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Abstract: LoRaWAN has become the most widely used low-power wide-area network technology to
implement monitoring solutions based on the Internet of remote things (IoRT) paradigm. Typically,
these solutions interconnect remote sensing areas and data processing infrastructure located in urban
centers. The operation expenses of these solutions depend mainly on the traffic sent through the
network backhaul, i.e., the link that connects the remote sensing area and the urban area where the
data are usually processed and stored. This service is provided by telecommunication companies and
represents the main operation cost of IoRT solutions. These expenses usually limit the affordability of
IoRT-based systems in developing countries, and also in scenarios where the operational cost is an
issue to address. This paper presents an extension to the LoRaWAN protocol, named Node-Aware-
LoRaWAN (NA-LoRaWAN), that reduces the traffic in the backhaul, thus decreasing the operational
expenses of IoRT-based systems. In order to evaluate the performance of NA-LoRaWAN, it was
compared to a regular LoRaWAN implementation. Depending on the network scenario, the proposed
extension reduced the traffic through the backhaul in the range of 12–34%. This extension opens
several opportunities to use IoRT solutions in application domains with a low operational budget,
e.g., precision agriculture, environmental monitoring and natural hazards’ early detection.

Keywords: LoRaWAN extension; Internet of remote things; IoRT-based monitoring systems; remote
sensing; reduction of operational expenses

1. Introduction

The Internet of remote things (IoRT) [1] is a branch of the Internet of things that studies
the interconnection of devices that operate in remote areas. Many IoRT applications have
been designed to support remote monitoring in rural areas, for instance, in oil or mining
operations, where the sensors measure performance variables of the extraction machinery,
to help remote experts predict failures, monitor the operations and make on-time decisions.
IoRT applications are also used in precision agriculture and farming, for instance, in
irrigation control and cattle supervision.

Typically, the monitored areas involve hundreds of sensing devices that send data to
urban centers where such data are processed and stored. The sensing and the processing
areas are connected through a stable link, known as the backhaul, that is a service usually
provided by telecommunication companies.

In many application domains, the traffic on the backhaul represents an important oper-
ational expense to the owners of IoRT-based systems; for instance, small farmers, nonprofit
organizations, and rural communities that use monitoring and forecasting systems, early
warning systems and diagnose applications remotely to support several daily activities.
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This expense increases its impact in developing countries, where the communication
through the backhaul is usually limited to a maximum traffic per month (data cap). For in-
stance, SWARM, a well-known IoT satellite communications service, limits the usage of its
channel to 750 messages per month (up to 192 bytes each) [2]. This may be fine for a single
device, but not for an IoRT gateway that receives data from many remote sensors.

Other options, such as Starlink (a satellite Internet provider without data cap), provide
a service that is two to eight times more expensive than the ISPs found in urban areas [3,4].
In the middle, there are other options, such as Inmarsat BGAN M2M, which offers different
data plans starting at 2 MB per month [5]. Although the price/MB is more expensive than
Starlink, the monthly bill could be lower if the network usage is low enough.

Regardless of the traffic expenses and data cap for using the backhaul, in developing coun-
tries, the terrestrial telecommunication infrastructure used to implement this segment typically
provides unstable communication links to the Internet [6]. Frequently, this backhaul is also
implemented using obsolete satellite communications or cellular technologies (e.g., 2G) [7].
In these cases, the network usage is restricted either by its high price, or due to bandwidth
or data cap. Therefore, it cannot be assumed that an IoRT-based application that works
smoothly in an urban area will keep working in the same way, with the same bandwidth
and with the same operational expense when sensing components are located in rural areas.

Recent low-power wide-area networks, such as Sigfox, NB-IoT or LoRaWAN, have
appeared as suitable options to support the communication in IoRT systems, particularly
when the network has to connect urban and rural areas. These networks use low-power
consumption devices, which is a key feature to make feasible the operation of solutions
in scenarios where a stable source of energy may not be available. Moreover, they can
offer a communication coverage of a wide area using very little infrastructure; e.g., the
communication threshold of a gateway can reach 10 km [8].

In some cases, particularly when the distance between the sensors and end-users is
not too long, these networks avoid the use of a backhaul, thus reducing the operational
expenses of IoRT systems. However, in large rural areas, such as those covering Latin
America, using only these networks is not enough to avoid using a backhaul.

In long-term monitoring applications where it is difficult to replace batteries or provide
technical support to devices, the introduction of traffic-shaping policies that can prolong
battery life is an important issue, especially for the gateways or concentrators that collect
the information in the field to upload it to data processing centers. In [9], a study was
conducted on how the prediction of topology control messages in human-centric wireless
sensor networks can be used to help reduce the energy consumption of the participating
devices; in that work, there were machine-to-machine communications.

Considering the described scenario, this paper presents an extension to the LoRaWAN
protocol, which does not avoid the use of the backhaul, but reduces the traffic on it. This ex-
tension, named Node-Aware-LoRaWAN (NA-LoRaWAN), decreases the regular operational
expenses of IoRT systems compared to LoRaWAN.

The Section 2 presents some background on LoRaWAN networks. Section 3 discusses
the related works. Section 4 describes the NA-LoRaWAN proposal, including its structure
and behavior. Section 5 shows how to implement NA-LoRaWAN. Section 6 describes the
simulations designed to evaluate the proposal and the obtained results. These results are
then used to compare the traffic in the backhaul using both LoRaWAN and NA-LoRaWAN.
Section 7 discusses the evaluation results, and Section 8 presents the conclusions and
future work.

2. LoRaWAN Networks

LoRaWAN is an open communication protocol designed to connect IoT devices to a
backend that is usually located in the cloud or a remote server. This protocol is composed of
a physical layer that uses a radio modulation called LoRa, based on chirp spread spectrum,
and a MAC layer that defines an open-source networking protocol. The structure of a
LoRaWAN network involves four types of nodes (Figure 1):
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1. End devices: These are sensors or actuators that receive and transmit data from/to the
gateways using LoRa modulation. They are usually located in remote areas.

2. Gateways: They are edge nodes that forward packets between end devices and the
network server. They act as a message bridge between the LoRa radio and the
backhaul protocol.

3. Network Server: This node is in charge of registering gateways and end devices
and managing the whole network. Typically, a LoRaWAN network has only one of
these components, that is usually located in urban areas.

4. Application Servers: These components store and process the information received
from the sensors and provide services to end-user applications, software agents and
IoT devices, i.e., these application servers represent the backend of the IoRT systems
for service consumers or client applications.

Figure 1. Diagram of a typical LoRaWAN network scenario.

The activation of end devices in the network is done using activation by personaliza-
tion (ABP) or over-the-air activation (OTAA). In ABP, the device to be activated should be
already configured with a fixed address and session keys (needed to establish communica-
tion) before installation. In OTAA, the configuration parameters are dynamically assigned
in a process called join procedure, which involves the participation of the network server.

Once activated, the devices use the network structure shown in Figure 1 to exchange
data or commands with other devices. Particularly, the gateways transmit to the network
server every data packet received from the end devices.

By protocol design, there is no standard way for a gateway in LoRaWAN to associate
a packet with a unique end device (i.e., data source or end point). This job is done by the
network server, through a process that matches each message’s cryptographic signature to
a device in a backend database. Since the gateway does not know the cryptographic key
used (network session key), and it does not have access to the devices database, these nodes
cannot match the message with a device; therefore, they cannot apply a packet-filtering
policy based on the source node id.

Alternatively, the gateway could use the DevEUI to identify end devices. This is a
unique identifier assigned by the chip manufacturer, similar to the MAC address. However,
as it is only sent during the join process in OTAA, it is not accessible in future packets
transmissions, neither in OTAA nor in ABP, and hence, the gateway does not know the
DevEUI of each incoming data packet.

Finally, the gateways could use the DevAddr to identify end devices, and thus imple-
ment policies to filter packets before sending them to the network server. The DevAddr is
an address either hardcoded in the device (when using ABP) or assigned by the network
server (when using OTAA). Therefore, there may be various devices with the same De-
vAddr in the network, which makes this address useless to identify nodes. However, if the
DevAddr assignment process is changed to guarantee that each node id is unique, then,
in some scenarios, the use of this attribute would be sufficient. For instance, in networks
where the nodes have none or little mobility (as the ones targeted by this work), i.e., the
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nodes that are always within the communication threshold of the same gateway. In these
cases, the DevAddr is present on every packet that passes through the gateway; therefore,
it is possible to identify the end devices.

On the other hand, making gateways filter incoming packets renders roaming unus-
able, since LoRaWAN roaming does not support private networks. Nevertheless, for the
use cases targeted by this work, the roaming is not a relevant aspect in the network design.

3. Related Work

The challenges of adapting the LoRaWAN protocol to work in networks with limited
backhaul has been the focus of several research studies. For instance, in [10], the authors
identified three open issues: the network latency that may be greater than ACK timeouts,
the packet duplication that may load the backhaul with multiple copies of the same message
and the data overhead that serialization protocols introduce at the application layer. This
latter challenge was also analyzed in [11–13], where the authors proposed to address it
using a compression technique based on protocol buffers. This strategy of reducing the size
of the packets sent through the backhaul is complimentary to others approaches, such as
avoiding sending duplicated packets.

In [14], the researchers introduced an architecture for LoRa-SDN (software-defined
networks), which set the basis for processing packets at the gateway level and made
network administration easier and more scalable. In that model, an SDN software switch
was installed in every LoRa gateway to filter packets. In addition, an SDN controller
was installed together with the network server to synchronize the SDN switches. Even
if the general model could work with LoRa, its design would not be compatible with
LoRaWAN, since the architecture assumed that the network could identify end nodes at
the gateway level, which cannot be done using the regular protocol. In [15], the authors
proposed LoRaMoto, which extended the LoRaWAN architecture and implemented a
packet-forwarding mechanism between the end nodes of the system to provide alternative-
path communications.

Fog computing in LoRaWAN has also been the subject of research. In [16–18], the
authors proposed two groups of architectures which, though valid for several scenarios,
were not suitable to support IoRT-based solutions. First of all, the LoRaWAN network and
application security keys had to be downloaded and processed by the gateways, which
compromised the system security. Second, some components of the application stack had
to be installed in the gateways deployed in the field, which represented an important
operational cost. Moreover, having a thick processing layer in the gateways would require
more computational resources and a higher energy consumption in the field.

Similar to the previous architecture, other researchers have proposed different ap-
proaches for connecting LoRaWAN networks through satellite [19,20], for instance, to sup-
port remote monitoring of wind farms and massive machine-type communication. Par-
ticularly, in [21], the authors included preliminary ideas to implement direct and indirect
links, where the first one involved putting a LoRaWAN gateway in the satellite, and the
indirect links were used to support interactions between a LoRaWAN gateway and the
satellite backbone.

Other research works, such as those reported in [22,23], aimed to optimize traffic
and devices’ energy consumption by assigning a QoS to the nodes depending on the
requirements of the applications. These proposals were mainly focused on adjusting the
setup parameters of the radio transceiver in end devices and gateways, which is a research
aspect that is out of this article’s scope.

In order to reduce the traffic through the backhaul in IoRT systems, the next section
describes the proposed extension to LoRaWAN (i.e., NA-LoRaWAN). This extension is
based on a previous work, where the authors proposed an agent that processed packets
in an intermediate node [24], i.e., after the packet had been sent by the source node,
and before sending it at the destination. This agent was able to filter, aggregate or transform
data dynamically.
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4. Structure and Behavior of NA-LoRaWAN

This proposal extends the structure and behavior of the regular LoRaWAN gateway
and network server. Moreover, it allows the coexistence of regular and extended LoRaWAN
components in a same network. Therefore, the main difference between a regular Lo-
RaWAN network and others that use the extended components, is that the latter have
the capability to manage the traffic sent through the backhaul, i.e., the traffic between
the gateways and the network server. The larger the number of extended components
used in network, the more the capability of the system to reduce the traffic sent through
the backhaul.

Figure 2 shows a network architecture, similar to the previous ones, but now including
an NA-gateway and NA-network server, i.e., the extended versions of the regular ones.

Figure 2. Architecture of a hybrid LoRaWAN scenario. Blue signal indicates traditional LoRaWAN
gateway and red signal indicates a NA-LoRaWAN gateway.

In order to reduce the traffic through the backhaul, every NA-gateway uses a packet
filtering policy that is indicated by the NA-network server according to the network
conditions. Considering the filtering policy in use, the NA-gateway analyzes the incoming
packets and determines whether each one must be sent to the NA-network server. A packet
is discarded only when the NA-network server has the capability of receiving it through
another source, and thus the network reduces the traffic through the backhaul.

The contrast between the behavior of regular and extended gateways is illustrated
in Figure 2, where the gateway at the top (regular one) forwards every incoming packet,
while the gateway at the bottom (extended one) processes the packets and only forwards
some of them.

Figure 3 illustrates NA-LoRaWAN in more detail and explains the dynamics of the
communication process between the NA-gateway and NA-network server. Particularly,
the green lines indicate the data transmission process, and the blue ones show the flow of
control. Next, we introduce the NA-gateways and NA-network server.

4.1. The NA-Gateway

Regular gateways are packet forwarders; however, the NA-gateways include the
NA-message filter component that determines if a certain packet should be forwarded
or discarded, according to the filtering policy used by that node. For a gateway to be
node-aware, it needs first to uniquely identify which node has sent an incoming packet,
and then apply filtering rules to decide what must be done with this packet—either forward
it or discard it. Having the ability to filter packets by node id allows the NA-gateway not
only to apply filters based on the sending node, but also to classify devices into clusters,
and process them based on that classification (e.g., to create priority levels and treat each
level in a different way).

Periodically, the NA-message filter receives updates from the NA-controller with the
information that it needs to operate. Whenever a command is received, it runs the traffic-
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shaping policy indicated by the NA-network server. Given these policies are specified as
a set of ordered rules (e.g., implemented in a script), they can be delivered using regular
messages to the NA-gateways when required.

Figure 3. Communication process between the NA-gateway and NA-network server.

4.2. The NA-Network Server

As shown in Figure 3, the NA-network server includes a network server and the
messages repository (that are part of regular LoRaWAN), but it also adds the NA-controller
and a set of traffic-shaping policies to filter packets. Provided that there is only data
coupling between the NA-controller and the network server, both software components
can be considered almost independent from each other. However, for robustness and
performance reasons, it is recommended to run both components on the same computer.

The NA-controller is allowed to read data from the server repository. Using such data,
the controller diagnoses the traffic that is arriving at the network server and determines
if it needs to adjust the policies used by some NA-gateways. When a change is required,
the NA-controller informs each particular NA-gateway which new filtering policy it has to
apply (shown in blue lines in Figure 3).

These commands are sent to the gateways only in particular instances, e.g., whenever
a new node needs to be activated (once at the beginning, normally), when a node is moved
or removed, and when it must change its filtering policy. Consequently, if the network
infrastructure does not change frequently, as expected in IoT solutions, these commands
will have a negligible impact on the traffic backhaul. For this reason, this aspect is not
formally addressed in this work, but it is discussed later on.

5. Implementing NA-LoRaWAN

In NA-LoRaWAN, the end devices do not need to be extended to work indistinctly
with NA-gateways and regular ones. As mentioned before, an NA-controller should be
installed together with the network server, and also an NA-message filter should be part
of the NA-gateways. All communication between network server and an NA-gateway is
done between the NA-controller and NA-message filter.
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Typically, the end devices are incorporated into the network by linking them to the
gateway with a better connection. For this, the NwkAddr field is used for the DevAddr.
The sequence diagram shown in Figure 4 illustrates this process.

Figure 4. Gateway whitelist updating sequence.

Particularly, the network server exchanges messages with the NA-message filter in
the NA-gateway to generate the whitelist of end devices that are forwarded through the
backhaul. Each NA-gateway that listens to an end device will not forward its incoming
messages until its NA-message filter acts.

Provided that all NA-gateways can operate as regular gateways, the end devices
should be compatible with both gateway types. Moreover, an NA-gateway should be able
to become NA or a regular gateway on the fly, once it receives an activation or deactivation
command from the NA-controller. This allows the network server to find the right balance
between packet redundancy and traffic optimization. The structure of the command packets
is shown in Table 1.

Table 1. Structure of the command packets.

Node-Aware Version
(4 bits) Packet Type (4 bits) Timestamp (48 bits) Payload (Variable Length)

0 (current version)

0 (NODE-AWARE ACTIVATION)

Milliseconds since epoch
Optional.

Contains specific data that depend
on the packet type.

1 (NODE_AWARE_DEACTIVATION)

2 (RESET)

4 (REMOVE_DEVADDR_WHITELIST)

5 (UPDATE_DEVADDR_WHITELIST_ACK)

Once an NA-gateway is deactivated, it locally keeps all data already related to this
mode, since the gateway can change the mode again in the future. Moreover, in both
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modes, the gateway should process and respond to every command from the NA-controller.
To erase the gateway data, a RESET command must be sent by the controller.

In order to mitigate the packet loss caused by disconnected gateways, when one
of them goes down, its neighboring gateways keep transmitting all messages providing
redundancy. Gateways inform their status to the network server by sending a heartbeat
or keep-alive message, which is a common technique already implemented in popular
LoRaWAN stacks such as ChirpStack.

When an NA-controller detects that a gateway is down, it deactivates all NA-gateways,
transforming them into packet forwarders. Thus, the packets assigned to the disconnected
gateway have the chance to be forwarded by other gateways. In this situation, packets
reception by the network server is prioritized over backhaul traffic optimization, and the
fault tolerance strategy becomes the one standard in LoRaWAN.

Then, if the disconnected gateway becomes operational, the NA-controller activates
back the NA mode into the corresponding gateways. When the network infrastructure
changes because some gateways are removed or added, the network manager can do a
manual or automatic update. In any case, a reconfiguration of the network is done by
updating the DevAddr of end devices, and eventually reassigning them to the gateways.

5.1. Filtering the Backhaul Traffic

This section indicates how to implement four traffic-shaping policies or profiles on NA-
LoRaWAN and manage the downlink messages sent through the backhaul. These messages
include the node id, node priority, number of packets, and budget. Each profile has a
particular purpose while reducing the traffic on the backhaul. The network administrator
handles the knobs of the profiles by considering a weighted sum of the policies, where each
one is multiplied by a particular coefficient. In this way, an operational index (OI) can be
defined to indicate the way in which the backhaul behaves:

OI = αP1 + βP2 + γP3 + δP4 (1)

where OI is the operational index, Pi represents each particular policy, and α, β, γ, and δ
are the knobs of the system. OI is always equal to 1, and it is obtained by modifying the
coefficients of each policy, i.e., setting the knobs. An appropriate setup of these coefficients
should be made based on the network administrator’s experience. In this way, when the
number of packets has reached its maximum, γ = 1, forcing all the other coefficients to
zero. Therefore, no more packets are sent.

5.1.1. Filtering by Node Id

Each NA-message filter at the gateway could keep a local whitelist of DevAddr (similar
to a flow table in SDN) that is processed to determine if a packet should be forwarded
to the network server. This list will be updated by the NA-controller and corresponding
NA-gateway when the former informs that a new ABP device has been configured by
the network administrator, or each time a new device concludes a successful join process
in OTAA.

If two gateways notify the NA-controller of a join process (OTAA) of the same node,
then the NA-controller will choose the one having the lower RSSI. In the case of ABP, it
is up to the network administrator to decide which gateway will transmit the packets of
each end device.

The NA-message filter broadcasts its status periodically (e.g., once per day), and the
NA-controller keeps a log of the status of every gateway. If a gateway fails to relay its
status and it is not sending packets anymore, the NA-controller could migrate or distribute
the node’s whitelist to nearby NA-gateways. By maintaining a whitelist of end devices
without repeating DevAddr between them, this allows gateways to transmit each message
to the network server only once, thus reducing energy and operational costs.
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When an NA-LoRaWAN gateway receives an incoming packet, it should first check
whether it is a join request or a data packet (Figure 5). For the first case, the request should
be forwarded immediately. For the second case, the gateway should first check if the
DevAddr in the packet is already in its whitelist. If it does, then the packet is forwarded; in
other case, it is discarded.

Figure 5. Packet filtering at the gateway level.

5.1.2. Filtering by Node Priority

The NA-controller can assign a priority level to each end device (e.g., levels 1 to 5, 1
being the most important node, and 5 the least important one). Then, when the controller
needs to save network bandwidth, it can instruct the gateways to only forward packets
from nodes with a certain priority level. By default, every node has the same priority,
and every gateway forwards messages from any node. However, these two properties can
be changed by the network administrator. Every time a priority level to forward packets is
changed, the network server informs it to each NA-gateway.

This priority should be assigned by the system manager to each end device based
on the use case requirements. A priority field, sent together with the DevAddr in the
ADD_DEVADDR_WHITELIST packet payload, indicates the priority level of the end
device. Moreover, a SET_PRIORITY packet should also be sent during network setup
to inform the priority level to filter. For example, if the payload of the SET_PRIORITY
packet indicates level 1, then all packets coming from nodes with level 2 or above will
be discarded.

This approach is not strictly a real-time approximation [25] but may be used to schedule
traffic with time restrictions with a higher priority in an expedite way.

5.1.3. Filtering by Maximum Number of Packets

In this case, the gateway receives from the network server the maximum number of
packets (data cap) allowed to be forwarded in a certain time period. This information is
transmitted in the payload of the SET_MAX_PACKETS packet.

The gateway should locally filter packets of an end device if the node has already sent
all allowed packets during one period (specified in minutes, hours, or days). If there is no
period information, the gateway should forward all packets.

A scenario in which this policy could be used is when the network provider offers a
limited number of packets to transmit through the backhaul. It can also be used when the
application server does not require to read every incoming packet, but only some of them
periodically. For instance, an application could require getting one temperature sample
from a device every one hour, but the sensors in the field are transmitting such information
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every 30 min. In that case, half of the packets are not consumed by the application, so they
can be filtered before being forwarded.

When LoRaWAN applications are registered, the application server could optionally
indicate the period and number of packets the end devices are allowed to transmit. If this
information is not filled in, this server assumes the device can send data at any time.

This information is then aggregated for all devices, and downloaded to all the NA-
message filters. Therefore, if a node is sending messages at a frequency higher than the one
that is allowed, the gateway will filter those extra packets locally.

5.1.4. Filtering by Budget

This filtering policy uses a logic similar to the previous one but using a budget
that limits the number of bytes to be forwarded. In this sense, each gateway receives a
SET_BUDGET packet from the network server, containing in its payload the maximum
budget allowed to be forwarded. Every time a gateway receives a packet from an end
device, it applies the logic described in Section 4.1 and decides to forward or discard
the packet.

The size of the budget is a design decision that can be different depending on whether
it corresponds to a gateway or an end device. Moreover, the period associated to the budget
may also vary from minutes to days, depending on the use cases. If there is no critical
information being sent by end devices, then the NA-controller could limit the number of
bytes sent through the backhaul, by reducing the budget per node or per gateway.

Each time a gateway receives a packet, it first checks if the available budget is bigger
than the packet size. If so, then the gateway subtracts such packet size from the correspond-
ing budget. When the available budget is smaller than the packet size, the packet is not
forwarded, but rejected.

5.1.5. Filtering Downlink Messages

In order to reduce the backhaul traffic, managing efficiently the downlink messages is
also relevant. Typically, these messages come from software systems that use the application
servers as backend. In these cases, it is enough to add logic in the application (in frontend or
backend) to optimize the use of downlink messages, for instance, send these messages when
extremely necessary. It does not affect the protocol behavior; therefore, the NA-gateways
do not filter the incoming downlink messages from the NA-network server.

6. NA-LoRaWAN Evaluation

In order to evaluate the performance of NA-LoRaWAN and determine its potential
benefits, the NA-gateways, the NA-network server and the described traffic-shaping
policies were simulated. This section describes how these simulations were carried out,
as well as the obtained results.

6.1. Simulations Setup and Parameters

The simulations were implemented using the NS3 LoRaWAN module described in [26–28].
This module was modified and extended to add an extra logic layer, which was required to
run the gateways’ filters. The resulting code is available in a public repository [29]. Next,
we describe the simulation scenarios and parameters used in the evaluation process.

6.1.1. LoRaWAN Configuration

The LoRaWAN parameters were meant for Europe, where the NS3 module was
developed. Particularly, the transmission power was 14 dBm (maximum for Europe) in
the EU863-870 channels. The bandwidth and data rate were the default ones (125 kHz and
DR0 to DR5). The spreading factor (SF) was not set because the simulation calculated the
optimal one for each device, by making sure it reached the minimum quantity of gateways.
For this simulation, this represented a worst-case scenario, since the evaluation goal was to
determine how efficient this proposal was in terms of traffic optimization.
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6.1.2. Simulation Scenarios

Clearly, it is not feasible to get general results that apply to any use case, since there
are several factors affecting the network behavior. These factors go from gateway and end
devices’ locations to qualitative data analysis (e.g., assigning priority to packets in every
traffic-shaping policy). Therefore, the simulations were run over 100 scenarios created with
different but arbitrary settings. The scenarios were divided into five groups of 20 instances
each, depending on the number of gateways: 1, 2, 4, 8 and 16 gateways.

All scenarios had a random number of end devices from 10 to 2000. These devices were
randomly located following the pseudorandom number generator function Math.random(),
provided by Node.js v14 runtime.

Given this extension was conceived to support small private LoRaWAN networks, it
was decided to work with less than 2000 end devices and 16 gateways. Priority levels from
one to five were assigned to end devices in a uniform way, particularly for evaluating the
“filter by node priority” traffic-shaping policy.

The gateways were positioned following a grid pattern as proposed by [30], which was
shown to be an efficient algorithm to reduce the number of required antennas. The coverage
of each gateway was around 9 km, which was determined by the propagation model
proposed in [26]. This simulation scenario did not take into account buildings interference,
as the use cases targeted did not involve sensing in urban areas. Figure 6 shows an example
scenario with eight gateways, where the black circumferences represent the estimated area
of coverage for each gateway. The blue dots represent the dispersed end devices. The gray
rectangle in the background delimits the area where the end devices can be located.

The figure shows that some nodes were in the reach of more than one gateway.
However, whether the gateways were able to receive packets from a node or not depended
mainly on the SF, which was adjusted automatically by each end device to reach at least one
gateway. Therefore, it was more suitable to run a simulation to count duplicated packets,
rather than just counting the number of nodes inside a certain gateway coverage area.
The simulations also considered the NA-network server located in the cloud, and that each
NA-gateway had a link to the backhaul network.

Figure 6. Sample scenario used in the simulations.

6.1.3. Considerations on Control Packets

Each simulation lasted one hour, and hence, initialization packets of both the Lo-
RaWAN specifications (such as join requests) and the ones introduced by this work (such
as the updates to the gateway whitelist), were not taken into account since they had a
negligible impact on the traffic sent through the backhaul. These initialization packets were
only sent at the beginning of the process, and under stable working conditions their impact
became imperceptible over time.

Moreover, in order to simplify the simulation, it was determined that all packets were
uplink and sent every 20 min in unconfirmed mode, with the random phase provided by
the NS3 LoRaWAN module. As a final remark, all packets had a size of 19 bytes and since
this module did not encrypt packets, they were significantly smaller than real ones.
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6.1.4. Recorded Metrics

In each simulation, the following three metrics were recorded:

• Rx ratio: The total packets transmitted by the gateways over the total packets received
by them.

• RxUnique ratio: This ratio is similar to the previous one, but considers only unique
packets transmitted and received by the gateways.

• RxDuplicated ratio: This is similar to the previous ones, but it computes only the
duplicated packets.

The Rx prefix in the metric name represents the point of view of the network server.
However, since it was assumed that there was no packet loss between the gateways and the
network server, their values were exactly the same as if the transmission from the gateways
were counted. In the description of the results, we use indistinctly Tx from gateways or Rx
from the network server.

Duplicated and unique packets were considered across all gateways. Therefore, if two
different gateways received the same packet, one of them was counted as unique and the
other one as duplicated. We measured unique and duplicated packets to understand how
many unique data the protocol was losing, as a consequence of the backhaul traffic reduc-
tion.

6.1.5. Simulation Baseline

In the first round, we simulated both gateways using the four traffic-shaping policies
and then forwarding any packet to the network server. In total, 100 scenarios were gener-
ated resulting in 500 simulations with more than 1,500,000 packets transmitted. The simu-
lation settings were the following:

• Budget of bytes to forward: We set that 19 bytes per node could be sent every hour. This
was equal to the size of one packet. If more bytes were needed to be transmitted, these
packets were discarded.

• Maximum number of packets to forward: This number was set as one packet per hour; if
extra packets arrived, then they were discarded.

• Priority level: Level one (level two to five were filtered by the NA-gateways).

6.2. Evaluation Results

Figure 7 shows the summary of the evaluation results of the baseline scenario, which
were quite similar to the expected values. The first three bars involve just packet forwarders
(i.e., deactivated NA-gateways). The results also show that all packets were transmitted,
both unique and duplicated. When using the “filter by node id” policy, only unique packets
were transmitted, which in overall represented 87.32% of the total number of packets
received by the gateways. Therefore, we could assume that there was an average saving of
12.68% of the bandwidth in the backhaul link.

When using the “filter by budget” and “filter by number of packets” policies, the sav-
ings were around 34.57% in the three metrics. This meant the gateways filtered two out of
three packets received during the one-hour simulation.

Finally, the “filter by node priority” policy showed that 19.88% of the packets were
transmitted, which directly correlated with allowing only packets from priority level one
to be forwarded, filtering levels two to five, out of a uniform priority distribution. The
next subsections show the performance of the network when changing some particu-
lar parameters.



Sensors 2022, 22, 7778 13 of 18

Figure 7. Summary of the baseline simulation results.

6.2.1. Varying the Number of Gateways

The grid pattern used for locating gateways considered a strict correlation between
these nodes and the size of the scenario. In order to evaluate if the scenario size affected
these results, the output was divided into three charts, one for each metric, and grouped
by the number of gateways in the x-axis. Figure 8 shows the results of the first group of
simulations, discriminated by number of gateways and metrics: (a) Rx Ratio, (b) RxUnique
Ratio, and (c) RxDuplicated Ratio. The values of series byBudget and byMaxPackets are
similar in the next three charts, therefore they cannot be visually differentiated (they are
overlapped).

(a)

(b)

Figure 8. Cont.
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(c)

Figure 8. Summary of the baseline simulation results, considering number of gateways and metrics.
(a) Rx Ratio, (b) RxUnique Ratio, and (c) Rx Duplicated Ratio.

All policies had similar results as the ones shown previously, except for the “filter by
node id” policy (Figure 8a), where the percentage of packets transmitted decreased as the
scenario got larger; it went from 100% when there was only 1 gateway, to 80.31% when
there were 16 gateways. In (Figure 8b), the series none and byNodeId are both with value
equal to one.

Considering these simulations in context, it can be concluded that the “filter by node i”
policy improved bandwidth savings (as more gateways were used), without affecting data
loss. The other policies were consistent and scaled with more gateways.

6.2.2. Varying the Priorities

As explained previously, end devices had a five-point priority (one to five) that was
assigned in a uniform way. In a new set of tests, the priority level was incremented in
every execution, starting from zero (no packets are forwarded) until five (every packet is
forwarded). For simplicity, these tests were run only in the 20 scenarios generated involving
four gateways. All other settings, apart from the priority, remained the same as the previous
ones. A total of 100 simulations were run with more than one million packets.

Only Rx Ratio is shown in Figure 9, since results for RxUnique and RxDuplicated were
similar. It shows, as expected, that only the policy involving priority threw different results
in every test. As in the previous cases, the byBudget and the byMaxPackets lines in the
Figure 9 overlapped.

The first execution had 0% of packets transmitted, the second one had 19.94%, the third
one had 39.93%, the fourth had 59.83%, the fifth had 79.91%, and in the last one 100% of the
packets were transmitted. The slope of the line was incremented 1/5 approximately, which
correlated to the five priorities assigned. From these results, it can be assumed that for the
priority policy, the trade-off of unique and duplicated packets was directly proportional to
the priorities configuration.

Figure 9. Results when varying the priority level.
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6.2.3. Varying the Maximum Number of Packets

In order to determine the impact of the proposed extension, another set of tests were
run. They involved changing the maximum number of packets per end device to be
forwarded by a gateway in a one-hour time period. One packet per hour was used in the
first test, two packets in the second one, and finally, three packets. Again, only scenarios
with four gateways were run and the settings were similar to those of the previous tests.

The results shown in Figure 10 indicate that only the “filter by maximum number of
packets” policy had different outputs in every run of the tests. As expected, in the first test
one-third of the packets were transmitted (34.62%), two-thirds in the second tests (68.20%)
and all of them in the last test.

Figure 10. Results of varying the maximum number of allowed packets.

6.2.4. Varying the Budget

Using an approach similar to the previous tests, we analyzed the budget allowed to be
transmitted per node per gateway in a one-hour time period. This meant that whenever a
gateway received a packet from an end device, it checked whether if it had any budget to
forward that packet.

For the first test, as before, the same 19 bytes were used. Then, it was increased to
38 bytes, and finally to 57 bytes. As all packets had a default size of 19 bytes, in the first
budget, only one packet could be sent, while in the second and third cases, two and three
packets could be transmitted, respectively. Apart from the budget, the other settings were
the same as those of the previous simulations.

The results in Figure 11 show that the only policy affected by the budget change was
the “filter by budget”. As it was expected, in the first case almost one-third of the packets
were transmitted (34.62%); in the second case, almost two-thirds (68.20%); and finally, in the
last case all of them were sent.

Figure 11. Results of varying the allowed budget in the different traffic-shaping policies.

7. Discussion

The simulation results indicated that there was a reduction of the traffic in the backhaul
when using NA-LoRaWAN. Such a reduction could be substantial depending on the use
case scenario.
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In the “filter by node id” traffic-shaping policy, 100% of the duplicated packets were
discarded at the gateway level without losing data. For the other three policies, there was a
trade-off between traffic reduction and data loss. The impact of this trade-off depended
on each scenario and the policy configuration. Managing this trade-off is in the hands of
the network administrator, who has to decide the specific profiles to deal with the traffic
through the backhaul, based on the characteristics of each implementation.

It is important to remark that the NA-gateway can handle, at each instant, different
operating modes according to the particular requirements of the network system. For in-
stance, if the network provider limits the quantity of messages allowed to be sent per
month, and the network is near that limit, the administrator may decide to apply a pri-
ority policy, by restricting transmission to the nodes with a higher priority. In this case,
the administrator is willing to sacrifice data in favor of traffic reduction, thus keeping the
IoRT systems operational.

If instead, all the nodes share the same priority, the administrator may choose to limit
the number of packets by applying the corresponding policy. A similar situation may occur
if the network provider limits the traffic by bandwidth. In that case, the administrator can
apply the limit by budget policy (e.g., by hour or day), which would resample the messages.

A cost performance index (CPI) could be tracked in order to determine whether it is
needed to dynamically change the configuration of the traffic policies. The CPI is a metric
originally used in project management that indicates whether the budget is being executed
efficiently. A CPI greater than one states that one is over budget; a CPI less than one
indicates being under budget; a CPI equal to one means that the budget is being consumed
efficiently. For a defined time period, the CPI can be calculated as shown in (2):

CPI =
Budget

Throughput
(2)

where the budget is the available bandwidth for the backhaul traffic, that is set by the
network administrator (in KB or packets), and throughput is the actual traffic transmitted
through the backhaul. An example of a CPI use case is when the system automatically
changes the “filter by node priority” traffic policy. If the CPI indicates the system is over
budget, the system could decrease the priority level allowed to transmit and thus filter
more packets. On the contrary, if the CPI indicates the system is under budget, the system
could increase the priority level allowed to transmit, therefore, more nodes would be able
to send data to the cloud.

On the other hand, the network server and the gateways have to exchange messages
periodically in any case. Setting up the configuration for the traffic-shaping policies’
implementations requires a few additional message exchanges with respect to the regular
LoRaWAN operation. The extra cost is justified by the reduction of traffic and the benefits
from implementing different packet-transmission policies.

The generalization of these results is limited by the number of end devices and
gateways deployed in the field, and also by their locations. First, the evaluation was done
based on 100 scenarios, which may not consider all possible cases. For instance, if there
is no overlap in the gateways’ reach, then the “filter by node id” policy does not bring
any benefit compared to using standard LoRaWAN gateways. Second, there may be more
aspects to consider in order to adapt the protocol to limited backhaul networks, e.g., when
network latency affects the LoRaWAN timeouts. However, it is important to remark that
the scenarios considered in the simulations cover all the typical ones.

On the other hand, the architecture proposed in this LoRaWAN extension can use
several traffic-shaping policies. Particularly, when more fault-tolerance is preferable, a du-
plication of packets can be an option. When high-priority messages should have guaranteed
access to the network server, the selection of a priority-based policy is preferable.

Concerning the security aspects, this extension does not modify the security mecha-
nisms of LoRaWAN. All security keys are preserved, and encrypted traffic is transmitted
over the network.
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8. Conclusions and Future Work

This paper presented an extension to LoRaWAN, which was designed to reduce the
traffic sent by the gateways through the backhaul during the operation of IoRT-based
solutions. The traffic in such a network segment usually represents high operational
expenses for owners of IoRT systems. In several application domains, this cost jeopardizes
the feasibility of using IoRT-based solutions, for instance, to support small farming, perform
the early detection of natural hazards, or simply monitor remote living or inanimate objects.
Many nonprofit organizations and civilians are responsible for keeping IoRT systems
running, which operate under these restrictions.

The presented extension, named NA-LoRaWAN, added software components to
regular gateways and the network server of LoRaWAN, and thus it implemented various
mechanisms to manage the message traffic through the backhaul. The article also showed
how to do it using four traffic-shaping policies on NA-LoRaWAN.

The potential impact of this proposal was evaluated using simulations, and the ob-
tained results indicated that NA-LoRaWAN outperformed standard LoRaWAN in terms of
traffic sent through the backhaul network. Moreover, in each simulation, we showed how
the traffic could scale, and the relationship between the data to be transmitted (sensed data)
and the network usage, considering different configurations. Whether it is convenient or
not to use a particular traffic-shaping policies will depend on the analysis done for each
application scenario.

According to the evaluation results, the expected traffic reductions were in the range of
12–34%. However, the results also showed that this percentage could increase significantly
by defining policies more specific to the IoRT applications and scenarios to be supported.
In this sense, more extensive and in-depth studies are required to identify patterns or
rules that can be reused to manage this traffic in particular use cases. Moreover, the use
of combined traffic-shaping policies should also be explored, since it could help mitigate
some of the potential issues raised in this paper.
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