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Motivated by experiments in nanoscopic systems, we study a generalized Anderson, which consist of

two spin degenerate doublets hybridized to a singlet by the promotion of an electron to two conduction

bands, as a function of the energy separation d between both doublets. For d¼ 0 or very large, the

model is equivalent to a one-level SU(N) Anderson model, with N¼ 4 and 2 respectively. We study the

evolution of the spectral density for both doublets (r1sðoÞ and r2sðoÞ) and their width in the Kondo

limit as d is varied, using the non-crossing approximation (NCA). As d increases, the peak at the Fermi

energy in the spectral density (Kondo peak) splits and the density of the doublet of higher energy

r2sðoÞ shifts above the Ferrmi energy. The Kondo temperature TK (determined by the half-width at half

maximum of the Kondo peak in density of the doublet of lower energy r1sðoÞ) decreases dramatically.

The variation of TK with d is reproduced by a simple variational calculation.

& 2011 Elsevier B.V. All rights reserved.
1. Introduction

The Kondo effect, found originally for systems with magnetic
impurities in metals is now present in a variety of nanoscopic
systems, including semiconducting quantum dots [1], magnetic
adatoms on surfaces [1–3] and carbon nanotubes [4]. In the latter,
in addition to the spin Kramers degeneracy, there is in addition
orbital degeneracy due to the ‘‘pseudospin’’ degree of freedom
related with the particular band structure of graphene. This leads
to an SU(4) Kondo effect which has been observed experimentally
[5,6] and also discussed theoretically [7–9]. In particular, Lim
et al. have studied the spectral density when the SU(4) symmetry
is reduced to SU(2), mainly by a change in the tunneling matrix
elements [7,9].

Our main motivation in the problem arises from interference
phenomena in systems of quantum dots [10–12] or molecules
[11,13,14]. For example depressions in the integrated conduc-
tance through a ring described by the Hubbard or t�J model,
pierced by an Aharonov–Bohm magnetic flux, related with spin–
charge separation [10,11], are due to a partial destructive inter-
ference when the energy of two doublets cross [11]. Similar
interference effects were predicted in molecular transistors
[13,14]. The effective Hamiltonian near the crossing is discussed
in the next section.

To our knowledge, the conductance in these systems has so far
been calculated using approximate expressions or a slave-boson
ll rights reserved.
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formalism [12], which is valid only for very low temperatures and
applied bias voltages. This work is a step towards a more
quantitative theory to describe the transport through similar
systems, treating the effective Hamiltonian within the non-cross-
ing approximation (NCA) [15,16]. Work is in progress to deal with
the non-equilibrium situation, which is necessary within our
formalism to calculate the current.

In this paper, we report on our study of the spectral density of
the model as a function of the splitting d between both doublets
in the Kondo regime. We also calculate the dependence of the
Kondo temperature TK with d and analyze the validity of the
Friedel sum rule [17].
2. Model

We start from a model in which two doublets of an interacting
system are hybridized with a singlet by promotion of an electron to
two conducting leads. This is the low-energy effective Hamiltonian
for several systems with partial destructive interference, such as
Aharonov–Bohm rings [11] or aromatic molecules [13,14] connected
to conducting leads. The Hamiltonian can be written as [11]

H¼ Es90S/09þ
X

is
Ei9isS/is9þ

X
nks

Enkcynkscnks

þ
X
inks
ðVin9isS/09cnksþH:c:Þ, ð1Þ

where the singlet 90S and the two doublets 9isS (i¼ 1;2; s¼m or
k) denote the localized states (representing for example the low-
energy states of an isolated molecule), cynks create conduction states
in the left ðn¼ LÞ or right ðn¼ RÞ lead, and Vin describe the four
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hopping elements between the two leads and both doublets,
assumed independent of k.

Changing the phase of the conduction states and the relative
phase between both doublets, three among the four Vin can be made
real and positive. The phase f of the remaining hopping 9V9eif

depends on the particular system and its symmetry. For example in
molecules with rotational symmetry f¼ ðK1�K2Þl, where l is the
distance between the sites connected to the left and right leads, and
Ki is the wave vector of the state 9isS, which can be modified with
an applied magnetic flux [11]. In the absence of magnetic flux and
when the relevant states have wave vector Ki ¼ 7p=2, as in rings
with a number of atoms multiple of four, f¼ p and there is
complete destructive interference in transport [11,14].

In the following we will assume this case, with states 1 and
2 related by symmetry implying 9V1n9¼ 9V2n9. We further assume
symmetric leads, ELk ¼ ERk ¼ Ek, 9ViL9¼ 9ViR9. Then, without loss of
generality we can take V1L ¼ V1R ¼ V2L ¼ V 40, V2R ¼�V , and
E2ZE1.

For these parameters, changing basis cy1ks ¼ ðc
y

LksþcyRksÞ=
ffiffiffi
2
p

,
cy2ks ¼ ðc

y

Lks�cyRksÞ=
ffiffiffi
2
p

, the Hamiltonian takes the form of an
SU(4) Anderson model with a ‘‘field’’ d¼ E2�E1 and on-site
hybridization V 0 ¼

ffiffiffi
2
p

V

H¼ Es90S/09þ
X

is
Ei9isS/is9þ

X
iks

Ekcyiksciks

þV 0
X
iks
ð9isS/09ciksþH:c:Þ: ð2Þ

Interchanging the doublet index (1 or 2) with the spin index s,
one realizes that this model also describes transport through a
carbon nanotube with electron density depleated at two points
(so as to created an SU(4) quantum dot in the middle) under a real
applied magnetic field.
Fig. 2. Spectral densities for levels 1 (full line) and 2 (dashed line) as a function of

energy for different values of E2 ¼ E1þd and T ¼ 10�3. Other parameters as in

Fig. 1. Dot-dashed line corresponds to r2s for d¼ 0:015, 0.3 and 0.6.
3. Spectral density

In Fig. 1 we present numerical results for the spectral density
ris of the SU(4) Anderson model ðE1 ¼ E2Þ in the Kondo regime
EF�EibD, where the hybridization function D¼ p

P
kðV
0
Þ
2d

ðo�EkÞ, assumed independent of energy. We set G¼ 2D¼ 1 as
the unit of energy. We also assume a conduction band symmetric
around the Fermi level EF ¼ 0, of half-width D¼ 10.

The spectral density shows a broad charge transfer peak near
E1. For temperatures below a characteristic energy scale TK

(defined below), ris develop a narrow peak around the Fermi
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Fig. 1. Spectral density as a function of energy for different temperatures. The

inset shows a detail near the Fermi energy. Parameters are D¼ 0:5. D¼ 10,

E1 ¼ E2 ¼�4. The lowest temperature is T ¼ 10�3
¼ 0:076TK .
level. In contrast to the better known one-level SU(2) case, this
peak is displaced towards positive energies and is much broader,
as discussed in Section 5.

The evolution of the spectral densities as E2 is displaced to
larger energies, breaking the SU(4) symmetry is shown in Fig. 2.
The peak near the Fermi energy of r2sðoÞ is displaced towards
positive energies (near d¼ E2�E1). In contrast, the corresponding
peak in r1sðoÞ narrows significantly and displaces towards the
Fermi energy. This implies that the Kondo temperature TK defined
as the half-width at half maximum of this peak, also decreases
strongly. The evolution of TK with d is discussed in Section 5.

In addition r1s develops a broad peak near energy �d which
becomes visible when d becomes greater than TK.
4. Friedel sum rule

The Anderson model studied has a Fermi liquid ground state
which satisfies well known relationships at zero temperature.
One of them is the Friedel sum rule which relates the spectral
density at the Fermi level for each ‘‘pseudospin’’ channel with the
occupation of that channel [17]. For the simplest case of a
constant density of conduction states, this rule reads

risðEF Þ ¼
1

pD
sin2
ðpnisÞ, ð3Þ

where nis ¼/9isS/is9S.
This is an exact relationship for a Fermi liquid, which is not

necessarily satisfied by approximations. In particular, it is known
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Fig. 3. Squares: rescaled spectral density of the lowest lying level at the Fermi

energy as a function of d. Circles: corresponding (more accurate) result given by
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Fig. 1.
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Fig. 4. Squares: Kondo energy scale determined by the width of the peak in the

spectral density near the Fermi energy as a function of the splitting d. The

temperatures used were T ¼ 10�3, T ¼ 10�4, and T ¼ 10�5 depending on d. Dashed

line: corresponding variational result equation (5) multiplied by a factor 0.606.
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that at very low temperatures, the NCA has a tendency to develop
spurious spikes in risðoÞ at the Fermi energy, while thermody-
namic properties, such as expectation values are accurately
reproduced [15,16].

In Fig. 3, we compare both members of Eq. (3) for the lowest
lying doublet, at a temperature T ¼ 0:1TK [18] low enough so that
no further increase in risðEF Þ takes place as the temperature is
lowered (according to physical expectations and Eq. (3)), but high
enough to prevent the presence of spurious spikes. The disagree-
ment lies below 20%. The agreement improves as the parameters are
moved deeper in the Kondo regime EF�E1bD. Thus, while the
spectral density at zero temperature is not well represented by the
NCA results at T ¼ 0, one can take the values at T ¼ 0:1TK as a
reasonable description of the correct T ¼ 0 ones. This statement is
supported by the comparison of results obtained by NCA and
numerical renormalization group for the one-level SU(2) case [19].
5. Kondo temperature

From the half-width at half maximum of the peak nearest to the
Fermi energy of the spectral density of the lowest level ðr1sðoÞÞ, we
have calculated the Kondo temperature of the system TK for several
values of d. This requires to solve the self-consistent NCA equations
up to low enough temperatures (about 0.1TK as discussed above) so
that the height of the peak does not increase significantly with further
lowering of the temperature [18]. Fortunately, the result is not very
sensitive to the ratio T=TK .

The results are shown in Fig. 4 and compared with Eq. (5)
obtained from a variational calculation as explained below. We
see that except for an overall multiplicative factor, the agreement
is quite good, in spite of the fact that TK changes by nearly two
orders of magnitude.

To provide an independent estimate of TK, we have calculated
the stabilization energy of the following variational wave
function:

9cS¼ a9sSþ
X
iks

bikð9isS/09ciksÞ9sS, ð4Þ

where 9sS is the many-body singlet state with the filled Fermi sea
of conduction electrons and the state 90S at the localized site,
while a and bik are variational parameters. From the resulting
optimized energy E, we can define the stabilization energy as
Tn

K ¼ E1�E. The Kondo energy scale defined in this way becomes

Tn

K ¼ ðDþdÞD exp
pE1

ð2DÞ

� �
þ
d2

4

( )1=2

�
d
2
: ð5Þ

This expression interpolates between the SU(4) result
(Tn

K ¼D exp½pE1=ð4DÞ� for d¼ 0) and the SU(2) one for one doublet
only (Tn

K ¼D exp½pE1=ð2DÞ� for d-þ1).
6. Summary and discussion

We have studied an impurity Anderson model containing two
doublets, which interpolates between the cases for one level with
SU(4) and SU(2) symmetry, and is of interest for several nanoscopic
systems, using the non-crossing approximation (NCA).

We have shown that the NCA provides reasonable results for
the equilibrium spectral density. The values of the spectral
density for both doublets agree within 20% with the predictions
of the Friedel sum rule, in spite of the fact that it is not expected
to satisfy Fermi liquid relationships at zero temperature.

In addition, the Kondo temperature scale TK obtained from the
width of the peak in spectral density near the Fermi energy agrees
very well with the stabilization energy of a variational calculation,
in spite of the change in several orders of magnitude of TK when
the splitting between both doublets is changed.

The approach seems promising for studying transport properties
within a non-equilibrium formalism. Work in this direction is in
progress.
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