x-direction (11 in the normal region) and 3 transverse chains,
describing a junction with length ∼ 550 nm and width ∼ 200 nm (detailed parameters in [19]). Full lines correspond to the
main inter SQPT (green), lowest PT (red) and mixed PTs (blue). The faint lines correspond to secondary transitions (i.e. from
the first to the third or from the second to the third manifolds, intra-manifold and higher PTs). Excitations up to Npr = 12
are included in the effective interacting Hamiltonians. Rightmost panel are the data of the central panel of Fig. 2.

On the other hand, the inter-manifold single particle
transitions lines (solid green lines in Fig. 3) do not split
at δ = 0, π but are rather shifted to higher energy. These
crossings are protected by time reversal symmetry which
leads to a Kramers degeneracy [24] for odd states even in
the presence of interactions. The shift to higher energy
can be understood as a consequence of level repulsion
between the lower and upper Andreev manifold when
coupled through the Coulomb interaction. In contrast,
no Kramers degeneracy is granted for even parity exci-
tations, which explains the splitting of the mixed transi-
tions. It should be noticed that the ground state parity
remains even within this interaction range (no 0−π tran-
sition). An analysis of the phase diagram for this model
is given in the SM [19].

To go beyond this four-site model we use the eigen-
states of Eq. (2) calculated for the case of three chains in
the y− and multiple sites in the x− directions to write the
interaction Hamiltonian Hint in terms of the Bogoliubov
operators γn. This is performed through the inverse Bo-
goliubov transformation ci,τ,σ =

∑
n≥1 u

n
i,τ,σγn+vn∗i,τ,σγ

†
n,

where n≥1 refers to states with positive energy and
(u/v)ni,τ,σ are the (electron/hole)-like coefficients of the
non-interacting wavefunctions.

Assuming weak interactions, we may project Hint to
the subspace of states with zero (|GS〉), one (γ†n |GS〉),
and two (γ†nγ

†
m |GS〉) quasiparticles on the Npr lowest

energy levels (i.e. n,m≤Npr). Due to parity conserva-
tion we end up with effective Hamiltonians in the even
and odd sectors that can be diagonalized exactly. An
analysis of the range of validity of this approximation
is given in the SM [19]. Using such a procedure, we
searched for a set of parameters that reproduce at best
the central spectrum of Fig. 2, in which the full disper-
sion of the lines highlighted in blue is visible. The result
is shown next to the data in Fig. 4. Most features of

the experiment, both for the relative frequencies and for
their shape, are essentially reproduced. In particular,
the camel back dispersion of the upper mixed pair line
around phase 0, absent in a non-interacting model, is
captured. It should be mentioned, however, that these
spectra are extremely sensitive to microscopic details in
the potential profile, which are completely unknown for
an actual experimental realization. In the other panels of
Fig. 4, we show how the spectrum evolves when changing
only the Coulomb interaction strength. As in the case of
the four-site model, the most remarkable effect of inter-
actions is to lift the degeneracies of the mixed pair transi-
tion lines at δ = 0, π (blue lines in Fig. 4) and to shift the
inter-manifold single particle lines (green lines in Fig. 4)
to higher frequency without breaking their characteristic
shape.

It is worth stressing that the multi-channel character
of realistic nanowire weak links is essential to understand
the shape of the pair transition lines measured experi-
mentally. Indeed, the set of parameters which gives the
closest resemblance with the data corresponds to a case
with two open channels such that the phase curvature of
the two lowest ABS manifolds have the same sign [19].
Such a property cannot be obtained with a single channel
model, which gives manifolds with alternating curvatures
[25]. Finally, notice that here, as for the case of the four-
site model in Fig. 3, the interaction strength, although
sufficiently large to produce sizeable effects in the tran-
sition lines, is still too weak to produce a transition into
the π-phase as has been observed in the case of quantum
dots coupled to superconducting leads [26–28].

Conclusions: We have shown that a complete de-
scription of the microwave spectrum of semiconducting
nanowire Josephson junctions must include Coulomb in-
teractions in addition to spin-orbit multi-channel cou-
pling. This is more clearly evidenced by the splitting of



5

mixed pair transitions around 0 and π phase difference.
Despite the strength of the required interactions not be-
ing enough to drive these systems into a π-phase, as is
usually the case in the quantum dot regime, the high sen-
sitivity of circuit-QED techniques allows to reveal their
presence in actual devices.

Note: At the time of finishing the writing of this work,
we became aware of a related work by V. Fatemi et al.
[29] also pointing out the relevance of interactions in
nanowire junctions.
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gramme for Units of Excellence in R&D (CEX2018-
000805-M). C. Metgzer was supported by Region Ile-de-
France in the framework of DIM SIRTEQ. F.J.M. ac-
knowledges support from the Spanish Ministry of Uni-
versities (FPU20/01871).

[1] Y.V. Nazarov and Y.M. Blanter, “Quantum transport”,
Cambridge University Press, Cambridge (2009).

[2] T.M. Klapwijk, G. E. Blonder, and M. Tinkham, “Expla-
nation of subharmonic energy gap structure in supercon-
ducting contacts”, Physica B+C 109-110, 1657 (1982).

[3] E. Bratus’, V. Shumeiko and G. Wendin, “Theory of Sub-
harmonic Gap Structure in Superconducting Mesoscopic
Tunnel Contacts” Phys. Rev. Lett. 74, 2110 (1995).

[4] D. Averin and A. Bardas, ac Josephson “Effect in a Single
Quantum Channel” Phys. Rev. Lett. 75, 1831 (1995).

[5] J.C. Cuevas, A. Mart́ın-Rodero and A. Levy Yeyati,
“Hamiltonian approach to the transport properties of su-
perconducting quantum point contacts”, Phys. Rev. B
54, 7366 (1996).

[6] E. Scheer, P. Joyez, D. Esteve, C. Urbina and M.H. De-
voret, “Conduction channel transmissions of atomic-size
contacts”, Phys. Rev. Lett. 78, 3535 (1997).

[7] R. Cron, M.F. Goffman, D. Esteve and C. Urbina,
“Multiple-charge quanta shot noise in atomic-size metal-
lic contacts”, Phys. Rev. Lett. 86, 4104 (2001).

[8] A. Mart́ın-Rodero and A. Levy Yeyati, “Josephson and
Andreev transport through quantum dots”, Adv. Physics
60, 899 (2011).

[9] J.-D. Pillet, P. Joyez, Rok Zitko, and M. F. Goffman,
“Tunneling spectroscopy of a single quantum dot cou-
pled to a superconductor: From Kondo ridge to Andreev
bound states”, Phys. Rev. B 88, 045101 (2013).

[10] P. D. Kurilovich, V. D. Kurilovich, V. Fatemi, M. H. De-
voret, L. I. Glazman, “Microwave response of an Andreev
bound state”, Phys. Rev. B 104, 174517 (2021).

[11] Alexandre Blais, Arne L. Grimsmo, S. M. Girvin, and
Andreas Wallraff, “Circuit quantum electrodynamics”,
Rev. Mod. Phys. 93, 025005 (2021).

[12] Janvier et al., “Coherent manipulation of Andreev states
in superconducting atomic contacts”, Science 349, 6253
(2015).

[13] W. Chang, S. M. Albrecht, T. S. Jespersen, F. Kuem-
meth, P. Krogstrup, J. Nyg̊ard and C. M. Marcus,
“Hard gap in epitaxial semiconductor-superconductor
nanowires”, Nature Nanotech 10, 232–236 (2015).

[14] M. Hays, G. de Lange, K. Serniak, D. J. van Wo-
erkom, D. Bouman, P. Krogstrup, J. Nyg̊ard, A. Geresdi,
and M. H. Devoret, “Direct Microwave Measurement
of Andreev-Bound-State Dynamics in a Semiconductor-
Nanowire Josephson Junction”, Phys. Rev. Lett. 121,
047001 (2018).

[15] L. Tosi, C. Metzger, M.F. Goffman, C. Urbina, H. Poth-
ier, Sunghun Park, A. Levy Yeyati, J. Nyg̊ard, and P.
Krogstrup, “Spin-Orbit Splitting of Andreev States Re-
vealed by Microwave Spectroscopy”, Phys. Rev. X 9,
011010 (2019).

[16] M. Hays, V. Fatemi, K. Serniak, D. Bouman, S. Dia-
mond, G. de Lange, P. Krogstrup, J. Nyg̊ard, A. Geresdi,
M. H. Devoret, “Continuous monitoring of a trapped su-
perconducting spin”, Nat. Phys. 16, 1103 (2020).

[17] C. Metzger, Sunghun Park, L. Tosi, C. Janvier, A. A.
Reynoso, M. F. Goffman, C. Urbina, A. Levy Yeyati, and
H. Pothier, “Circuit-QED with phase-biased Josephson
weak links”, Phys. Rev. Research 3, 013036 (2021).

[18] M. F. Goffman, C Urbina, H Pothier, J. Nyg̊ard, C. M.
Marcus, and P. Krogstrup, “Conduction channels of an
InAs-Al nanowire Josephson weak link”, New Journal of
Physics 19, 092002 (2017).

[19] Supplemental material which includes Refs. [30–35].
[20] I.L. Kurland, I.L. Aleiner and B.L. Altshuler, “Meso-

scopic magnetization fluctuations for metallic grains close
to the Stoner instability”, Phys. Rev. B 62, 14886 (2000).

[21] C. Padurariu and Yu. V. Nazarov,“Spin blockade qubit in
a superconducting junction”, EuroPhys. Lett. 100, 57006
(2012).

[22] See supplementary material in M. Hays et al., “Coherent
manipulation of an Andreev spin qubit”, Science 373,
p430-433 (2021).

[23] Tobias Meng, Serge Florens, and Pascal Simon, “Self-
consistent description of Andreev bound states in Joseph-
son quantum dot devices”, Phys. Rev. B 79, 224521
(2009).
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S1. ESTIMATES FOR THE u0 PARAMETER

The typical junction dimensions (length ∼ 500 nm and diameter W ∼ 150 nm) and the fact that a few conduction
channels might be contributing to transport suggest that a 3D screening model should be appropriate. Within a
Thomas-Fermi (TF) approximation we have u(~r) ∼ e−|~r|/λTF/|~r|, where λTF is the screening length and thus

u3D
0 =

e2

4πε0εr
4π

∫ ∞
0

drr2 e
−r/λTF

r
=

e2

4πε0εr
4πλ2
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On the other hand, the TF screening length can be estimated as

λ2
TF = ε0εr/(e

2ρ) =
aB
8

me

m∗
εrλF ,

where ρ = (2m∗/~2)3/2
√
EF /(2π

2) is the 3D density of states with the effective mass m∗ ∼ 0.023me and the Fermi
energy EF , aB = 4πε0~2/(mee

2) ∼ 0.05 nm is the Bohr radius, λF is the Fermi wavelength and εr ∼ 15 is the
semiconductor dielectric constant. As the data suggest, λF should correspond to a situation where a second subband
starts to be populated, i.e. λF ∼W ∼ 100 nm one gets λTF ∼ 20 nm. Thus, as λTF �W a 3D model is justified. We
can further get the 2D u0 by u0 = u3D

0 /W , obtaining values of u0 ∼ 3eV nm2. Similar values were estimated in Ref.
[1].

S2. DETAILS ON THE EXTENDED TIGHT-BINDING MODEL

The nanowire transverse channels hybridize in presence of SO coupling. This fact is key to the splitting of the
ABSs, since the states on each channel acquire a spin texture with different Fermi velocities for a given chemical
potential µ [2, 3]. That is why a multi-chain tight-binding model must be considered.

The parameters for the extended tight-binding model (Eq. (2) in the main text) correspond to a discretization of
a continuous Hamiltonian, i.e.

tx,y ∼
~2

m∗ax,y
; αx,y ∼

α

2ax,y
,

where ax,y are the lattice spacing in the x, y direction and α ∼ 15 − 30meVnm is the spin-orbit coupling constant
appropriate for InAs. We also consider the effect of impurities represented by a different site energy εimp

τ at certain
positions (as sketched in Fig. S1a). These are used as fitting variables to obtain spectra in reasonable agreement with
the experimental results and are specified in the caption of Fig. S3.

As described in the main text, reproducing some relevant features of the experimental lines requires the presence
of two open channels. Within our extended tight-binding model this situation is well described when including 3
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FIG. S1. Sketch of the extended (a) and four-sites (b) tight-binding models for the nanowire junction. In the four-sites sketch,
the grey shading represents the effect of the superconducting leads projected into each site. This is achieved through the
effective singlet and triplet pairings Γs and Γt (grey arrows and lines) between electrons (thick, black arrows), which have
onsite energy εi,τ . Other lines depict the spin conserving (thin black) and spin flipping (thin green) hoppings. Finally, the
interaction is represented with the gain in energy +U when a site is occupied with two electrons.
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FIG. S2. Behaviour of ABSs energies and transitions with µ, obtained from the extended TB model without interaction and
the parameters used in Fig. 4 of the main text (specified in the caption of Fig. S3). (a) Bulk bands of the normal region.
Dashed lines depict the bands when setting the transverse SO coupling αy to 0 and illustrate that its effect is to hybridize
the channels. Vertical dashed lines correspond to 4 different values of µ for which the energies of the three lowest Andreev
manifolds are shown in (b-e), with the corresponding transitions in (g-j), highlighting odd transitions between the lowest two
manifolds, the lowest pair transition, and the mixed transitions involving both manifolds 1 and 2 (colour code as in the main
text). Cases 1 and 4 correspond to the µ being placed, respectively, in the 1st and the 2nd subbands, showing a change of the
second Andreev manifold curvature around δ=π from negative to positive. A more detailed evolution of Andreev energies at
δ=0, π is shown in (f), where the markers indicate the corresponding points in (b-e). The crossing between the energies of the
second manifold with phase difference 0 and π roughly indicates where the curvature of the manifold starts changing.

transverse sites, providing up to 3 hybridized channels. In Fig. S2 we show the evolution of the non-interacting ABSs
and the associated transition lines as a function of the chemical potential µ, which controls the doping level in the
normal region. For reference, we show on the panel (a) the subbands corresponding to an infinite wire where the
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FIG. S3. Transitions from the extended TB model increasing Npr to include progressively higher states. Parameters are
the same as in Fig. 4 of the main text: NsitesN=11, NsitesS=10, µ=0.14 meV (in the N region), ∆=0.2 meV, L=550 nm,
ax=L/NsitesN, ay=100 nm, α/2=11 meV.nm=axαx=ayαy, t0=~2/2m∗ (m∗=0.028me), (ε1N , ε2N , ε3N )=(1.2, 1.1, 0.8)·2t0/a2

x,
ε1S=ε2S=ε3S=2t0/a

2
x−∆, (txN , txS)=(−0.85,−1)·t0/a2

x, tyN=tyS=−t0/a2
y. Impurity position: site 3 of N region,

(εimp1, εimp2, εimp3)=(0.6, 0.75, 0.75)·2t0/a2.

chemical potential positions used in the other panels are indicated. As can be observed, only when µ approaches the
bottom of the second subband, the curvature of the second Andreev manifold appears in phase with that of the first
one.

The eigenstates Φn of the non-interacting model are calculated by diagonalizing the corresponding Bogoliubov-de
Gennes Hamiltonian

HBdGΦn=EnΦn, H0=
1

2
Ψ̂†HBdGΨ̂,

where Ψ̂=(ĉ1,1, ĉ1,2, ĉ2,1, ĉ2,2, ...)
T , ĉi,τ=(ciτ↑, ciτ↓, c

†
iτ↓,−c

†
iτ↑)

T and (Φn)iτ=(uniτ↑, u
n
iτ↓, v

n
iτ↓,−vniτ↑)T . The quasiparti-

cle (QP) operators that diagonalize H0 are related to the eigenvectors by γn=Φ†nΨ̂↔ Ψ̂=
∑
n Φnγn, and the electron-

hole symmetry implicit in the BdG formalism, that relates states with opposite energy (γ†n=γ−n, E−n=−En), allows
to write it in terms of the quasiparticle operators of states with positive energy H0=EGS +

∑
n≥1Enγ

†
nγn, where

EGS=1/2
∑
n≤−1En is the energy of the ground state (GS), in which all states with negative energy are occupied.

Thus, quasiparticle excitations over the GS of e.g. 1 and 2 QPs are represented by γ†n |GS〉 and γ†nγ
†
m |GS〉 (n,m≥1),

satisfying γn |GS〉=0.
As described in the main text, the interaction is introduced by projecting Hint into the many-body states with zero

(GS), one and two QP excitations of lowest energy (n,m≤Npr). This requires the calculation of cumbersome expec-

tation values such as 〈GS| γi2γi1γ
(†)
n1 γ

(†)
n2 γ

(†)
n3 γ

(†)
n4 γ

†
j1
γ†j2 |GS〉, which have been computed using the QuantumAlgebra.jl

package [4]. The convergence of the results with the number of states Npr where the interaction is projected is shown
in Fig. S3, which displays a stabilization for Npr > 6 for the interaction strength which gives the best agreement
with experiment (EEff

c =19µeV). For increasing interaction strengths the convergence with Npr becomes slower, which
implies a larger mixing with continuum states. As these states are poorly described in our finite size model we expect
that results obtained using this method for U � ∆ would be less reliable.

S3. DETAILS ON THE FOUR-SITES MODEL AND PHASE DIAGRAM

A quantum dot (QD) between superconducting leads is a typical nanostructure where the effect of interactions plays
a dominant role, and can be typically analyzed in terms of an Anderson model where a single level with Hubbard
like interaction is connected to the leads. This model is, however, not able to describe the experimental situation
found in Refs. [3, 5] where at least two ABSs associated to the finite length of the junction appear. In addition,
the coupling of transverse modes due to spin-orbit interactions is necessary to explain the splitting of SQPT as
commented in the previous section. From this reasoning we conclude that a minimal model should include 2 sites
both in the longitudinal and transverse directions. On the other hand, to include the superconducting leads in a
simplified manner one can take the limit ∆i → ∞ as suggested in several works on the superconducting Anderson
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FIG. S4. Phase diagrams of the four-sites model in the U−ε and Γs−ε planes, with and without SO respectively in the right and
left columns. The white dashed lines in the upper (lower) row correspond to the values of U (Γs) used in the lower (upper) row.
The white point in the upper right figure corresponds to the parameters used for Fig. 3 in the main text (hopping parameters
tx,y are fixed to −1).

model [6, 7]. While in the single level model such limit leads to an induced local singlet pairing in the dot, for the
case of the multichannel spin-orbit coupled leads we can expect both local singlet and non-local triplet pairings to be
induced on the central region. As mentioned in the main text, we indicate by Γs and Γt the corresponding effective
pairing amplitudes. Obtaining their expressions in terms of the bare model parameters would require the calculation
of the leads boundary Green functions [8] in the ∆i →∞ limit. While this calculation could be affordable using the
techniques of Ref. [8], in the present work we just consider Γs,t as tunable effective parameters. The good qualitative
agreement with the experimental results and with the calculations from the extended TB model gives us indication
that this effective pairing model corresponds to a reasonable approximation.

To get an idea of the main properties of this model we show in Fig. S4 some phase diagrams for different parameter
choices. If the normal region of the nanowire could become more isolated from the leads, we would expect a QD-
like behavior. The most typical feature, that arises from the interplay of the superconducting pairing, the Coulomb
interaction and the coupling with the leads, is the transition to a π-junction behaviour where the ground state (GS)
changes parity. In Fig. S4 the colors indicate the phases “0”, where the GS is even ∀δ and the absolute minimum is at
δ=0 (dark blue); “π”, where the GS is odd ∀δ and the absolute minimum is at δ=π (red); and “0′” and “π′” (bright
blue and yellow), which are intermediate phases similar to the previous ones, but where the parity of the GS is not
the same ∀δ. The top row shows diagrams in the U−ε plane, where a “0” background develops vertical and diagonal
regions with different phase at sufficiently high value of U . Their structure is similar to the diagram associated to
linear arrays of quantum dots between superconducting leads [10] when the number of dots is 4. As discussed in that
reference, for a sufficiently large fixed interaction and weak coupling to the leads, the GS alternates parity as the dots
filling increases (i.e. for increasing −ε). The figures in the bottom row are diagrams in the Γs−ε plane, displaying 0′

regions with inverted “U” shapes that connect odd valleys. As can be observed in the right lower panel these regions
become distorted when spin-orbit interactions is switched on.
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S4. EVOLUTION OF THE TRANSITION LINES

The rich structure of the transition lines, characterized by the 4-fold degeneracies at phases δ=0, π of the odd
transitions and the full splitting of the even ones, emerges from the presence of time reversal symmetry and the
combination of spin-orbit coupling with Coulomb interaction. In this section, we progressively describe how these
ingredients affect the ABSs energy spectrum, with the consequent repercussion in the evolution of the transition lines.

In the situation without spin-orbit nor Coulomb interaction, the four ABSs of lowest energy, which correspond to
the odd states with 1 QP, consist of two spin degenerated manifolds ∀δ. In the even sector, there are 6 states made
of 2 QPs: 2 states where both QPs are in the same manifold with opposite spin (they give rise to pair transitions
from the ground state), and 4 degenerate states where each QP is in one different manifold (these give rise to mixed
pair transitions) (Fig. S5a). When the interaction is introduced, the odd states maintain their degeneracies, and the
mixed even states split in a singlet plus a triplet. This behaviour stems from the spin rotational symmetry, encoded
in [H0+Hint, Si]=0, since for any state with certain energy and spin, there is another state with the same energy but
with rotated spin (same total spin, different spin projection) (Fig. S5b,c).

In the non-interacting situation with spin-orbit, spin is no longer a good quantum number. This allows for a splitting
in almost all δ’s, which is obtained for long multichannel junctions. However, time reversal symmetry imposes some
constraints. Firstly, since the phase difference is 2π-periodic and ultimately originates from a magnetic flux, we have,
respectively, H(δ+2π)=H(δ) and T H(δ)T −1=H(−δ), so the spectrum over δ must be mirror-symmetric around
δ=0, π (this constraint also applied for the previous situation without SO). Secondly, since in the odd states there is
always at least one unpaired spin and T reverses it, there must be pairs of odd states with the same energy (Kramers
degeneracy) (Fig. S5d-g). Mixed even states inherit this degeneracy when no interactions are present, but when they
are, no constraints prevent the splitting (Fig. S5d-f).

However, it must be noticed that if the nanowire is symmetric in the transverse direction (εi,τ=εi,τ̄ ), the hybridiza-
tion of the spin with the translational degrees of freedom produced by the Rashba SO still conserves a mirror symmetry
that composes the spin in the transverse direction (y) with a spatial mirroring over it [11]. This symmetry can be

described with the operator My=
∑
i,τ,σ,σ′ c

†
i,τ̄ ,σ(σy)σ,σ′ci,τ,σ′ , which, in a mirror symmetric situation ([H0,My]=0),

has odd (even) integer eigenvalues for odd (even) states. The presence of this symmetry can lead us to think on the
possibility of a similar argument as that of the Kramers theorem protecting some of the degeneracies in the mixed
even states, since e.g. the mixed states depicted in Fig. S5g have pseudospin my=0, 0,−2, 2, and the state with my=2
at certain δ has to be the time reversed of the state with my= − 2 at −δ, with the same energy. However, quite
surprisingly, the onsite interaction does not conserve the pseudospin symmetry ([Hint,My] 6=0), so the argument does
not hold and the degeneracy might be broken.
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FIG. S5. Evolution of the transitions in the 4-sites model with phase difference (white background), SO (pink) and interaction
(yellow). From left to right, it starts displaying the evolution in phase difference δ without SO nor interaction (a), then it includes
interactions at δ=π (b), and evolves again in δ (c). In (d), it includes SO at δ=0, then evolves in δ (e) and starts removing
the interaction at δ=π (f). Finally, in (g) it shows the evolution in δ with SO but without interaction. Fixed parameters are
εi,τ=1.5Γs, tx=2ty=−Γs. The higher PT to the second manifold is not shown because it can not be distinguished from other
mixed PTs involving higher manifolds.
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S5. EXPERIMENTAL DETAILS

The InAs/Al nanowire used in this experiment is from the same batch as in Ref. [3], with InAs core diameter of
140 nm, and 25-nm-thick Al full shell. Compared to Ref. [3], the shared inductance gives a stronger coupling than
the mutual coupling, hence more signal in the spectroscopy. In addition, placing the gate directly under the weak
link (and not on the side) improves the stability of spectra, probably because the gate screens the charge fluctuations
at the surface of the sample. Altogether, these changes lead to better quality spectra, as shown already in Ref. [5].
Figure S6 shows a large wiew of the resonator and a tilted view of the region with the nanowire. Figure S9 shows the
wiring of the experiment within the dry dilution fridge in which it was measured (base temperature: 30 mK).

All data in Fig. 2 were not taken on the interval shown: the figure was completed by 2π-shifted copies of the measured
data. In Fig. S7, where the other quadrature is displayed, we only show the data as taken between δ = −0.68π and
δ = 2.5π.

We note that intra-manifold transitions are not seen in these spectra. As a matter of fact, those transitions lines
are faint [5], and hardly visible at moderate drive power.

As a final remark, we note that when the first manifold has a stronger curvature than the second one, the dispersion
of mixed pair transition lines near δ = π resembles half that of the pair transition to the lowest manifold, plus an
offset due to the energy of the second manifold and to interactions. This is illustrated in Fig. S8. This might be an
explanation for the “mystery lines” discussed in Ref. [12] and for the additional transition lines discussed in the SM
of Ref. [13], where the presence of non-dispersing, localized states was invoked.

I
Q

Φ

200 µm 20 µm

(a)

(b)

FIG. S6. Optical image: Large scale view of the microwave resonator, placed in hanger geometry and measured with a coupled
bus line. The readout tone is sent to the bus line, then amplified (triangle) with a TWPA followed by a HEMT and a room-
temperature amplifier; and finally down-converted with an IQ mixer. A superconducting coil placed under the sample allows
to control the superconducting phase difference across the weak link.
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FIG. S7. In complement to Fig. 2: data on the other quadrature (δI). We show here the data in the interval δ = −0.68π to
2.5π, without completing with 2π-shifted copies as was done in Fig. 2.
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FIG. S8. Red and blue lines are the splines overlying the data in Fig. 2 and Fig. S7. Dashed red lines are obtained by taking
half the frequency of the red lines, and shifting vertically. This shows that, around δ = π, the dispersion of the mixed pair
transition have a curvature close to half that of the lowest pair transition.
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FIG. S9. Cryogenic wiring of microwave and DC connections to the sample. A superconducting coil placed under the sample
allows to control the superconducting phase difference across the weak link. The measurement signal is amplified by a TWPA
at base temperature, followed by a HEMT at the 4K stage.
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