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SUMMARY

The observations of repeated or recurrent events occur in many longitudinal studies. Furthermore, some-
times there may exist a terminal event such as death, which is strongly correlated with recurrent events. 
In many situations, a fraction of subjects who will never experience the event of interest during a long 
follow-up period is considered to be cured. In this article, we proposed a joint frailty model in the presence 
of cure fraction. The dependency is modeled by shared frailty that is contained in both the recurrent and 
terminal events hazard functions. It allows to estimate two separate sets of parameters on the recurrent, 
death, and cure model. We applied the maximum likelihood method under a piecewise constant hazard 
function for model fitting. The proposed model is evaluated by simulation studies and an application to a 
breast cancer data is provided.
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INTRODUCTION

In many clinical or epidemiological studies, 
there are situation in which subjects are measured 
repeatedly over a fixed time. For instance, repeated 
episodes of hospitalization or experience asthma 
attacks, tumor recurrences. Many methodologies have 
been considered for the analysis of recurrent event 
data [1-6]. In many settings exists a terminal event 
such as death. Therefore, the terminal event may 
be strongly correlated with recurrent events. More 
explicitly, if the rate of the recurrent event is unusually 
low (high) in a subject, that subject is also subject to 

decreased (increased) rate of death. For example, 
recurrent asthma attacks during a follow-up, which can 
lead to death. In this case, the ordinary assumption of 
independent censoring can be violated and lead to 
biased estimates [4]. There are two major approaches 
to analyze recurrent events in the presence of a 
terminal event: The marginal models and the frailty 
models. Marginal models attend on the marginal rates 
of the recurrent and terminal events that can not specify 
the dependence between recurrent and terminal events 
[7-10]. Frailty models mostly apply a latent variable 
to account for the correlation between the recurrent 
and terminal events so that the two event processes 
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are independent given the frailty. For example, Huang 
and Wolf proposed a general joint frailty model 
to account for the informative censoring [11]. Liu et 
al., introduced a nonparametric maximum penalized 
likelihood method for estimating hazard function in a 
joint frailty model with right censoring and delayed 
entry [4]. Mazroui et al., suggested a joint frailty 
model to analyze recurrent events and death. They 
used two gamma-distributed frailties to allow for both 
the inter-recurrences dependence and the dependence 
between the recurrences and the survival times [12]. 

In recent years, the development of new drugs 
and treatment regimens has resulted in the significant 
number of patients in the population who are not 
susceptible to the event and live longer with diseases 
such as cancer; consequently, a cured fraction of 
the population exists. The use of standard survival 
models, for example, the Cox proportional hazard 
model for such data may be inappropriate since 
these models are based on the assumption that all the 
subjects experience the event with probability one so 
that the overall survivor function descends to zero, 
approximately. This assumption cannot be used in 
recent clinical trials and medical researches, because 
many subjects may never experience the event of 
interest if the follow-up period is sufficiently long. In 
such cases, cure models are widely applied. In this 
paper, we had a motivating example of patients with 
breast cancer (BC). A total of 357 patients received 
surgery to remove tumors. Two hundred and fifty- 
seven (72%) patients had no recurrence and death 
due to BC. We showed the Kaplan–Meier curve of 
disease-free survival (time to the first recurrence or 
death, whichever happened first) for patients with BC 
in Figure 1. There were very few events after 5 years 
of follow-up period, denoting the existence of a large 
proportion of cured patients. Ignoring the existence 
of “cured” patients leads to underestimation of the 
hazard and consequently overestimation of the overall 
survival of non-cured patients [13].

Many studies have been done on cure models [14-
17]. In the context of recurrent event data, Rondeau et 
al., proposed a frailty model for the recurrent events 
in the presence of cure fraction [13]. Zhao et al., 
introduced a new model for recurrent with terminal 
events which can incorporated zero recurrence 
subjects [17]. Kim proposed a joint model for recurrent 
with a terminal event in the presence of cure fraction. 
The suggested model applied two types of deaths 
for the cure and susceptible groups, which would 
be regarded as competing risk with a missing cause 
[18]. Liu et al., proposed a joint frailty model for zero-
inflated recurrent events in the presence of a terminal 
event. In that model, the frailty effect on recurrent and 
death rates is the same. In this article, we presented 
a joint frailty model in the presence of cure fraction 
for recurrent events and terminal event (death) by a 
shared gamma frailty in which the frailty can have 
different effects on recurrent events and death rates 
[19]. Thus, our model combined the features of the 

Liu et al. (2016) for patients who had no chance of 
experiencing the recurrent or death events from breast 
cancer, “cured patients”, and the Liu et al. (2004) 
for the joint frailty analysis of recurrent and terminal 
events; the frailty effect on recurrent and death rates is 
the different. One advantage of our model is that it can 
estimate the effect of covariates on the recurrence and 
death times, and the cured probability, simultaneously. 
It can also reveal the degree of dependency between 
disease recurrence and death. 

The remainder of the article is organized as follows. 
In Section 2, we introduced the joint frailty model 
in the presence of cure fraction and the estimation 
method. In Section 3, we presented the simulation 
studies and their results. In Section 4, we applied the 
proposed model to the analysis of a real dataset and a 
concluding discussion is presented in Section 5.

THE MODEL

Notations 

We define notations and definitions that are 
used in the model. Let T X C Dij ij i i= min( , , )  be the 
observed follow-up time so that X Cij i,  and Di  
correspond to the j th recurrent event time for i th 
subject ( ,..., , ,..., )i N j ni= =1 1 , the right-censoring 
time and the death time. Similarly, the terminal time 
denote byT min( , )* = C Di i . We consider a binary 
indicator for recurrent event as δij ij ijI T X= =( )  so 
that if ni > 0 then δij = 1 and a binary indicator for 
terminal event as ∆i i iI T D= =( )* . Sij  indicate gap 
times (the time interval from previous to next recurrent 
event) so that S ( )ij ij i jT T= − −1  are independent 
with conditional on frailties and covariates. The 
observation for subject i  is O t Ti ij i ij i( ) {S , , , }*≡ δ ∆ . 
Based on the theory of multivariate counting processes 
[4,14], N ( ) ( )*

i
D

it I D t= ≤  and N ( ) ( , )i
D

i it I X t= ≤ =∆ 1 
are the actual and the observed death indicator 
by time t, respectively. Similarly, we denote by 

N ( )
*

i
R t  and N ( ) N (min( , ))

*

i
R

i
R

it X t=  the actual and 
observed number of recurrent events, respectively. 
Let Y ( ) ( )*i t Tt

i
= ≤1 the at-risk indicator of subject i  

at time t . The observed and the actual number 
of recurrent events that occurs for i th in [ , )t t dt+  

is respectively dN ( ) (( ) ) ( )
* * *

i
R

i
R

i
Rt N t dt N t= + −− −  

and N ( ) ( ) (t).
*

i
R

i i
Rt Y t dN=  The process history 

of subject i  up to time t , is represented as 
H Y h N h N h Z h h h tit i

R
i
D

i i= ≤ ≤σ ω{ ( ), ( ), ( ), ( ), ( ), }0 .  
Where Z hi ( )  is the vector of covariates and ωi h( )  is 
shared frailty for subject i . Furthermore, recurrent event 
processes, death and censoring times assume to be 
continuous, therefore, in the simultaneous occurrences 
of recurrent and death events, we assume that death 
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happens first. The death event and the recurrent events 
intensity processes at t are Y t h t dt P dN ti i i

R
it( ) ( ) ( ( ) | )= = −1   

and Y t t dt P dN ti i i
D

it( ) ( ) ( ( ) | )λ = = −1  , respectively, 
where h t dt P dN t Z t D ti i

R
i i i( ) ( ( ) | ( ), , )

*
= = ≥1 ω  and 

λ ωi i
D

i i it dt P dN t Z t D t( ) ( ( ) | ( ), , )
*

= = ≥1 .  

Model for recurrent events and a terminal event

Following the model of Liu et al (2004), the joint 
model for the recurrent and terminal events given by:

λ ω ω λ β ω λ

ω ω βα
i i i i i i

i i i

t t Z t t

h t h t

( | ) ( )exp( ( )) ( )

( | ) ( )exp(

= ′ =

=
0

0
** ( )) (t)Z t hi i i=





 ω α              (2.1)

Where λ0 (t) and h t0( )  are baseline hazard 
functions for recurrent events and death respectively. 
The parameters β  and β*  are regression coefficients 
vector associated with the covariate vector Zi 
for recurrent event and death rates that could be 
different. The random effect ωi  takes into account the 
dependence between recurrent times and the death 
time. We assume ωi  have the gamma distribution 
with mean 1 and variance θ . When θ = 0 implies 
that the random effects ωi ’s are exactly 1, i.e., and 
heterogeneity in both recurrent and terminal events is 
only explained by Zi .  In the proposed model (2.1), the 
degree of dependence between recurrent and death 
times showed by α .  The assumption is that α = 0 that 
is h ti ( )  does not depend on ωi , and terminal event 
(death) is non-informative for the recurrent events λi t( )
, so that two rates h ti ( )  and λi t( ) are independent. 
When α = 1, the effect frailty on recurrent events and 
death is the same. When α > 1 the recurrent and death 
rates are positively correlated; higher frailty will result 
in earlier death. Inversely, α < 1 demonstrates that 
subjects with higher frailty will be less likely to death.

Joint cure model for recurrent events and a termi-
nal event

Let U  be a binary variable that a subject will 
eventually (U )i = 1  or never experience the event of 
interest (U )i = 0 . The survival function of T  given by 
S(t|z) S ( | ) ( )= + −p t z pu 1 . Where S ( | )u t z  is survival 
function for uncured subject and p Pr= =(U )1 . 

In order to assess the relationship between Zi  and 
the probability of cure, a logit link function is used: 

                    log ( ) .it p Zi
T

i= γ                           (2.2)
Where γ  is a parameter that is associated with the 

cure rate through covariate Z .
Following the model of Liu et al. (2016), the frailty 

proportional hazard model for recurrent events for 
subjects that are susceptible or not cured is:

   λ ω λ β ωi i i i it U t Z( | , ) ( )exp( ).= = +1 0       (2.3)
Similarly, hazard model for terminal event is:
h t U h ti i i i i( | , ) ( )exp( Z ).*ω β ωα= = +1 0      (2.4)

Combining equations (2.2), (2.3) and (2.4) we 
have a joint model of the recurrent and terminal events 
with a cure fraction. In this case, a subject cured 
cannot experience any recurrent events, nor death due 
to the disease. Conditional likelihood for subject i th 
can be written as:
L O L L L Li i i

I
i

I
i

I
i

Ii i i i i i( | ) (n , ) (n , ) (n , )ω = > = = = > =
1

0 1
2

0 1
3

0 0
4

∆ ∆ ∆ ((n , )i i= =0 0∆

Where
 Li1 is the likelihood of observing recurrent events

(n )i > 0  and death( )∆i = 1 ,
 Li2 is the likelihood of observing no recurrent events

(n )i = 0  and death( )∆i = 1 , 
Li3 is the likelihood of observing recurrent events 

(n )i > 0  and no death ( )∆i = 0 , 
Li4  is the likelihood of observing no recurrent 

events (n )i = 0  and no death ( )∆i = 0 .
 That Li4  is cure on recurrent and terminal (death) 

events.
We can write:

L p S

h

i i i
R

i i i i
j

n

ij i i

i i i

i

1
1

1 1 1= − = =

×
=

∏( ) (t | ,U ) (t | ,U )

(t | ,U*

ω λ ω

ω == =1 1) (t | ,U ),*∆i SD
i i i iω

L p S h

S
i i i

R
i i i i i i i

D
i i i i

i
2 1 1 1= − = × =

× =

( ) (t | ,U ) (t | ,U )

(t | ,U

*

*

ω ω

ω

∆

11),

L p S

S

i i i
R

i i i i
j

n

ij i i

D
i i i

i

3
1

1 1 1= − = × =

×
=

∏( ) (t | ,U ) (t | ,U )

(t |*

ω λ ω

ω ,,U ),i = 1

L p p S Si i i i
R

i i i
D

i i i i4 1 1 1= + − = × =( ) (t | ,U ) (t | ,U ),*ω ω

Where S t Ui
R

i i( | , )ω = 1  and S Ui
D

i i(t | , )* ω = 1 are 
survival functions for the recurrent and death times for 
those not cured:

S t U Z t

S U
i
R

i i i i

i
D

i i

( | , ) exp( exp( ) ( )),

(t | , ) exp(*

ω β ω

ω

= = − +

= =

1

1
0Λ

−− +exp( ) ( ))*β ωαZ H ti i 0

The Λ0( )t  and H t0( )  are cumulative baseline 
hazard function for the recurrent event and death 
respectively. The full loglikelihood is:

l O L O di i i i
i

N

( ) ln ( | ) ( )=
∞

=
∫∏
01

ω π ω ωθ

(2.5)
Where π ωθ( )i  is density function for frailty shared.
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Estimation

To obtain the parameters estimation in 
proposed model, we utilize maximize likelihood 
technique to estimate different parameter 
Φ = ( (.), (.), , , , , )*h0 0λ β β α θ γ  due to the difficulty of 
solving the integral in the full log-likelihood (2.5), we 
used approach Gauss–Laguerre quadrature which 
is a numerical approximation of an integral using a 
weighted average of the integrand computed at M 
predetermined quadrature points u m Mm( , ,..., )= 1 2  
over random effect ωi. This the numerical approximation 

can be as such, L L O u ui
m

M

m m m(O) ( | ) ( ) v≈
=

∑
1

πθ , with 

u zm m= 2  and v exp( )m m mz= 2 2η  Where ηm  and 
zm can be obtained from tables or algorithms, details 
of the procedure presented by [20,21]. Further, we 
apply a piecewise constant baseline hazard function 
for the estimation of baseline hazard functions in our 
estimation method. In the piecewise constant hazard 
function, we first divided the follow–up duration for 
recurrent events in to 5 intervals by 5th quantile 
(denoted by knots Q Q Q1 2 5

λ λ λ, ,...,  and Q0 0λ =  or 
the smallest recurrent event time). We have:

 λ λ0 0

~
( )t k=  for Q t Qk k

λ λ
− < ≤1  where k = 1 2 5, ,...,       

or

λ λ λ λ
0 0

1

5

1( ) ( )t I Q t Qk
k

k k= < ≤
=

−∑
The cumulative baseline hazard function is

Λ0 0
1

5

1 10( ) max( ,min( , ))t Q Q t Qk
k

k k k= − −
=

− −∑ λ λ λ λ

Following the similar procedure, we can create the 
piecewise constant baseline hazard function for death, 
denoted by h t

~
( )0  and H t

~
( )0  for cumulative baseline 

death hazard.  
We use 



H−1 as a variance estimator, where H  
is the converged Hessian matrix of the log likelihood. 
Moreover, due to positively constraints on the parameter 
( )θ > 0 , we utilize the exponential transformation and 
their standard error calculated by the delta method 
[22].

After replacing cumulative baseline hazards in log-
likelihood (2.5), the resulting log-likelihood can be 
maximized by the Gauss–Laguerre quadrature with 
implementation in R software. 

SIMULATION

In this study, six hundred replicate datasets were 
generated, each with sample size (n=250, 500, 
1000) to investigate the effect of increased sample 

size in parameters estimation. The simulation results 
of the parameters estimation are provided in Tables 
1-4, which includes the Estimation parameter (Est), the 
empirical standard errors (SE), the mean square error 
(MSE), and the 95% empirical coverage probabilities 
(CP). The AIC mean and the number of propriety for 
the proposed and reduced models, which was the 
result of the minimum AIC value, were also reported, 
we considered the right-censored and utilized calendar 
time scale representation.

Generating Data

For each subject i , we generated binary explanatory 
variables Z ii ( , )= 1 2 , from a Bernoulli distribution with 
probability 0.5. The random variables ωi  was generated 

from gamma distribution so that ω
θ θi gamma∼ 





1 1
,  

with θ = 0 5. . A fixed right-censoring time was taken 

as C Unifi = +6 0 6( , ). We generated the gap times Xik 
from λ ω ω λ β βi i i i is Z Z( | ,U ) (s)exp( )= = +1 0 1 1 1 2  where 
λ0

0 250 65( ) . .t t=  and death time Di generated from  
h t h t Zi i i i( | ) ( )exp( )ω ω βα= 0 2 1  where h t t0

0 250 4( ) . .= .
A death time Di  was generated from the hazard 

function h ti i( | )ω .
If observed time was a death time Di iC≤ then 

T Di
* =  and ∆i = 1.

If Di iC>  individual was censored then T Ci i
* =  

and ∆i = 0 . 
We used a logistic regression for probability of cure 

so that: p
Zi

i
=

+ +
1

1 0 1 1exp( )γ γ  and set α0 0 5= − .  
and α1 1= . 

We generated a random variable ui  from uniform 
distribution [ , ]0 1 . The individual was cured (any 
recurrent nor death) if u pi i<  and individual was 
non-cured if u pi i≥ . The calendar times created from 

T C D Xij i i ik
k

j

=
=

∑min( , , )
1

If T Tij i< * then the observed time can be a recurrent 
event time and δij = 1. The data generating continues 
until T Tij i< *.

 If T Tij i≥ *  individual was censored then T Tij i= * 
and δij = 0 .  

We set β β β α γ γ1 2 1 0 11 0 5 0 7 2 0 5 1= = − = = = − =, . , . , , . ,*

β β β α γ γ1 2 1 0 11 0 5 0 7 2 0 5 1= = − = = = − =, . , . , , . ,* .
To compare the proposed model with two reduced 

models, we considered four different settings of  
α γ γ, ,0 1 as following.

In setting I, we generated joint frailty model 
without cure fraction ( , )γ γ α0 1 10 2= = =  Since 

p
Zi

i
=

+ +
1

1 0 1 1exp( )γ γ
 for (Z , )i1 0 1= , we had a mean 
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of cure percentage ( )pi  close to zero. The estimates of 
parameters in the proposed model can be compared 
with the model of Liu et al., (2004).

In setting II, we generated joint frailty model in the 
presence of cure fraction ( . , )γ γ α0 10 5 1 1= − = = . For 
the situation, mean of cure percentage ( )pi  close to 
0.5 and the frailty effect on recurrent and terminal 
event rates is the same. The estimates of parameters in 
the proposed model can be compared with model of 
Liu et al., (2016).

In setting III, we generated joint frailty model 
with α > 1, so that the recurrent rate and death are 
positively associated ( . , )γ γ α0 10 5 1 2= − = = . We can 
compare the estimates of parameters in the proposed 
model with the two reduced models (Liu et al., (2004) 
and Liu et al., (2016)).

In setting IV, we generated joint frailty model with 
α < 1, so that the recurrent rate and death are negatively 
associated ( . , )γ γ α0 10 5 1 2= − = = − . We can compare 
the estimates of parameters in the proposed model 
with the two reduced models (Liu et al., (2004) and 
Liu et al., (2016)).

Results of the simulation studies

The average numbers of deaths were 68% to 78%, 
the average numbers of recurrent events (among all 
600 subjects) were 0.25 to 0.69 with a maximum 
fixed number of eight. The mean cure percentage was 
50% in setting II and III.

In setting I, the mean cure percentage ( )pi  was 
close to zero, so there was no cure fraction in datasets. 
In this case, both the joint frailty model (proposed 
model) and the reduced model (Liu et al, 2004) were 
equivalent. The mean of the estimates for γ 0  and γ1

by the joint model are 9.937 and 10 respectively, 
which are very close to the true values.

It can be seen that the mean square errors and 
biases of parameters decreased with an increase in 
the sample size.  In addition, AIC mean in proposed 
model was about four units more than the AIC 
mean in the reduced model, which was due to two 
extra parameters in the proposed model. Also, AIC 
percentage in the reduced model was lower than 
the proposed model in more 98.82% of cases. This 
indicates that even when the cure fraction does not 
exist, it is still valid to use the proposed model for data 
analysis. 

In setting II, we had α = 1 so there was a same 
correlation between recurrent and terminal event. The 
result showed that both the cure joint frailty model 
(proposed model) and the reduced model (II) were 
equivalent. The parameter estimates from these two 
models were virtually similar, with almost the same 
accuracy and precision.  The mean of the estimates for 
α by the proposed model is 1.061, which is very close 
to the true value of α = 1 in sample size 250. Thus, by 
increasing the sample size, α  is underestimated. 

We obtained a clear improvement in the estimates 
of parameters and mean square errors with increasing 
sample size. AIC mean in the proposed model 
was about one unit more than the AIC mean in the 
reduced model that by increasing the sample size, the 
difference raised to two. Furthermore, based on AIC 
percentage of all 600 replicate datasets, model (II) 
was preferred at least 81.8% times. This shows that 
when dependence between recurrent and terminal 
events is same, proposed model and model (II) are 
equivalent.

In setting III, we generated data from proposed 
model and set γ γ0 10 5 1= − =. , . so that the mean 
of cure percentage was close to 0.5. We assumed 
α = 2 which indicates significant positive dependence 
between recurrent and the death rates. In this case, 
proposed model is compared with two reduced models 
(Liu et al., (2004) and Liu et al., (2016)). The results of 
our model are summarized in the first panel in Table 
3. The mean parameter estimates by new proposed 
joint frailty model were very close to their true values. 
There was a good agreement between the empirical 
and estimated standard errors of these parameter 
estimates, and the coverage probabilities were close 
to the nominal level of 95%. Moreover, the results 
show an underestimate for death risk and α  which 
does not get better by increasing the sample size.

This can be due to the positivity constraint on the 
variance parameter. In comparison, we fit the model 
without the cure fraction. The results are reported in 
the third panel of Table 3. The results show that the 
absent of the cure fraction led to significant in biases 
and mean square errors in the estimate of parameters 
and very poor coverage probabilities. The estimate 
of the variance of the random effect in model without 
cure was much larger than that in our model (1.781 
vs. 0.45). This shows that the new proposed cure joint 
frailty model can effectively capture the heterogeneity. 
Additionally, the lowest AIC mean and the high AIC 
percentage (98%) in the new proposed model suggests 
a better fit than two reduced models.

 In setting IV, in order to assess a negative 
association between recurrent events and death rates 
we considered ( )α = −2 . Findings illustrate that the 
new proposed model offers very accurate parameter 
estimates and powerful coverage probabilities (Table 
4). 

APPLICATION-BREAST CANCER STUDY

Breast cancer (BC) is the most commonly diagnosed 
disease among females and includes 23% of total 
cancer cases with 14% risk of death. The cycle of this 
disease is usually determined by a response to initial 
treatment, followed by relapses. Moreover, relapse of 
breast cancer may increase the risk of death, which 
indicates an association between relapse and death. 
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In recent years, the improvement in treatment has led 
to 70-80% of patients being cured of BC. Common 
statistical models are not suitable for analyzing these 
data [23]. We applied the joint frailty model to 
analyze breast cancer (BC) with the new proposed 
model and two reduced models. Our real example is 
obtained from Shahid Ramezanzadeh Radiotherapy 
Center between April 2004 to March 2012; the 
patients were followed until April 2016. There 
were 357 females with BC included in the analysis. 
Among them, 77(21.6%) died, 69(19.3%) patients 
experienced recurrence of BC. The maximum number 
of recurrences for a patient was three. The numbers 
of patients with one, two and three recurrent events 
were 50(14%), 18(5%) and 1(0.3%), respectively. 
Two hundred and fifty-seven (72%) cases were cured, 
meaning that they experienced neither a recurrent event 
nor death due to BC. In this study, we considered four 
baseline covariates for each patient: Lymphovascular 
invasion (positive versus negative), age (50 years or 
older versus younger than 50 years), Lymph node 
status (positive versus negative) and tumor size (II, III 
versus I). Then we used the proposed joint model to 
analyze the effect of prognostic factors on recurrent 
and death times in the presence of cure fraction. For 
comparison, we also applied the joint frailty model 
without cure fraction and joint frailty model with the 
same frailty model in the presence of cure fraction, as 
introduced by Liu et al., in the years 2004 and 2016, 
respectively. In three models, the baseline hazard 
function is assumed to be piecewise constant for 
recurrent and terminal events, each with 5 intervals. 
The estimation results are shown in Table 5. We can 
see that the tumor size was significant in the cure model 
(P=0.013). The patients with larger tumor size were 
less likely to be cured. For illustration, hazard ratio of 
tumor size III and II were 0.77 and 0.48, respectively. 
Among those who were “not cured”, tumor size was 
not significant. Patients with larger tumor sizes were 
more likely to experience recurrences. The hazard 
ratio of the patients with tumor size II and III were 
1.012 and 1.008, respectively. In contrast, patients 
with larger tumor sizes had a lower morality rate than 
patients with tumor size I. Furthermore, we considered 
the same association between recurrent and terminal 
events leads to reduced model introduced by Liu et al., 
(2016), as shown in the second panel of Table 5. In 
this reduced model, sign and effect of variables were 
similar to those in our model except for the Lymph node 
status in death model, which showed that the patients 
with positive lymph node status were associated with 
a decreased risk of death (HR=0.704, P=0.304).  We 
also fit another reduced model, which is a joint model 
without cure fraction introduced by Liu et al., (2004) as 
indicated in the third panel of Table 5. We noticed that 
the parameter estimates and their significance were 
different from those in the presence of cure fraction. 
The estimate of frailty variance without a cure fraction 
was more than that in the cure fraction model (variance 
estimate of θ  increased from 0.904 to 1.288). This 

suggests that ignoring cure fraction leads to more 
heterogeneity for recurrent events in the reduced 
model. The positive values of α =1.357 to 1.8 show 
that the recurrence of disease and death rates were 
positively associated (P<0.001). The cured probability 
in our model and reduced model (II) was 77% and 
85%, respectively. We obtained the cured probability 
in the data about 72%, indicating a more accurate 
estimate in our model. The Akaike information criterion 
(AIC) was also calculated, the AIC values indicated 
that the proposed model had a better fit than reduced 
models with the lowest value AIC=2062. 

DISCUSSION AND CONCLUSION

In this paper, we introduced a joint frailty model in 
the presence of cure fraction. Our proposed model has 
two main advantages: on the one hand, the new joint 
frailty model can take into account a cure component. 
In this situation, the cured subject experience neither 
the recurrent events, nor death due to the diseases. On 
the other hand, our proposed model can evaluate the 
degree of dependence between recurrent and death 
times through the estimation parameter α . We have 
shown by simulation that using our joint frailty model in 
the presence of cure fraction led to unbiased regression 
coefficients, smaller mean square error, better coverage 
probabilities and less AIC in comparison with two 
reduced models. The simulation results show that in 
the presence of cure fraction, if α > 1 and we falsely 
consider α = 1, an underestimation of the recurrent and 
death rates occurs. In contrast, if α < 1 and we falsely 
consider α = 1, then recurrent and death rates is 
overestimated. The simulation results demonstrate that 
our proposed model is valid, even when there is the 
same dependence between recurrent and death times 
or there is non-cure fraction in the dataset. The proposed 
model was applied to a breast cancer dataset, and 
we showed that a positive association exists between 
recurrent and death rates. In this case, higher frailty 
implies an expected real death. In this article, we 
used gamma distribution for frailty. Other distributions 
can be used as well, e.g., Gaussian distribution (Liu 
et al., 2016). We have assumed piecewise for λ0( )t  
and h t0( ). We can consider semi-parametric modeling 
(using spline function) for baseline hazard functions for 
recurrence and death, which provide more flexibility 
and reliable estimates of the cure fraction [12,13,24]. 
For the future works, our model can be more complex 
by considering longitudinal biomarkers and the joint 
with the recurrent model.   
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APPENDIX

Appendix A: construction of the log-likelihood for the proposed joint frailty model with calendar timescale.

In this appendix, we explain the structure of full likelihood L( | ) ( | )f( )O L O di
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The contribution of marginal log-likelihood for individual i  is:
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In situation 2, we have subjects that do not experience the recurrent event ni = 0  and observing death ∆i = 1.  
the contribution of marginal log-likelihood for individual i  can write:
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In situation 3, we have subjects that experience the recurrent event δij = 1 but no observing death ∆i = 0. the 
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contribution of marginal log-likelihood for individual i  can write:

l pi i i ij ij
j

ni

3
1

1
1 1

(O| ) log( ) log( (t )) log( ) log( (ω δ λ
θ

θ
θ

= − + − −
=

∑ Γ )))

log ( ) ( ) ( ) ( )

*

( )

+ − − −∫∫
−

ω λ ω
ω
θ

α
i i i i i i

i
T

T

T

Y t t dt Y t h t dt
i

i j

ij

01
jj

n

i

i

d
=

+∞

∑∫














1

1

0

ω

In situation 4, we have subjects that experience neither recurrence nor death from the disease
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We can obtain full log likelihood by sum of the four marginal contribution of log-likelihood for subject i  as 
follows:
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Table 1. Simulation Results for a generated joint frailty model with different frailty effect in absent of cure 
fraction 
Sample 

size
Parameter Proposed model Model by Liu et al. (2016)

Est SE
emp

SE

( )
^

H−1

MSE CP Est SE
emp

SE

( )
^

H−1

MSE CP

β1 = 1 0.964 0.152 0.155 0.024 0.934 0.969 0.15 0.155 0.023 0.938

β2 =  -0.5 -0.507 0.131 0.131 0.017 0.941 -0.506 0.131 0.131 0.017 0.939
N=250

β1
* = 0.7 0.617 0.239 0.246 0.064 0.941 0.622 0.239 0.246 0.063 0.941

θ =  0.5 0.46 0.105 0.101 0.013 0.944 0.463 0.103 0.101 0.012 0.943
α = 2 1.833 0.452 0.457 0.232 0.958 1.826 0.437 0.453 0.222 0.943

γ 0 =
 10 9.826 1.264 44.079 1.628 0.963 - - - - -

γ1 =
 10 10 0 32424.04 0 0.98 - - - - -

mean_AIC 1690.986 1687.116
Percent_AIC 1.52% 98.48%

β1 = 1 0.976 0.103 0.109 0.011 0.946 0.978 0.103 0.109 0.011 0.942

β2 =  -0.5 -0.507 0.093 0.092 0.009 0.949 -0.507 0.093 0.092 0.009 0.949

β1
* = 0.7 0.614 0.166 0.171 0.035 0.912 0.616 0.165 0.17 0.034 0.915

N=500 θ = 0.5 0.465 0.074 0.072 0.007 0.921 0.467 0.074 0.071 0.007 0.927
α = 2 1.767 0.276 0.307 0.13 0.874 1.765 0.275 0.305 0.131 0.87

γ 0 =  10 9.872 0.965 37.245 0.947 0.978 - - - - -

γ1 = 10 10 0 14439.45 0 0.987 - - - - -
mean_AIC                            2135.385 3357.693
Percent_AIC                               15.5% 98.48%

β1 = 1 0.978 0.078 0.077 0.006 0.941 0.979 0.077 0.077 0.006 0.943

β2 =  -0.5 -0.503 0.064 0.065 0.004 0.944 -0.503 0.064 0.065 0.004 0.944

β1
* = 0.7 0.618 0.12 0.12 0.021 0.887 0.619 0.12 0.12 0.021 0.889

N=1000 θ = 0.5 0.467 0.052 0.051 0.004 0.896 0.468 0.052 0.051 0.004 0.899
α = 2 1.732 0.199 0.212 0.111 0.712 1.731 0.198 0.211 0.111 0.705

γ 0 =  10 9.937 0.858 28.489 0.74 0.975 - - - - -

γ1 = 10 10 0.001 9335.436 0 0.992 - - - - -
mean_AIC 6692.079 6688.152
Percent_AIC 1.18% 98.82%

AIC, Akaike information criterion; CP, coverage probability; MSE, mean square error; SE, standard error
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Table 2. Simulation Results for a generated joint frailty model with same frailty in presence of cure fraction

Sample 
size

Parameter Proposed model Model by Liu et al. (2016)
Est SE

emp
SE

( )
^

H−1

MSE CP Est SE
emp

SE

( )
^

H−1

MSE CP

β1 = 1 0.981 0.259 0.253 0.068 0.945 0.983 0.259 0.252 0.068 0.948
N=250

β2 =  -0.5 -0.511 0.207 0.201 0.043 0.955 -0.512 0.207 0.200 0.043 0.953

β1
* = 0.7 0.687 0.318 0.297 0.101 0.937 0.675 0.308 0.281 0.095 0.943

θ =  0.5 0.462 0.174 0.169 0.032 0.955 0.452 0.164 0.157 0.029 0.957
α =  1 1.061 0.431 0.429 0.189 0.948 - - - - -

γ 0 =
 -0.5 -0.501 0.219 0.208 0.048 0.942 -0.501 0.219 0.208 0.048 0.943

γ1 =
 1 1.018 0.292 0.281 0.086 0.953 1.019 0.293 0.281 0.086 0.953

mean_AIC 1078.811 1077.80
Percent_AIC 15.17% 84.83%

β1 =  1 0.98 0.182 0.178 0.034 0.945 0.981 0.182 0.177 0.034 0.942

β2 =  -0.5 -0.517 0.145 0.142 0.021 0.953 -0.517 0.144 0.14 0.021 0.952

β1
* = 0.7 0.675 0.209 0.203 0.044 0.947 0.678 0.206 0.199 0.043 0.948

N=500 θ = 0.5 0.477 0.123 0.123 0.016 0.957 0.462 0.112 0.112 0.014 0.948
α = 1 0.969 0.244 0.259 0.061 0.945 - - - - -

γ 0 =  -0.5 -0.505 0.151 0.147 0.023 0.96 -0.506 0.15 0.146 0.023 0.96

γ1 =  1 1.015 0.203 0.198 0.042 0.947 1.015 0.203 0.198 0.042 0.947
mean_AIC                            2135.385 2134.354
Percent_AIC                               15.5% 85.5%

β1 = 1 0.973 0.125 0.126 0.016 0.942 0.974 0.125 0.125 0.016 0.945

β2 = -0.5 -0.508 0.101 0.101 0.010 0.947 -0.508 0.101 0.099 0.010 0.947

β1
* =0.7 0.657 0.142 0.141 0.022 0.942 0.668 0.142 0.140 0.021 0.935

N=1000 θ =0.5 0.485 0.091 0.088 0.008 0.948 0.468 0.081 0.08 0.008 0.932
α =1 0.93 0.165 0.172 0.032 0.922 - - - - -

γ 0 =-0.5 -0.503 0.109 0.103 0.012 0.953 -0.505 0.109 0.103 0.012 0.952

γ1 =1 1.008 0.149 0.139 0.022 0.947 1.009 0.148 0.139 0.022 0.947
mean_AIC 4255.608 4254.756
Percent_AIC 18.2%  81.8%

AIC, Akaike information criterion; CP, coverage probability; MSE, mean square error; SE, standard error
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Table 3. Simulation Results for a generated joint frailty model with different frailty ( )α > 0  on recurrent and 
death rate in presence of cure fraction

Sample 
size

Parameter Proposed model Liu et al(2004)
Est SE

emp
SE

( )
^

H−1

MSE CP Est SE
emp

SE

( )
^

H−1

MSE CP Est SE
emp

SE

( )
^

H−1

MSE CP

β1 =  
1 0.98 0.263 0.262 0.069 0.95 0.975 0.262 0.271 0.069 0.955 1.724 0.303 0.261 0.616 0.34

β2 = 
-0.5 -0.515 0.187 0.190 0.035 0.938 -0.518 0.189 0.210 0.036 0.937 -0.534 0.229 0.200 0.054 0.95

N=250
β1

* =  
0.7 0.656 0.419 0.407 0.177 0.943 0.501 0.314 0.299 0.138 0.905 1.399 0.389 0.385 0.640 0.582

θ =  0.5 0.442 0.181 0.178 0.036 0.943 0.495 0.217 0.191 0.047 0.958 1.765 0.086 0.187 1.608 0.000

α = 2 2.010 0.726 0.768 0.527 0.955 - - - - - 1.426 0.245 0.301 0.390 0.300

γ 0 =
 
-0.5 -0.501 0.228 0.219 0.052 0.947 -0.493 0.232 0.222 0.054 0.948 - - - - -

γ1 = 1 1.016 0.296 0.290 0.088 0.947 1.019 0.298 0.292 0.089 0.948 - - - - -
mean_AIC                                         
Percent_AIC                                         

1121.014
63.33%

1190.82
0.00%

β1 = 1 0.976 0.184 0.185 0.035 0.958 0.970 0.183 0.191 0.034 0.96 1.719 0.218 0.184 0.565 0.080

β2 =
 
-0.5 -0.517 0.135 0.134 0.019 0.953 -0.520 0.136 0.147 0.019 0.950 -0.532 0.164 0.140 0.028 0.947

β1
* =

 
0.7 0.636 0.279 0.275 0.082 0.940 0.503 0.215 0.211 0.085 0.857 1.380 0.276 0.264 0.539 0.312

N=500 θ =  0.5 0.451 0.132 0.130 0.02 0.943 0.501 0.142 0.136 0.02 0.953 1.775 0.061 0.132 1.630 0.000

α = 2 1.836 0.421 0.474 0.204 0.960 - - - - - 1.383 0.164 0.201 0.408 0.053

γ 0 =
 
-0.5 -0.510 0.150 0.154 0.023 0.952 -0.504 0.152 0.155 0.023 0.955 - - - - -

γ1 = 1 1.019 0.204 0.204 0.042 0.935 1.021 0.205 0.205 0.042 0.932 - - - - -
mean_AIC 2218.537 2360.208
Percent_AIC  81% 0.00%

β1 = 1 0.973 0.133 0.130 0.018 0.957 0.966 0.132 0.134 0.019 0.958 1.711 0.159 0.130 0.531 0.005
N=1000

β2 =
 
-0.5 -0.512 0.093 0.094 0.009 0.957 -0.515 0.094 0.103 0.009 0.957 -0.526 0.111 0.099 0.013 0.940

β1
* =

 
0.7 0.617 0.188 0.190 0.042 0.928 0.495 0.149 0.148 0.064 0.718 1.354 0.189 0.183 0.463 0.060

θ =  0.5 0.450 0.093 0.093 0.011 0.927 0.501 0.097 0.097 0.009 0.947 1.781 0.044 0.093 1.642 0.000

α =  2 1.783 0.287 0.319 0.129 0.870 - - - - - 1.366 0.113 0.138 0.415 0.003

γ 0 = 
-0.5 -0.508 0.105 0.108 0.011 0.948 -0.502 0.106 0.109 0.011 0.948 - - - - -

γ1 =
 
1 1.009 0.142 0.143 0.020 0.947 1.012 0.143 0.144 0.021 0.95 - - - - -

mean_AIC
Percent_AIC  

4419.620
98.16%

4427.928
1.84%

4705.045
0.00%

AIC, Akaike information criterion; CP, coverage probability; MSE, mean square error; SE, standard error
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Table 4. Simulation Results for a generated joint frailty model with different frailty on recurrent and death rate 
( )α < 0  in presence of cure fraction

Sample 
size

Parameter Proposed model Liu et al. (2016) Liu et al. (2004)
Est SE

emp
SE

( )
^

H−1

MSE CP Est SE
emp

SE

( )
^

H−1

MSE CP Est SE
emp

SE

( )
^

H−1

MSE CP

β1 = 
1 0.998 0.199 0.198 0.04 0.943 1.094 0.188 0.152 0.044 0.921 1.705 0.315 0.251 0.597 0.385

β2 =  
-0.5 -0.5 0.157 0.166 0.025 0.942 -0.492 0.174 0.136 0.03 0.946 -0.469 0.276 0.223 0.077 0.943

N=250
β1

* =  
0.7 0.649 0.348 0.342 0.124 0.948 0.401 0.22 0.212 0.138 0.735 0.934 0.227 0.233 0.107 0.831

θ =  0.5 0.438 0.192 0.165 0.041 0.95 0.055 0.04 0.035 0.2 0 2.061 0.096 0.189 2.445 0

α =  -2 -1.883 0.724 0.598 0.537 0.972 - - - - - 0.569 0.071 0.092 6.603 0

γ 0 =  
-0.5 -0.498 0.188 0.188 0.035 0.953 -0.495 0.187 0.187 0.035 0.953 - - - - -

γ1 = 1 0.998 0.264 0.264 0.07 0.952 0.995 0.264 0.263 0.07 0.951 - - - - -
mean_AIC                                         
Percent_AIC                                         

718.103
99%

739.415
0.5%

900.029
0. 5%

β1 = 
1 0.998 0.144 0.139 0.021 0.946 1.084 0.134 0.095 0.025 0.903 1.681 0.217 0.155 0.51 0.123

β2 =  
-0.5 -0.506 0.113 0.116 0.013 0.961 -0.498 0.128 0.085 0.016 0.951 -0.483 0.201 0.138 0.041 0.953

β1
* =  

0.7 0.623 0.229 0.234 0.058 0.951 0.398 0.146 0.132 0.112 0.448 0.921 0.153 0.144 0.073 0.717
N=500 θ =  0.5 0.453 0.139 0.126 0.022 0.948 0.064 0.028 0.03 0.191 0 2.076 0.067 0.119 2.489 0

α = -2 -1.728 0.402 0.399 0.236 0.903 - - - - - 0.562 0.05 0.056 6.567 0

γ 0 =
 
-0.5 -0.495 0.129 0.131 0.017 0.956 -0.494 0.13 0.116 0.017 0.953 - - - - -

γ1 =
 
1 0.991 0.183 0.185 0.034 0.951 0.986 0.183 0.163 0.034 0.951 - - - - -

mean_AIC 1411.985 1465.70 1785.917
Percent_AIC  100% 0.00% 0.00%

β1 = 
1 0.999 0.102 0.099 0.01 0.952 2.21 1.14 2.289 1.31 0.98 1.697 0.157 0.072 0.51 0.014

β2 =
 
-0.5 -0.505 0.083 0.082 0.007 0.96 -0.121 2.45 1.861 6.14 0.971 -0.46 0.145 0.064 0.022 0.957

β1
* =

 
0.7 0.616 0.159 0.164 0.032 0.913 1.77 9.51 1.972 91.6 0.971 0.916 0.106 0.067 0.058 0.475

N=1000 θ =  0.5 0.471 0.098 0.094 0.011 0.945 0.064 0.023 0.002 0.19 0 2.083 0.048 0.055 2.507 0

α =  -2 -1.665 0.261 0.277 0.18 0.736 - - - - - 0.565 0.035 0.026 6.581 0

γ 0 =
 
-0.5 -0.499 0.087 0.093 0.008 0.943 -0.023 1.68 0.284 2.89 0.968 - - - - -

γ1 =
 
1 0.993 0.129 0.131 0.017 0.945 1.22 1.61 0.469 2.65 0.971 - - - - -

mean_AIC
Percent_AIC  

2841.235
100%

2948.954
0.00%

3587.462
0.00%

AIC, Akaike information criterion; CP, coverage probability; MSE, mean square error; SE, standard error
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Table 5. Application results

Variables Modalities

proposed model Reduced Model 1

(Cure with same frailty)

Reduced Model 2

(Without cure with different 
frailty)

Est (SE) HR P-value Est (SE) HR P-value Est (SE) HR P-value
Recurrent events
Age (ref:≤50) >50 0.013(0.007) 1.013 0.64 0.014(0.008) 1.014 0.086 0.012(0.005) 1.012 0.018
Lymphovascular positive 0.008 (0.004) 1.008 0.067 0.008 (0.005) 1.008 0.091 0.007(0.003) 1.007 0.019
(ref:negative)
 Lymph node positive 0.007 (0.004) 1.007 0.07 0.007 (0.004) 1.007 0.088 0.006(0.003) 1.006 0.023
Status(ref:negative) 
Tumor size II 0.012(0.007) 1.012 0.068 0.012(0.007) 1.012 0.076 0.01(0.004) 1.01 0.021
(ref:I) III 0.008(0.005) 1.008 0.08 0.009(0.005) 1.009 0.083 0.006(0.002) 1.006 0.029
Cancer death
Age (ref:≤50) >50 0.375 (0.359) 1.45 0.231 0.355(0.346) 1.426 0.236 0.616(0.346) 1.852 0.081
Lymphovascular positive 0.938(0.503) 2.55 0.07 0.625(0.382) 1.868 0.105 0.419(0.374) 1.521 0.213
(ref:negative)
Lymph node positive 0.621 (0.606) 1.89 0.236 -0.352 (0.477) 0.704 0.304 -0.624(0.449) 0.536 0.152
status(ref:negative)
Tumor size II -0.725(0.446) 0.48 0.106 -0.259(0.442) 0.772 0.336 -1.024(0.438) 0.359 0.026

III -1.227(0.704) 0.29 0.87 -0.344(0.888) 0.709 0.37 -1.73(0.655) 0.177 0.012
(ref:I)
Cure Logistic Model Est (SE) OR P-value Est (SE) OR P-value
Intercept 0.867(0.742) 2.38 0.201 0.991(1.141) 2.693 0.274 ----- ----- -----
Tumor size II -0.651(0.657) 0.52 0.244 -1.067(0.833) 0.344 0.176 ----- ----- -----

III -1.47 (0.561) 0.23 0.013 -1.736 (1.059) 0.176 0.102 ----- ----- -----

θ =  0.904(0.332) ------ 0.383 1.099(0.941) ------ 0.397 1.288(0.173) ------ <0.1

α = 1.357(0.361) ------ <0.001 ------ ------ ------ 1.8(0.351) ------ <0.001
AIC 2062.394 2063.579 2080.42

AIC, Akaike information criterion; HR, hazard ratio; SE, standard error
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Fig 1. Kaplan-Meier curve for the cancer free survival. The censoring time is denoted by “+”.


