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a b s t r a c t

In this article, we study a new linear discriminant function for three-level m-variate
observations under the assumption of multivariate normality. We assume that the m-
variate observations have a doubly exchangeable covariance structure consisting of
three unstructured covariance matrices for three multivariate levels and a separable
additive structure on the mean vector. The new discriminant function is very efficient in
discriminating individuals in a small sample scenario. An iterative algorithm is proposed
to calculate the maximum likelihood estimates of the unknown population parameters as
closed form solutions do not exist for these unknown parameters. The new discriminant
function is applied to a real data set as well as to simulated data sets. We compare our
findings with other linear discriminant functions for three-level multivariate data as well
as with the traditional linear discriminant function.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Even though the scientists in the present era agree with the need for flexibility in the classification technique for
the multi-dimensional multivariate data, the elaboration of formal supporting statistical frameworks is just at the very
beginning. An appropriate classification rule needs to be developed that is suitable for a particular data set. This fact
motivated us to write a few articles on classification rules for three-level multivariate data with different mean vectors and
different covariance structures for diverse data sets, so that they would be readily available whenever there is a need for
them in future. Themain idea of this article is to employ the information of a double exchangeability of a variance–covariance
matrix, which allows to partition a covariance structure into three unstructured covariance matrices, corresponding to
each of the three levels. The mean vector is assumed to have a separable additive structure. As a consequence, the
number of estimated covariance parameters is substantially reduced, comparing to a classical approach, which enables
us to apply the proposed procedure even to a very small number of observations. This is of critical importance to a
variety of applied problems with repeated measures in medicine, biostatistics and social sciences. The classification rule
for three-level multivariate data was first introduced by Roy and Leiva (2007). They used the constant mean vector over
sites (CMVOS) in addition to the doubly exchangeable covariance structure or jointly equicorrelated covariance structure
on the variance–covariance matrix. Later Leiva and Roy (2009a,b, 2011) studied the problem of classification of three-
level multivariate data or triply multivariate data by using an ‘‘equicorrelated (partitioned) matrix’’ (Leiva, 2007) on the
measurement vector over sites in addition to an AR(1) correlation structure on the repeated measurements over time,
and the doubly exchangeable covariance structure respectively. In Leiva and Roy (2009a), they discussed structured mean
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vectors without time and site effects, with time effects, with both time and site effects and also with unstructured mean
vectors, while in Leiva and Roy (2009b, 2011) they discussed separable multiplicative mean vectors and unstructured mean
vectors. These classification rules for three-level or three-dimensional multivariate data demand ingenious approaches
to the processes of study design, testings of hypotheses and estimation of unknown parameters. These problems result
in models that are often not tractable analytically, and therefore their closed form solutions cannot be obtained. Hence,
applying various iteration algorithms are almost always essential to find an exact or approximate solution to these models.

Multi-level multivariate data are very common in biological, biomedical, medical, environmental, engineering and
many other fields. They require extraction of relevant information that is hidden in the data in order to model the data
appropriately and accurately. Stanimirova and Simeonov (2005) modeled multiway data (Kroonenberg, 2008), especially a
four-level environmental data set (particle size fractions× concentrations of chemical components× seasons× sampling sites)
that came from monitoring of air quality in two industrial regions in Austria. In another application of stem cell systems
biology Yener et al. (2008) applied multiway modeling and analysis techniques to model the dynamic activity of biological
networks over time. In particular Yener et al. (2008) applied multiway modeling and analysis techniques to model two
systems biology problems: (i) discovering functional clusters of gene/protein expression during stem cell differentiation,
and (ii) dynamics of human mesenchymal stem cells osteogenic differentiation over time. In the first case they arranged
their data in three-level fashion as protein/gene locus link × gene ontology category × osteogenic stimulant, and in the second
case they arranged their data once more in three-level manner as gene IDs × osteogenic stimulus × replicates. Lange andWu
(2008) introduced a new method of multicategory vertex discriminant analysis using a primal majorization–minimization
algorithm that relies on quadratic majorization and iteratively re-weighted least squares in a non-parametric set-up.
These two authors Wu and Lange (2010) later explored an elaboration of this vertex discriminant analysis (VDA) for
high-dimensional data that conducts classification and variable selection simultaneously where the number of predictor
variables is comparable to or larger than the number of samples. Most recently, Akdemir and Gupta (2011) have developed
classification techniques for high dimensional multi-level or multiway data. In their paper Akdemir and Gupta presented
a technique called slicing for obtaining an approximate nonsingular estimate of the covariance matrix of high dimensional
data when sample size is less than the dimension of the vector variate random variable.

This article is organized as follows. In Section 2, we define the problem and introduce the separable additive mean
vector structure and doubly exchangeable covariance structure. Themaximum likelihood estimates (MLEs) of the separable
additive mean vector and the doubly exchangeable covariance matrix in a single population case are obtained in Section 3.
The new classification rule is presented in Section 4. An example of a real data set is given in Section 5, and a simulation study
is carried out in Section 6 to show the effectiveness of our new classification rule. Possible future extensions of our proposed
classification rule to more general set-ups are discussed in Section 7. Finally, Section 8 concludes with several comments.
Technical proofs of the MLEs of all unknown parameters, derivations of different classification rules and derivatives of
Kronecker sum are presented in three appendices.

2. Problem statement

In this articlewe consider discrimination for three-levelmultivariate data among k different populationswith a separable
additive mean vector structure (defined in Section 2.1) in addition to a doubly exchangeable covariance structure (defined
in Section 2.2). Let t and s denote a given point in time and a given site respectively. Let x(p)

ts : (Ω, P) → ℜ
m, 1 ≤ t ≤

v, 1 ≤ s ≤ u, be them-dimensional normally distributed random vector from the pth population. Then the random families
(x(p)

1s )s∈{1,...,u}, . . . , (x
(p)
vs )s∈{1,...,u} are assumed to be exchangeable. Furthermore, for fixed t , the family of random variables

(x(p)
ts )s∈{1,...,u} is exchangeable. This assumption of double exchangeability reduces the number of unknown parameters

considerably, thus allows more dependable or reliable parameter estimates. This covariance structure can capture the
data arrangement or data pattern in a three-level multivariate data, and thus may offer more information about the true
association of the data. One of the many advantages of this covariance structure is that the repeated measurements data
need not be of equally spaced.

Let x(p)
r be the muv-variate vector of all measurements corresponding to the rth individual in the pth population

r = 1, . . . , n(p), p = 1, . . . , k. We partition this vector x(p)
r as follows:

x(p)
r =

x(p)
r,1
...

x(p)
r,v

 , where x(p)
r,t =

x(p)
r,t1
...

x(p)
r,tu

 , with x(p)
r,ts =

x(p)
r,ts,1
...

x(p)
r,ts,m

 ,

for s = 1, . . . , u, t = 1, . . . , v. The m-dimensional vector of measurements x(p)
r,ts represents the rth replicate (individual) in

the pth population on the sth location and at the tth time point.
Let x(p) represent the muv-variate vector of all measurements corresponding to one individual in the pth population

whereweassumeadistributionNmuv

µx(p) , 0x(p)


, and let x(p)

1 , . . . , x(p)
n(p) be a randomsample of sizen(p) from this population.

The unstructured variance–covariance matrix Cov

x(p)

has q = muv (muv + 1) /2 unknown parameters, which can

be large for arbitrary values of m, u or v. In order to reduce the number of unknown parameters it is then essential to
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assume some appropriate structure on the variance–covariancematrix. Onemay assume a doubly exchangeable covariance
structure in the situation, where the data is multivariate in three levels. Doubly exchangeable covariance structure consists
of threem×m-dimensional unstructured covariance matrices for three multivariate levels (Roy and Leiva, 2007). Thus, the
resulting structure has only 3m (m + 1) /2 unknownparameters, which ismuch less than q. Moreover, this number does not
even depend on the number of sites u and the number of time points v. The use of doubly exchangeable covariance structure
provides a better insight into the three-level data structure. In the following sections we define the separable additive mean
vector structure and the doubly exchangeable covariance structure respectively.

2.1. Separable additive mean vector structure

In the additive mean vector structure the mean for each ofmuv random variables x(p)
r , measured on the rth individual in

the pth population can be expressed as

E

x(p)
r


= µ

(p)
1 z1 + · · · + µ(p)

m zm + λ
(p)
1 z(m+1) + · · · + λ(p)

u z(m+u) + τ
(p)
1 z(m+u+1) + · · · + τ (p)

v z(m+u+v),

where τ(p)
=

τ

(p)
1 , . . . , τ (p)

v

′
∈ ℜ

v, λ(p)
=

λ

(p)
1 , . . . , λ

(p)
u
′

∈ ℜ
u, and µ(p)

=

µ

(p)
1 , . . . , µ

(p)
m
′

∈ ℜ
m, with some

identifiability constraints, for instance λ
(p)
1 = 0 and τ

(p)
1 = 0. With these identifiability constraints the model reduces

to

E

x(p)
r


= µ

(p)
1 z1 + · · · + µ(p)

m zm + λ
(p)
2 z(m+2) + · · · + λ(p)

u z(m+u) + τ
(p)
2 z(m+u+2) + · · · + τ (p)

v z(m+u+v).

This means that the mean vectors vary over time as well as over sites with suitably additive constants. The terms
z1, . . . , zm are used to indicate the variable to which the mean E


x(p)
r

belongs, the terms z(m+1), . . . , z(m+u) are used to

indicate the site to which the mean E

x(p)
r

belongs, and finally, the terms z(m+u+1), . . . , z(m+u+v) are used to indicate the

time point to which the mean E

x(p)
r

belongs. These indicator variables take the value one at a time and zero for others

in each of these three levels. For example, if the mean E

x(p)
r

comes from the first variable, then z1 will be equal to one

(corresponding to µ
(p)
1 , which represents the first variable effect), and z2, . . . , zm will all be equal to zero. Similarly, the

other indicator variables for site and time effects. Note that, if v = 1, the measurements are taken only at one time point.
Thus, there is no time effect, and as a result the above additive mean model reduces to

E

x(p)
r


= µ

(p)
1 z1 + · · · + µ(p)

m zm + λ
(p)
2 z(m+2) + · · · + λ(p)

u z(m+u),

= µ
(p)
1 z1 + · · · + µ(p)

m zm + λ
(p)
1 z(m+1) + · · · + λ(p)

u z(m+u), with λ
(p)
1 = 0.

A similar situation occurs for u = 1. Furthermore, if u = 1 and v = 1, the above mean model reduces to

E

x(p)
r


= µ

(p)
1 z1 + · · · + µ(p)

m zm.

Thus, we see that our separable additive mean model generalizes the commonly used additive mean model for one-level
multivariate data or univariate repeated measures data.

This additivemeanmodel can bewritten using an alternative expression by applying the ‘‘Kronecker sum’’ of two vectors.
Given the m-variate vector α = (αh) and the n-variate vector β = (βk), the Kronecker sum α ⊕ β is the mn-variate vector
γ =


γj

, where

γj = αh + βk if j = (h − 1)m + k,

for h = 1, . . . ,m, and k = 1, . . . , n. That is, γ = α ⊕ β can be expressed as

α ⊕ β = α ⊗ 1n + 1m ⊗ β,

where 1a is the (a× 1)-dimensional vector of ones. With this notation the separable additive meanmodel can be expressed
as

E

x(p)
r


= µx(p) = τ(p)

⊕ λ(p)
⊕ µ(p)

= τ(p)
⊗ 1u ⊗ 1m + 1v ⊗ λ(p)

⊗ 1m + 1v ⊗ 1u ⊗ µ(p), (1)

with τ
(p)
1 = λ

(p)
1 = 0. Note that, if τ(p)

= 0v or λ(p)
= 0u, this model, as before, becomes the commonly used additive mean

model.
Thus, we see that a separable additive mean model is more elegant than a separable multiplicative mean model as it can

be generated by three simple separablemultiplicativemeanmodels. The first one τ(p)
⊗1u⊗1m means that themean vector

over time remains constant over both sites and variables. The second one 1v ⊗ λ(p)
⊗ 1m means that the mean vector over

sites remains constant over both time and variables. Similarly, the third one. As a result, the simple separable multiplicative
meanmodels can be thought of as the basis for the separable additive meanmodel. Separable additive meanmodel extends
the traditional classification rules to a more general platform, but at the expense of computational complexity. The number
of unknown parameters for this separable additive mean model is (v + u + m − 2) in the pth population.
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2.2. Doubly exchangeable covariance structure

Definition 1. Let xr be an muv-variate partitioned real-valued random vector xr = (x′

r,1, . . . , x
′
r,v)

′, where xr,t =

(x′

r,t1, . . . , x
′
r,tu)

′ for t = 1, . . . , v, and x′
r,ts = (xr,ts,1, . . . , xr,ts,m)′ for s = 1, . . . , u. Let µx ∈ ℜ

muv be the mean vector,
and 0x be the (muv × muv)-dimensional partitioned covariance matrix 0x = Cov [x] =


0xr,t ,xr,t∗


=

0r,tt∗


, where

0r,tt∗ = Cov

xr,t , xr,t∗


for t, t∗ = 1, . . . , v. Them-variate vectors xr,11, . . . , xr,1u, . . . , xr,v1, . . . , xr,vu are said to be jointly

equicorrelated if 0x is given by

0x = Ivu ⊗ (U0 − U1) + Iv ⊗ Ju ⊗ (U1 − W) + Jvu ⊗ W, (2)

where U0 is a positive definite symmetric m × m matrix, and U1 and W are symmetric m × m matrices. The
variance–covariance matrix 0x is then said to have a jointly equicorrelated covariance structure with equicorrelation
parameters U0,U1 and W. The matrices U0,U1 and W are all unstructured. The symbol Ia is the a × a identity matrix and
Ja = 1a1′

a. Because of the doubly exchangeable nature of this covariance structure, 0x is also called doubly exchangeable
covariance structure.

Thus, the vectors xr,11, . . . , xr,1u, . . . , xr,v1, . . . , xr,vu are jointly equicorrelated if they have the following ‘‘jointly
equicorrelated covariance’’ matrix

Cov

xr,ts; xr,t∗s∗


=

U0 if t = t∗ and s = s∗,
U1 if t = t∗ and s ≠ s∗,
W if t ≠ t∗.

Them×m diagonal blocks U0 represent the variance–covariance matrix of them response variables at any given site and at
any given time point, whereas them×m off-diagonal blocksU1 represent the covariancematrix of them response variables
between any two sites and at any given time point. We assume U0 is constant for all sites and time points, and U1 is same
between any two sites and for all time points. The m × m off-diagonal blocks W represent the covariance matrix of the m
response variables between any two time points. It is assumed to be the same for any pair of time points, irrespective of the
same site or between any two sites.

Lemma 1. Let 0x be a doubly exchangeable covariance matrix as in Eq. (2) of Definition 1.

1. If

11 = U0 − U1,

12 = U0 + (u − 1)U1 − uW = (U0 − U1) + u (U1 − W) , and
13 = U0 + (u − 1)U1 + u (v − 1)W = (U0 − U1) + u (U1 − W) + uvW,

are nonsingular matrices, the matrix 0x is nonsingular, and its inverse is given by

0−1
x = Ivu ⊗ A + Iv ⊗ Ju ⊗ B + Jvu ⊗ C, (3)

where

A = 1−1
1 , B =

1
u


1−1

2 − 1−1
1


, and C =

1
vu


1−1

3 − 1−1
2


. (4)

2. The determinant of 0x is given by

|0x| = |11|
v(u−1)

|12|
(v−1)

|13| . (5)

See Roy and Leiva (2007) for the proof of this lemma. These results are used in Section 3 to obtain the maximum likelihood
estimate (MLE) of the doubly exchangeable covariance matrix 0x.

We study the efficacy of our new classification rule by comparing the misclassification error rates (MERs) when the
actual mean vectors have separable additive structure, andwe estimate and perform the classification analyses by assuming
them as separable additive structure, separable multiplicative structure as well as the unstructured. We also compare the
performance of our new classification rulewith the traditional one,where bothmean vector and variance–covariancematrix
are unstructured. We see that the assumption of wrong structure on mean vectors leads to very high MERs. Thus, it is
important to test the hypothesis on the actual structure on the mean vector before any classification analysis. Nonetheless,
testing only helps when there is high probability of detecting a meaningful deviation from the tested hypothesis when such
a deviation exists, and low probability of detecting each deviation that is less than meaningful. In our small sample size
situations, we expect low power in detecting meaningful deviations from separable additive or separable multiplicative
structure. Thus, one could look for evidence of those deviations from comparisons of likelihood, Akaike information criterion
(AIC) or Bayesian information criterion (BIC). In this article, with the help of simulations, we study the effectiveness of our
new linear classification rule.
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3. Maximum likelihood estimates of the separable additive mean vector and the doubly exchangeable covariance
matrix in a single population

Let x1, . . . , xn be anmuv-variate random sample of size n from a population with distribution Nmuv

µx, 0x


. We assume

that the covariancematrix0x has the doubly exchangeable or the jointly equicorrelated covariance structure as defined in (2)
with equicorrelation parameters U0,U1 andW. As in Definition 1 we partition themuv-variate vector xr for r = 1, . . . , n as
xr = (x′

r,1, . . . , x
′
r,v)

′, where xr,t = (x′

r,t1, . . . , x
′
r,tu)

′ for t = 1, . . . , v, and with x′
r,ts = (xr,ts,1, . . . , xr,ts,m)′ for s = 1, . . . , u.

In this case we assume that the jth component for j = 1, . . . ,m, of the mean vector E

xr,ts


= µts =


µts,j


is the sum

µts,j = τt + λs + µj, where µ =

µj


∈ ℜ
m and τt , λs ∈ ℜ, with the identifiability constraints τ1 = λ1 = 0. That is, the jth

component µts,j of the mean vector µts of xr,ts is discomposed into a sum of three summands: the jth component of a (base)
vector µ = E


xr,11


, plus λs (an effect due to site s) plus τt (an effect due to time t). Therefore, µx = τ ⊕ λ ⊕ µ where

τ = (τ1, . . . , τv)
′
∈ ℜ

v, λ = (λ1, . . . , λu)
′
∈ ℜ

u, with τ1 = λ1 = 0, and µ ∈ ℜ
m. The following theorem yields the exact

expressions for the MLEs of the separable additive mean vector µx and the doubly exchangeable covariance matrix 0x.

Theorem 1. Under the above assumptions, the maximum likelihood estimates of τ, λ, µ and 0x are given byτ = Dλµ (x − 1v ⊗ λ ⊗ 1m − 1v ⊗ 1u ⊗ µ) , (6)λ = Dτµ (x − τ ⊗ 1v ⊗ 1m − 1v ⊗ 1u ⊗ µ) , (7)µ = Dτλ (x − τ ⊗ 1v ⊗ 1m − 1v ⊗ λ ⊗ 1m) , (8)

and 0x = Ivu ⊗
U0 −U1


+ Iv ⊗ Ju ⊗

U1 − W+ Jvu ⊗ W, (9)

where Dλµ,Dτµ and Dτλ are given in (A.2)–(A.4) respectively in Appendix A, and

U0 =
1

nuv

n
r=1

v
t=1

u
s=1


xr,ts − (τt + λs) 1m − µ

 
xr,ts − (τt + λs) 1m − µ

′
, (10)

U1 =
1

nvu (u − 1)

n
r=1

v
t=1

u
s=1

u
s≠s∗=1


xr,ts − (τt + λs) 1m − µ

 
xr,ts∗ − (τt + λs∗) 1m − µ

′
, (11)

and

W =
1

nu2v (v − 1)

n
r=1

v
t=1

v
t≠t∗=1

u
s=1

u
s∗=1


xr,ts − (τt + λs) 1m − µ

 
xr,t∗s∗ − (τt∗ + λs∗) 1m − µ

′
. (12)

The proof of this theorem, which is simple but tedious, is given in Appendix A.We see that theMLEs of τ, λ, µ,U0,U1 andW
have implicit equations, and therefore are not tractable analytically. The computation of the MLEs of τ, λ, µ,U0,U1 and W
can be carried out by solving the above implicit equations simultaneously by the following fixed point iteration algorithm.
Iteration algorithm

We simultaneously calculate the maximum likelihood estimates (MLEs) of a total of (v + u + m − 2) + 3m (m + 1) /2
unknown parameters in the separable additive mean vector and the doubly exchangeable variance–covariance matrix. The
solutions satisfy the fully implicit and coupled equations with τ, λ, µ,U0,U1 and W.
Algorithm outline:

Step 1: Calculate the global sample mean x =
1
n

n
r=1 xr as

x =

x′

1,1, . . . , x
′

1,u, . . . , x
′

v,1, . . . , x
′

v,u

′
,

where xts =
1
n

n
r=1 xr,ts, for t = 1, . . . , v, s = 1, . . . , u. The initial valueµ0 ofµ is taken asµ0

= x1,1. Assume the initial
values of τ and λ as τ0

= 1v and λ0
= 1u respectively.

Step 2: ComputeH1,H2 andH3 from (A.6)–(A.8) respectively.
Step 3: ComputeA,B andC from (A.9).
Step 4: Compute the estimate0−1

x from (A.10).
Step 5: Compute Dλµ,Dτµ and Dτλ using0−1

x in Step 4, from (A.2)–(A.4), respectively.
Step 6: Compute the estimateµ from (8).
Step 7: Compute the estimateλ from (7) using the estimateµ in Step 6.
Step 8: Compute the estimateτ from (6) using the estimatesµ andλ in Steps 6 and 7 respectively.
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Step 9: ComputeU0,U1 and W from (10)–(12) respectively.
Step 10: Repeat Steps 2–9 until convergence is attained. This is ensured by verifying if the maximum of the absolute

difference among the L1 distance between two successive values of µ,λ, andτ, and the absolute difference among the
two successive values of trace of U0,U1 and W is less than a pre-determined number ϵ. For our calculation we choose
ϵ = 0.000001.

3.1. Remarks

It is also possible to use the method of moments (MOM) estimates instead of MLEs. However, computations of MOM
estimatesτ,λ andµ are very intricate as themeanmodel becomes overparameterized. The greatest problem faced byMOM
is the overparameterization. When we substitute E(x) with the first sample moment x, it leads to an over parameterization.
The number of unknown parameters in the separable additive mean model is (v + u + m − 2). Nevertheless, E(x) ≈ x
gives a system ofmuv sub-equations. Since the structured additivemeans are sums of individual components of parameters
as described in Section 2.1, a MOM approach that easily separates the parameters and handles their additive structure is a
regression problem. To get MOM estimates of (v + u + m − 2) unknown parameters one can write the system ofmuv sub-
equations in a regression form asXβ = x, whereβ is aMOMestimate vector of all (v+u+m−2) unknownparameters in the
separable additive meanmodel and X is the designmatrix of zeros and ones. We thus get a MOM estimateβ =


X ′X

−1X ′x.
From this estimateβ, we can construct E


xr


= µx = τ ⊕λ ⊕ µ. By partitioning this vector as in Section 2 we find that
E(xr,ts) = (τt +λs)1m +µ. Now, substituting E(xx′)with the second sample moment 1

n

n
i=1 xix

′

i , we get theMOM estimate0x =
1
n

n
i=1 xix

′

i −
τ ⊕λ ⊕µτ ⊕λ ⊕µ′. MOM estimates of U0,U1 and W can be found by suitably partitioning the

matrix0x and by taking appropriate averages of those partitioned matrices. The estimates U0,U1 and W are identical to
Eqs. (10)–(12) respectively, but the component of means are replaced by the corresponding component of MOM estimates.
Sincewe assumemultivariate normal distribution, we have infinite support, thuswe need not have toworry about theMOM
estimates to lie outside the parameter space. The notable thing about theMOM estimates is that the parameters have closed
form solutions. As a result, one need not have to use any iterative algorithm to compute them.

4. Discrimination with separable additive mean vectors and doubly exchangeable covariance matrix

In this section we derive the Bayesian linear decision rule for k populations with separable additive mean vectors.
Using the same notations as in the introduction, we assume that the vectors x(p)

r,11, . . . , x
(p)
r,1u, . . . , x

(p)
r,v1, . . . , x

(p)
r,vu are jointly

equicorrelated with equicorrelation parameters U0,U1 and W, and with separable additive mean vector E[x(p)
r ] = µx(p) =

τ(p)
⊕ λ(p)

⊕ µ(p), where τ(p)
=

τ

(p)
1 , . . . , τ (p)

v

′
∈ ℜ

v, λ(p)
=

λ

(p)
1 , . . . , λ

(p)
u
′

∈ ℜ
u, with τ

(p)
1 = λ

(p)
1 = 0, and µ(p)

∈ ℜ
m.

Let x(p)
1 , . . . , x(p)

n(p) be a random sample of size n(p) from the pth populationwith distributionNmuv

µx(p) , 0x


, for p = 1, . . . , k.

These k random training samples are independent among each other.
Nowwe consider the problem of assigning a new individual withmuv-variate partitionedmeasurement vector xo to one

of the k classes in a Bayesian framework. The previous set-up leads to a linear discriminant function as follows:
Under the assumptions of equal prior probabilities and equal costs of misclassification, the sample classification rule is

given by
Allocate an individual with response xo to population i if

l(i) (xo) = largest of
l(p) (xo) : p = 1, . . . , k


, for i = 1, . . . , k, (13)

where the sample linear scorel(p) is defined by

l(p) (xo) = µ′

x(p) ·0−1
x · xo −

1
2
µ′

x(p) ·0−1
x ·µx(p) , (14)

and 0−1
x and µx(p) = τ(p)

⊕λ(p)
⊕ µ(p), for p = 1, . . . , k, are the MLEs of 0−1

x and µx(p) respectively. 0−1
x is obtained

from (3) by substituting the values of U0,U1 and W byU0,U1 and W from (20)–(22) respectively, andµx(p) is obtained by
substituting the values ofτ(p),λ(p)

andµ(p) from (17)–(19) respectively. This linear rule (13) has been extensively studied
by many authors. See McLachlan (1992). The theoretical linear score corresponding to (14) can be written as a function of
τ(p), λ(p), µ(p), 11, 12 and 13 as follows

l(p) (xo) = m(p) (xo) −
1
2
κ (p), (15)
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where

m(p) (xo) = µ′

x(p) · 0−1
x · xo,

=

1′

m1−1
2

 v
t=1

uτ (p)
t xo,t• + vuτ (p) 1′

m


1−1

3 − 1−1
2


xo

+

1′

m1−1
1

 u
s=1

vλ(p)
s xo,•s + vuλ

(p) 1′

m


1−1

3 − 1−1
1


xo + vuµ(p)′1−1

3 xo,

and κ (p)
= µ′

x(p) · 0−1
x · µx(p)

= vud2+

τ 2

(p)
−

τ (p)2

+ vud1+


λ2

(p)
−


λ

(p)
2

+ vud3+

τ (p)

+ λ
(p)
2

+ 2vu

τ (p)

+ λ
(p)

1′

m1−1
3 µ(p)

+ vuµ(p)′1−1
3 µ(p), (16)

with xo,t• =
1
u

u
s=1 xo,ts, xo,•s =

1
v

v
t=1 xo,ts, xo =

1
vu

v
t=1
u

s=1 xo,ts, τ
(p)

=
1
v

v
t=1 τ

(p)
t , λ

(p)
=

1
u

u
s=1 λ

(p)
s , τ 2

(p)
=

1
v

v
t=1


τ

(p)
t

2
, λ2

(p)
=

1
u

u
s=1


λ

(p)
s

2
, and dj+ represents the sum of all the elements of 1−1

j , for j = 1, 2, 3. For detail
see Appendix B. It is worthwhile to consider different cases for structured mean and variance–covariance matrix of this
theoretical linear score (15) as follows.

Case 1: If we assume that the mean E

x(p)
r,ts


= µ

(p)
ts is constant for each time point t = 1, . . . , v (depends on site, but not

on time), that is, τ(p)
= 0v , then theoretical linear score (15) has the following summands:

m(p) (xo) =

1′

m1−1
1

 u
s=1

vλ(p)
s xo,•s + vuλ

(p) 1′

m


1−1

3 − 1−1
1


xo + vuµ(p)′1−1

3 xo,

and

κ (p)
= vud1+


λ2

(p)
−


λ

(p)
2

+ vud3+

λ

(p)
2

+ 2vuλ
(p)1′

m1−1
3 µ(p)

+ vuµ(p)′1−1
3 µ(p).

Case 2: If we assume that the mean E

x(p)
r,ts


= µ

(p)
ts is constant for each site s = 1, . . . , u (depends on time, but not on site),

that is, λ(p)
= 0u, then theoretical linear score (15) has the following summands:

m(p) (xo) =

1′

m1−1
2

 v
t=1

uτ (p)
t xo,t• + vuτ (p) 1′

m


1−1

3 − 1−1
2


xo + vuµ(p)′1−1

3 xo,

and

κ (p)
= vud2+


τ 2

(p)
−

τ (p)2

+ vud3+

τ (p)2

+ 2vu

τ (p) 1′

m1−1
3 µ(p)

+ vuµ(p)′1−1
3 µ(p).

Case 3: Finally, if we assume that E

x(p)
r,ts


= µ

(p)
ts is constant for each time point t = 1, . . . , v, and for each site s = 1, . . . , u,

that is, τ(p)
= 0v , and λ(p)

= 0u, then the theoretical linear score (15) reduces to

l(p) (xo) = vuµ(p)′1−1
3 xo −

1
2
vuµ(p)′1−1

3 µ(p).

In particular, if u = 1 and v = 1, the above theoretical score reduces to the traditional score with the covariance matrix U0,
i.e.,

l(p) (xo) = µ(p)′U−1
0 xo −

1
2
µ(p)′U−1

0 µ(p).

Thus, we see that our new classification rule is indeed an extension of the traditional classification rule.
Case 4: Similarly, we can consider particular cases of the covariance matrix. For instance, if the vectors are only
equicorrelated, or in other words if the vectors are only exchangeable, that is, U1 = W, then 11 = 12, and 13 =

U0 + (uv − 1)U1, and the first summand of the linear score (15) reduces to

m(p) (xo) = µ′

x(p) · 0−1
x · xo

=

1′

m1−1
1

  v
t=1

uτ (p)
t xo,t• +

u
s=1

vλ(p)
s xo,•s


+ vu


τ (p)

+ λ
(p)
 

1′

m


1−1

3 − 1−1
1


xo + vuµ(p)′1−1

3 xo.
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However, the second summand remains identical to (16). In real life applications most of the times the parameters are
unknown, and they must be estimated from the data itself. This is done by taking random samples from each population.
Maximum likelihood estimates of µx(p) ,U0,U1 and W:
The log likelihood function can be written as ln(L) =

k
p=1 ln(L(p)), where

ln(L(p)) = −
n(p)muv

2
ln (2π) −

n(p)

2
ln |0x| −

n(p)
r=1


x(p)
r − µ(p)

x
′

0−1
x

x(p)
r − µ(p)

x

.

We get the MLEs of τ(p), λ(p) and µ(p), for p = 1, . . . , k, from the above log likelihood function using the similar arguments
as in Theorem 1 with different separable additive means and a common doubly exchangeable covariance matrix for k
populations as follows

τ(p)
= Dλµ


x(p)

− 1v ⊗ λ(p)
⊗ 1m − 1v ⊗ 1u ⊗ µ(p), (17)λ(p)

= Dτµ


x(p)

− τ(p)
⊗ 1v ⊗ 1m − 1v ⊗ 1u ⊗ µ(p), (18)

and

µ(p)
= Dτλ


x(p)

− τ(p)
⊗ 1v ⊗ 1m − 1v ⊗ λ(p)

⊗ 1m


, (19)

where the expressions of the matrix factors Dλµ,Dτµ, and Dτλ, in these equations are given in (A.2)–(A.4) respectively in
the Appendix A. An estimate of 0−1

x in these matrix factors can be calculated from the estimates of U0,U1 andW. Now, The
ML estimates of U0,U1 and W are given by

U0 =
1

nuv

k
p=1

n(p)
r=1

v
t=1

u
s=1


x(p)
r,ts −


τ

(p)
t + λ(p)

s


1m − µ(p)x(p)

r,ts −

τ

(p)
t + λ(p)

s


1m − µ(p)′, (20)

U1 =
1

nuv(u − 1)

k
p=1

n(p)
r=1

v
t=1

u
s=1

u
s≠s∗=1


x(p)
r,ts −


τ

(p)
t + λ(p)

s


1m − µ(p)x(p)

r,ts∗ −

τ

(p)
t + λ

(p)
s∗

1m − µ(p)′, (21)

and

W =
1

nu2v(v − 1)

k
p=1

n(p)
r=1

v
t=1

v
t≠t∗=1

u
s=1

u
s∗=1


x(p)
r,ts −


τ

(p)
t + λ(p)

s


1m − µ(p)x(p)

r,t∗s∗ −

τ

(p)
t∗ + λ

(p)
s∗

1m − µ(p)′, (22)

where (in this section) n denotes n =
k

p=1 n
(p). The expressions of H1,H2 and H3 to estimateU0,U1 and W are given by

H1 =

k
p=1

n(p)
r=1

v
t=1

u
s=1


x(p)
r,ts −


τ

(p)
t + λ(p)

s


1m − µ(p)

 
x(p)
r,ts −


τ

(p)
t + λ(p)

s


1m − µ(p)

′

,

H2 =

k
p=1

n(p)
r=1

v
t=1

u
s=1

u
s∗=1


x(p)
r,ts −


τ

(p)
t + λ(p)

s


1m − µ(p)

 
x(p)
r,ts∗ −


τ

(p)
t + λ

(p)
s∗


1m − µ(p)

′

,

and

H3 =

k
p=1

n(p)
r=1

v
t=1

v
t∗=1

u
s=1

u
s∗=1


x(p)
r,ts −


τ

(p)
t + λ(p)

s


1m − µ(p)

 
x(p)
r,t∗s∗ −


τ

(p)
t∗ + λ

(p)
s∗


1m − µ(p)

′

.

We see that theMLEsµ(p),λ(p)
,τ(p),U0,U1 and W do not have closed form solutions. These estimates are obtained by using

a similar fixed point iteration algorithm as described in Section 3. The MLE0x of 0x is given in (9).

4.1. Remarks

In this articlewe consider only the linear classification rulewhere the doubly exchangeable covariancematrix is identical
for all k populations. If instead the doubly exchangeable covariance parameters were different among these populations,
the best classification rule would be the one using quadratic scores. However, the linear classification rule still has several
advantages over the quadratic one. For instance, the distributional theory for the linear rule is simple, and may allow us
to calculate the theoretical misclassification probabilities without difficulty. From a geometric point of view, the quadratic
classification rule divides the sample space using k complicated quadratic surfaces, while the linear rule uses only hyper-
planes. Moreover, the linear rule is robust under departures from the normality assumption, while the quadratic rule is very
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Table 1
MERs (%) for glaucoma data for different training sample sizes.

Assumed mean vector (trn(1), trn(2))

(3, 3) (5, 5) (8, 8) (13, 13) (15, 15) LOOCV

Additive 10.000 6.083 4.583 3.750 3.417 3.333
Multiplicative 17.250 13.417 9.417 4.583 4.000 1.667
Unstructured 16.167 10.750 8.667 5.833 5.750 3.333
CMVOS 7.667 5.167 4.083 3.667 3.333 3.333
Traditional Failed Failed 17.417 8.167 6.667 6.667

sensitive to the violations of this assumption. Due to these and many other reasons several authors (Chaudhuri et al., 1991;
Park and Kshirsagar, 1994; Paranjpe and Gore, 1994) have considered linear classification rules with different covariance
structures. In the two population case, most of their solutions use some linear combination of the two different covariance
matrices from two populations to carry out the linear classification (Leiva and Herrera, 1999). It is easy to see that a linear
combination of doubly exchangeable matrices is also doubly exchangeable. All these motivations inspire us to develop the
linear classification rule in this article. However, since each summand in the log likelihood function ln(L) =

k
p=1 ln(L(p))

has different parameters, one can calculate the ML estimates of all the parameters in the different covariance model using
Theorem 1. More precisely, the theoretical quadratic scores in this case are

q(p) (xo) = −
1
2


xo − µx(p)

′
· 0(p)−1

x ·

xo − µx(p)


−

1
2
ln
0(p)

x

 , for p = 1, . . . , k,

and the sample classification rule is given by
Allocate an individual with response xo to population i if

q(i) (xo) = largest of
q(p) (xo) : p = 1, . . . , k


, for i = 1, . . . , k, (23)

whereq(p) (xo) is obtained by replacing the required parameters in the expression of q(p) (xo) by their corresponding ML
estimates which are obtained by using the same iteration algorithm outlined in Section 3. This is because the equations
for calculating these ML estimates are obtained directly from Theorem 1 by replacing n, τ, λ, µ,U0,U1,W, and 0−1

x by
n(p), τ(p), λ(p), µ(p),U(p)

0 ,U(p)
1 ,W(p), and 0

(p)−1
x respectively, for p = 1, . . . , k.

5. A real data example

To show the efficacy of our new classification rule we apply it to a medical data set, where the interest is in detecting
the possible cases of glaucoma. We have n(1)

= 30 and n(2)
= 30 samples from two populations, the diseased patients with

glaucoma (Pop1) and the individuals who do not have glaucoma (Pop2). Measurements of intraocular pressure (IOP) and
central corneal thickness (CCT) were obtained from both the eyes (sites), each at three time points at an interval of three
months. It is clear that for this data setm = 2, u = 2 and v = 3. The problem is to classify an unknown individual into one of
the two populations using the new classification rule (13) as discussed in Section 4. Table 1 shows themisclassification error
rates (MERs) of our new classification rule. This data set was analyzed before by assuming the same doubly exchangeable
covariance structure, but with separable multiplicative and unstructured mean vectors (Leiva and Roy, 2009b, 2011) and
with constant mean vector over sites (CMVOS) (Roy and Leiva, 2007). For comparison purpose MERs from these previous
studies, i.e., for separable multiplicative mean vector, unstructured mean vector and CMVOS are also presented in Table 1.
Additionally, MERs for the traditional linear classification rule (Seber, 1984, p. 293, 297, Johnson andWichern, 2007, p. 586,
594), where both the mean vector and variance–covariance matrix are unstructured are also presented in Table 1. Our main
aim of the analysis of this data set is to illustrate the computational facets of our new classification rule rather than giving
any insight into the data set itself.

For this data set the unstructured variance–covariance matrix is (12 × 12)-dimensional; thus, the number of
unknown parameters in the unstructured covariance matrix is 78. Therefore, estimation of the pooled unstructured
variance–covariance matrix is not possible for small samples less than or equal to a total of 12 samples from both the
populations. Thus, an assumption of structured covariance matrix is necessary for small sample situation. Our doubly
exchangeable covariance structure has three (2 × 2)-dimensional unstructured covariance matrices, which gives only 9
unknown covariance parameters to estimate. Thus, estimation of these three unstructured covariance matrices is possible
with only a total of three samples from both the populations. For this data set the separable additive mean vectors have
10 unknown parameters in the two populations which are simultaneously estimated along with 9 unknown covariance
parameters, i.e. a total of 19 unknown parameters, using the fixed point iteration algorithm presented in Section 3.

To calculate the MERs, the data are split into a training set, upon which the classification rule is developed, and a
test set upon which the classification rule is tested. The analysis is done with a number of pairs of training sample sizes
(trn(1), trn(2)) = (3, 3), (5, 5), (8, 8), (13, 13) and (15, 15), i.e., from very small to moderate pairs of training sample sizes,
from the two populations. For each of these pairs of training samples, a pair of samples (15, 15) is randomly selected from
the remaining data points and used as a test set. Based on the training samples, we simultaneously estimate the parameters
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(τ(1), λ(1), µ(1), τ(2), λ(2), µ(2)) and (U0,U1,W) by using the maximum likelihood method as discussed in Section 4, and
the sample classification rule is developed in the first stage. In the second stage the test samples are used to assess the
efficacy of the new classification rule. To avoid the possible instability introduced by relying on just one single particular
split into training and test sets, 40 different splits for each pair of training sample sizes are chosen. On the basis of these 40
different training samples, the unknown population parameters are estimated by the ML method. Using these estimates,
the classification analysis is performed separately on each of the corresponding 40 test samples, and the MERs for these 40
choices are averaged. This method gives an error rate that is more stable than just doing it on one single particular split.

We have also used the leave-one-out cross validation (LOOCV) method which is normally regarded as more reliable
than any other method to calculate the MERs. Leave-one-out cross validation removes each observation, constructs the
classification rule from the remaining n − 1 observations, and then computes whether the deleted observation is correctly
classified by leave-one-out classification rule. The average MER on the deleted observation over the n possible ways is
computed to evaluate the performance of the classification rule.

The MLEs of (τ(1), λ(1), µ(1)) and (τ(2), λ(2), µ(2)) in separable additive mean vector case for the pair of training sample
sizes (15, 15) are

τ(1)
= [0, −3.6912, −3.1291]′, λ(1)

= [0, 0.0217]′, µ(1)
= [24.2848, 534.2959]′,

and τ(2)
= [0, 1.1162, 0.5590]′, λ(2)

= [0, 0.8351]′ and µ(2)
= [12.8907, 502.1018]′,

respectively. The MLEs of U0,U1 andW are

U0 =


9.445 9.779
9.779 322.068


, U1 =


5.778 7.500
7.500 −18.690


and W =


1.772 9.774
9.774 143.020


.

Thus, the corresponding correlation matrices are

Corr_U0 =


1 0.177

0.177 1


, Corr_U1 =


0.612 0.136
0.136 −0.058


and Corr_W =


0.188 0.177
0.177 0.444


.

Therefore, we see that the estimated correlation coefficient between IOP and CCT in any eye and at any time point is 0.177,
whereas the estimated correlation coefficient between IOP and CCT for the two eyes is 0.136 and that for any two time points
is 0.177. As expected, the correlation coefficient do not increase with both the eyes and over the time points.

From Table 1 we see that for all chosen pairs of training samples the MERs corresponding to our new classification rule
with separable additive mean vectors are less than that of the MERs corresponding to the classification rule with separable
multiplicative mean vectors and with unstructured mean vectors. The data do not seem to have separable multiplicative
mean vector structure; see Leiva and Roy (2011). For training samples of sizes (3, 3), (5, 5), and (8, 8) we see that MERs are
more than that of Roy and Leiva’s (2007) classification rule with CMVOS. However, for moderate training samples of sizes
we see that our new classification rule with the separable additive mean vector has comparable MERs to classification rule
with CMVOS. Further, LOOCV error rates are almost same for all the methods.

Thismay perhaps be due to the fact that the estimates of a total of 19 unknown parameters (10 for themean vectors and 9
for the doubly exchangeable covariance structure) in the separable multiplicative and separable additive mean vector cases
become unstable for small sample sizes, and thus increase the MERs. The parameter estimates in these two classification
rules with separable mean vectors, do not have any closed form solutions for the parameters and have to compute all 19
parameters simultaneously using fixed point iteration algorithm from the training samples, hence need more samples
to obtain the reliable or dependable estimate of the parameters. Thus, the performance of these classification rules for
small sample sizes are much poorer than the moderate sample sizes. It is well known that the MER increases at the cost
of estimating more parameters. On the other hand, the classification rule with unstructured mean vectors has a total of
33 unknown parameters (24 for the mean vectors and 9 for the doubly exchangeable covariance matrix), and Roy and
Leiva’s (2007) classification rule with CMVOS has 21 unknown parameters (12 for the mean vectors and 9 for the doubly
exchangeable covariance matrix), have closed form solutions; thus the parameter estimates are more reliable, hence offer
less MERs. Traditional classification rule fails for training samples of sizes (3, 3), (5, 5) owing to very small sample sizes, and
other times its performance is much poorer than the other methods.

To demonstrate that the new classification rule with separable additive mean vectors would perform better if the data
have the separable additive mean vector structures than the one that do not have, we perform the following simulation
study. We also compare the results with the traditional linear classification rule.

6. A simulation study

To test the performance of our new classification rule, data sets are simulated separately with different training sample
sizes from two populations. The values of v, number of repeated measurements over time, are chosen as 3 and 5, u = 2
and m = 3. We assume that the structure of the mean vectors as µ

(p)
x = τ(p)

⊕ λ(p)
⊕ µ(p) for p = 1, 2, where

τ(1)
= (0, 0.9, 0.75, 0.70, 0.70)′, τ(2)

= (0, 0.6, 0.6, 0.4, 0.4)′, λ(1)
= (0, 1.5)′, λ(2)

= (0, 2.2)′, µ(1)
= (2, 1, 1)′ and
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Table 2
MERs (%) for the simulated data with separable additive mean model for different training sample sizes.

Assumed mean
vector

(trn(1), trn(2))

(3, 3) (5, 5) (6, 6) (8, 8) (10, 10) (15,15) (20,20) (50,50)
v

3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5

Additive 16.90 7.73 11.68 13.45 14.30 8.73 13.30 7.53 12.35 6.38 10.90 7.45 9.60 6.25 9.28 4.55
Multiplicative 16.78 9.05 11.15 14.58 14.15 10.15 14.00 13.40 12.98 12.23 11.90 11.10 11.40 9.58 11.18 7.33
Unstructured 16.73 9.95 16.55 14.05 15.53 14.63 13.85 9.40 12.85 8.40 12.18 8.08 11.23 6.55 10.20 5.13
Traditional Failed Failed Failed Failed Failed Failed Failed Failed 29.80 Failed 15.93 Failed 21.15 14.58 10.58 11.65

µ(2)
= (0, 1, 0)′. We also assume that the two populations have the same doubly exchangeable covariance matrix 0x with

U0,U1 and W as

U0 =

2 1 2
1 4 3
2 3 5


, U1 =

0.40 0.11 0.40
0.11 0.60 0.15
0.40 0.15 0.60


, and W =

0.3 0.2 0.1
0.2 0.3 0.1
0.1 0.1 0.3


.

Training samples of sizes (trn(1), trn(2)) = (3, 3), (5, 5) (very small), (6, 6), (8, 8), (10, 10) (small), (15, 15), (20, 20)
(moderate) and (50, 50) (large), and a pair of test samples (2000, 2000) are generated from the muv-variate normal
populations Nmuv(µ

(p)
x , 0x), p = 1, 2, where µ

(p)
x and 0x are defined as above. Based on these samples, we estimate

(µ
(1)
x , µ

(2)
x ) and (U0,U1,W) using the maximum likelihood method as discussed in Section 4.

To see the effectiveness of the separable additivemeanvector structure in the classification rulewe study at the same time
the outcome of the classification rules when the actual mean vectors have separable additive structure, andwe estimate and
perform the classification analyses by assuming them as separable additive structure, separable multiplicative structure as
well as unstructured, and calculate theMERs separately. Finally,we calculate theMERs for the traditional linear classification
rule, where both the mean vectors and the pooled variance–covariance matrix are unstructured.

Our doubly exchangeable covariance matrix 0x has a blocked constant covariance structure over time, like compound
symmetric covariance structure has constant variance over time for the univariate repeated measures data. The number
of unknown parameters in 0x is 3m (m + 1) /2, a number independent of u and v. However, the number of unknown
parameters in the separable additive as well as separablemultiplicativemean structure in the classification rule is 2(v+u+

m − 2). Thus, in the separable structured mean cases the MER is influenced by two circumstances which are at odds with
each other. First, the estimation of our doubly exchangeable covariance matrix 0x becomes better with the increase of v, as
the number of unknown parameters is independent of the number of repeated measures v. The increase in v offers more
information in each observation, and thusMER is decreased. Second, the estimation of the structuredmean vectors becomes
poorer since the number of unknown parameters in them increases with v, and accordingly MER is increased. However, the
first one overshadows the second one after a ‘burnout period’. We see from Table 2 that after the ‘burnout period’ of very
small sample sizes, MER always decreases with the increase of v. This is due to the stable and thus reliable parameter
estimates after the ‘burnout period’. The number of unknown parameters are 30 and 34 for v = 3 and 5, respectively; and,
the total number of samples are only 6 and 10 for the pairs of samples (3, 3) and (5, 5) respectively. Therefore, for v = 5more
parameters are in the model; as a result, the MER can be increased due to the cost of estimating more parameters when the
number of samples is only 10. Separable mean vectors do not give reliable parameter estimates for very small samples, thus
behave erroneously. Thus, we will only discuss the results after the ‘burnout period’.

Table 2 shows theMERs for the simulated data.We see that theMERs are relatively higherwhenweoverlook the structure
of the mean vectors that is present in the data. We see that with the increase of training sample sizes MER decreases as
we get much reliable estimates of the unknown parameters. MERs are smallest when we analyze the data assuming the
separable additive mean vector structure. For small sample sizes the MERs for the separable additive structure, separable
multiplicative structure, and unstructured are all comparable. We see that the assumption of the additive structured mean
vector for large v offers maximum benefit when the same structure is present in the data.

When repeated measurements do not have any structure on the variance–covariance matrix, repeated measurements
over time are sometimes disturbing in discriminating the groups. Asmentioned beforewe also perform the simulation study
for the traditional linear classification rule. We see from Table 2 that the MER increases with v for the pair of samples (50,
50), as the number of parameters are more for v = 5. Moreover, traditional linear classification rule fails most of the time
due to the lack of proper sample size. Here also we see that our new classification rule outperforms the traditional one.

7. Possible future extensions of our proposed classification rule

Although multivariate normal distribution has been the fundamental focus in multivariate analysis, statisticians have
been trying to extend the theory of multivariate analysis to more general case. Family of elliptical distributions with
tractable radius or multivariate exponential family of distributions provides a useful generalization of the multivariate
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normal distribution for the modeling of repeated measure data. The covariance matrix retains its interpretation (at least
up to a constant in the case of elliptical distributions) so that it can easily be structured for uniform and serial dependence
and several levels of variance components (Lindsey, 1999).

Under mild assumptions, extension of our classification rule is possible to the family of elliptical distributions (Fang and
Anderson, 1990) when they possess density functions, i.e., their contours are of the same shape as the multivariate normal
density; namely elliptical. The main attraction of these densities are that they are more flexible than the normal density
in that they cover both thick- and thin-tailed distributions (relative to the normal), and so to supply robust alternatives to
many statistical procedures. Thus, the usual heavy tails of most members of the class of elliptical distributions make them
natural candidates in modeling the data with outliers. An N-dimensional random vector x is distributed according to an
elliptically contoured distribution with parametersµ and 6 > 0 (positive definite), if it has the density function of the form

f (x) = |6|
−

1
2 g

(x − µ)′6−1(x − µ)


,

where g is a density generator. In our scheme if the matrices 11, 12, and 13 are positive definite (or equivalently, if 0x is a
positive definitematrix) and the assumptions of Theorem 1 of Anderson et al. (1986) (see also Theorem 7.1.4, P. 236 of Gupta
and Varga, 1993) are satisfied then it is possible to find the MLEs of our model parameters under the elliptical distribution.
More precisely, we find the MLEs µ,λ,τ,U0,U1 and W in Section 3, based on a sample of size n of muv-variate random
vectors x1, . . . , xn from a population with distribution Nmuv


µx, 0x


. That is, we obtain the MLEs µx = τ ⊕λ ⊕ µ of µx

and0x = Ivu ⊗
U0 −U1


+ Iv ⊗ Ju ⊗

U1 − W + Jvu ⊗ W of 0x, based on a sample of size 1 of the N-variate random
vector x =


x′

1, . . . , x
′
n

′ from a population with distribution NN

1n ⊗ µx, In ⊗ 0x


, where N = nmuv. Now, under the

assumptions that g(x′x) is a density in ℜ
N and yN/2g(y) has a finite positive maximum yg , Theorem 1 of Anderson et al.

(1986) states: on the basis of an observation x from f (x) if the MLEs of the parameters ν = 1n ⊗ µx and V = In ⊗ 0x under
normality exists and are unique and that MLEV = In ⊗0x of In ⊗ 0x is positive definite, then the MLEs of the parameters ν

andV for g also exist and they are given byν =ν = 1n⊗µx andV =
N
yg
V =

N
yg
In⊗0x, and themaximumof the likelihood is

|V|
−

1
2 g

yg

. As a result, we can extend our classification rule to a wider class of distributions such as themultivariate power

exponential and student t families, as these two are subfamilies of the elliptically contoured distributions and include the
multivariate normal distribution as a special case. They can have the heavy tails required for handling extreme observations
(Lindsey and Jones, 2000). MLEs can be derived for the unknown parameters β(> 0), 6 (positive definite) and µ of the
multivariate power exponential distribution, as the distribution is continuous over the entire space of the kurtosis parameter
β when β > 0. For β < 1, the distribution has heavier tails than the multivariate normal distribution and can be helpful in
providing robustness against outliers. In the case ofMultivariate student t distribution,MLEs can be derived for the unknown
parameters β(>2), 6 (positive definite) andµ, as in this case also the distribution is continuous over the entire space of the
parameter β when β > 2.

Undermild assumptions, extension of our classification rule to the family ofmultivariate simple linear exponential family
of distributions is also possible. The distribution of anN-dimensional randomvariable x belongs to theN-dimensional simple
linear exponential family (Ziegler, 2011), if its density (meant to include probabilitymass functions for discrete data) is given
by

f (x) = exp

ϑ′x + b(x, 9) − d(ϑ, 9)


,

where ϑ ∈ ℜ
N be the parameter vector of interest, 9 ∈ ℜ

N×N be a positive definite matrix of fixed nuisance parameters,
b : ℜ

N
×ℜ

N×N
→ ℜ and d : ℜ

N
×ℜ

N×N
→ ℜ some functions. The parameter vector ϑ is termed as the natural parameter.

It can be shown that the function d(ϑ, 9) is the cumulant generating function of f (x). As before, if the matrices 11, 12, and
13 are positive definite (or equivalently, if 0x is a positive definite matrix) then by Theorem 1.2, P. 2 of Ziegler (2011) we
have

E(x) =
∂d(ϑ, 9)

∂ϑ

and

Var(x) =
∂2d(ϑ, 9)

∂ϑ∂ϑ′
.

Using the invariance principle of the MLEs one can always calculate the ML estimates of ∂d(ϑ,9)

∂ϑ
and ∂2d(ϑ,9)

∂ϑ∂ϑ′ , and thus

the MLEs E(x) and Var(x). As a result, we can extend our classification rule to a wider class of distributions such as the
multinomial distribution, as it belongs to the multivariate simple linear exponential family of distributions and include the
multivariate normal distribution as a special case.

8. Concluding remarks

Our study concludes that the appropriate or relevant structures on mean vectors and variance–covariance matrix are
very important for the classification of three-level multivariate data. We see that the traditional linear classification rule
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is not at all useful when some structure is present in the data. The traditional linear classification rule not only gives
much higher MERs, but in fact, also fails for small and very small sample sizes. Thus, the shift from traditional linear
classification rule to our new classification rule is necessitated for some data set with particular structure on mean vectors
and variance–covariance matrix.

Many future research directions can arise out of our proposed methodology in this paper. For instance, the present
work can easily be extended to more than three levels. Also, one could generalize our classification rule to elliptical
distributionswith tractable radius, ormultivariate exponential family of distributions as justified in Section 7. Generalization
of our classification rule to elliptical distributions with tractable radius is under progress and will be presented in a future
correspondence.
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Appendix A. Maximum likelihood estimation of τ, λ,µ,U0,U1 and W

Proof of Theorem 1. The likelihood function L = L

µx, 0x


= L (τ, λ, µ,U0,U1,W) can be written as

L

µx, 0x


=

exp−
1
2

n
r=1


xr − µx

′
0−1

x

xr − µx


(2π)

nmuv
2 |0x|

n
2

.

Thus, the log likelihood function can be written as

ln(L) = −
nmuv

2
ln (2π) −

n
2
ln |0x| −

1
2

n
r=1


xr − µx

′
0−1

x

xr − µx


. (A.1)

Let
•

xr = xr −µx = xr − τ ⊕λ⊕µ, and let xts denotes the sample mean vector corresponding to time point t and site s, that
is, xts =

1
n

n
r=1 xr,ts. Let x =


x′

11, . . . , x
′

1u, . . . , x
′

v1, . . . , x
′

vu

′ be the global sample mean vector, that is, x =
1
n

n
r=1 xr .

Since
•

xr = xr −µx = (xr − x)+

x − µx


, the sum of quadratic terms in the above log likelihood function can be expressed

as
n

r=1


xr − µx

′
0−1

x

xr − µx


= tr


0−1

x

n
r=1


xr − µx

 
xr − µx

′
= tr


0−1

x V

,

where

V =

n
r=1


xr − µx

 
xr − µx

′
= W + Z,

with

W =

n
r=1

(xr − x) (xr − x)′ ,

and

Z = n

x − µx

 
x − µx

′
,

= n (x − τ ⊕ λ ⊕ µ) (x − τ ⊕ λ ⊕ µ)
′
.

Therefore, the log likelihood function (A.1) can be written as

ln(L) = −
nmuv

2
ln (2π) −

n
2
ln |0x| −

1
2
tr

0−1

x W

, −

n
2

(x − τ ⊕ λ ⊕ µ)
′
0−1

x (x − τ ⊕ λ ⊕ µ) .

Wewill first find the maximum likelihood estimates of the parameters τ, λ and µ for a fixed covariance matrix 0x. For that
we will find the partial derivatives of ln(L) with respect to τ, λ and µ respectively. Now, the partial derivative ∂

∂τ
ln(L) is
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given by

∂

∂τ
ln(L) = −

n
2

∂

∂τ


(x − τ ⊕ λ ⊕ µ)

′
0−1

x (x − τ ⊕ λ ⊕ µ)

,

= n (Iv ⊗ 1u ⊗ 1m)′ 0−1
x (x − τ ⊕ λ ⊕ µ) , using Property 2 of Appendix C,

= n (Iv ⊗ 1u ⊗ 1m)′ 0−1
x (x − 1v ⊗ λ ⊗ 1m − 1v ⊗ 1u ⊗ µ)

− n (Iv ⊗ 1u ⊗ 1m)′ 0−1
x (τ ⊗ 1u ⊗ 1m) , using Eq. (1),

= n (Iv ⊗ 1u ⊗ 1m)′ 0−1
x (x − 1v ⊗ λ ⊗ 1m − 1v ⊗ 1u ⊗ µ) − n (Iv ⊗ 1u ⊗ 1m)′ 0−1

x (Iv ⊗ 1u ⊗ 1m) τ.

Equating the above derivative to zero we get

τ = Dλµ (x − 1v ⊗ λ ⊗ 1m − 1v ⊗ 1u ⊗ µ) ,

where

Dλµ =

(Iv ⊗ 1u ⊗ 1m)′ 0−1

x (Iv ⊗ 1u ⊗ 1m)
−1

· (Iv ⊗ 1u ⊗ 1m)′ 0−1
x . (A.2)

Using the same technique we get

λ = Dτµ (x − τ ⊗ 1v ⊗ 1m − 1v ⊗ 1u ⊗ µ) ,

where

Dτµ =

(1v ⊗ Iu ⊗ 1m)′ 0−1

x (1v ⊗ Iu ⊗ 1m)
−1

· (1v ⊗ Iu ⊗ 1m)′ 0−1
x , (A.3)

and

µ = Dτλ (x − τ ⊗ 1v ⊗ 1m − 1v ⊗ λ ⊗ 1m) ,

where

Dτλ =

(1v ⊗ 1u ⊗ Im)′ 0−1

x (1v ⊗ 1u ⊗ Im)
−1

· (1v ⊗ 1u ⊗ Im)′ 0−1
x . (A.4)

We will now maximize the log likelihood function (A.1) with respect to U0,U1 and W for fixed τ, λ and µ to get the MLEs
of U0,U1 and W. Since 0−1

x and |0x| can be expressed as a function of 11, 12 and 13, maximizing with respect to U0,U1

and W is equivalent to maximizing with respect to 11, 12 and 13. Now substituting the values of 0−1
x from (3) in the log

likelihood function (A.1) and simplifying we get

ln(L) = −
nmuv

2
ln (2π) −

n
2
ln |0x| −

1
2

n
r=1


xr − µx

′
(Ivu ⊗ A)


xr − µx


−

1
2

n
r=1


xr − µx

′
(Iv ⊗ Ju ⊗ B)


xr − µx


−

1
2

n
r=1


xr − µx

′
(Jvu ⊗ C)


xr − µx


.

Substituting the values of E

xr,ts


= (τt + λs) 1m + µ, and |0x| from (5) in the above log likelihood equation we get

ln(L) = −
nmuv

2
ln (2π) −

nv (u − 1)
2

ln |11| −
n (v − 1)

2
ln |12| −

n
2
ln |13| −

1
2
trAH1 −

1
2
trBH2 −

1
2
trCH3, (A.5)

where

H1 =

n
r=1

v
t=1

u
s=1


xr,ts − (τt + λs) 1m − µ

 
xr,ts − (τt + λs) 1m − µ

′
, (A.6)

H2 =

n
r=1

v
t=1

u
s=1

u
s∗=1


xr,ts − (τt + λs) 1m − µ

 
xr,ts∗ − (τt + λs∗) 1m − µ

′
, (A.7)

and

H3 =

n
r=1

v
t=1

v
t∗=1

u
s=1

u
s∗=1


xr,ts − (τt + λs) 1m − µ

 
xr,t∗s∗ − (τt∗ + λs∗) 1m − µ

′
. (A.8)

Now using the identity

AH1 + BH2 + CH3 = 1−1
1


H1 −

1
u
H2


+ 1−1

2


1
u
H2 −

1
vu

H3


+ 1−1

3


1
vu

H3


,
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the log likelihood (A.5) can be written as

ln(L) = −
nmuv

2
ln (2π) −

nv (u − 1)
2

ln |11| −
1
2
tr1−1

1


H1 −

1
u
H2


−

n (v − 1)
2

ln |12| −
1
2
tr1−1

2


1
u
H2 −

1
vu

H3


−

n
2
ln |13| −

1
2
tr1−1

3


1
vu

H3


,

= −
nmuv

2
ln (2π) + nv (u − 1)


−

1
2
ln |11| −

1
2
tr1−1

1


1

nv (u − 1)


H1 −

1
u
H2


+ n (v − 1)


−

1
2
ln |12| −

1
2
tr1−1

2


1

n (v − 1)


1
u
H2 −

1
vu

H3


+ n


−

1
2
ln |13| −

1
2
tr1−1

3


1

nuv
H3


.

Therefore, using Lemma 3.2.2 of Anderson (2003), the MLEs 11,12 and 13 for each τ, λ and µ are given by

11 =
1

nv (u − 1)


H1 −

1
u
H2


,

12 =
1

n (v − 1)


1
u
H2 −

1
vu

H3


,

and 13 =
1

nuv
H3.

Thus, from Eq. (4) we can write MLEs ofA,B andC as follows:

A = 1−1
1 , B =

1
u

1−1
2 − 1−1

1


, and C =

1
vu

1−1
3 − 1−1

2


. (A.9)

Using the fact that ML estimations of transformed parameters are the transformed parameter estimates of the MLEs, from
(3) we have the estimate of 0−1

x as

0−1
x = Ivu ⊗A + Iv ⊗ Ju ⊗B + Jvu ⊗C. (A.10)

Now the MLEs of U0,U1 and W can be obtained from 11,12 and 13 by

W =
1
vu

13 − 12


=
1
vu


1

nvu
H3 −

1
n (v − 1)


1
u
H2 −

1
vu

H3


,

=
H3 − H2

nu2v (v − 1)
,

=
1

nu2v (v − 1)

n
r=1

v
t=1

v
t≠t∗=1

u
s=1

u
s∗=1


xr,ts − (τt + λs) 1m − µ

 
xr,t∗s∗ − (τt∗ + λs∗) 1m − µ

′
U1 =

1
u

12 − 11 + uW ,

=
1
u


1

n (v − 1)


1
u
H2 −

1
vu

H3


−

1
nv (u − 1)


H1 −

1
u
H2


+

H3 − H2

nuv (v − 1)


,

=
H2 − H1

nu (u − 1) v
,

=
1

nvu (u − 1)

n
r=1

v
t=1

u
s=1

u
s≠s∗=1


xr,ts − (τt + λs) 1m − µ

 
xr,ts∗ − (τt + λs∗) 1m − µ

′
,

and

U0 = 11 +U1 =
1

nv (u − 1)


H1 −

1
u
H2


+

H2 − H1

nu (u − 1) v
,

=
H1

nuv
,

=
1

nuv

n
r=1

v
t=1

u
s=1


xr,ts − (τt + λs) 1m − µ

 
xr,ts − (τt + λs) 1m − µ

′
. �
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Appendix B. Derivation of different classification rules

Let α′
=

τ(p)

⊗ 1u ⊗ 1m
′

0−1
x

=

τ(p)

⊗ 1u ⊗ 1m
′ Iv ⊗ Iu ⊗ 1−1

1


+

τ(p)

⊗ 1u ⊗ 1m
′ Iv ⊗ Ju ⊗

1
u


1−1

2 − 1−1
1


+

τ(p)

⊗ 1u ⊗ 1m
′ Jv ⊗ Ju ⊗

1
vu


1−1

3 − 1−1
2


= τ(p)′

⊗ 1′

u ⊗ 1′

m1−1
1 + τ(p)′

⊗ u1′

u ⊗
1
u
1′

m


1−1

2 − 1−1
1


+ τ(p)′Jv ⊗ u1′

u ⊗
1
vu

1′

m


1−1

3 − 1−1
2


= τ(p)′

⊗ 1′

u ⊗ 1′

m1−1
2 + τ (p)1′

v ⊗ 1′

u ⊗ 1′

m


1−1

3 − 1−1
2


,

where

τ (p)
=

1
v

v
t=1

τ
(p)
t

Similarly, let β′
=

1v ⊗ λ(p)

⊗ 1m
′

0−1
x

= 1′

v ⊗ λ(p)′
⊗ 1′

m1−1
1 + 1′

v ⊗ λ(p)′Ju ⊗
1
u
1′

m


1−1

2 − 1−1
1


+ v1′

v ⊗ λ(p)′Ju ⊗
1
vu

1′

m


1−1

3 − 1−1
2


= 1′

v ⊗ λ(p)′
⊗ 1′

m1−1
1 + 1′

v ⊗ uλ
(p)1′

u ⊗
1
u
1′

m


1−1

3 − 1−1
2 −


1−1

2 − 1−1
1


= 1′

v ⊗ λ(p)′
⊗ 1′

m1−1
1 + 1′

v ⊗ λ
(p)1′

u ⊗ 1′

m


1−1

3 − 1−1
1


,

where

λ
(p)

=
1
u

u
s=1

λ(p)
s ,

and

η′
=

1v ⊗ 1u ⊗ µ(p)′ 0−1

x

= 1′

v ⊗ 1′

u ⊗ µ(p)′1−1
1 + 1′

v ⊗ u1′

u ⊗
1
u
µ(p)′ 1−1

2 − 1−1
1


+ v1′

v ⊗ u1′

u ⊗
1
vu

µ(p)′ 1−1
3 − 1−1

2


= 1′

v ⊗ 1′

u ⊗ µ(p)′1−1
3 .

Therefore, the first summand of l(p) (xo) in (15) is
m(p) (xo) = µ′

x(p)0
−1
x xo

= (α + β + η)′ xo
=

τ(p)′

⊗ 1′

u ⊗ 1′

m1−1
2


xo +


τ (p)1′

v ⊗ 1′

u ⊗ 1′

m


1−1

3 − 1−1
2


xo

+

1′

v ⊗ λ(p)′
⊗ 1′

m1−1
1


xo +


1′

v ⊗ λ
(p)1′

u ⊗ 1′

m


1−1

3 − 1−1
1


xo +


1′

v ⊗ 1′

u ⊗ µ(p)′1−1
3


xo

=

v
t=1


τ

(p)
t

1′

m1−1
1

 u
s=1

xo,ts


+


1
v

v
t=1

τ
(p)
t

 
1′

m


1−1

3 − 1−1
2

 v
t=1

u
s=1

xo,ts +

1′

m1−1
1

  u
s=1

λ(p)
s



×

v
t=1

xo,ts +


1
u

u
s=1

λ(p)
s

 
1′

m


1−1

3 − 1−1
1

 v
t=1

u
s=1

xo,ts + µ(p)′1−1
3

v
t=1

u
s=1

xo,ts

=

1′

m1−1
2

 v
t=1

uτ (p)
t xo,t• + vuτ (p) 1′

m


1−1

3 − 1−1
2


xo

+

1′

m1−1
1

 u
s=1

vλ(p)
s xo,•s + vuλ

(p) 1′

m


1−1

3 − 1−1
1


xo + vuµ(p)′1−1

3 xo,

where

xo,t• =
1
u

u
s=1

xo,ts,

xo,•s =
1
v

v
t=1

xo,ts,
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and

xo =
1
vu

v
t=1

u
s=1

xo,ts.

The quadratic form in the second summand of l(p) (xo) in (15) is
κ (p)

= µ′

x(p)0
−1
x µx(p)

= (α + β + η)′

τ(p)

⊕ λ(p)
⊕ µ(p)

=


τ(p)

− τ (p)1v

′
⊗ 1′

u ⊗ 1′

m1−1
2


+

τ (p)1′

v ⊗ 1′

u ⊗ 1′

m1−1
3

 
τ(p)

⊕ λ(p)
⊕ µ(p)

+


1′

v ⊗


λ(p)

− λ
(p)1u

′

⊗ 1′

m1−1
1


+


1′

v ⊗ λ
(p)1′

u ⊗ 1′

m1−1
3

 
τ(p)

⊕ λ(p)
⊕ µ(p)

+

1′

v ⊗ 1′

u ⊗ µ(p)′1−1
3

 
τ(p)

⊕ λ(p)
⊕ µ(p) .

Replacing τ(p)
⊕ λ(p)

⊕ µ(p) and noting that

τ(p)

− τ (p)1v

′ 1v = 0 and (λ(p)
− λ

(p)1u)
′1u = 0, it follows that

κ (p)
= µ′

x(p)0
−1
x µx(p)

=

τ(p)

− τ (p)1v

′
τ(p)

⊗ 1′

u1u ⊗ 1′

m1−1
2 1m + 1′

v1v ⊗


λ(p)

− λ
(p)1u

′

λ(p)
⊗ 1′

m1−1
1 1m

+


τ (p)

+ λ
(p)
 

1′

v ⊗ 1′

u ⊗ 1′

m1−1
3

 
τ(p)

⊕ λ(p)
⊕ µ(p)

+

1′

v ⊗ 1′

u ⊗ µ(p)′1−1
3

 
τ(p)

⊕ λ(p)
⊕ µ(p) .

Denoting by dj+ the sum of all the elements of 1−1
j , for j = 1, 2, 3, we have

κ (p)
= µ′

x(p)0
−1
x µx(p)

= ud2+

τ(p)

− τ (p)1v

′
τ(p)

+ vd1+

λ(p)

− λ
(p)1u

′

λ(p)
+ ud3+


τ (p)

+ λ
(p)

1′

vτ
(p)

+ vd3+

τ (p)

+ λ
(p)

1′

uλ
(p)

+ vu

τ (p)

+ λ
(p)

1′

m1−1
3 µ(p)

+ 1′

vτ
(p)uµ(p)′1−1

3 1m

+ v1′

uλ
(p)µ(p)′1−1

3 1m + vuµ(p)′1−1
3 µ(p)

= ud2+

τ(p)

− τ (p)1v

′
τ(p)

+ vd1+

λ(p)

− λ
(p)1u

′

λ(p)
+ vud3+


τ (p)

+ λ
(p)


τ (p)

+ vud3+

τ (p)

+ λ
(p)


λ
(p)

+ vu

τ (p)

+ λ
(p)

1′

m1−1
3 µ(p)

+ vuτ (p)µ(p)′1−1
3 1m

+ vuλ
(p)

µ(p)′1−1
3 1m + vuµ(p)′1−1

3 µ(p).

Now, by denoting τ 2
(p)

=
1
v

v
t=1


τ

(p)
t

2
and λ2

(p)
=

1
u

u
s=1


λ

(p)
s

2
we have

κ (p)
= µ′

x(p)0
−1
x µx(p)

= vud2+

τ 2

(p)
−

τ (p)2

+ vud1+


λ2

(p)
−


λ

(p)
2

+ vud3+

τ (p)

+ λ
(p)
2

+ 2vu

τ (p)

+ λ
(p)

1′

m1−1
3 µ(p)

+ vuµ(p)′1−1
3 µ(p).

Appendix C. Kronecker sum derivatives

Let xh
uh×1

=

xh1, . . . , xhuh

′ be an (uh × 1)-dimensional vector of real variables for h = 1, . . . , n. Let
n

h=1 xh =

x1 ⊕ x2 ⊕ · · · ⊕ xn represents the Kronecker sum of them, and
n

h=1 xh = x1 ⊗ x2 ⊗ · · · ⊗ xn represents the Kronecker
product of them. Then v =

n
h=1 xh be a

n
h=1 uh


× 1 dimensional vector, and

v
n

h=1
uh


×1

=

n

k=1
xk = x1 ⊕ x2 ⊕ · · · ⊕ xn

=

n
k=1

k−1

h=1
1uh ⊗ xk ⊗

n

h=k+1
1uh


=

n
k=1

k−1

h=1
1uh ⊗ Iuk ⊗

n

h=k+1
1uh


xk.
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Now, the following properties can be proved easily:

1. The quantity ∂v
∂xj

can be calculated as follows:

∂

n
k=1 xk


∂xj

=

j−1

k=1
1′

uk


⊗ Iuj ⊗

n

h=j+1
1′

uk


for j = 1, . . . , n,

where it is assumed thati

h=k
xh = 1 if k > i.

2. Let y = a− v = a−
n

k=1 xk, where a is a constant vector and let D be a
n

h=1 uh ×
n

h=1 uh

-dimensional symmetric

matrix, if q = y ′
· D · y = (a − v)′ · D · (a − v) then

∂q
∂xj

=
∂

y ′

· D · y


∂xj

=

∂


a −

n
k=1

xk

′

· D ·

a −

n
k=1 xk


∂xj

=

∂


a −

n
k=1

xk


∂xj

 ·


∂

y ′

· D · y


∂y



= −2
j−1

k=1
1′

uk


⊗ Iuj ⊗

n

h=j+1
1′

uk


· D ·


a −

n

k=1
xk


.
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