
Distributed Search based on Self-Indexed Compressed Text

Diego Arroyueloa, Veronica Gil-Costaa,c, Senén Gonzáleza, Mauricio Marina,b, Mauricio Oyarzúnb

aYahoo! Research Latin America, Santiago of Chile
bDIINF, University of Santiago of Chile

cCONICET, National University of San Luis, Argentina

Abstract

Query response times within a fraction of a second in Web search engines are feasible due to the use of
indexing and caching techniques, which are devised for large text collections partitioned and replicated
into a set of distributed memory processors. This paper proposes an alternative query processing method
for this setting, which is based on a combination of self-indexed compressed text and posting lists caching.
We show that a text self-index (i.e., an index that compresses the text and is able to extract arbitrary
parts of it) can be competitive with an inverted index if we consider the whole query process, which
includes index decompression, ranking and snippet extraction time. The advantage is that within the
space of the compressed document collection, one can carry out the posting lists generation, document
ranking and snippet extraction. This significantly reduces the total number of processors involved in the
solution of queries. Alternatively, for the same amount of hardware, the performance of the proposed
strategy is better than that of the classical approach based on treating inverted indexes and corresponding
documents as two separate entities in terms of processors and memory space.

1. Introduction

Major Web search engines (WSEs) process millions of user queries per day so they are compelled to
be extremely efficient in dealing with intensive and highly dynamic query traffic. Achieving this goal
necessarily implies the use of heuristics and optimizations, which as a whole lead to efficient performance.
Given the scale of the hardware resources devoted to host search engines in data centers, performance
refers not only to query throughput or individual query response time, but also to the average amount
of hardware hit by queries. Search engines are built on thousands of computers organized in highly
communicating groups which are implemented as clusters of distributed memory processors. Thus, for
reasons such as power consumption, it is relevant to devise query processing strategies capable of reducing
the use of hardware resources whilst satisfying a target throughput and response time bound.

The query process, from reception to response, consists of several steps, many of which can take place
in parallel. Typically, each cluster of processors is assigned the role of executing one single step, which
include determining the top-K documents that best match the query, constructing the answer Web page
(this involves extracting small pieces of text, the snippets, from the resulting documents), plus other
steps such as advertising, spelling, suggestions and facets.

This paper proposes mixing into a single task and cluster the steps of top-K determination and
snippet extraction, by using recently proposed self-indexed compressed text techniques (i.e., text indexes
that compress the text and are able to extract any part of it) in combination with posting lists caching.
This is achieved for similar memory space requirements and number of processors of a standard cluster in
charge of the top-K determination. We study how already-known sequential compressed self-indexes can
be employed to support efficient and fault-tolerant query processing in search engines. Fault-tolerance
is supported by a form of replication in which the cluster can be seen as a P × D array of search node
processors, where P indicates the level of text partitioning and D the level of replication of each partition.
Replication also increases throughput, since query traffic in each column can be evenly distributed across
the D replicas.

Email addresses: darroyue@yahoo-inc.com (Diego Arroyuelo), gvcosta@unsl.edu.ar (Veronica Gil-Costa),
sgonzale@dcc.uchile.cl (Senén González), mmarin@yahoo-inc.com (Mauricio Marin), mauricio.silvaoy@usach.cl
(Mauricio Oyarzún)

Preprint submitted to Elsevier December 10, 2010

Notice that even though the secondary memory contents of replicas are identical, one is free to
decide which contents to upload from secondary to main memory during normal operation. In the
case of a processor failure, the remaining D − 1 processors can reconstruct the main memory contents
of the failed processor into their own main memories by just reading data from secondary memory.
Occasional imbalance can be easily cleared by temporarily diverting skewed query traffic to replicas
selected uniformly at random if necessary.

The compressed text self-indexes that enable our purpose are the Wavelet Trees (WT) [6], which
have been shown to be competitive with inverted indexes [1], being able to generate the occurrence list
of any term and compute the intersection among the occurrence lists of the query terms. Experimental
results show that the proposed indexing scheme is able to answer queries efficiently. We emphasize that
the advantage is that we are able to quickly perform snippet extraction from the self-indexed text itself,
thus reducing both the need of extra storage for text and extra communication from interaction with an
additional cluster in charge of snippet extraction.

Our main result is that the WT can be adapted to our P × D context. That is, by doing term
clustering along the D replicas, we can keep in main memory a very optimized realization of the WT,
containing only the terms assigned to the respective replica. We keep the inverted lists for the terms
assigned to other replicas in secondary memory.

We also show how the capabilities of the WT can be used to dynamically maintain a cache with the
most recently used posting lists of an inverted index generated on-demand. Hence, the posting lists of
non-used terms can be disregarded, whereas the posting lists of missing terms can be constructed on-
the-fly from the WT itself. The result is an scheme that is adaptive to the user queries and with a query
throughput comparable to that of a standard inverted index. For disjunctive queries, a type of query
supported by major search engines which we believe is a much less frequent one than the conjunctive one,
the WT allows us to quickly generate the posting lists containing term frequencies. The cached portions
of posting lists resulting from disjunctive queries can be used as entry points in the WT to speed up the
generation of these lists as well. Overall, there is room for many other optimizations which are useful
depending on the target design of the search engine. In this paper we explore just a few of them.

2. Background and Previous Work

2.1. Inverted Files

The inverted index [2, 18] (or inverted file) is a data structure used by all well-known WSEs. It
is composed of a vocabulary table (which contains the V distinct relevant terms found in the document
collection) and a set of posting lists. The posting list for term c ∈ V stores the identifiers of the documents
that contain the term c, along with additional data used for ranking purposes. To solve a query, one must
fetch the posting lists for the query terms, compute the intersection among them, and then compute the
ranking of the resulting intersection set. Hence, an inverted index allows for the very fast computation
of the top-K relevant documents for a query, because of the pre-computed data.

2.2. The Architecture of a Distributed WSE

Given the query traffic of current WSEs, and the need for fast responses, the architecture of large-
scale search engines is usually distributed. Distributed WSEs are composed of a query receptionist
machine (the broker) and a set of P search nodes (we also call them processors), where each search node
is replicated D times. There are basically two approaches to the parallelization of inverted files, namely
the document- and the term-partitioned approaches [15]. In the former, the document collection is evenly
distributed among the search nodes, so each of them indexes a fraction 1/P of the whole collection. In
the latter, the vocabulary terms are distributed among the nodes, such that every node stores only the
posting lists for these terms. Both methods have advantages and drawbacks, and the choice depends on
the particular scenarios [2, 15].

In large document collections, some posting lists contain millions of items. Thus, large index portions
must be kept on secondary storage. However, observations from query logs tell us that certain terms
in queries are more frequent than others. Also, the most frequently asked terms vary over time. There
are burst periods in which a small set of terms are very frequent, to then fade away smoothly. Other
terms are steadily popular along time [5]. These observations encouraged a number of cache strategies
[5]. The broker keeps a result cache, the search nodes keep a cache for frequently-used posting lists, and
the document servers keep a cache for frequently-required Web documents.

2

2.3. Query Processing in a Distributed WSE

Upon a user query, each of the top-K results obtained is displayed along with a short snippet sur-
rounding the query terms. In large-scale systems [2] the index and document collection are organized
as two independent clusters of processors: besides the search nodes, the document servers are used to
obtain the snippets. Overall, the broker performs the following tasks:

1. receives the query from the user and, provided that there are no results for it in its result cache,
sends the query to the relevant search nodes (to every node in document-partitioned indexes);

2. receives each of the local top-K documents calculated by the search nodes and merges the results
to obtain the global top-K results;

3. sends those results and the query to the document server for snippets determination;

4. once the broker receives the snippets from the document server, builds up the result’s page (URLs
+ snippets) and responds to the user.

2.4. The Self-Indexing Technology and WSEs

A current trend in text indexing is that of compressed full-text self-indexes, which replace the text
with a representation that takes space proportional to that of the compressed text (so the space is reduced
for compressible texts), support indexed text searches, and the fast extraction of any text portion [12].
The aim is to fit the index of large texts in main memory, avoiding the high secondary storage costs.
Another feature is that self-indexes can search without accessing the text. This has applications in cases
where accessing the text at search time is expensive (as in the case of classical WSEs).

A recent work proposes compressed self-indexes [1] as an alternative to inverted indexes, achieving
interesting results. However, much work need to be done in order to apply them in practical settings. This
paper contributes towards this direction. We propose the use of self-indexing technologies to combine into
a single unit each of the P corresponding pairs of search nodes and document servers. The rationale is
reducing from 2P to P the total number of processors involved in the processing of queries, yet achieving
a similar query throughput. Namely, the standard two-stepped procedure (i.e., steps 2 and 3 above) is
reduced to one step, in which document ranking and snippet determination are combined into a single
operation in each processor. This should reduce query processing time and communication.

2.5. Succinct Data Structures for rank and select queries

Given a bit sequence B[1..n], we define operation rank1(B, i) (similarly rank0(B, i)) as the number of
1s (0s) occurring in B[1..i]. Operation select1(B, i) (similarly select0(B, i)) is defined as the position of
the i-th 1 (or i-th 0) in B. Given a sequence S[1..n] over an alphabet Σ = {1, . . . , V }, we generalize the
definition for rankc(S, i) and selectc(S, i) for any c ∈ Σ.

3. Self-Indexes for Document Retrieval

Let D = {D1, . . . , DNd
} be a document collection of Nd documents, where each document is repre-

sented as a sequence Di[1..ni] of ni terms from an alphabet Σ of size V . Assuming that ‘$’6∈ Σ is a special

separator symbol, we build the sequence T [1..n] = $D1$D2$ · · · $DNd
$ of length n = 1 +

∑
Nd

i=1 (ni + 1)
and n log V bits. Each document Di is assigned a unique document identifier (docid, for short) i.

If we represent T with a rank/select data structure, we can easily obtain both the docid of the
document that contains a given position in T and the starting position of a given document j [1]. For
instance, we can represent T with a wavelet tree [6] (WT), which is a balanced binary search tree, where
each different term in the vocabulary corresponds to a leaf A WT supports extracting any text symbols
and compute operations rank and select in O(log V) time [12]. The space usage is n log V + o(n log V)
bits [6, 12], which is about 1.1–1.2 times the space of the original text [4]. In our application this would
produce an index that is bigger than inverted indexes (actually, bigger than the text itself). Therefore, in
this paper we use Huffman-shaped WTs [4], achieving n(H0(T)+1)+o(n(H0(T)+1)) bits of space, where
H0(T) ≤ log σ is the zero-order empirical entropy of T , and nH0(T) is a lower bound to the number of
bits needed to compress T based on the symbol frequencies. In practice, the space of a Huffman-shaped
WT is about 0.6–0.7 times the text size [4]. We use the Huffman-shaped WT implementation from [1].

A recent work [1] shows that WTs can be used to index document collection and support the following
functionality within n(H0(T)+1)+o(n(H0(T)+1)) bits of space: (1) Generate, on-the-fly and on-demand,
the posting list of a given query term t ∈ Σ; (2) answer conjunctive queries of the form t1 ∧ · · · ∧ tk, in

3

theory as efficiently as an inverted index; (3) extract a snippet surrounding the occurrences of a given
term; (4) obtain within-document term frequencies; and (5) obtain positional information with no extra
space usage. Hence, a WT can be thought as a black box that provides most of the functionality of an
inverted index. However, the space usage should be reduced by using a WT. For instance, positional
information requires considerable space, and could be compressed to zero-order entropy [16] (i.e., about
the same space as the WT). The WT, on the other hand, stores also the text, frequencies and document
identifiers within that space. However [1] lacks a complete comparison with inverted indexes in practice.

The work [1] introduces three algorithms to support conjunctive queries, namely a simple worst-case
scheme, an adaptive scheme, and a hybrid scheme that combines the previous methods. Because of its
simplicity and performance, we will use the former method in this paper (called SLF in [1], which stands
for Shortest List First, as it generates first the shortest inverted list among those of the query terms,
and then quickly check whether the remaining terms occur within these documents).

We compare the performance of a search engine based on WTs, with one bases on inverted indexes.
Our aim is to show that though WTs can be slower than inverted indexes for computing conjunctive
queries, the former are competitive if we consider the whole query processing, which after performing
the intersection includes obtaining the frequencies of the query terms in the resulting documents, to
then perform a top-K ranking step, to finally carry out the snippet extraction for the top-K documents.
The ranking step is performed using the tf-idf model. Also, we extract snippets of length 5 to both
sides of an occurrence (thus, the whole snippet has length 11). For extracting snippets with the inverted
index, we assume the following baseline scheme. First, we divide the document collection into blocks,
each consisting of b documents. We compress each block using the LZMA compression algorithm (using
the LZMA Software Development Kit, http://www.7-zip.org/sdk.html). This algorithm is able to
decompress about 20–30 MB of text per second. The compressed blocks are maintained in main memory.
Given the top-10 results (obtained with the inverted index) of a given query, we decompress the blocks
containing these documents, and then perform a text search over these documents (for instance, using a
Booyer-More like algorithm). Once we found the first occurrence of the query term, we display a snippet
surrounding the occurrence. Notice how different block sizes yield different time/space trade-offs, since
smaller blocks produce more overhead in the compression.

Table 1 shows the comparison of space usage between WTs and inverted indexes using three of the
most effective compression methods, namely S9, PForDelta, and variable byte encoding (VByte) [3]. For
the experiments we used a sample of the UK Web from which we selected at random a total of 429,895
documents. This demands a total space usage of about 1.5 GB (no html data is included in the text).
The computer used is an Intel(R) Core(TM)2 Duo CPU at 2.8 GHz, with 64KB of L1 cache, 3,072 KB
of L2 cache and 5 GB of RAM, and running version 2.6.31-22-server of Linux kernel.

Table 1: Comparison of space in MB for WTs and inverted indexes (using S9, VByte and PForDelta compression schemes).

S9 VByte PForDelta WT

Docids (MB) 220 248 614 –
Frequencies (MB) 107 175 209 –

Compressed text (b = 1) 570 570 570 –
Total size (MB) 897 993 1,393 706

Compressed text (b = 150) 379 379 379 –
Total size (MB) 706 802 1,202 706

We use b = 1 for the snippet extraction with inverted indexes, which compresses the document
collection to about 570MB, with an average block size (document size in this case) of 3.57 KB. In this
case, we are able to extract on average 13,404 snippets of length 11 per second. We also use b = 150, so
that overall the S9 compressed inverted index uses about the same space than that of the WT.

In Table 2 we compare the query performance for the different steps of the query process. The first
line shows the base intersection speed, and then each row shows the performance obtained by adding a
step to the previous one. As it can be seen, if we consider the whole query process (i.e., including snippet
extraction), WTs are slower than inverted indexes for b = 1, however the latter uses 1.27 times more
memory than WTs. This space could be used by the WT to store a cache with the most frequently used
inverted lists (see Section 5). For b = 150, snippet extraction becomes extremely slow, whereas WTs
maintain about the same performance. This is because WTs extract about 131,227 snippets per second.

4

Table 2: Comparison of query performance (in number of queries per second) for different steps of the query process.

S9 VByte PForDelta WT

Intersection speed 3,271 2,763 3,005 146
+ Frequencies extraction 2,103 2,090 2,450 145
+ Top-10 ranking 1,504 1,503 1,587 142
+ Snippet extraction (b=1) 242 241 253 139
+ Snippet extraction (b=150) 19 18 19 139

4. Distributed Web Search Engines Based on Self-Indexes

Inverted indexes must store extra information to provide extra functionality needed by WSEs, such
as ranking and positional information (the latter is needed for phrase searching and positional ranking
functions [16]), snippet extraction, query caching, etc. Hence, the overall solution requires considerable
space, and parts of the index must reside on secondary storage. This results in a undesirable increase of
the I/O traffic. Also, major current WSEs receive millions of queries per day, so they have to resort to
parallel computing techniques to satisfy this demand. We introduce now different ways to handle wavelet
trees on a distributed-memory environment, which shall be used in Section 5 to develop space-efficient
distributed in-memory search engines. We assume in the following an array of P × 1 processors.

4.1. Document Partitioned Self-Index

In this simple approach, we divide the document collection among the cluster nodes, such that every
node stores about Nd/P documents. Given the documents of a given search node i of the cluster, we
construct a text Ti (of length |Ti|) from the concatenation of these documents. Then, at each processor
i we construct the wavelet tree Wi for Ti. At query time, a given query must be sent to all search nodes
in order to answer it, as it is usual in this distribution model [15].

4.2. Term Partitioned Self-Index

We divide the vocabulary such that every search node is responsible for a fraction V/P of the vo-
cabulary. Let Vi denote the vocabulary for processor i. Then, the local text Ti is the global text T
but considering only the terms in Vi (in other words, Ti is the projection of T over the symbols in Vi).
Hence, the size of the local texts in the processors can be different to each other, since these depend on
the occurrences of each individual symbol in Vi.

To retain the global structure of the text, which will help us with the snippet extraction, we store in
each processor i a bit sequence Bi[1..n], such that Bi[j] = 1 ⇔ T [j] ∈ Vi. In other words, Bi keeps track
of the global text positions that are indexed by processor i.

Though the total (logical) number of bits in all bit vectors is nP , there are only n 1s overall, since
any global-text position is indexed by one and only one processor. If we use the sarray data structure
from [13], the total space usage is n log nP

n
+ 1.92n + o(n) = n log P + 1.92n + o(n) bits. In practice,

this should be much smaller than the text size. In order to be able to search and extract snippets
with this approach, given a global-text position j, the corresponding local-text position for processor i is

rank1(Bi, j), which is supported in time O(log P + log4
n

log (nP)) [13]. Given a local-text position j in processor

i, the corresponding global-text position is select1(Bi, j), which is supported in O(log4
n

log (nP)) time [13].

An interesting property is that we do not lose compression, not matter how the term distribution is
done. This is because wavelet trees are zero-order compressors, and the overall frequency of these terms
is not affected if we distribute them. Moreover, we can achieve further compression, because of two
facts. First, the vocabulary at each processor has about V/P terms. Then, log V

P
bits (instead of log V

bits) are enough to represent each symbol, so we should get shorter Huffman codes on average. Besides,
we will obtain shallower wavelet trees, hence improving the running time. Second, with a careful term
distribution we could achieve further compression, as we will see next.

Experimental Results. We experimentally study this effect. We first sort the terms by their global
frequencies, and then test several distribution strategies: (S1) the terms are distributed at random; (S2)
the sorted list of terms is distributed in a round-robin fashion; (S3) the terms are distributed such that
the next one is assigned to the processor that has the smallest sum of frequencies; and (S4) the V/P

5

most frequent terms are assigned to the first processor, the next V/P in the list are assigned to the
second processor, and so on. Some of these (and other) variants have been studied in several related
papers [8, 14, 11, 10].

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 0 20 40 60 80 100 120 140

T
ot

al
 s

iz
e

(K
B

)

Number of partitions

S1
S2
S3
S4

 600000

 700000

 800000

 900000

 1e+06

 1.1e+06

 1.2e+06

 0 20 40 60 80 100 120 140

T
ot

al
 s

iz
e

(K
B

)

Number of partitions

S1
S2
S3
S4

Figure 1: Total size of the term-partitioned wavelet trees, for different number of partitions, just regarding the wavelet
trees (left) and adding the space of the compressed bit vectors (right).

We compared the space of the wavelet tree for the whole text versus the sum of the spaces for
the term-distributed wavelet trees. See Fig. 1 for a comparison, using P = 1 (i.e., the original WT),
P = 2, 4, 8, 16, 32, 64 and 128. We obtain, for strategies S1, S2, and S3, a space reduction that varies
on the number of partitions used, but that is at most of 20% for P = 32. We conclude that the
technique is fairly independent on these distribution strategies. However, there is a significant difference
among these strategies and strategy S4, which does not achieve a space reduction (this is because the
overhead of maintaining several WTs is greater than the space gain obtained by distributing the terms
in this way). This indicates that some term distribution strategies can be less effective for zero-order
compression. In general, it is not a good idea to group together terms that are very frequent (as is the
case of S4). In a skewed distribution of frequencies, the most frequent terms will “compete” for a shorter
codification with non-frequent terms, both of them obtaining shorter codes separately. Thus, the further
compression obtained by strategies S1, S2, and S3 is a result of having a smaller local vocabulary with a
skewed distribution of term frequencies. Finally, one could distribute the terms according to a clustering
of correlated terms, such that terms that tend to appear together in queries of our query log will belong to
the same cluster. This achieves a compression ratio comparable to that of strategies S1–S3. This method
is relevant since it reduces the number of intersections of terms that reside in different processors [10].

Query Processing. At search time, queries must be sent only to the processors that store the involved
query terms. We suffer from the same problems as the term-based distributed inverted indexes, e.g.,
the intersection of posting list for terms stored in different search nodes. As we said before, by using
distribution strategies like S5 above, we can reduce the probability of inter-processor intersections. In
any case, below we propose using term-partitioning along the D replicas so in this case the processor
can use its secondary memory to solve the intersection.

Snippet Extraction. To extract a snippet, let us say that a term occurrence appears at position j in
Ti. Hence, the corresponding position in the global text is j′ = select1(Bi, j). Thus, we broadcast j′

to all processors. Then, every processor i′ checks whether the bit sequence Bi′ has a 1 in some of the
surrounding positions, and in such a case returns to the broker the corresponding terms along with the

global text position (accessing a particular bit in Bi′ takes O(log P + log4
n

log (nP)) time [13]).

We carried out experiments to determine the snippet extraction capabilities of WTs in parallel. We
tested with P = 1, 2, 4 and 8 partitions, and extract snippets of length 11 as previous experiments in
this paper. For P = 1 (i.e., the original WT) we extract on average 131,227 snippets per second. For
P = 2 we get 193,348 snippets per second. For P = 4 we get 333,258 snippets per second. Finally, for
P = 8 we get 688,345 snippets per second on average. Thus, our method scales well with the number of
partitions used, since at a given time there are more WTs generating snippets in parallel.

6

5. Deployment on P × D search nodes

In this section we describe an instance of use of the Wavelet Tree (WT) in the context of a large-scale
Web search engine (WSE). As mentioned above, apart from its role as an efficient snippet extractor, we
can regard the WT as a device capable of producing individual posting lists and pair-wise intersection
lists on demand. This role resembles the three-level caching scheme proposed in [7], so we compare our
proposal against that approach.

The general WSE architecture and query processing strategy is as follows. The WSE is assumed to
be composed of a set of so-called search nodes and a query receptionist machine called broker. The set
of search nodes is organized as a 2-dimensional array of P × D nodes, where P indicates the number
of partitions and D the number of copies of each partition. For each newly arriving query, the broker
looks for the query in a result cache. If found, the broker replies with the answer. If not found, the
broker sends the query to all of the P partitions, where in each partition one of the D replicas is selected
uniformly at random. Then the P search nodes respond with the top-K results for the query, which are
then merged to produce the global top-K results. For any given query, the merge procedure is carried
out by a randomly selected search node. This node sends the global top-K results to the broker which
constructs the answer page for the query.

5.1. The baseline strategy

The three-level caching strategy [7] proposes keeping on disk a cache to store the intersection of
pairs of inverted lists. For each intersection involving the terms a and b, they define two projection lists
Ia→b and Ib→a that share the same document IDs in the intersection set, but keep data from a and b
respectively that are used to score the documents. These projection lists are stored in the intersection
cache. The inverted file is also assumed to be stored on disk, and the size of the intersection cache is set
to consume a 40% of the space occupied by the inverted file.

In main memory, a LRU list cache is used to keep both posting lists and projection lists. The
projection lists are retrieved on-demand from secondary memory if they happen to be stored in the
intersection cache and were not found in the main memory LRU list cache at query processing time.
This requires secondary memory accesses but [7] shows that it is worthwhile to pay this cost instead of
fully calculating the intersections of much larger posting lists. There is a rule to decide whether or not
storing projection lists Ia→b and Ib→a in the intersection cache depending on how frequently terms a and
b take place in queries, and the cost of calculating the intersection of the respective posting lists. The
three level caching scheme is completed by assuming the existence of a result cache in the broker.

To increase the efficiency of main-memory space usage, we apply term partitioning along the D
replicas of each of the P partitions. The gain is that the cache entries are used more effectively since
term partitioning reduces the probability of caching the same list in two or more replicas [9]. Load
imbalance due to terms more popular than others is not significant since frequent queries get quickly
cached in the results cache [9]. The compressed text for extracting snippets of top-K results is kept
evenly distributed in the main memories of the P × D search nodes.

5.2. The WT strategy

For the sake of a fair comparison, we also assume the existence of an inverted file stored on disk. We
keep in main memory the WT and the LRU list cache, which stores posting and projection lists as in
the baseline strategy. In each of the P ×D search nodes, the total main-memory space occupied by the
WT plus the LRU list cache is the same than the space occupied by the compressed text and the LRU
list cache of the baseline strategy. The space occupied by the WT tends to be larger than the space
occupied by the compressed text, and thereby the LRU list cache of the WT strategy is smaller than the
LRU list cache of the baseline strategy

Like in the baseline strategy, we assume term partitioning along the D replicas of the P partitions.
For the WT this also means that only the terms mapped to a given replica are considered to construct
the data structure. An array of bits is used to indicate how many terms t between two consecutive terms
a and b in the WT of a given row are in the actual text. These terms t are indexed in the WTs located
in other rows of the same column. The array of bits together with the D WTs of the column are used
to build the snippets for the documents that are part of the global top-K results for a query. The same
scheme of D WTs and bit arrays is constructed in the remaining columns by considering, in each case,
only the documents allocated to the partition associated with the respective column.

7

For a query with terms a and b we define the projection lists Ia→b and Ib→a as above, and La and
Lb as the posting lists of a and b respectively. The query processing algorithm considers the following
cases that arise when posting lists and projection lists are found or not in the LRU list cache:

(i) Neither I’s nor L’s are in the cache, then the WT is used to generate Ia→b and Ib→a.

(ii) one of the I’s is in the cache, say Ia→b, then we use Ia→b on the WT to generate Ib→a (this is a
very fast operation in the WT as it only requires a few rank operations).

(iii) Ia→b and Lb are in the cache, then we use the items of Ia→b to traverse Lb in one passage and
generate Ib→a.

(iv) only Lb is in the cache, then we use Lb on the WT to generate Ia→b and Ib→a.

When one of the terms is not indexed by the WT, we retrieve its posting list from secondary memory
if required. Notice that similar cases can be defined for the baseline strategy but with one important
difference. In the baseline strategy whenever the projection lists of terms a and b are not found either in
the LRU list cache or in the intersection cache kept on disk, it is necessary to compute the intersection
between the two posting lists La and Lb. This can be an expensive operation since one or both of those
lists could have to be retrieved from disk. As the lists La and Lb are expected to be of a much larger size
than the respective projection lists, storing La and Lb in the LRU cache list can unnecessarily remove
from the cache a significant number of other projection lists that can be required by upcoming queries.
The WT prevents from disk accesses by quickly computing the intersection without having to generate
the lists La and Lb separately. Alternatively the baseline strategy can decide not to store the lists La and
Lb in the LRU list cache and dispose them after computing the intersection. But this tends to increase
disk accesses whereas the WT can fastly generate posting lists on-demand from main memory.

5.3. Experimental Results

The experiments were performed using a log of 36,389,567 queries submitted to the AOL Search
service between March 1 and May 31, 2006. We pre-processed the query log following the rules applied
in [17]. The resulting query trace has 16,900,873 queries, where 6,614,176 are unique queries and the
vocabulary consists of 1,069,700 distinct query terms. The results were obtained after processing 60%
of the queries by using a discrete-event simulator described in [9]. The simulator implements the actual
cache strategies and is able to precisely predict query throughput by considering the different costs
involved in the processing of queries. These costs were determined from the programs executed for the
experiments shown in the previous sections of this paper and benchmarks from [9] for communication
and considering a disk access cost of 8 ms per read block. Posting lists are kept compressed and divided
in blocks for efficient caching.

We simulated query processing on three P × D search nodes configurations such that P · D = 512.
The configurations are 256 × 2, 128 × 4 and 64 × 8. We assume that the baseline strategy is capable of
keeping in its LRU list cache, for each configuration and search node respectively, the 100%, 50% and
25% of the inverted file kept on disk. The intersection cache is kept on disk and is defined to occupy 40%
of the space required by the inverted index in each partition. The inverted index was constructed using
a 1.5TB sample of the UK web from 2005. We used the greedy heuristic proposed in [7] to initialize each
intersection cache by using the whole set of queries that hit the respective cache.

The LRU cache of the baseline strategy is divided in three sections where 44% of the space is used
to hold projection lists, 20% is used to hold posting lists of terms that do not belong to the respective
row in the P ×D matrix, and 36% of the remaining space is used to store posting lists of terms mapped
to the row. These values were set to fit the same space assigned in the LRU cache of the WT strategy.
This cache holds the projection lists (68%) and the posting lists of terms that are not mapped to the
row (32%). The idea is to compare both strategies under the same space devoted to hold projection
and non-local posting lists. The remaining space in baseline cache is used to hold frequently accessed
posting lists assigned to the respective row. Notice that most disk accesses performed by the baseline
come from accesses to retrieve posting lists of non-local terms. Namely, hit ratio did not increase for
other configurations in which more space was assigned to cache local posting lists. The results cache size
was set to achieve a 20% hit ratio. We have found this 20% hit setting convenient for our query log so
we were able to achieve a good balance between the increased average number of terms that hit search
nodes as discussed in [7] and a large enough number of queries hitting the nodes during experimentation.

The results are shown in Table 3 and they show that the WT strategy reduces accesses to secondary
memory and achieves better throughput (Q/s) than the baseline strategy (values normalized to 1).

8

Table 3: Results on P ×D search nodes.

Baseline
LRU Disk Inter. Proj. Post. Post.

P × D Size Bytes Hits Hits Hits row Q/s
256 × 2 100% 0.29 16% 34% 32% 21% 0.22
128 × 4 50% 0.39 13% 31% 27% 16% 0.27
64 × 8 25% 1.00 10% 28% 24% 12% 0.60

WT
LRU Disk WT Proj. Post.

P × D Size Bytes Hits Hits Hits Q/s
256 × 2 64% 0.11 33% 35% 31% 0.28
128 × 4 32% 0.13 31% 31% 28% 0.53
64 × 8 16% 0.19 23% 27% 22% 1.00

6. Conclusions

In this paper we have presented an indexing and query processing strategy based on a novel adap-
tation of a self-indexed compressed text, that significantly improves performance of Web search engines
implemented by using the standard array of P × D processors. The proposed optimization involves
both the accesses required to get the pieces of index used to rank the documents to be included in the
top-K results and the accesses required to build the answer Web pages for queries. We achieve this by
combining strategies related to caching of posting lists with self-indexed compressed text.

The experimental results show the following facts considering the space A occupied by a baseline
strategy based on a compressed text plus a compressed inverted file, and the space B occupied by the
Wavelet tree (WT) strategy. For P = 1, D = 1 and A = B, the throughput achieved by the WT strategy
is about 5 times better than the baseline strategy. For the case A = 1.27 ·B, the throughput achieved by
the baseline strategy is about 1.74 times better than the WT strategy. However, the WT strategy can
use the extra space to hold a LRU list cache. The benefits of this cache are studied in a deployment on
P ×D search nodes. The results show that the WT strategy improves 40% overall query throughput over
a baseline strategy constructed from a state of the art three-level caching scheme. A key factor in this
efficient performance is the ability of the WT to fastly produce posting list intersections and snippets.

[1] D. Arroyuelo, S. González, and M. Oyarzún. Compressed self-indices supporting conjunctive queries on document
collections. In SPIRE, LNCS 6393, pages 43–54, 2010.

[2] R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. ACM Press / Addison-Wesley, 1999.
[3] S. Büttcher, C. Clarke, and G. Cormack. Information Retrieval: Implementing and Evaluating Search Engines. MIT

Press, 2010.
[4] F. Claude and G. Navarro. Practical rank/select queries over arbitrary sequences. In SPIRE, LNCS 5280, pages

176–187. Springer, 2008.
[5] Q. Gan and T. Suel. Improved techniques for result caching in web search engines. In WWW, pages 431–440, 2009.
[6] R. Grossi, A. Gupta, and J. S. Vitter. High-order entropy-compressed text indexes. In SODA, pages 841–850, 2003.
[7] X. Long and T. Suel. Three-level caching for efficient query processing in large web search engines. In WWW, pages

257–266, 2005.
[8] C. Lucchese, S. Orlando, R. Perego, and F. Silvestri. Mining query logs to optimize index partitioning in parallel web

search engines. In Infoscale, page 43, 2007.
[9] M. Marin, V. Gil-Costa, and C. Gomez-Pantoja. New caching techniques for web search engines. In HPDC, pages

215–226, 2010.
[10] M. Marin, C. Gomez-Pantoja, S. Gonzalez, and V. Gil-Costa. Scheduling intersection queries in term partitioned

inverted files. In Euro-Par, pages 434–443, 2008.
[11] A. Moffat, W. Webber, and J. Zobel. Load balancing for term-distributed parallel retrieval. In SIGIR, pages 348–355,

2006.
[12] G. Navarro and V. Mäkinen. Compressed full-text indexes. J. of CSUR, 39(1):article 2, 2007.
[13] D. Okanohara and K. Sadakane. Practical entropy-compressed rank/select dictionary. In ALENEX, pages 60–70,

2007.
[14] G. Skobeltsyn, T. Luu, I. P. Zarko, M. Rajman, and K. Aberer. Query-driven indexing for scalable peer-to-peer text

retrieval. J. of FGCS, 25(1):89–99, 2009.
[15] A. Tomasic and H. Garcia-Molina. Performance issues in distributed shared-nothing information-retrieval systems. J.

of IPM, 32(6):647–665, 1996.
[16] H. Yan, S. Ding, and T. Suel. Compressing term positions in web indexes. In SIGIR, pages 147–154, 2009.
[17] H. Yan, S. Ding, and T. Suel. Inverted index compression and query processing with optimized document ordering.

In WWW, pages 401–410, 2009.
[18] J. Zobel and A. Moffat. Inverted files for text search engines. J. of CSUR, 38(2), 2006.

9

