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Five-dimensional dilaton models are considered as possible holographic duals of the pure gauge QCD

vacuum. In the framework of these models, the QCD trace anomaly equation is considered. Each quantity

appearing in that equation is computed by holographic means. Two exact solutions for different dilaton

potentials corresponding to perturbative and nonperturbative �-functions are studied. It is shown that in

the perturbative case, where the �-function is the QCD one at leading order, the resulting space is not

asymptotically anti–de Sitter. In the nonperturbative case, the model considered presents confinement of

static quarks and leads to a nonvanishing gluon condensate, although it does not correspond to an

asymptotically free theory. Calculating the Nambu-Goto action, corresponding to a small circular

Wilson loop, leads to an expression for the gluon condensate. The validity of the trace anomaly equation

is considered for both models. It holds for the perturbative model and it does not hold for the

nonperturbative one.
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I. INTRODUCTION

The relation between large N gauge theories and string
theory [1] together with the anti-de Sitter/conformal field
theory (AdS/CFT) correspondence [2–5] have opened new
insights into strongly interacting gauge theories. The ap-
plication of these ideas to QCD has received significant
attention since those breakthroughs. From the phenome-
nological point of view, the so called AdS/QCD approach
has produced very interesting results in spite of the strong
assumptions involved in its formulation [6]. It seems im-
portant to further proceed investigating these ideas and
refining the current understanding of a possible QCD
gravity dual. This endeavor has been followed in
Ref. [7]. The aim of the present paper is to explore the
simplest nonperturbative features of QCD. This is done in
the framework of a holographic description of the pure
Yang-Mills (YM) QCD vacuum by means of 5-dimensional
dilaton gravity models.

At the basis of the AdS/CFT correspondence is the
connection between scale transformations in the boundary
field theory and isometries of the bulk gravitational theory.
However, QCD is not a conformal field theory, as the scale
symmetry is broken by the trace anomaly [8]. The trace
anomaly equation describes the behavior of QCD under
scale transformations. The question to be explored is how a
holographic model can incorporate this behavior.

The trace anomaly equation [8] states that,

Ti
i ¼

�ð�Þ
�

TrðGijG
ijÞ; (1)

where Ti
i denotes the trace of the QCD energy momentum

tensor (latin indices for space-time), �ð�Þ is the QCD

�-function, � ¼ N
g2YM
4� is the t’Hooft coupling, Gij is the

QCD field strength tensor and the trace is taken in the
fundamental representation of the SU(N) gauge group. In
this respect it is important to note that holographic models
can tell something about each of the three quantities in-
volved in the trace anomaly equation, namely the vacuum
expectation value (VEV) of the trace of the energy momen-
tum tensor, the �-function and the VEVof TrðGijG

ijÞ.
According to the correspondence, evaluating the

5-dimensional action at a classical global solution gives

information about the VEV of the trace of the energy

momentum tensor. The �-function can be obtained in

terms of the solutions to the 5-dimensional equation of

motion derived form the action in the bulk. Finally, there is

a way of calculating the VEVof the Wilson loop by means

of minimizing the Nambu-Goto (NG) action for a loop

lying in the boundary space. This is known to work in the

strictly AdS case, i.e., for a conformal boundary field

theory, and its generalization to nonconformal cases is still

an open important problem. In turn, the VEV defined by

G2 � g2YM
4�2 hGijG

iji, known as the gluon condensate, can be

determined from the coefficient of the area squared in the

expansion of a smallWilson loop in powers of its area [9–11].
The features and results of this work are summarized as

follows,
(i) Two exact solutions of 5-dimensional dilaton gravity

for different dilaton potentials are considered. The
first model, to be referred to as the perturbative
model, has a �-function, which to leading order in
the t’Hooft coupling is the same as the perturbative
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1-loop QCD �-function. The second model will be
referred to as the nonperturbative model (because
its �-function is nonanalytic in �). This model, by
choice of the parameter � in the model, can be made
to correspond asymptotically to the soft wall model
often used in nondynamical models of holographic
QCD. The model leads naturally to confinement in
the sense of static quarks, and to a nonvanishing
gluon condensate when tested with a Wilson loop.
However, it does not lead to asymptotic freedom in
the ultraviolet.

(ii) For the perturbative model the asymptotic behavior
of the solutions in the ultraviolet is not AdS. In the
language of the holographic renormalization group
the difference with the AdS limit is produced by an
irrelevant operator that flows away from the AdS
fixed point. In the nonperturbative model consid-
ered, the �-function gives rise to an UV fixed point
at finite � and the metric is asymptotically AdS.

(iii) Using the correspondence, the VEV of the energy
momentum tensor is obtained by evaluating the
5-dimensional action in the corresponding exact
solutions, regularizing by introducing an energy
scale and subtracting. These subtractions are per-
formed as proposed in Ref. [12] and employed in
the holographic case in Ref. [13]. In the perturba-
tive case, taking into account Eq. (1), it is argued
that the same solution should be subtracted, leading
to a vanishing VEV for the energy-momentum
tensor. In the nonperturbative model, being asymp-
totically AdS, the AdS limit is subtracted.

(iv) In order to calculate the gluon condensate, the VEV
of a small circular Wilson loop is considered. This
is carried out using the corresponding NG action.
For the perturbative model this procedure leads to a
vanishing gluon condensate, while a nonvanishing
result is obtained in the nonperturbative case.

(v) The validity of Eq. (1) is considered for both mod-
els, and shown to hold in the perturbative one. In the
nonperturbative model the dependence of the gluon
condensate on the energy scale is not the one re-
quired by Eq. (1). This is however not unexpected as
this model does not give a consistent description of
the QCD ultraviolet behavior.

The paper is organized as follows. Section II presents the
5-dimensional dilaton-gravity model employed in what
follows. Exact solutions of the dilaton model equations
of motion and associated �-functions corresponding to
the perturbative and nonperturbative models are studied
in section III. Section IV deals with the evaluation, regu-
larization and subtraction of the gravitational action eval-
uated in the above mentioned exact solutions. Section V
discusses the relevant asymptotics of the solutions of
section III, and gives the explicit result for the subtracted
gravitational action for those solutions. Section VI presents

a study of the VEVof a small circular Wilson loop by means
of the minimization of the NG action. Section VII addresses
the issue of validity of the trace anomaly equation in the
models considered. A final section VIII presents conclusions
and outlook.

II. DILATON MODEL

The model considered is that of a self-interacting scalar
field immersed in a dynamical gravitational field in dþ 1
dimensions (in the end the results are only valid at d ¼ 4).
The action of the model is given by [14],

Sdþ1¼ 1

16�Gðdþ1Þ
N

�Z
Mdþ1

ddþ1x
ffiffiffi
g

p

�
�
�Rþ1

2
g��@��@���Vð�Þ

�
�2

Z
Md

ddx
ffiffiffi
h

p
K

�
;

(2)

where Gðdþ1Þ
N is the Newton constant in dþ 1-dimensions

[of dimension (d� 1)], g�� the metric tensor field, R the

scalar curvature, � the dilaton field, and Vð�Þ the dilaton
potential. The last term is the Gibbons-Hawking term [15]
where K is the second fundamental form. This term is
included to make the Lagrangian depend only on the first
derivatives of the metric. The equations of motion derived
from this action are,

E�� � 1

2
@��@��þ 1

4
g��ð@�Þ2 � 1

2
g��Vð�Þ ¼ 0

@�ð ffiffiffi
g

p
g��@��Þ þ ffiffiffi

g
p @Vð�Þ

@�
¼ 0; (3)

where the Einstein tensor E�� reads: E�� ¼ R�� �
1
2g��R, and ð@�Þ2 ¼ g��@��@��. Because here the

focus is on the vacuum of the boundary field theory, only
metrics and scalar fields having flat boundary space isome-
try invariance are considered, thus only solutions for the
metric and scalar field of the following general form are
considered,

ds2 ¼ du2 þ e2AðuÞ�ijdx
idxj; � ¼ �ðuÞ; (4)

where �ij is a flat metric, and the coordinates employed

here are known as domain wall coordinates. The boundary
of the space is at u ¼ �1. The AdS metric corresponds to
taking AAdSðuÞ ¼ u, where the coordinate u is measured in
units of the AdS radius L. For this particular choice of
fields which only depend on u, the equations of motion are
given by,

A00 þ dA02 � Vð�Þ
d� 1

¼ 0

dA02 � �02

2ðd� 1Þ �
Vð�Þ
d� 1

¼ 0

�00 þ dA0�0 þ dVð�Þ
d�

¼ 0;

(5)
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where the prime denotes derivation with respect to u.
Introducing a superpotential Wð�Þ according to:

A0ðuÞ ¼ Wð�Þ (6)

�0ðuÞ ¼ 	
dWð�Þ
d�

; (7)

the choice 	 ¼ 2ð1� dÞ< 0 reduces the three equations in
Eq. (5) to the single equation:

	

�
dWð�Þ
d�

�
2 þ dW2 � Vð�Þ

d� 1
¼ 0: (8)

Since the intended realistic application to QCD is at d ¼ 4,
throughout 	 ¼ �6 could be replaced.

III. �-FUNCTIONS IN DILATON MODELS

In the AdS/CFT correspondence the identification is
made of the YM coupling with the dilaton profile accord-
ing to [5]:

�

N
¼ g2YM

4�
¼ e�: (9)

The energy scale � (measured in units of a scale 1
L , where

L is the length unit mentioned earlier) of the boundary

theory is identified with the scale factor eAðuÞ in domain

wall coordinates: � ¼ eAðuÞ. These identifications give the
�-function in the dilaton model [7]:

�ð�Þ ¼ d�

d log�
¼ Ne�

�0

A0 ¼ 	�
@

@�
logWð�Þ: (10)

In the rest of this section two different and exactly
soluble dilaton models are considered. These models are
obtained according to the following scheme: a dilaton
profile �ðuÞ is given, where by expressing �0ðuÞ in terms
of �ðuÞ and employing Eq. (7) the superpotential Wð�Þ is
obtained, followed by integrating Eq. (6) to obtain AðuÞ,
and finally from Eq. (10) the �-function is obtained. The
potential Vð�Þ is determined from Eq. (5).

The two models considered are extreme cases. One
model corresponds at leading order in the gauge coupling
to the perturbative QCD �-function, while the other one
corresponds to a nonperturbative �-function, i.e., which is
nonanalytic at small coupling and which leads to an UV fix
point. These models are qualitatively different as the next
sections show. The precise choice of dilaton profiles is
made so as to be able to perform all the calculations
analytically.

A. Perturbative �-function

The following dilaton profile is considered,

�ðuÞ ¼ � 1

2
logðð�uÞ2 þ 
2Þ: (11)

Note that this choice means that � � N=
. Therefore, 

should be a quantity order N. Using the procedure just
described leads to:

AðuÞ ¼ A0 þ A1u� 1

2	
logðð�uÞ2 þ 
2Þ

þ �u

2
	
arctan

�
�u




�
; (12)

where for convenience the integration constants can be
chosen in such a way that the leading asymptotic behavior
be AdS, namely A0 ¼ 1

2	 , and A1 ¼ 1� ��
4
	 . Then, asymp-

totically AðuÞ � u� 1
	 logð�uÞ þOð1=u2Þ. The resulting

� function reads:

�ð�Þ ¼ 2
	�2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2 � 
2�2

p


�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2 � 
2�2

p
þ N2ðarcsinð
�N Þ � 2 
	

� Þ
; (13)

which to leading order in � becomes:

�ð�Þ ¼ ���2

N
þOð�3Þ: (14)

The choice � ¼ 11N
6� reproduces the leading-order term of

the QCD �-function (see Fig. 1)

B. Nonperturbative �-function

A �-function with nonperturbative behavior, i.e., non-
analytic in the coupling �, is obtained from the following
dilaton profile,

�ðuÞ ¼ Ce��u (15)

where �> 0. In this case,

AðuÞ ¼ uþ C2

4	
e�2�u; (16)

giving an asymptotically AdS metric.
The resulting �-function is then given by,

�ð�Þ ¼ � �� log�N
1� �

2	 log
2 �
N

; (17)

which is positive in the interval 0< �<N, leading to an
UV fixed point at � ¼ N (see Fig. 1). Thus, this theory is

FIG. 1. � functions of the models considered: perturbative
(dashed), nonperturbative (black), perturbative QCD (gray).
� � 0 corresponds to the AdS case.
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not asymptotically free, and therefore is not related to a
pure YM theory. The sign of the constant C determines two
phases of the theory: for C< 0 the theory becomes free in
the infrared, while for C> 0 it becomes strongly coupled.
Indeed this latter case describes a confining theory in
the IR. In order to see this it is convenient to express the
above result in the conformal coordinate z, where asymp-

totically u ¼ � logðzÞ, and therefore AðzÞ ¼ � logðzÞ þ
C2

4	 z
2�. This Amatches the Gürsoy and Kiritsis [7] criterion

for confinement [16]. The negative sign of the coefficient
multiplying the z2� term is crucial in two respects: it is
necessary for the confinement criterion [7] to be fulfilled

and second, the behavior of the factor eAðzÞ for z ! 1 is

such that, limz!1eAðzÞ ¼ 0, which as shown in the next
section, makes the use of an infrared cutoff unnecessary in
the evaluation of the 5-dimensional action for this solution.

IV. THE TRACE OF THE
ENERGY-MOMENTUM TENSOR

According to the AdS/CFT conjecture, taking the metric
as the source field of the energy-momentum tensor of the
boundary field theory, the VEV of the trace of the energy
momentum tensor is evaluated by simply evaluating the
action Eq. (2) for the classical solutions of the previous
section.

Taking the trace in the first Eq. (3) gives,

R ¼ ðdþ 1Þ
ð1� dÞVð�Þ þ 1

2
ð@�Þ2; (18)

and the action for the classical solutions becomes:

S¼SbulkþSGH

¼ 1

16�Gðdþ1Þ
N

Z
Mdþ1

ddþ1x
ffiffiffi
g

p 2

ðd�1ÞVð�ÞþSGH; (19)

and using the first Eq. (5),

Sbulk ¼ 1

16�Gðdþ1Þ
N

Z
Mdþ1

ddþ1x
ffiffiffi
g

p
2ðA00 þ dA02Þ: (20)

Noting that d2

du2
edAðuÞ ¼dedAðuÞðA00þdA02Þ and ffiffiffi

g
p ¼ edAðuÞ

leads to,

Sbulk ¼
VMd

16�Gðdþ1Þ
N

2

d

Z 1

�1
du

d2

du2
edAðuÞ

¼ VMd

8�Gðdþ1Þ
N

1

d

�
d

du
edAðuÞ

�
boundary

; (21)

where VMd
denotes the volume of the boundary

d-dimensional space. On the other hand, the classical
Gibbons-Hawking boundary action is given by:

SGH ¼ � 1

8�Gðdþ1Þ
N

@

@n

Z
Md

ddx
ffiffiffi
h

p
; (22)

where h is the induced metric in the boundary Md, namelyffiffiffi
h

p ¼ edAðuÞ, and @
@n denotes a unit vector field orthogonal to

the boundary of Mdþ1. In domain wall coordinates this
vector field is simply @

@n ¼ @
@u , and therefore:

SGH ¼ � 1

8�Gðdþ1Þ
N

VMd

�
d

du
edAðuÞ

�
boundary

; (23)

which is just �d times the bulk action. For both exact
solutions considered in the previous section there is no
contribution from the infrared boundary. On the other
hand, the ultraviolet boundary u ! 1 gives for both cases
divergent contributions, as it happens in general for any
holographic model. As proposed in Ref. [4], these contribu-
tions can be regularized by evaluating at a finite value u0.
This leads finally to,

S ¼ 1

8�Gðdþ1Þ
N

VMd
ð1� dÞedAðu0ÞA0ðu0Þ: (24)

It is important to note that for a boundary theory that is not
quantum conformal invariant, as for example QCD, the
regulator u0 has a physical meaning. Indeed, as mentioned
in the previous section, the energy scale at which the bound-
ary theory is observed is related to u0, the boundary value of
the domain wall coordinate u.
As shown in Ref. [12] and applied to holographic mod-

els in Ref. [13], a well-defined action can be obtained by
subtracting from the regulated action an action correspond-
ing to some background metric having the same asymp-
totic limit. That is,

Ssub ¼ S� Sasymp; (25)

where Sasymp denotes the action evaluated in a solution
having the same asymptotic behavior as the classical one.
The subtracted energy-momentum tensor is obtained
recalling that, according to the correspondence,

S ¼
Z
Md

ddx
ffiffiffi
h

p
hijT

ij; (26)

leading to Ti
iðsubÞ ¼ e�dAðu0Þ

VMd

Ssub, where Aðu0Þ denotes the
common asymptotic exponent. The choice of this back-
ground metric for the solutions considered in section III is
discussed in the next section.

V. THE UV QCD FIXED POINT

The perturbative model in subsection III A presents
features the understanding of which leads to new insights.
These are the following:
(i) The model leads to a �-function that coincides at

leading order with the perturbative QCD �-function.
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(ii) The model is not asymptotically AdS. As Eq. (12)
shows, the deviation of AðuÞ from the AdS limit
becomes �1

	 logu.

(iii) As shown in the previous section, the action should
be subtracted with the action evaluated in a back-
ground metric having the same asymptotic behav-
ior as the one to be subtracted. Thus, it is not
sufficient to perform a subtraction with the AdS
metric.

(iv) In the language of the holographic renormalization
group [18], this correction corresponds to an irrele-
vant operator, that flows away from the AdS fixed
point [5]. This can be seen from the fact that the
dilaton field behaves as� logu at the UV boundary.

(v) Eq. (1) implies that for QCD the trace of the energy-
momentum tensor should vanish in the UV. This can
be independently seen in two ways. As shown in
section VI for this model, the VEV of the Wilson
loop, calculated via the NG action, does not have
terms which are powers of its area, and therefore the
gluon condensate G2 must vanish. The other way is
simply to recall that in perturbative QCD the log of
the VEVof the Wilson loop follows a perimeter law.

All these points indicate that the UV fixed point of
QCD does not correspond to AdS. It corresponds to an-
other solution that is well approximated by the one in
subsection III A in the UV, i.e., for large u, and therefore
the action evaluated in the same solution or one asymptoti-
cally equivalent must be subtracted, leading to a vanishing
trace of the subtracted energy-momentum tensor.

In the nonperturbative model the space is asymptotically
AdS, and the subtracted action becomes:

SNPsub¼SNP�SAdS

¼ð1�dÞVMd

8�Gðdþ1Þ
N

edu0
�
eðdC2=4	Þe�2�u0

�
1��C2

2	
e�2�u0

�
�1

�
;

(27)

leading to,

Ti
iðsub;NPÞ

¼ ð1�dÞ
8�Gðdþ1Þ

N

�
1��C2

2	
e�2�u0 �e�ðdC2=4	Þe�2�u0

�
: (28)

VI. WILSON LOOPS

The VEVof the operator G2 (gluon condensate) appear-
ing in the trace anomaly is accessible through the power-
like behavior of small Wilson loops as a function of their
size. In pure YM theory the expansion of a small smooth
Wilson loop (e.g., square or circular) is expected to have
the form given by [9–11,17]:

loghWð�Þi ¼ �X
n

Cn

�
�

N

�
n � �2Z

12N
G2 s

4 þ � � � (29)

where l is the length of the loop, s is the area of the loop,
and Z ¼ �1ð�Þ=�ð�Þwith�1 the one loop�-function. It is
argued in pure YM that the terms proportional to s vanish
as these would require a gauge invariant dimension two
condensate.
The connection between Wilson loops of the boundary

conformal gauge theory and minimal surfaces was made in
Refs. [19,20]. According to it, in a CFT such as N ¼ 4
SUSY YM, in the large N limit and large ’tHooft coupling
the VEVof the Wilson loop is determined by the minimal
area surface in the dþ 1 AdS space subtended by the path
of the loop �. Specifically:

Wð�Þ¼ 1

N
TrPExp

�
�
I
�
Aidx

i

�
hWð�Þi/e�S� ; (30)

where the minimal area S� is given by the NG action of a
string whose ends run along the loop. Since for a loop
located at the boundary S� diverges, it has to be regulated,
and thus the proportionality factor above.
The extension of this identification to nonconformal YM

theory is still an open problem, in particular because in that
case, as discussed earlier, the theory cannot be obtained via
a relevant deformation of a CFT [5]. This problem is
closely related to the problem of finding the noncritical
string action for QCD [21]. An extension of the correspon-
dence for Wilson loops to the nonconformal case has
been proposed [7], in which the NG action is the one

corresponding to the string-frame metric, namely: ASðzÞ ¼
AðzÞ þ�ðzÞ= ffiffiffi

3
p

in d ¼ 4 dimensions.
For the present purpose a circular Wilson loop of radius

a is considered, for which the NG action turns out to be:

SNG ¼ a2

2��0
Z 1

0
d��e2ASða!ð�ÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ!0ð�Þ2

q
; (31)

where r ¼ a� is the radial coordinate of the disk, and
z ¼ a! is the bulk coordinate in conformal coordinates.
The equation of motion is:

�!00 þ ð1þ!02Þð!0 � 2a�A0
Sða!ÞÞ ¼ 0; (32)

where the solution needed satisfies !ð1Þ ¼ 0. In AdS limit

it is !ð�Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p
, a half sphere.

The UV divergencies of the NG action result from the
contributions to the integral for � ! 1. Noticing that!0ð�Þ
diverges as � ! 1, one obtains:

@SNG
@z0

¼ �ae2ASðz0Þ

2��
; (33)

where z0 can be interpreted as the location of the loop in
the bulk coordinate z (provided z0 � a). In dilaton models
one readily obtains:

@SNG
@A0

¼ ae2ASðz0Þ�A0

2��0WðA0Þ ; (34)

where A0 � Aðz0Þ, which asymptotically for the models
discussed Aðz0Þ ! � logz0. If the �-function is given as
input to the model, the superpotential and AðzÞ are given by
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Wð�Þ ¼ exp

�
1

2	

Z �ð�Þ
�2

d�

�
Að�Þ ¼

Z d�

�ð�Þ : (35)

One readily checks the AdS case where W ¼ const and

AS ¼ A, giving @SNG
@A0

¼ a
2��0 eA0 .

The perturbative model asymptotically gives �ð�Þ ¼
� �

N �
2, �ðAÞ ¼ � logð�AÞ and WðAÞ ¼ 1� 1

	A , where,

without loss of generality, the constant of integration
required for WðAÞ has been chosen to be W0 ¼ 1. This
leads to:

@SNG
@A0

¼ a

2��0 exp
�
A0 � 2ffiffiffi

3
p logð�A0Þ

�
: (36)

This shows that, as one would expect from the fact that
the metric is not asymptotically AdS, the UV divergence of
the action is modified with respect to the AdS case by the
second term in the exponent.

The nonperturbative model is asymptotically AdS and
thus the expectation is that the UV divergence coincides
with the AdS case. If the coefficient �> 1 this is indeed
the case as it is easily shown using Eqs. (15)–(17) for
�> 1, which leads to:

@SNG
@A0

¼ aeA
AdS
0

2��0

�
1þ 2Cffiffiffi

3
p e��AAdS

0 þOðe�2�AAdS
0 Þ

�
: (37)

For � ¼ 1 a constant term remains, which corresponds to a
term linear in A0 in the UV divergence of SNG or equiv-
alently logarithmic in z0.

The UV divergencies stem from the fact that AS diverges
at the boundary. Therefore, they must naturally be only
proportional to the perimeter of the loop, i.e., proportional
to a. For this reason, the contributions of higher powers of
a, which are of interest here, are independent of the regu-
larization of SNG and unambiguous.

The central point of the discussion is the sufficient
conditions for the presence of higher power terms in a in
SNG. The simplest case is when the metric is asymptoti-
cally AdS and the UV divergence of SNG corresponds as
well to the AdS case. For small a, ASðzÞ ¼ AAdSðzÞ þ
�AðzÞ, and expanding in �A leads to:

SNG ¼ 1

2��0
Z 1

0

d�

�2
ð1þ 2�Aða�ÞÞ þOð�A2Þ; (38)

where � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p
, and evaluation in the AdS limit so-

lution has been performed. The first order approximation
is adequate near the boundary � ! 0 only if the UV
divergencies are strictly AdS. On the other hand, the
dependencies of SNG in powers of a beyond the first power
(perimeter terms) will stem primarily from the interior of
the integration domain, where the approximation is
expected to work. Thus, a sufficient condition for such
power corrections is that �A contains terms which have
power dependency in the argument. The contributions
Oð�A2Þ in Eq. (38) are in general difficult to evaluate as
they involve the corrections to the solution of the equation

of motion (32) [17]. The arguments made here apply in
particular to the nonperturbative model when �> 1.
When the metric is not asymptotically AdS, as is the

case of the perturbative model, a more accurate evaluation
is necessary. For sufficiently small a the entire surface will
lie near the boundary u ! 1, and 
 can be set to zero, thus
�ðuÞ ¼ � logð�uÞ, AðuÞ ¼ u� 1

	 logð�uÞ. Setting u ¼
� logz and evaluating SNG with the asymptotic AdS solu-
tion zð�Þ ¼ a� leads to:

SNG ¼ 1

2��0
Z 1

0

d�

�2
exp

�
�
�
1

	
þ 2ffiffiffi

3
p

�
logð�� logða�ÞÞ

�
:

(39)

It is readily checked that this has the UV divergence ob-
tained earlier in Eq. (36). Evidently the dependence of SNG
in a is logarithmic, and therefore according to the evaluation
of the Wilson loop G2 ¼ 0 in the perturbative model. A
similar conclusion results if �ð�Þ is in general analytic in �.
Therefore, in the present framework, this indicates that in
order to obtain a nonvanishing gluon condensate, the �
function should include nonanalytic terms in �.
As an illustration of the latter, where power corrections

are obtained at small coupling as consequence of non-
perturbative terms in the �-function, consider the asymp-
totically free theory with �ð�Þ ¼ �b0�

2ð1þ c expð� �
�ÞÞ,

which is found in certain SUSY gauge theories [22] as the
result of instanton contributions. Considering the nonper-
turbative piece as small (or expanding in c), asymptotically

WðAÞ ¼ e�ð1=	AÞð1� c
	�b0A

2 e
��b0AÞ, �ðAÞ ¼ � logb0Aþ

c
�b0A

e��b0A, leading to:

@SNG
@A0

¼ @SNG
pert

@A0

ðA0Þ
�
1þ 2ce�b0�A0

�b0A0

�
1

	A0

þ 1ffiffiffi
3

p
��
;

(40)

which as expected coincides asymptotically with the per-
turbative model. The evaluation of the finite pieces gives
power terms in a. Asymptotically, to first order in c:

AS ¼ Apert
S ðzÞ þ c

�b0

�
1ffiffiffi
3

p
A
expð�2�b0ApertðzÞÞ

þ expð�2�b0ApertðzÞÞ
�
; (41)

where pert. indicates the case with c ¼ 0 discussed earlier.
Using Eq. (38) leads to:

SNG¼SpertNG þ c

��0�b0

Z 1

0

d�

�2

� ða�Þ�b0ffiffiffi
3

p
logða�Þþða�Þ2�b0

�

�S
power
NG ¼ c

�0�b0ð�b0�1Þa
2�b0 ; (42)

obtained after replacing Apert � AAdS in the evaluation.

Note that the power correction in this case did not stem
from the contribution to AS by the dilaton, but rather from
the correction order c to the metric A itself. This model
gives a nonvanishing G2 if �b0 ¼ 2.
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The nonperturbative model is now analyzed for � 	 1,

where �ðuÞ ¼ Ce��u, AðuÞ ¼ uþ C2

4	 e
2�u, and asymptoti-

cally u ¼ � logz. Applying Eq. (39) leads to:

SNG ¼ SNGðAdSÞ þ 1

��0
Z 1

0

d�

�2

�
Cffiffiffi
3

p ða�Þ� þOða�Þ2�
�
;

(43)

where the term / ða�Þ� stems from the contribution to AS

by the dilaton. Clearly, if � ¼ 4 the model gives a non-
vanishing G2, namely G2 ¼ 4CNffiffi

3
p

�3�0Z
. For � ¼ 1 it repro-

duces the additional logarithmic contribution in z0 to the
UV divergence in Eq. (38). For � ¼ 2 the model is similar
to the one analyzed in Ref. [17]. In that case, to obtain the
a4 power correction it is necessary to calculate to second
order in the perturbation to the action, and therefore cor-
rections to the solutions are to be calculated. As mentioned
earlier, in QCD the power series in the area s of the Wilson
loop should start at s2 � a4; for � ¼ 2 there is however a
nonvanishing term order a2 [17].

VII. THE TRACE ANOMALY TEST

For the perturbative case the trace anomaly equation
is clearly fulfilled. Indeed the subtraction to the
5-dimensional action in section V was performed in order
to match, through Eq. (1), the vanishing of G2 determined
in the previous section for this model. On the other hand,
for the nonperturbative case, it is shown below that it is not
possible to match both sides of Eq. (1).

A. The trace anomaly equation for the
nonperturbative case

Equations (17) and (28) for � 	 1 and d ¼ 4 lead
asymptotically for u0 ! 1 to:

�ð�Þ
�

¼ � ��

ð1þ �
12�

2Þ ¼ � �Ce��u0

ð1þ �C2

12 e�2�u0Þ
¼ � �Cz�0

ð1þ �C2

12 z2�0 Þ (44)

Ti
iðsub;NPÞ ¼ � 3

8�Gð5Þ
N

�
1� eðC2=6Þe�2�u0 þ �C2

12
e�2�u0

�

¼ �ð�þ 2ÞC2

32�Gð5Þ
N

z2�0 ; (45)

where the asymptotic relation between domain wall and
conformal coordinates z0 ¼ e�u0 has been employed. If
the trace anomaly equation in Eq. (1) were fullfilled,
replacing Eqs. (44) and (45) into Eq. (1) would imply
that the gluon condensate vanishes asymptotically as:

G2ðz0Þ ¼ �þ 2

32�2�Gð5Þ
N

ðCz�0 þ C2z2�0 þ � � �Þ: (46)

B. Wilson loop calculation of G2

The computation of G2 using the Wilson loop calcula-
tions of the previous section involves a different choice of
boundary conditions than the one employed in this section.
This is because the Wilson loop should be situated at a
finite value of the coordinate orthogonal to the boundary,
corresponding to the finite value chosen in evaluating the
5-dimensional action used to evaluate the trace of the
energy-momentum tensor. The boundary condition to be
employed is,

zðaÞ ¼ z0: (47)

For the pure AdS case, a solution of the area minimization
equation satisfying this boundary condition is given by,

zðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � r2 þ z20

q
, which simply corresponds to a cir-

cle of radius R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ z20

q
that is the radius required to

match the boundary condition (47). For the nonperturba-
tive model the effect of the above mentioned change in
boundary conditions is well approximated by replacing the
radius a by the effective one corresponding to the AdS

solution, i.e., R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ z20

q
. Making that replacement in

Eq. (43) shows that the coefficient of a� has a contribution,
coming from the term proportional to R� [23], which does
not vanish for z0 ¼ 0. In particular, the simplest case where
� ¼ 4 gives a putative G2 � 0. This is however in contra-
diction with the dependence in Eq. (46), which comes from
assuming the validity of (1). Therefore, the trace anomaly
equation is not fulfilled in this model, and this is so in
general for �> 1.

VIII. CONCLUSIONS AND OUTLOOK

In this work the validity of the trace anomaly equation
has been studied in the holographic framework. This was
done by considering holographic evaluations of the VEVof
the trace of the energy-momentum tensor, the �-function
and the gluon condensate G2. The �-function is directly
related to the definition of the particular model under
consideration. The VEVof the trace of the energy momen-
tum tensor was evaluated according to the holographic
correspondence, by evaluating the dþ 1-dimensional clas-
sical action of the dilaton model on the corresponding
classical solution. The gluon condensate can be obtained
in a YM theory from the VEV of the Wilson loop, which
was here evaluated for the models studied by means of a
NG action.
Two models were analyzed, which can be exactly solved

and which have different qualitative characteristics.
In the perturbative model, where G2 ¼ 0, consistency is
fulfilled as the evaluation of the classical action can be
appropriately subtracted to give a vanishing trace for the
energy momentum tensor. If indeed G2 ¼ 0 in QCD, this
may already be a somewhat realistic model. On the other
hand, the nonperturbative model shows an inconsistency
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for the trace anomaly equation. This is manifested by the
fact thatG2 has different behavior in the scale z0 in the two
evaluations. Indeed, the evaluation of the action and Eq. (1)
give G2 / e��u0 ¼ z�0 , while from the Wilson loop evalu-

ation G2 is nonvanishing in the limit z0 ! 0. This incon-
sistency seems reasonable since the nonperturbative model
fails to correctly describe the UV properties of QCD, being
asymptotically AdS and not asymptotically free.

Various interesting conclusions can be drawn from these
results. They indicate that, although a holographic model
of the pure gauge QCD vacuum based on the AdS space is
not feasible, they do not preclude a gravitational dual based
on a dynamical 5-dimensional Einstein gravitational the-
ory. They also show that QCD Ward identities, as for
example the trace anomaly equation, strongly restrict the
possibilities. It is reasonable to expect that QCD symmetry
restrictions can in principle lead to a more precise version
of its putative gravitational dual. Such a dual should lead
to a boundary theory having all the following properties:
asymptotic freedom in the UV, confinement in the IR,
(possibly) a nonvanishing gluon condensate, and consis-
tency with the trace anomaly equation. As the examples
considered have shown, it is not at all obvious how to
obtain a consistent model with these properties. Work in
this direction is in progress and will be reported in due
course.

Among important fundamental nonperturbative effects
in QCD, the existence of a nonvanishing gluon condensate
was early on identified [24]. It has important manifesta-
tions in hadron phenomenology [24,25], and there are
indications of its nonvanishing from lattice QCD [10,11].
Due to its importance, its further understanding in the
framework of holographic models of QCD is going to
play a key role in the development of such models, as it
has been shown in this work.
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APPENDIX

This appendix presents an explicit calculation of the NG
action in a case where the ASðzÞ has deviations from the
AdS limit which are integer powers of z, namely,

ASðzÞ ¼ � logzþX
n

�nz
n: (A1)

The equation of motion Eq. (32) is solved using an asymp-
totic series:

!ð�Þ ¼ �

�
1þX

n

Xn
‘¼0

Cn‘�
nlog‘�

�
; (A2)

where the coefficients Cn‘ð�i; aÞ are obtained in a system-
atic fashion.
The evaluation presented here can be applied to the

nonperturbative model discussed in the text. A straightfor-
ward but lengthy evaluation gives:

SNG ¼ 1

2��0

�
a

z0
� 8

3
a�1 logðz0=aÞ þ 7

18
a�1

þ a2
�
3:32435�2

1 þ
11

3
�2

�

þ a3ð3:12395�3
1 þ 5:03896�2�1 þ 2�3Þ

þ a4
�
12:4174�4

1 þ 19:5861�2�
2
1 þ 2:09778�3�1

þ 6:4849�2
2 þ

16

9
�4

�
þOða5Þ

�
: (A3)

For instance, in a ‘‘soft wall’’ model where only �2 � 0
one obtains:

!softwallð�Þ ¼ �

�
1þ �2a

2

�
� 5

3
�þ �2 þ � � �

�

þ �2
2a

4

�
� 167

27
�þ 125

18
�2 þ � � �

�
þ � � �

�

(A4)

and the resulting NG action becomes:

SsoftwallNG ¼ 1

2��0

�
a

z0
þ 11

3
�2a

2 þ 134821

20790
�2
2a

4 þ � � �
�
:

(A5)

For the nonperturbative model with � ¼ 4, one keeps only
the term with �4 � 0, and the NG action becomes:

SNG ¼ 1

2��0

�
a

z0
þ 16

9
�4a

4 þOða5Þ
�
: (A6)
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