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ABSTRACT

The transit timing variation (TTV) method relies on monitoring changes in timing of transits of known exoplanets.
Non-transiting planets in the system can be inferred from TTVs by their gravitational interaction with the transiting
planet. The TTV method is sensitive to low-mass planets that cannot be detected by other means. Here we describe
a fast algorithm that can be used to determine the mass and orbit of the non-transiting planets from the TTV data.
We apply our code, ttvim.f, to a wide variety of planetary systems to test the uniqueness of the TTV inversion
problem and its dependence on the precision of TTV observations. We find that planetary parameters, including
the mass and mutual orbital inclination of planets, can be determined from the TTV data sets that should become
available in near future. Unlike the radial velocity technique, the TTV method can therefore be used to characterize
the inclination distribution of multi-planet systems.
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1. INTRODUCTION

In Nesvorný & Morbidelli (2008) and Nesvorný (2009)
(hereafter NM08 and N09), we developed and tested a fast
inversion method that can be used to characterize planetary
systems from the observed transit timing variations (TTVs;
Agol et al. 2005; Holman & Murray 2005). See NM08
and N09 for a technical description of the method. Here
we use this new method to solve the TTV inversion prob-
lem for an arbitrary planetary system. The results provide a
baseline for studies of real exoplanetary systems for which
TTVs will be detected. Examples of past work that would
greatly benefit from the application of the fast inversion al-
gorithm discussed here include Steffen & Agol (2005), Agol &
Steffen (2007), Miller-Ricci et al. (2008), and Gibson et al.
(2009).

In Section 2, we briefly describe the TTV inversion method.
In Section 3, we apply it to a case with coplanar planetary
orbits. Inclined planetary orbits are discussed in Section 4.
We show, for example, that the mutual inclination of plan-
etary orbits can be determined from TTVs. This important
parameter, which may be used to test planet-migration the-
ories (e.g., Rasio & Ford 1996; Goldreich & Sari 2003), is
not typically available from other existing planet-detection
methods.

2. INVERSION METHOD

Our TTV inversion method, hereafter TTVIM, has two parts.
The first part is a fast algorithm for the computation of transit
times, (δtj )trial, 1 � j � N , for specified planetary parameters.
This algorithm is based on perturbation theory (NM08, N09).
It calculates the short-period TTVs as these have been shown
to be the most diagnostic (NM08). The long-term effects such
as the apsidal precession produced by the perturbing planet are
more difficult to detect if transit observations span only a few
years (Miralda-Escudé 2002; Heyl & Gladman 2007).

The second part of TTVIM is an adaptation of the downhill
simplex method (DSM; Press et al. 1992). The DSM is used to

search for the minima of

χ2 =
N∑

j=1

[
(δtj )trial − (δtj )obs

σj

]2

, (1)

where (δtj )trial are the transit times produced by the first part
of the algorithm for a trial planetary system, (δtj )obs are the
observed mid-transit times, and σj are the measurement errors.
It is assumed here (as indicated by δ’s) that the period of the
transiting planet, P, has been removed from transit observations.
Thus, (δtj )obs = (tj )obs−CjP , where (tj )obs are the actual transit
times and integer Cj denotes the transit cycle.

The best-fit planetary parameters correspond to the global
minimum of χ2, denoted by χ2

min in the following. A large
number of initial trials must be used to assure that the DSM
method finds χ2

min. The confidence levels for the normally
distributed data can be defined as Δχ2 = χ2 −χ2

min < (Δχ2)cut,
where the (Δχ2)cut values are properly chosen for N and the
required confidence level (NM08).

Here we assume that the mass and orbit of the transiting planet
are known from transit and radial velocity (RV) measurements
as this should be the most common case in practice. If so, χ2

is a function of seven unknown parameters of the perturbing
planet, χ2 = χ2(m2, a2, e2, i2, Ω2,�2, λ2), where m2 is the
mass, a2 is the semimajor axis, e2 is the eccentricity, i2 is
the inclination, Ω2 is the nodal longitude, �2 is the periapse
longitude, and λ2 is the mean orbital phase at t = 0 (arbitrarily
defined here to correspond to cycle C0).3 The parameters of the
transiting planet will be denoted by index 1. DSM must therefore
search in seven-dimensional space for the global minimum
of χ2. This is not a trivial task because χ2 often has many deep
and narrow local minima (Steffen & Agol 2007). Fortunately,
several simplifications can be made.

First, as the amplitude of the short-period TTVs scales
linearly with m2, we can calculate the TTV profile for the

3 These are the actual parameters used in DSM. The boundary at e2 = 0 does
not need a special treatment because (e2,�2) is formally equivalent to
(−e2, �2 + π/2). Similar rules apply to (i2, Ω2) and (m2, λ2).
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selected a2, e2, i2, Ω2,�2, λ2 values and obtain m2 by the linear
least-square fit. Second, the determination of χ2 for a new set
of the Ω2, �2, and λ2 values is computationally cheap in the
perturbation algorithm, if χ2 was determined previously for the
required a2, e2, and i2 values.4 The code can thus efficiently
search for the minimum of χ2(a2, e2, i2) for any value of Ω2,
�2, and λ2. In practice, we use 5–20 values between 0◦ and 360◦
to resolve each of these parameters. This effectively reduces the
number of dimensions to three. Once the interval of estimated
a2, e2, and i2 values is narrowed down, the solution can be
refined by using the full DSM search in seven dimensions.

The tricky part of TTVIM is the choice of the initial guess
in the (a2, e2, i2) space. By trials and errors we found that
fine (and nonlinear) sampling of a2 is generally needed for a
successful convergence of the algorithm. The best results were
obtained with uniform sampling in 1/α2, where α = a1/a2 < 1.
Parameters e2 and i2 require less care since DSM usually finds
the right minimum even in the high-e2 and/or high-i2 case if at
least one corner of the initial simplex is stretched to e2 > 0.2
and i2 > 30◦.

With the nominal setup, our TTVIM code (ttvim.f) requires
about 2 minutes of CPU time5 for a coplanar fit with i2 = 0
and about 50 minutes for the full seven-dimensional fit. In the
absence of measurement errors, the success rate in finding χ2

min
is better than 95%. Thus, ttvim.f is a robust code that can
reliably solve the TTV inverse problem at a low computational
cost.

3. RESULTS FOR COPLANAR ORBITS

We used a random number generator to define different sets
of parameters m2, a2, e2, i2, Ω2, �2, and λ2. Typically, 1000–
2000 different planet parameter sets were used in tests. In each
case, the orbital evolution of the two planets was followed for a
fixed timespan, 0 < t < Tint, with the Bulirsch–Stoer integrator
(Press et al. 1992). During this timespan we interpolated for and
recorded all transit times of the inner planet. These data mimic
the real observations, (δtj )obs. They were used in a blind test
where we applied the TTVIM code to each of these cases in an
attempt to recover the original mass and the orbital elements of
the non-transiting planet.

We start by discussing the case with star’s mass m0 = M�,
where M� = 2 × 1033 g is the mass of the Sun, m1 = 10−3 m0,
a1 = 0.1 AU, e1 = i1 = 0, and N = 100 consecutive transits.
Since NM08 and N09 showed that the behavior of the inversion
method is insensitive to m1, we will not test different m1 values
in this work. To distinguish between the issues related to the
intrinsic limitations of ttvim.f and those arising from the finite
precision of the real measurements, we first discuss an idealized
case with zero measurement noise.

For coplanar orbits and σj = 0, the TTVIM code finds
the correct planetary parameters with a high rate of success
(Figure 1). The typical precision in the successful cases is
|m2 − m∗

2|/m2 < 0.2, |a2 − a∗
2 |/a2 < 0.02, |e2 − e∗

2| < 0.02,
|�2 − � ∗

2 | < 10◦ and |λ2 − λ∗
2| < 10◦, where the asterisk

denotes the values determined by the TTVIM code.6 This is very
satisfactory. In the absence of measurement errors, the result of
the TTVIM code illustrated in Figure 1 with m2 = 10−4m0 is
insensitive to the actual value of m2.
4 This is because all Fourier terms can be pre-computed for a2, e2, and i2 and
need only to be assembled with the specific Ω2, �2, and λ2 values. The
assembling procedure itself is computationally inexpensive.
5 On a single 2.7 GHz Opteron processor.
6 Except for very small values of e2 for which the errors in �2 can be large.

Figure 1. TTVIM code results for planetary systems with m0 = M�,
m1 = 10−3m0, a1 = 0.1 AU, e1 = 0, and i2 = 0. Planetary parameters
for which the TTVIM code converged to the correct solution were denoted
by blue ×’s. Incorrect solutions were denoted by red dots. We defined the
correct solution as having |m2 − m∗

2|/m2 < 0.5, |a2 − a∗
2 |/a2 < 0.05, and

|e2 − e∗
2 | < 0.05, where m2, a2, and e2 are the original planetary parameters

for which the TTV signal was computed by N-body integration, and m∗
2, a∗

2 ,
and e∗

2 are the values determined by the TTVIM code. In the majority of cases
corresponding to correct solutions, the TTVIM code determined the original
orbital parameters with a better than 2% precision and mass with a better than
20% precision. The two bold solid lines show the planet-crossing (upper) and
Hill-stability limits (lower). We also show the location of the principal mean
motion resonances between the planets (e.g., 2:1 at a2 = 0.16 AU). There
are two lines per resonance corresponding to the left and right separatrices
of resonant motion. The V-shaped profiles are characteristic for mean motion
resonances that become wider with eccentricity.

The main failure mode of the TTVIM code occurs near mean
motion resonances between planets, because resonant pertur-
bations are not (yet) taken into account in TTVIM. While the
resonant signal can improve our chances of the TTV detection
for (near-)resonant planets, it seems less useful in helping us
estimate the mass and orbit of the planetary companion. Specif-
ically, the amplitude and period of the resonant signal can be
fit by a number of different planetary setups corresponding to
different resonances. Thus, without an a priori knowledge of the
mean motion resonance that is responsible for the observed be-
havior, the inversion problem from resonant frequencies alone
is strongly degenerate.

Fortunately, the short-period TTVs underlying the resonant
signal can still be used to determine the planetary parameters
without much ambiguity. As shown in NM08, probably the best
strategy is to isolate short-period frequencies in the signal by
Fourier filter and apply the inversion method to the filtered
signal. The application of this procedure is straightforward in
individual cases (see NM08), where the resonant period, and
thus the appropriate frequency cutoff, can be estimated from
(tj )obs. We verified that this procedure works quite well in >75%
of cases shown in Figure 1 in which the resonant variations are
an issue.

The remaining <25% unsuccessful cases (representing <5%
overall) correspond to the very large values of e2 for which the
Laplacian expansion of the perturbing function in TTVIM is
not convergent (NM08), and/or planetary configurations that
are not Hill stable. Direct N-body integrations can be used to
address the TTV inversion problem in the very high eccentricity
domain, but the CPU cost of these tests is likely to be substantial
and lies beyond the scope of this Letter.
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Figure 2. TTVIM code results for a planet with m2 = 10−4m0 and different levels of the measurement error, σ . See the caption of Figure 1 for a description of
different lines and symbols.

Figure 3. TTVIM code results for an Earth-mass planet (m2 = 3 × 10−6 M�) and two different levels of the measurement error, σ . See the caption of Figure 1 for a
description of different lines and symbols. With σ > 3 s, the TTVIM code can only characterize the Earth-mass planets with very specific orbits.

The measurement errors have a profound effect on the
uniqueness of the inverse problem (Figure 2). For m2 =
10−4 m0, N = 100, and σj = σ = 3 s, corresponding to
the Kepler-like precision of timing measurements for a Sun-
like star with a 2 Neptune-mass planet, unique determination of
planetary parameters can be achieved for most stable systems
with q2 = a2(1 − e2) < 3.3a1, while for σj = σ = 10 s
(Corot-like precision), it is required that q2 < 2.6a1. These
limits approximately correspond to the planetary parameters for
which the amplitude of the short-period TTVs is comparable
to σ .

Figure 3 shows the result of the TTVIM code for an Earth-
mass planet. The region of parameter space in which unique

determination can be achieved from TTVs is relatively small
even with σ = 1 s. Thus, an Earth-mass planet detection and
characterization of its orbit will require a rather fortuitous setup
of the planetary system, in which (q2 −a1)/a1 � 2 (for external
perturber).

4. RESULTS FOR INCLINED PLANETARY ORBITS

We applied the TTVIM code to mock planetary systems
with 0◦ < i2 < 50◦. As in Section 3, we assumed that
m0 = M�, m1 = 10−3 m0, a1 = 0.1 AU, e1 = 0 and used
N = 100 consecutive transits. Figure 4 shows the result for
σj = σ = 0. The (a, e) plot does not differ much from the
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Figure 4. Same as Figure 1 but with i2 �= 0. Most correct solutions (blue
×’s) have |a2 − a∗

2 |/a2 < 0.015, |e2 − e∗
2 | < 0.02, |i2 − i∗2 | < 2◦, and

|m2 −m∗
2|/m2 < 0.2. In (b), the dashed lines denote the libration centers of the

principal mean motion resonances.

coplanar case although it may be noted that the quality of fits
slightly degraded for the large e2 values. This is probably related
to the convergence problems of the perturbation algorithm in
TTVIM. A precise N-body integrator should perform better for
high e2, although it has yet to be shown that an N-body integrator

can be applied to the inclined inverse problem in practice due
to the large CPU cost.

Probably the most exciting result obtained in this work is
that it was possible to determine the mutual inclination of
planets for most planetary systems (Figure 4(b)). Unlike the RV
technique, the TTV method can therefore be used to characterize
the inclination distribution of multi-planet systems. Figure 5
shows the detailed statistic of TTVIM errors in i2. In most cases,
|i2 − i∗2 | < 2◦. The tail of larger |i2 − i∗2 | values corresponds
to the high-eccentricity cases. If the statistic is limited to
q2 = a2(1 − e2) > 0.25 AU (Figure 5(a); dashed line), the
fraction of successful cases with |i2 − i∗2 | < 2◦ increases to
>90%. In the successful cases, orbital angles Ω2, �2, and λ2
are generally correctly determined to within a better than 5◦
precision.

We also studied how the uniqueness of the inclined inverse
problem is affected observational errors. The trends seen in
these tests are very similar to those described in Section 3.
Namely, the instrumental noise sets an upper limit on q2 be-
yond which the determination of planetary parameters from
TTVs is ambiguous. Again, we see that these limits approx-
imately correspond to the planetary parameters for which the
amplitude of the short-period TTVs is comparable to σ . The
results in N08 can therefore be used to estimate whether (or
not) a unique characterization of the specific inclined plan-
etary system may be achieved from TTV observations with
given σ .

We find that TTVs obtained in the coplanar case represent
a good approximation of the TTVs for planetary orbits with
i2 < 20◦. The planar version of the TTVIM algorithm can
therefore be used in these cases to estimate the a2 and e2 values
of the perturbing planet. This helps to narrow the range of initial
guesses for the seven-dimensional fit and represents a factor
of ∼20 speed up of the inversion. The full seven-dimensional
algorithm needs to be used for i2 > 20◦.

5. CONCLUSIONS

The method developed here can be used to analyze TTVs
found for any of the potentially hundreds of planets expected
to be discovered by Kepler (Beatty & Gaudi 2008). Kepler
should be able to detect TTVs of only a few seconds (Holman
& Murray 2005), which should easily exist in many systems,
extrapolating from the RV planets (Agol et al. 2005; Fabrycky
2009).

Figure 5. Distribution of TTVIM errors in i2 (left) and m2 (right) for the case shown in Figure 4. We show the total distribution (solid line) and the one for q2 > 0.25 AU
(dashed). In the latter case, the erroneous determinations with |i2 − i∗2 | > 5◦ are reduced because the algorithm does not need to deal with the difficult case when
q2 ∼ a1. Most cases correspond to |m2 − m∗

2|/m2 < 0.2 (i.e., <20% precision of mass determination) and |i2 − i∗2 | < 2◦.
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Perhaps the most interesting result that comes out of this work
is that the shape of the TTV signal is generally sensitive to the
orbital inclination of the non-transiting planetary companion.
Thus, the TTV method can provide means of determining mutual
inclinations in systems in which at least one planet is transiting.
This parameter cannot be determined by other planet-detection
methods.

TTVIM algorithm can be easily extended to incorporate
uncertainties in the transiting planet’s parameters. This can be
done by sampling dimensions that correspond to the additional
parameters. For example, in N09 we extended the NM08 method
to the case with e1 �= 0. This may be especially relevant to the
transiting planets that will be discovered by Kepler because
these planets are expected to have wider orbits, which are less
susceptible to the circularizing effects of tides. The low CPU
cost of the TTVIM algorithm is the key element which will
make such studies possible.

This work was supported by the NSF AAG program.
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Miralda-Escudé, J. 2002, ApJ, 564, 1019
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