
Composite Froggatt-Nielsen model of flavor

Leandro Da Rold* and Federico Lamagna †

Centro Atómico Bariloche, Instituto Balseiro and CONICET,
Avenida Bustillo 9500, 8400, S. C. de Bariloche, Argentina

(Received 7 February 2022; accepted 27 May 2022; published 15 June 2022)

A natural composite Higgs demands the presence of light resonances at the TeV scale that, in general, are
in conflict with bounds from flavor and CP violation. We propose a composite model with a Froggatt-
Nielsen mechanism that offers new possibilities for the origin of flavor. We analyze the interplay of partial
compositeness and the horizontal U(1) symmetry in achieving the quark masses and mixing angles. We
study the contributions to ΔF ¼ 2 4-fermion operators, as well as to ΔF ¼ 1 and neutron dipole operators.
We find scenarios in which the contribution to left-right and right-handed operators involving the first and
second generations can be suppressed; in particular, for a region of parameter space it is possible to
simultaneously suppress the mixed-chirality contribution to K0 − K̄0 mixing by one power of the Cabibbo
angle, λC, and the dipole moments by λ2C compared with anarchic partial compositeness, possibly making
the resonances accessible at LHC. 4-fermion operators of Bs-meson mixing and left-handed operators are
not suppressed.
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I. INTRODUCTION

The discovery of the Higgs boson has definitely estab-
lished the Standard Model (SM) as the best description
nowadays of the elementary particles and interactions. The
quarks of the SM show a particular pattern of masses and
mixing angles, with ratios that at the TeV scale [1] can be
parametrized in terms of the Cabibbo angle λC as:

mu∶mc∶mt∼λ8C∶λ4C∶1;

md∶ms∶mb∼λ5C∶λ3C∶1;

mb∶mt∼λ3C∶1;

ðVCKMÞ12∼λC; ðVCKMÞ13∼λ3C; ðVCKMÞ23∼λ2C: ð1Þ

In the SM this pattern is generated at high energies by the
Yukawa interactions. However, if the SM is an effective
theory valid up to a scale much larger than the TeV,
the Higgs potential suffers from the hierarchy problem of
the electroweak (EW) scale. One of the most attractive
solutions to this problem is to consider that the Higgs is a
composite state of a new sector that is strongly coupled at
the TeV scale. In this case the Yukawa couplings depend on

the type of interactions between the SM fermions and the
new sector, and the flavor structure must be generated at
energies much smaller than the Planck scale [2].
One of the most interesting paradigms for the generation

of flavor in composite Higgs theories is partial compos-
iteness, in which the SM fermions are elementary fields that
interact linearly with the operators of the new strongly
interacting sector, with bilinear interactions being highly
suppressed [3]. At low energies the linear interactions lead
to mixing between the elementary fermions and the
composite resonances, generating Yukawa couplings with
the composite Higgs that are controlled by the mixing. If
the theory at high energies does not have any flavor
symmetry the partial compositeness is anarchic (APC),
in which case the hierarchy of linear mixing gives a
rationale for the hierarchy of masses and mixing angles.
Since flavor transitions are also controlled by this mixing,
APC contains a built-in Glashow–Iliopoulos–Maiani
mechanism. Still, constraints from the CP-violating
observable in the K meson system, ϵK , as well as mixing
of B-mesons and neutron dipole moments, require the scale
of compositeness to be roughly one order of magnitude
above the TeV, reintroducing a small tension with the
stability of the EW scale. The most stringent constraints
arise from the Wilson coefficient of the left-right operator,
ðd̄RsLÞðd̄LsRÞ, that require resonances with masses of 10–
20 TeV [4], and from dipole operators of quarks of first
generation that require mass over coupling of resonances of
order 5 TeV [5]. Flavor and CP symmetries can alleviate
these issues [6–8], but they are in tension with LHC tests of
compositeness of the light quarks [9]. More promising is
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the proposal of dynamical flavor scales [2], as well as the
addition of tiny bilinear interactions [10].
A very different approach to flavor is the mechanism of

Froggatt-Nielsen (FN) [11,12]. By the introduction of a
U(1) flavor symmetry and the choice of suitable charges for
the SM fields, FN generates Yukawa interactions from
higher dimensional operators, with a well-defined power
counting, that can lead to the pattern of Eq. (1) [13]. Several
details of this scenario depend on the dynamics of the new
sector, such as the mechanism that triggers spontaneous
breaking of the U(1) symmetry, the scale of this breaking
and the phenomenology of the associated axion. Usually
FN requires many heavy fermions [14].
In this paper we propose combining partial composite-

ness with FN, by imposing a U(1) flavor symmetry in the
composite sector, spontaneously broken by the strong
dynamics and respected by the mixing with the elementary
fermions. The flavor structure of the light fermions, that are
identified with the SM ones, depends on the size of the
elementary-composite mixing, as well as on the U(1)
charges, such that the model allows to interpolate between
APC and FN. While the top quark mass requires a
considerable degree of compositeness and dimension four
Yukawa interactions, the masses of the light quarks can be
suppressed by a small mixing, as well as by the Wilson
coefficient of the higher dimensional Yukawa interaction
that is determined by the U(1) charges. The left- and right-
handed mixing angles of the SM fermions also follow a
well-defined pattern determined by mixings and charges.
This interplay opens up new possibilities, in particular
for dimension six flavor violating operators that mediate
ΔF ¼ 1 and ΔF ¼ 2 transitions, as well as for the flavor
diagonal and CP-violating dipole operators. We will show
that for some scenarios it is possible to suppress the Wilson
coefficient of 4-fermion operators involving light right-
handed quarks, as well as those of dipole operators. We will
consider in this work only the sector of quarks.
Related attempts in the lepton sector have being pro-

posed in [15], whereas not fully realistic proposals in the
quark sector were presented in Refs. [16–18]. At the level
of effective field theories some interesting attempts have
been proposed within two Higgs doublet models in [19,20].
Reference [21] has considered an interesting model with a
U(1) horizontal symmetry in which the Higgs and the axion
are pseudo Nambu-Goldstone composite states. A more
related proposal was recently given in Ref. [22], although a
general analysis of flavor constraints is missing.
The paper is organized as follows, in Sec. II we describe

the basic idea and introduce a model with a content of
composite resonances of the strong sector that can generate
the flavor structure of the quarks. We show a set of
solutions that reproduce the quark masses and the
Cabibbo–Kobayashi–Maskawa (CKM) matrix, and study
the interactions with the composite resonances that can
induce flavor violating processes. In Sec. III we show the

predictions for flavor and CP-violating operators, compar-
ing them with APC. The tables shown on this section
contain the most important results of the paper. In Sec. III D
we discuss very briefly constraints from dijets and in
Sec. IV we show some general features of the interactions
of the axion of the theory. Finally, we raise some dis-
cussions and conclude in Sec. V.

II. A MODEL OF FLAVOR WITH PARTIAL
COMPOSITENESS AND FROGGATT-NIELSEN

MECHANISM

Our proposal is similar to anarchic partial compositeness
(APC), where the SM fermions are elementary states that at
a high energy scale ΛUV have linear interactions with
the operators of a new strongly interacting sector:
Lint ⊃ λ̃ f̄Of. In the anarchic scenario there are no flavor
symmetries in the new sector, such that all flavor transitions
involving Of are allowed and of the same order. We
consider a modification of the anarchic paradigm intro-
ducing a horizontal global symmetry Uð1ÞF in the strong
sector, under which the operators can be charged. We
assume that Uð1ÞF is respected by the linear interactions,
and assign to the elementary fermion f the same charge as
Of. In this case the linear coupling λ̃ are block diagonal,
with different blocks associated with sectors with different
charges.
At a low energy scale ΛIR of order few TeV, the

dynamics of the strong sector generates a mass gap and
massive resonances, with the masses of the lowest level
of composite states being m� ∼ ΛIR. Assuming that the
strong sector has an approximate scale invariance,
the running of the couplings is driven by the dimension
of the corresponding operator, ΔOf

, leading to: λ̃fðΛIRÞ∼
λ̃fðΛUVÞðΛIR=ΛUVÞΔOf

−5=2, and generating a hierarchy of
mixing for operators with different dimensions when
ΛIR ≪ ΛUV.
The model also features a spontaneous breaking of

Uð1ÞF in the composite sector, via a charged complex
scalar operator Oϕ which is a singlet under the SM
gauge symmetry. We normalize the charge of Oϕ to 1,
PFOϕ ¼ Oϕ, and we use pf for the charges of the fermions
that are assumed to be integer numbers.
Since the Higgs is a composite state of the strong sector,

two effects enter in the Yukawa interactions. First, if the
fermionic operators are charged under Uð1ÞF, the Yukawa
interactions require insertions of Oϕ, leading to operators
with higher dimensions than in partial compositeness.
Second, the interactions with the elementary fermions
are mediated by the linear mixing, such that the quark
masses depend on the mixing of each chirality and on the
number of insertions of Oϕ.
We find it useful to describe the low energy limit of the

above dynamics in terms of a two-site theory, with the
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elementary fermions and gauge fields of the SM associated
with one site, and the first level of resonances of the strong
sector, including the Higgs, associated with the other site
[23]. We will use small letters for the elementary fields and
capital letters for the composite resonances. The resonances
will have masses m� that we take of the same order,
couplings g� that are taken as: 1 < g� ≪ 4π, and we define
f ¼ m�=g�. For simplicity we assume that there is only one
fermionic resonance for each elementary fermion, and that
they have the same quantum numbers under the SM gauge
symmetry as the elementary ones. We also assume that
there is only one complex scalar resonance excited by the
operator Oϕ.
The interactions between elementary and composite

fermions are given by:

LðmixÞ ⊃ −fðλqjq̄jQj þ λujūjUj þ λdjd̄jDjÞ þ H:c:; ð2Þ

where λfj does not mix generations if pj ≠ pk for j ≠ k.
We find it useful to parametrize λfj as:

λfj ¼ g�ϵfj ¼ g�λ
nfj
C ; f ¼ q; u; d; ð3Þ

with ϵfj being the degree of compositeness of the fermion
fj, and λC ≃ 0.22, such that we parametrize the mixing in
powers of λC. Note that nfj do not need to be integer
numbers.
We consider now the main interactions needed for our

analysis. The strong sector has a global symmetry that
contains the SM gauge symmetry group, as well as Uð1ÞF
factor. There are spin 1 resonances created by the conserved
currents associated with these symmetries that interact with
the fermion resonances. Calling Fμ the lightest spin 1
resonance of Uð1ÞF and PF its generator, the composite
sector contains the interactions:

LðcpÞ
F ¼ g�FQ̄jPF=FQjþg�FŪjPF=FUjþg�FD̄jPF=FDj; ð4Þ

that are not flavor universal if PF is not proportional to the
identity. There are also interactions with the resonances
associated with the SM gauge group that are flavor
universal.
There are higher dimensional interactions with the Higgs

that require insertions of either Φ or Φ† to compensate the
Uð1ÞF charges of the fermions, with Φ being the effective
complex scalar field describing the lowest lying excitation
of Oϕ:

LðcpÞ
y ¼ −Xu

jkQ̄jH̃

�
Φð†Þ

Λ

�βujk
Uk − Xd

jkQ̄jH

�
Φð†Þ

Λ

�βdjk
Dk

þ H:c:; ð5Þ

with Λ the scale at which these operators are generated and:

βujk ¼ jpqj − pukj; βdjk ¼ jpqj − pdkj: ð6Þ

The use of eitherΦ orΦ† depends on the sign of ðpqj − pukÞ
and ðpqj − pdkÞ. We will consider an anarchic scenario, in
which all the coefficients of the coupling Xf are of the same
order, Oðg�Þ. The scale Λ is expected to be of order f,
although it depends on the ultraviolet dynamics that gen-
erates these interactions.
There is a spontaneous breaking of Uð1ÞF as Φ acquires

a vacuum expectation value: hΦi ¼ δΛ, with δ≲ 1. When
evaluating Φ in its vev, Higgs Yukawa couplings with the
composite fermions are then generated:

Yu
jk ¼ Xu

jkδ
βujk ; Yd

jk ¼ Xd
jkδ

βdjk ; ð7Þ

with no sum over repeated indices. We take the order of
magnitude of the vev to be of the size of the Cabibbo angle
in units of Λ: δ ∼ λC.
There can also be interactions with spin 0 composite

states, similar to the Higgs interactions if the states are
neutral under Uð1ÞF, and with a global shift of β for
charged states. The Yukawa couplings of these spin 0
states, called X̃f, are of Oðg�Þ, and they are in general not
aligned with Xf. We will consider the effect of these
interactions in the next section.

A. Fermion masses and mixing

The mixing generates interactions between the elemen-
tary fermions and the Higgs. To leading order in (v=f) and
mixing the mass matrices of the light fermions of the SM
are:

Mf
jk
≃ vðϵqYfϵfÞjk ¼ vλ

nqj
C Xf

jkδ
βfjkλ

nfj
C ¼ vXf

jkλ
nqjþβfjkþnfk
C ;

f ¼ u; d; ð8Þ

where the last equality is obtained by taking δ ∼ λC. A
diagonalization of this matrix will result in the spectrum of
the physical states, along with the rotations between
interaction eigenstates and mass eigenstates. For a given
pattern of charges βf and mixings ϵf, this system can be
solved perturbatively in powers of λC. Moreover, the mass
spectrum and rotation angles can be approximately found
under suitable conditions. By considering a system with
two generations, for M11 ≪ M12;21, the eigenvalues and
eigenvectors can be estimated as:

mfj ∼ g�vλ
nqjþβfjjþnfj
C ; ð9Þ

θfL;jk ∼ λ
nqj−nqkþβfjk−β

f
kk

C ; j < k; ð10Þ

θfR;jk ∼ λ
nfj−nfkþβfkj−β

f
kk

C ; j < k: ð11Þ
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Although a proof of a similar formula for three generations
is more involved, we have checked by performing a
perturbative diagonalization in powers of λC that for the
cases considered in this paper these estimates work well
when considering three generations. Thus we will make
extensive use of these estimates. In some cases we find
corrections to these estimates that end up being of the same
order in powers of λC, we find this to be the case for quarks
of the second generation. This occurs when the Yukawa
matrices have off-diagonal entries that contribute at the
same order as the diagonal ones.

1. Solutions leading to the SM quark masses
and mixing angles

We consider the case in which the rotations into physical
states Uu

L and Ud
L are of order VCKM. Since the most

stringent constraints from flavor transitions arise from the
K-system, we have explored the possibility to obtain θdL;jk
smaller than the CKM angles, but we have not found viable
solutions of that kind. To minimize the flavor transitions we
look for charge textures able to generate suppressed θdR;jk
and θuR;jk.
Avoiding suppression of the top mass requires that we

take nq3 ¼ nu3 ¼ βu33 ¼ 0; this in turn means equality of
the third generation charges: pq3 ¼ pu3. For simplicity we

pick: pq3 ¼ pu3 ¼ 0; a nonzero value results in a shift of all
charges by that value. By making use of Eq. (10), to
reproduce the CKM angles in the up sector we demand:

jpq1j ≃ 3 − nq1; jpq2j ≃ 2 − nq2; ð12Þ

nq1 − nq2 þ jpq1 − pu2j − jpq2 − pu2j ≃ 1; ð13Þ

where we have assumed nq1 ≤ 3 and nq2 ≤ 2. Since the
same nqj and pqj enter in the down sector, Eq. (12) leads to
θdL;13 ∼ λ3C and θdL;23 ∼ λ2C, i.e.: ðUd

LÞj3 ∼ ðVCKMÞj3. Notice
that although the charges of the fermions are integer
numbers, the previous equations do not require the degree
of compositeness parametrized by nfj to be associated with
an integer number; thus in the rest of the paper we will take
nfj to be continuous variables.
For the bottom we take pd3 ¼ 0; therefore the ratio

mb=mt is controlled by ϵd3, with nd3 ∼ 3, see Eq. (1). We
will write the hierarchy of right-handed down couplings in
terms of ϵd3, as ϵd1;2 ¼ λ

nd1;2
C ϵd3, while remembering that

this hierarchy is further suppressed with respect to the
hierarchy of the up sector by a factor of λ3C; in the rest of the
work we will make extensive use of this relation. We can
then write a solution, consisting of the following charges,
and parametrized by the right-handed hierarchies nui; ndi:

pq1 ¼ −1; pq2 ¼ 0; nq1 ¼ nq2 ¼ 2;

pu1 ≃ −7þ nu1; pu2 ≃ 2 − nu2; nu1 ∈ ½0; 6�; nu2 ∈ ½0; 2�;
pd1 ≃ −4þ nd1; pd2 ≃ 1 − nd2; nd1 ∈ ½0; 3�; nd2 ∈ ½0; 1�: ð14Þ

The left charges are fixed once we pick nq1 ¼ nq2 ¼ 2.
There is freedom in the overall signs of the charges, but not
in the relative sign between them. That is, in order to
reproduce Uu†

L ≃ VCKM, we make the choice pq1 ≤ 0,
pq2 ≥ 0. The choice of nq1 ¼ nq2 ¼ 2 can be explained
by looking at the interaction of the left-handed quarks with
spin 1 resonances, as we describe in Sec. II B. Once the left

charges have been fixed, using Eq. (9) allows to fix the right
charges, as a function of nfi. The allowed ranges for the
parameters nfi is thus limited by the same equation, such
that larger nfi with fixed nqi and βii implies a higher
suppression of the fermion masses.
For the set of solutions the β matrices as a function of the

parameters nfi are:

βuðnuiÞ ¼

0
B@

6 − nu1 3 − nu2 1

7 − nu1 2 − nu2 0

7 − nu1 2 − nu2 0

1
CA; βdðndiÞ ¼

0
B@

3 − nd1 2 − nd2 1

4 − nd1 1 − nd2 0

4 − nd1 1 − nd2 0

1
CA: ð15Þ

Notice that when nfi ¼ nmax
fi (i.e.: their upper limits) the

diagonal elements become zero and all the mass suppres-
sion comes from the coefficients ϵfi, both left and right.
For the given solutions, the mass matrices of Eq. (8) are

independent of the parameters nfi; thus the spectrum and

the rotations matrices are independent of the values of these
parameters. As already mentioned, a particularity of this
solution with nq1 ¼ nq2 ¼ 2 is that the rotation of the left-
handed down sector is also of order Ud

L ≃ VCKM. The same
is not true for solutions that have nq2 ¼ 1, where we do find
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a suppression in the angle θdL;12, but those solutions have an
enhancement of the nondiagonal left-handed coupling of
the up sector with respect to APC, while not having a
suppression in the nondiagonal left-handed coupling of the
down sector.
To lowest order in λC the rotation matrices Uf

R are
given by:

Uu
R∼

0
B@

1 λ5C λ7C

−λ5C 1 λ2C
−λ7C −λ2C 1

1
CA; Ud

R∼

0
B@

1 λ3C λ4C
−λ3C 1 λ1C
−λ4C −λ1C 1

1
CA; ð16Þ

where we are omitting coefficients of Oð1Þ that can be
calculated in terms of the coefficients Xf

ij of the Yukawa
mass matrices. These coefficients, as well as higher order
corrections that make these matrices orthogonal to a given
nontrivial order in λC, are taken into account in our
calculations.
Finally we need to address the charge degeneracy in

these solutions. As one can see in Eq. (14), the charges of
second and third generations of the left-handed quarks are
equal, as well as those of right-handed down or up quarks
when either nd2 ¼ nmax

d2 or nu2 ¼ nmax
u2 . When charges are

degenerated among different generations the couplings λfj
do not need to be diagonal in that subspace. One can choose
a basis for the elementary fermions such that the coupling
becomes triangular in the subspace [2,24]; that is, there is a
basis in which the mixing can be written as:

LðmixÞ⊃−ðλqÞjkfq̄jQk−ðλuÞjkfūjUk−ðλdÞjkfd̄jDkþH:c:;

ð17Þ

with the coupling matrix

λf ¼

0
B@

λf1 0 0

0 λf2 0

0 tf32λf2 λf3

1
CA; ð18Þ

with tf32 ¼ Oð1Þ, in the case of generations 2 and 3 having
degenerate charges. If another pair were degenerated, then
tfij ≠ 0; i > j. This can further be parametrized as
λf ¼ tfg�ϵf, with tf a lower-triangular matrix with its
diagonal elements equal to 1. Thus the effect of the
degeneracy is the insertion of the matrices tf, with
f ¼ q, u, d, depending on which fermions are degenerate.
As we will see below, this degeneracy will not play a
significant role in most of our analysis, as the leading order
in λC is dominated by the diagonal contributions or, in some
particular cases, for this set of solutions the corrections are
of the same order as the diagonal ones. tq does however
play a role in the modified left-handed coupling between
Ztc, where the absence of this correction results in a higher

suppression of the coupling for certain values of the
parameters.

B. Interactions with resonances

In order to study the flavor constraints, we must first
obtain the couplings between the elementary fermions and
the resonances of the theory that are responsible for
mediating flavor transitions. We find it useful to distinguish
between interactions with resonances of either spin 1 or 0.
These interactions can be written in terms of the elemen-
tary-composite mixings and the couplings between reso-
nances. One must also rotate the elementary fermions into
the mass eigenstates. We have, for spin 1 interactions:

gfL;ij ≃ g�ðUf†
L ϵqcqϵqU

f
LÞij;

gfR;ij ≃ g�ðUf†
R ϵfcfϵfU

f
RÞij; f ¼ u; d; ð19Þ

where cq and cf are diagonal matrices with coefficients of
Oð1Þ that are not degenerate for the case of Uð1ÞF.
In the case of small mixing angles, we can approximate

the rotations, and get an estimate for the different flavor
transitions:

gfL;12 ∼ g�½θfL;12ðϵ2q1 − ϵ2q2Þ − θfL;13θ
f
L;23ϵ

2
q3�;

gfL;23 ∼ g�½θfL;23ðϵ2q2 − ϵ2q3Þ − θfL;13θ
f
L;12ϵ

2
q1�;

gfL;13 ∼ g�½θfL;13ðϵ2q1 − ϵ2q3Þ − θfL;12θ
f
L;23ϵ

2
q2�: ð20Þ

Equivalent expressions hold for the right-handed couplings,
by replacing ϵq → ϵf and θfL → θfR.
For the interaction with a spin 0 resonance, we have the

following structure:

yfij ¼ ðUf†
L ϵqỸfϵfU

f
RÞij; ð21Þ

which involves the matrix Ỹf, which has the same structure
as the Yukawa couplings with the Higgs, but is not
necessarily aligned to it, and hence will not be diagonalized

by rotations Uf
L;R. That is, Ỹ

f
jk ¼ X̃f

jkδ
βfjk , with X̃ being

Oðg�Þ coefficients.
Let us briefly discuss the structure of the flavor violating

couplings. As can be seen from the interactions with spin-1
resonances in the small-angle approximation, Eq. (20),
flavor transitions depend on an interplay between the
degree of compositeness and the mixing angles. On one
hand in our model the degree of compositeness of some
chiral fermions can be larger than in APC, in some cases
increasing flavor violation, on the other hand the right-
handed mixing angles can be much smaller than in APC,
their size being determined by the Froggatt-Nielsen charge
of the fermions. Below we show that, given our choice of
charges, the right-handed mixing angles are very sup-
pressed and the product is smaller than in APC, whereas
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the left-handed couplings are of the same size as in APC. A
similar situation holds for the couplings with spin 0 states,
although in this case analytical expressions are larger and
more complicated.
Let us evaluate these interactions in the case of the

solution described above. We have seen how the parameters
nd1;d2 and nu1;u2 are not fixed, but nqi are, as are the
rotations into physical states. This means that out of the
couplings above, we expect gfL and yf to be independent of
nfi. For the spin 0 interactions this is a consequence of the

shape of matrices βf, as the combination ϵq · λ
βf

C · ϵf
produces a matrix that is independent of the nfi. When
evaluating these interactions, we must take into account
that there may be phases in the different terms, and as such
we must avoid artificial cancellations.
For interactions with a spin 1 resonance, we look

at Eq. (20) for the left-handed coupling. Using that
nq1 ¼ nq2 ¼ 2 and Ud

L ∼ Uu
L ∼ VCKM, we have as the

leading order:

gdL ∼ guL ∼ g�ϵ2q3

0
B@

λ4C λ5C λ3C
… λ4C λ2C
… … λ0C

1
CA; ð22Þ

where the lower triangular block is not shown since the
matrix is symmetric. Notice that these flavor violating
couplings are of the same size as in APC.
The right-handed couplings of the spin 1 resonances

depend on the values of nfi; as Uf
R are fixed all the

dependence will be through the values of ϵf. We get:

gdR ∼ g�ϵ2u3

0
B@

λ6−12C λ9−11C λ10C
… λ6−8C λ7C

… … λ6C

1
CA;

guR ∼ g�ϵ2u3

0
B@

λ0−12C λ5−9C λ7C
… λ0−4C λ2C
… … λ0C

1
CA; ð23Þ

where again the lower triangular block is equal to the upper
one. The coefficients that do not involve the third gen-
eration depend on nfi through some nontrivial functions;
the range shown in the exponent of these coefficients
corresponds to the interval of those functions for the values
of nfi in Eq. (14). On the other hand the coefficients
involving the third generation are dominated by the con-
tributions depending on nu3 or nd3, which are fixed in our
solution. Approximate expressions for these functions can
be obtained straightforwardly by using the small angle
approximation. To visualize this dependence we take nfi
real, we evaluate the Oð1Þ numerical coefficients taking
care to avoid spurious cancellations, and we obtain the

contour plots of logλCðgfR;12=g
f;ðAPCÞ
R;12 Þ shown in Fig. 1,

namely the power of λC that suppresses the coupling
compared with APC. For down and up sectors a larger
suppression requires larger values of nfi, as well as nd1 > 0

and nu1 > 1.1

For the couplings with a spin 0 resonance we have to
distinguish between up and down sectors. We get:

gdLR∼g�ϵq3ϵu3

0
B@
λ8C λ7C λ6C

λ9C λ6C λ5C
λ7C λ4C λ3C

1
CA; guLR∼g�ϵq3ϵu3

0
B@
λ8C λ5C λ3C
λ9C λ4C λ2C
λ7C λ2C λ0C

1
CA:

ð24Þ

Here we show only the dominant term in powers of the
Cabibbo angle, and, as stated above, these flavor transitions
are all independent of the values of nfi.
As mentioned above, in the presence of degenerate

charges one must introduce couplings between elementary
and composite sectors which are nondiagonal, but triangu-
lar, with nonzero elements connecting these generations.
We considered the effect of these nondiagonal couplings,
present in the left sector as nq2 ¼ 2, and in the right
sector only if nd2 ¼ nmax

d2 or nu2 ¼ nmax
u2 . This is easily

calculated by using the appropriate insertions of tf in
our calculations. We found that the leading order in
powers of λC is unchanged in interactions with either
scalar or vector resonances; this is a particular result of the
solution that we are considering, in which the new con-
tribution is of the same order as those arising from
diagonal λf.

C. Coefficient of dipole operators

We find it useful to discuss in this section the general
flavor structure of the Wilson coefficient of dipole oper-
ators that are induced at one loop level by exchange of
resonances. The dipole operators can be of different kinds,
depending on which boson closes the loop. In Eq. (25) we
show an estimate in terms of the relevant parameters, in
which we add different contributions that include: Uð1ÞF
resonance in the first three terms, neutral Higgs in the
fourth term, and charged Higgs in the last term,

dfij ¼ g�½Uf†
L ϵqðP2

qYf þ PqYfPf þ YfP2
f þ YfYf†Yf

þ Yf0Yf0†YfÞϵfUf
R�ij; ð25Þ

where f is either u or d and f0 ≠ f. There are also
contributions with exchange of spin 1 resonances with
the quantum numbers of the gluons, W’s and Z that in

1Taking nfi to be integer, to have a suppression with respect to
APC one has to choose nu2 ¼ nmax

u2 and nd2 ¼ nmax
d2 . This causes

the charges of the right-handed second generation quarks to be
degenerate with those of the third generation.
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general are suppressed [5]; eventually we do not expect
them to be larger than that of F.
Dipole operators can involve either q̄L;i and qR;j or q̄R;i

and qL;j; as usual in the case i ≠ j we call their Wilson
coefficients Cij and C0

ij

III. CONSTRAINTS

In this section we study the main flavor constraints
present in our model for the specific solution defined
above. We also analyze constraints from dijets at LHC and
from mixing of the real component of Φ with the
Higgs field.
We make use of the couplings calculated in the previous

section, at leading order in powers of λC. We compare the
size of the Wilson coefficients with respect to those of
APC. We consider several flavor and CP-violating proc-
esses, that are conveniently organized as:ΔF ¼ 2,ΔF ¼ 1,
and ΔF ¼ 0.

A. Constraints from ΔF= 2 transitions

These processes come from 4-fermion contact inter-
actions that, by using Fierz identities, can be reduced to
eight dimension six operators whose Wilson coefficients
have stringent bounds [25]. We follow the notation of that
reference:

HΔF¼2
eff ¼

X
i;j

�X5
k¼1

C
qiqj
k Q

qiqj
k þ

X3
k¼1

C̃
qiqj
k Q̃

qiqj
k

�
; ð26Þ

with

Qij
1 ¼ ðq̄αL;jγμqαL;iÞðq̄βL;jγμqβL;iÞ;

Qij
2 ¼ ðq̄αR;jqαL;iÞðq̄βR;jqβL;iÞ;

Qij
3 ¼ ðq̄αR;jqβL;iÞðq̄βR;jqαL;iÞ;

Qij
4 ¼ ðq̄αR;jqαL;iÞðq̄βL;jqβR;iÞ;

Qij
5 ¼ ðq̄αR;jqβL;iÞðq̄βL;jqαR;iÞ; ð27Þ

where α and β are color indices. Q̃
qiqj
k can be obtained from

Q
qiqj
k by flipping the quark chiralities.
In APC the most stringent bounds for ΔF ¼ 2 processes

arise from Csd
2 , C̃sd

2 , and C
didj
1 , that require m� ≳ 5–8 TeV,

and from Csd
4 that requires m� ≳ 10–20 TeV, with some

dependence on the details of the model. Less stringent but
still sizeable are the bounds from Cbd

2;4, C
bs
2;4, C

cu
1;2;4, that

require m� ≳ 0.5–3 TeV [26,27].
Exchange of spin 1 and spin 0 resonances give con-

tributions to these Wilson coefficients that can be written in
terms of the couplings of the previous section. The spin 1
contributions are:

FIG. 1. Flavor violating couplings of spin 1 resonances with light right-handed quarks, compared with APC. On the left we show

logλCðgfR;12=g
f;ðAPCÞ
R;12 Þ for down-type quarks, and on the right for up-type quarks, as functions of the degree of compositeness of the

quarks parametrized by the exponents nfi. Darker color (left and down region) corresponds to smaller exponent, and lighter color (up
and right region) to larger exponent. For down (up) quarks, the exponent in the upper-right corner is 2 (2), and in the lower-left corner is
0 (−2).
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Cij
1 ¼

ðgfL;ijÞ2
m2�

; C̃ij
1 ¼

ðgfR;ijÞ2
m2�

; Cð1Þ;ij
4 ¼gfL;ijg

f
R;ij

m2�
: ð28Þ

Spin 0 resonances contribute to the following coefficients:

Cij
2 ¼

ðgfLR;ijÞ2
m2�

; C̃ij
2 ¼

ðgfLR;jiÞ2
m2�

; Cð0Þ;ij
4 ¼ gfLR;ijg

f
LR;ji

m2�
:

ð29Þ

To obtain a suppression of Csd
1 and Ccu

1 in K and D
systems as efficient as in APC requires gfL;12 ≲ λ5C. From

the first term of Eq. (20), assuming nq1 ≥ nq2 and θfL;12 ∼
λC gives: nq2 ≥ 2, whilst the second term is saturated for

θfL;23θ
f
L;13 ∼ λ5C, i.e.: when θ

f
L;23 and θ

f
L;13 are of CKM order.

This is the reason why we have not considered solutions
with nq2 < 2. If θCKM23 and θCKM13 were generated one in the
up and the other in the down sector, one could look for a
solution with a suppressed second term in Eq. (20), but we
have not found such a solution.
We show the prediction for the Wilson coefficients

normalized in terms of what is obtained for APC; we
express this ratio in powers of λC and focus on the
exponent, such that larger exponent corresponds to larger
suppression. This is shown in Table I, where we write

logλC ðCX=C
ðAPCÞ
X Þ for each meson.

Several patterns emerge in Table I. Columns correspond-
ing to C1 and C2 are all zero, meaning that these
coefficients are of the same size as in APC for the solution
that we have chosen. The row corresponding to Bs is also
zero, thus having no suppression with respect to APC for
this meson. As we have previously shown, for our model
the left-handed couplings with a spin 1 resonance are all of
the same order as those in APC; thus C1 has this same
behavior. C2 is also of the same order as in APC, due to the
fact that the couplings gfLR, Eq. (24), have the upper
triangular block of the same order as APC. Regarding
Bs, it also has couplings gdLR;32 and g

d
R;32 of the same size as

APC; thus none of its Wilson Coefficients are suppressed.

Regarding the dependence of these coefficients on nu;d, as
we discussed in the previous section, only those quantities
that depend on gfR can have a dependence on nf, then only

coefficients C̃1 and Cð1Þ
4 have a dependence with these

parameters. This dependence can be understood from the
plots in Fig. 1, as those Wilson coefficients are proportional
ðgfRÞ2 and gfR, respectively. In the table we show the range of
values that are obtained for nf varying in the corresponding
intervals. For the K-meson a suppression is obtained as
long as nd1 and nd2 are positive, with a suppression Oðλ2CÞ
in C̃1 and OðλCÞ in C4 for nd1 ≳ 1 and nd2 ≳ 0.5, and a
maximum suppressionOðλ4CÞ in C̃1 andOðλ2CÞ in C4 for the
maximum values of nd1;2. For the D-meson suppression is
obtained for nu1; nu2 ≳ 1, with a suppression Oðλ2CÞ in C̃1

and OðλCÞ in C4 for nu1; nu2 ≳ 1.5, and a maximum
suppressionOðλ4CÞ in C̃1 andOðλ2CÞ in C4 for the maximum
values of nu1;2.

2

Overall, we obtain that the most stringent constraints that
involve right-handed couplings, can be suppressed,
whereas the left-handed ones are as in APC. This implies
that a smaller left-compositeness of the top quark ϵq3 is
required, trading it for larger right-handed compositeness in
order to accurately reproduce the top mass, as ϵq3 ¼ 1=g�
and ϵu3 ¼ 1.

B. Constraints from ΔF= 1 transitions

The main effects arise from the following classes of
operators: dipole operators that give the most stringent
bounds of this subsection, penguin operators that modify
the Z couplings, and operators that modify the W cou-
plings. The last two produce smaller effects and are rather
model dependent, since by the introduction of symmetries
some of them can be protected [28]. Below wewill focus on
dipole operators as well as on flavor violating Z couplings
with the top.

1. Dipole operators

For ΔF ¼ 1 processes the effective Hamiltonian with
dipole operators can be written as [5]:

HΔF¼1
eff ¼

X
i;j

ðCqiqj
7 Q

qiqj
7 þ C

0qiqj
7 Q

0qiqj
7 Þ; ð30Þ

with

TABLE I. Summary of model results for the Wilson coeffi-
cients of ΔF ¼ 2 operators. Each cell contains the value of

logλC ðCX=C
ðAPCÞ
X Þ that shows the amount of suppression (or

enhancement) with respect to APC, for each meson. For an
explanation of the meaning of cells with a range of values read the
text.

ΔF ¼ 2 C1 C̃1 Cð1Þ
4 C2 C̃2 Cð0Þ

4

K 0 0 to 4 0 to 2 0 4 2
Bd 0 4 2 0 4 2
Bs 0 0 0 0 0 0
D 0 −4 to 4 −2 to 2 0 4 2

2If only integers nf are considered and the Oð1Þ parameters of
the theory are strictly fixed to unity, one gets only the extremes of
the interval shown in the cells in the case of the K-meson, with
the suppression corresponding to nd2 maximum and nd1 > 0. In
the case of the D-meson, for integer nf, there are three different
values for these Wilson coefficients depending on the value of
nui, for C̃1: −4, 0, 4 and for C̃ð1Þ

4 : −2, 0, 2.
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Q
qiqj
7;γ ¼ emqi

16π2
ðq̄LjσμνqRiÞFμν; Q

qiqj
7;g ¼ gsmqi

16π2
ðq̄LjσμνTaqRiÞGa

μν;

Q
0qiqj
7;γ ¼ emqi

16π2
ðq̄RjσμνqLiÞFμν; Q

qiqj
7;g ¼ gsmqi

16π2
ðq̄RjσμνTaqLiÞGa

μν; ð31Þ

with Ta the color generators, and Fμν and Gμν the field
strength of photons and gluons, respectively. The dominant

bounds in APC arise from the Wilson coefficients of: Cð0Þsd
7;g ,

Cð0Þbs
7;V , and Cð0Þcu

7;g , that require f ≳ 1–2 TeV [5,27,29].
The dipole operators can be of different kinds, depending

on which boson closes the loop. In Eq. (25) we added the
different contributions, which include Uð1ÞF resonances,
neutral Higgs, and chargedHiggs in the loop.We summarize

our results in Table II, where we show logλC ðdfij=df;ðAPCÞij Þ
for the different flavor combinations involved.
We obtain that in the case of ΔF ¼ 1, for most flavor

transitions there is at least one contribution that is of the
same size as in APC. This is not the case for one of the
chiral structures of sdg and cug, where we obtain a
suppression λ2C. For C

0
7ðbsγÞ we obtain a range of values

that depend on nd2.
As a summary, adding all the contributions and chiral

structures we do not obtain suppressions compared
with APC.

2. Ztc and Zbs interactions

Experimental bounds on BRðt → ZcÞ lead to gZtc ≲ 0.01
for left- and right-handed chiralities [30,31]. Although
these interactions are model dependent, since it is possible
to protect one of the couplings with discrete symmetries
[28], in general it is not possible to protect both chiral
couplings at the same time. In partial compositeness one
can estimate: δgZtc ∼ ðg=2Þϵ2ϵ3c23c33ðv=fÞ2, with cij num-
bers that depend on the flavor structure of the model, c23
connecting second and third generations in the composite
sector, ϵj being the left-handed (right-) degree of compos-
iteness for δgZL;tc (δgZR;tc).

In the present model the coefficients cij are given by

Yu
ij=g� ∼ λ

βuij
C , Eq. (7), and the degree of compositeness is

given by ϵfj ∼ λ
nfj
C . For the solutions of Eq. (14) we find

that the right-handed coupling has a size δgZR;tc ∼ λ2Cðv=fÞ2,
that is of the same order as APC [32]. For ðv=fÞ2 ∼ 0.1,
δgZR;tc ∼ 5 × 10−3. The left-handed coupling, however, has
a dependence on parameters ndi. We find this coupling to
be within the range λ2Cðv=fÞ2 (for nu2 ¼ 2) to λ4Cðv=fÞ2
(nu2 < 2). We find that this coupling suffers from the effect
of matrix tq present due to charge degeneracy between 2nd
and 3rd generation left-handed quarks. Without the effect
of this matrix, however, coupling can be as small as
λ6Cðv=fÞ2 for nu2 ¼ 0; nu1 < 6.
In the 14 TeV run of LHC, with 3000 fb−1, it is expected

to probe δgZtc ∼ 3–6 × 10−3 at 95% CL, testing the right-
handed coupling of the present model, as well as APC,
for ðv=fÞ2 ∼ 0.1.
For the Zbs interaction, we calculate the left-handed

coupling δgZL;bs to be within the range λ2Cðv=fÞ2 (for
nd2 ¼ 1) to λ4Cðv=fÞ2 (for nd2 ¼ 0). The right-handed
coupling has a size, δgZR;bs ∼ λ7Cðv=fÞ2, that is of the same
order as APC.
Bs → μμ strongly constraints gZbs. By making use of the

experimental measurements [33–35], for a generic spec-
trum of resonances, a crude estimate leads to
ϵ2q3ðv=fÞ2λ2−4C ≲ 10−5. This bound could be satisfied for
nmin
d2 , ðv=fÞ2 ¼ 0.1, and ϵq3 ≃ 0.3, but would require a

tuning of order λ−2C for nmax
d2 . The presence of symmetries

protecting down-type Z couplings can relax this
tension.

C. Constraints from ΔF= 0 processes

For ΔF ¼ 0 we also look at the dipole operators that
in APC are dominated by the down-quark that requires
f ≳ 4–5 TeV [5,27]. We focus on d, u, and c quarks. In
order to get the leading contribution to these Wilson
coefficients, we must analyze the misalignment taking
place between the dipole operators and the mass matrix.
This is of particular importance in the case of the Uð1ÞF
vector closing the loop, because although the matrix
combinations in the first three terms of Eq. (25) are
proportional to the same Yukawa matrix, insertions of
the fermion charges αq and αf break the alignment at higher
orders, thus contributing to a phase. In Table III we show
the power of the leading order contribution to these

TABLE II. Summary of ΔF ¼ 1 coefficients of dipole oper-
ators. We show the value of logλCðC=CðAPCÞÞ for the ratios of the
Wilson coefficients normalized with respect to APC.

ΔF ¼ 1 Uð1ÞF ðYfÞ3 ðYf0 Þ2Yf

C7ðbsγÞ 2 0 0
C0
7ðbsγÞ

n
0
6
ðnd2 ¼ 0Þ
ðnd2 ¼ 1Þ

0 0

CðsdgÞ 0 0 0
C0ðsdgÞ 2 2 2
CðcugÞ 0 0 0
C0ðcugÞ 2 2 2
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coefficients. We find a suppression of order λ2C for the
Uð1ÞF in the loop, in all three quarks d, u, and c. When
looking at contributions from the Higgs in the loop, with a
cubic dependence on the Yukawa, no such alignment is
present. In those contributions we find, for both up and
down sectors, a dependence on the parameters of our
model, nu1;u2 or nd1;d2.
To better understand the dependence of

logλC ðdfii=df;ðAPCÞii Þ on the parameters of the theory we
show in Fig. 2 the contribution from the neutral Higgs. We
see that for ddV (left panel), no such suppression is found if
nd1 ¼ nmax

d1 ¼ 3; however, for smaller values of nd1 the
suppression can be of order λ2C and larger. In the case of the
up sector, we see a different dependence for the up quark
(middle panel) or the charm quark (right panel). Whereas
the contribution to the up quark is of order APC for
nu1 ¼ nmax

u1 ¼ 6, and has larger suppressions for smaller
values of nu1, the contribution to the charm has a stronger
dependence on nu2, being of order APC when nu2 ¼
nmax
u2 ¼ 2 and smaller for nu2 < nmax

u2 . Here we see a small

tension withΔF ¼ 2D-meson constraints that prefer larger
nu2 ¼ nmax

u2 to suppress C̃1 and C4, although there is a
window where coefficients with right-handed quarks are
suppressed for both processes.
In the case of the charm dipoles, the contribution of a

charged Higgs has the same size as in APC, irrespective of
values of nui;di. The fact that no suppression is observed in
this Wilson coefficient is due to the fact that the contri-
bution of the third generation quark inside the loop is
dominant, as its degree of compositeness is the largest.
It is interesting to notice that the dependence on ϵf of the

coefficients of dipole operators of Fig. 2 is opposite to the
one of right-handed couplings of spin 1 particles, Fig. 1.
The behavior of the right-handed couplings gfR;12 is
determined by their quadratic dependence on ϵf, arising
from the two insertions of elementary-composite mixing.
The dependence of the dipole coefficients can be
understood by considering a single generation: as the
mass involves the combination m ∼ ϵqYϵf, the dipole
d ¼ ϵ1Y3ϵf scales with ϵf as d ∼m3ϵ−2q ϵ−2f . Considering
the presence of three generations adds the rotations into
physical states, which are however mostly dominated by
their diagonal part.

D. Constraints from LHC

Dijets at LHC give bounds on the compositeness scale of
the light quarks [36–42]. Following Ref. [43], see also [44],
the most stringent constraints arise from the 13 TeV run that
gives bounds on the Wilson coefficients of 4-fermion
operators with light quarks, roughly of order:
ðgfL=R;11v=m�Þ2 ≲ 10−3. For the present model one gets:

λ
2nf1
C ≲ f=ð8 TeVÞ, that is f ¼ 1 TeV is saturated for
nf1 ≃ 0.7. Thus one has to demand nf1 ≳ 0.7, discarding

(a) ddV (b) uuV (c) ccV

FIG. 2. Wilson coefficient of flavor diagonal dipole operators compared with APC: logλC ðdfii=d
f;ðAPCÞ
ii Þ with neutral Higgs

contributions, for down (left panel), up (middle panel), and charm (right panel) quarks, as function of nfi parameters of the theory.
A darker color corresponds to smaller exponent, and a lighter color to a larger exponent. In all three cases, the exponent in blue regions is
0, thus leading to no suppression.

TABLE III. Summary of ΔF ¼ 0 coefficients of dipole oper-
ators. We show the value of logλCðC=CðAPCÞÞ for the ratios of the
Wilson coefficients normalized with respect to APC. For the
Uð1ÞF vector loop, as the coefficient can be aligned at
zeroth order with the mass matrix, we show the first nonzero
contribution.

ΔF ¼ 0 Uð1ÞF ðYfÞ3 ðYf0 Þ2Yf

ddV 2
n
2−6
0

ðnd1 < 3Þ
ðnd1 ¼ 3Þ

n
2
0
ðnu1 < 6Þ
ðnu1 ¼ 6Þ

uuV 2
n
2−8
0

ðnu1 < 6Þ
ðnu1 ¼ 6Þ

n
2
0
ðnd1 < 3Þ
ðnd1 ¼ 3Þ

ccV 2
n
2−4
0

ðnu2 < 2Þ
ðnu2 ¼ 2Þ

0
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the region of the solutions with a large degree of compos-
iteness of the right-handed quarks of the first generation.
The particles associated with the radial part of the field

Φ, being electrically neutral and CP-even, can mix with
the Higgs. As this field is a singlet, it has no effect on the
oblique electroweak parameters, but it renormalizes the
Higgs couplings to the SM fields. From Refs. [45,46], a
combination of ATLAS and CMS results for single Higgs
production gives a bound on the mixing angle: cos θ >
0.94 at 95% confidence level. Considering a renormalizable
potential with a quartic coupling λHΦjΦj2jHj2, in terms of
the physical mass of the heavy state this bound leads to
Mϕ=λHΦ ≳ 1.5 TeV, where for simplicity we have
assumed vΦ ∼Mϕ ≫ Mh.

IV. THE AXION OF COMPOSITE
FROGGATT-NIELSEN

There has been interest in composite axions in the last
years [21,47–49], see also Refs. [50,51] for previous
studies on the Froggatt-Nielsen axion. In the present paper
the axion is associated with the Nambu–Goldstone boson
of the complex SM singlet:

ϕ ¼ faeia=fa þ…; ð32Þ

with decay constant fa ¼ hϕi. Usually fa is expected to be
of order m�=g�, although perhaps it could be possible to
differentiate these scales, if for example they arise from
different sectors or are generated at different energies.
In the absence of explicit breaking of Uð1ÞF in the

elementary sector the axion remains massless, up to effects
from anomalous breaking generated by QCD. In the
presence of a composite sector with global SUð3Þc sym-
metry, gauged by QCD, there can be large contributions to
the axion mass that dominate over the IR ones [52].
Besides, there can also be contributions from the elemen-
tary sector. These effects make the composite axion rather
dependent on the details of the model. In the following we
will only focus on the properties of the axion that are
independent of those details and leave a deeper analysis of
its phenomenology for the future.
Since the SM fermions are charged under Uð1ÞF, the

axion is coupled to them, leading to a generalised
Dine-Fischler-Srednicki-Zhitnitsky-type of model
[53,54]. By redefinition of the quarks: f → eiγ

5PFa=faf,
the axion is removed from the Yukawa terms and axion-
fermion interactions are generated in the kinetic term. In the
mass basis we get:

L ⊃
∂μa

2fa
f̄jγμðcVfjk þ cAfjk γ

5Þfk; f ¼ u; d: ð33Þ

The vector and axial-vector couplings are:

cV;Afjk ¼ ð�U†
fL
PFUfL þ U†

fR
PFUfRÞjk: ð34Þ

For nonuniversal F-charges, cV;Af are nondiagonal and
induce flavor transitions. For small mixing angles, to
leading order these couplings can be approximated by:

ðU†
fPFUfÞjk ¼ pfjδjk þ ðpfj − pfkÞθf;jk

þ ðpfj þ pfk − 2pflÞθf;jlθf;kl; l ≠ j; k:

ð35Þ

By making use of Eqs. (10) and (11) in (34) it is
straightforward to obtain the size of CV;Af in the model.
The flavor violating effects of the axion depend on the

decay constant fa and on the axion mass, whose values we
did not need to fix for the analysis of the previous sections.
Since these quantities can take a wide range of values,
particularly the mass can vary over many orders of
magnitude depending on features that are not generic,
we postpone their analysis for a future work.

V. CONCLUSIONS AND DISCUSSIONS

We have built a model that realizes flavor in the quark
sector by the interplay of two paradigms: partial compos-
iteness of the fermions and the Froggatt-Nielsen mecha-
nism, by including the FN field in the composite sector, as
well as the Higgs field. FN gives a well-defined pattern of
Yukawa couplings in the composite sector, determined by
the charges of the composite operators under the global
Uð1ÞF symmetry. Partial compositeness is, as usual, real-
ized by linear mixing of the elementary quarks with the
composite sector, with the mixing controlling the inter-
actions between both sectors. The two ingredients give rise
to a rich pattern of flavor structures that go beyond the usual
scenario of APC. We have shown the basic rules for the
determination of mixings and FN charges that lead to the
masses and mixing angles of the quark sector of the SM.
We have chosen a set of solutions that lead to small

mixing angles of right-handed light quarks, and we have
analyzed the predictions for the flavor and CP-violating
processes that have the most stringent constraints. We have
compared them with APC that, for a scale of composite
states of order few TeV, is known to pass many flavor tests,
but gives too large contributions toΔF ¼ 2 operators in the
down sector and to diagonal dipole operators of light
quarks, among others. We have found that Wilson coef-
ficients of left-handed ΔF ¼ 2 operators are of the same
size as APC, as expected for left angles of CKM size, but
for operators involving right-handed light quarks we have
found solutions that are suppressed compared with APC.
Particularly interesting is the case of Qsd

4 , that is one of the
most constrained operators, for which we have found
solutions with a Wilson coefficient suppressed by λ2C.
Another interesting case is the flavor diagonal dipole
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operators, also with solutions suppressed by λ2C compared
with APC.
For the solution considered we explored a range of

charges and degrees of compositeness of the right-handed
quarks of the first and second generations. Flavor con-
straints select a preferred set of charges and mixings, with
the second generation of right-handed quarks uncharged,
whereas the first generation charges of left- and right-
handed chiralities are ofOð1Þ, and there is a window for the
degree of compositeness of the right-handed quarks of the
first generation: ϵd1 ≃ λ4−5C and ϵu1 ≃ λ2−5C . The composite-
ness of the down quark is determined by the bounds from
ΔF ¼ 2 processes in the K-system that prefer a larger ϵd1,
and ΔF ¼ 0 dipole operators that prefer a smaller ϵd1. A
similar situation holds for the compositeness of the up
quark, with constraints from D-system preferring a larger
ϵu1 and from uuV dipole preferring a smaller ϵu1. For the
selected window of compositeness, dipole operators are
suppressed at least by λ2C and C4 is suppressed at least by
λC, relaxingm� ≳ 2.5–7.5 TeV and f below the TeV. There
are also regions where C4 is suppressed by λ

3=2
C ∼ 10−1. The

ccV dipole can only be suppressed if this quark is charged,
being in tension with ΔF ¼ 2 constraints that prefer zero
charge. Concerning flavor violating Z couplings, for a
generic composite sector bounds from Bs → μμ introduce

tuning of order λ2C that can be relaxed by the use of discrete
symmetries protecting left-handed down-type couplings.
Several questions were left open. At the level of bounds

from flavor, we have not been able to find solutions that
could lead to left-handed mixing angles smaller than the
CKM, either in the up or in the down sector, or a partial
combination of them, while simultaneously passing bounds
from ΔF ¼ 2 processes. We have neither been able to find
solutions that could suppress the mixing in the Bs system,
compared with APC. At a more theoretical level, it would
be interesting to find a rationale for the values of the Uð1ÞF
charges that, although being of order one, are arbitrary and
have been chosen to be multiples of the charge of the FN
scalar field. We have not explored the flavor of the leptons
in the proposed scenario. It would also be interesting to
build a more predictive model of the composite sector, as a
realization in five dimensions. Last, we have not explored
the different possibilities for the axionlike state of the
model that eventually could solve the strong CP problem
and pass the axion flavor constraints.
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