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Abstract The rapid growth of edge data generated by mobile devices and applica-
tions deployed at the edge of the network has exacerbated the problem of information
overload. As an effective way to alleviate information overload, recommender system
can improve the quality of various services by adding application data generated by
users on edge devices, such as visual and textual information, on the basis of sparse
rating data. The visual information in the movie trailer is a significant part of the
movie recommender system. However, due to the complexity of visual information
extraction, data sparsity cannot be remarkably alleviated by merely using the rough
visual features to improve the rating prediction accuracy. Fortunately, the convolu-
tional neural network can be used to extract the visual features precisely. Therefore,
the end-to-end neural image caption (NIC) model can be utilized to obtain the textual
information describing the visual features of movie trailers. This paper proposes a
trailer inception probabilistic matrix factorization model called Ti-PMF, which com-
bines NIC, recurrent convolutional neural network, and probabilistic matrix factor-
ization models as the rating prediction model. We implement the proposed Ti-PMF
model with extensive experiments on three real-world datasets to validate its effec-
tiveness. The experimental results illustrate that the proposed Ti-PMF outperforms
the existing ones.
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1 Introduction

In recent years, with the rapid development of Internet of Things (IoTs) [1–3], the
number of mobile devices and applications deployed at the edge of the network to
provide users with various services has increased significantly [4–8]. However, al-
though they make full use of the computing resources of edge servers, which makes a
great contribution to reducing network latency [9], they also generate a large amount
of edge data, which aggravates the problem of information overload faced by the
contemporary era, thus affecting the quality of various services and the user satisfac-
tion [10]. Recommender systems can extract user preferences by using various user
behaviors and application data generated on edge devices, so as to generate corre-
sponding recommendations [11]. Unfortunately, the rapid growth of the number of
users and the amount of related edge data makes data sparsity a challenging issue
of the recommender systems [12–14], which severely deteriorates the recommenda-
tion performance. As an effective way, the contextual feature [15] can be utilized to
customize its recommendation by adding additional information, such as visual and
textual features, to alleviate the sparseness [16–19]. The original context-aware rec-
ommendation method is to get implicit feedbacks from users (such as the time spent
on each page and click-through rate of each item) to infer whether the user prefers
a certain item. In recent years, the deep learning-based algorithms have been well
studied, for example, convolutional neural network (CNN) [20] and recurrent neural
network (RNN) [21] have contributed greatly to extracting the visual features and
textual features, respectively. Additionally, the movie trailer often contains a lot of
important information of the whole movie. Therefore, in movie context-aware recom-
mender system, extracting the features of movie trailers through deep learning-based
algorithms would bring valuable and reliable additional information.

Most of the previous context-aware movie recommendation methods just used
the static contextual features (such as the user attribute and movie attribute) to im-
prove the recommendation performance. However, with the recent advances of deep
learning algorithms, it is not hard to capture the deep features of images and videos
by using deformations of CNN, such as AlexNet [22], GoogLeNet [23] and so on.
Accordingly, after extracting the multiple features, the feature combination should
be considered in the movie recommendation [13, 24]. Therefore, an end-to-end net-
work neural image caption (NIC) generator combining the visual feature extraction
network and textual generation network is proposed [25], which converts the movie
trailer information into corresponding description texts. In the NIC model, the inputs
are images, and the outputs are sentences, which are translated based on the visual
features of the input images. The NIC method can speed up the trailer processing,
making it feasible to utilize the visual features in a context-aware recommendation.

This paper focuses on utilizing the trailer information of movies in the context-
aware recommendation to promote the performance of rating prediction. In order to
avoid the coupling among different still frames, which may lead to a high similarity
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of the final visual features, we take 20 still frames evenly from one video track as the
input of the NIC model. These still frames are input into the NIC model to generate
the corresponding descriptive textual information, based on which the most accu-
rate description texts can be extracted as the contextual text information. Note that
the length of the descriptive texts of still frames extracted from movie trailers will
be shorter than that of the users’ review texts [26]. Moreover, it can not determine
whether the user prefers the movie or not only with some review sentences, which
results in low quality of textual features for the review texts. While for the descriptive
text, the sentence is specifically used to describe the movie trailers, which is more
concise and more valuable. Therefore, the image information description is more ef-
fective than the feature information of the review texts for the recommender systems.
In this paper, we propose a trailer inception probabilistic matrix factorization model
called Ti-PMF, which integrates the movie visual information to alleviate the sparsity
of rating data and promote the performance of rating prediction. In the experiments,
we utilize the advanced visual feature extraction network VGG and GoogLeNet re-
spectively to evaluate the text conversion performance, and finally, adopt the texts
generated by NIC to get the corresponding root mean squared error. The experimen-
tal results illustrate that the proposed Ti-PMF model significantly outperforms the
existing schemes.

The main contributions of this paper are as follows:

– We propose a trailer inception probabilistic matrix factorization model called Ti-
PMF, which integrates the movie visual information to alleviate the sparsity of
rating data and promote the performance of rating prediction.

– We utilize the NIC model to automatically convert the video information of the
movie trailers into the corresponding descriptive textual information and then
embed the textual information into our recommendation model seamlessly.

– The training time of the proposed Ti-PMF method can be significantly shortened
with a higher rating prediction accuracy.

– We implement the proposed Ti-PMF model with extensive experiments on three
real-world datasets to validate its effectiveness.

The rest of the paper is organized as follows. Sect. 2 introduces the related work
of context-aware recommendation and feature engineering in deep learning. Sect. 3
briefly reviews preliminaries on the probabilistic matrix factorization, the neural im-
age caption generator, and textual feature extraction of recurrent convolutional neural
network. Sect. 4 concretely presents our proposed model Ti-PMF. Sect. 5 shows the
experiments about the proposed model and discusses the results of our model. Sect. 6
summarizes our work.

2 Related Work

2.1 Context-aware Recommendations

With the advent research on context-aware processing and becoming a hot-spot re-
search topic in the field of recommendation, it is considered that when more con-
textual information is provided, better recommendation accuracy can be achieved
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[27,28]. The contextual information used for the context-aware recommendations in-
cludes time, location, entity or event. The context-aware recommender system mod-
ifies the existing model to a scene in the specific dimension, realizing the context
directly embedded in the recommendation process. The method provides a flexible
and generalizable context-aware recommendation, which overcomes the obstacles
of two-dimensional algorithms [29]. Specifically, the context-aware recommenda-
tion method can easily embed the contextual information. This method is applied
to each item to make a precise recommendation for a given user u with context t,
and then the top-k item recommendation is accomplished. The methods for calcu-
lating neighborhood are existing, and collaborative filtering and content-based meth-
ods are very commonly utilized in recommender systems [30, 31]. The latent fac-
tor model (LFM) recommends items with similar item features to target users based
on the element features in the users’ contexts. Another segment of the application
of LFM is the factorization machine (FM) [32], the ratings are modeled as linear
combinations of the interactions between input variables of the model. In addition,
machine learning algorithms are utilized in content-based recommender systems to
extract attributes associated with users, items, and contexts [33]. Moreover, in the
context-aware recommender system, selecting appropriate attributes is also an im-
portant process. Common contextual information is utilized in recommender systems
including: time, location, and social information [34,35]. Zarzour et al. [36] proposed
the conception of multidimensional attributes, which uses dimensionality reduction
and clustering techniques to integrate multidimensional attributes and reduce their
dimensionality, thereby obtaining attributes with higher accuracy. The LSIC model
proposed in [37] explores context-aware information (movie posters) and uses GAN
framework to leverage the matrix factorization (MF) and RNN approaches for top-N
recommendation to further improve the performance of movie recommendation. Re-
cently, a deep learning recommendation framework that incorporates contextual in-
formation into neural collaborative filtering recommendation approaches is proposed
in [38], which models contextual information in various ways for multiple purposes,
such as rating prediction, generating top-k recommendations, and classification of
users’ feedback. Chen et al. [39] proposed that the existing methods suffer from con-
text redundancy, and proposed a context-aware recommendation method based on
embedded feature selection, which eliminates context redundancy by generating a
minimum subset of all contextual information, and allocates weight to each context
appropriately to achieve performance improvements.

2.2 Feature Engineering in Deep Learning

Feature engineering in deep learning embeds additional information into context-
aware recommender system, which helps to alleviate the sparsity problem of rating
data [39]. The data presented to the algorithm by feature engineering has the rele-
vant structure or attributes of the basic data of the corresponding task [40, 41]. Since
there are many types of existing attribute features, the single feature [42] and the
multi-feature fusion context-aware recommender system can be used [43]. Besides,
feature fusion between texts is often used in text classification tasks and multiple fea-
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ture weighting [44]. By preprocessing the data structure through feature engineering,
the algorithm can reduce noise interference and find data trends. Specifically, in the
preprocessing method based on dimensionality reduction, an item can be divided into
several fictitious items by using several corresponding contexts in order to determine
its attribute features [36]. Zhang et al. proposed a method of using context to establish
user portrait features for recommendation [45]. In the movie context-aware recom-
mender system, multiple attribute features extracted from movie descriptive texts and
user review texts are utilized to obtain the personalized recommendations [46]. To se-
lect high-quality feature representations, Goldberg et al. discussed feature selection
metrics for data classification [47]. Dense matrix data features utilize cross-feature
and feature fusion technology to project attributes onto the fixed dimensional data
feature spaces. Therefore, in the field of feature engineering, fewer data dimensions
can be utilized to express more attributes [48, 49].

3 Preliminary

3.1 Probabilistic Matrix Factorization

Probabilistic Matrix Factorization (PMF) [50] can obtain a relatively accurate pre-
diction based on a few specific scores in the rating matrix. PMF aims to improve the
rating prediction accuracy of the conventional matrix factorization by using the prob-
abilistic method. Specifically, it is supposed that there are M movies and N users.
The element Ri j in rating matrix R ∈ RN×M represents the rating of user i on movie
j. The number of latent features is expressed as D, user matrix U ∈ RD×N and movie
matrix V ∈ RD×M are both latent feature matrices, and their column vectors Ui and V j

represent the user-specific and the movie-specific latent feature vectors, respectively.
Then PMF is based on the following two assumptions: 1) the observed errors follow
the Gaussian distribution, 2) the user matrix U and movie matrix V follow the Gaus-
sian distribution. The conditional distribution over the observed ratings based on the
above two assumptions is:

p
(
R|U,V, σ2

)
=

N∏
i=1

M∏
j=1

[
N
(
Ri j|UT

i V j, σ
2
)]Ii j

, (1)

where N(x | µ, σ2) is the probability density function, which conforms to the Gaus-
sian distribution with mean µ and variance σ2. Ii j is an indicator function, if user i
rated movie j, the function is equal to 1, otherwise it is equal to 0. The zero-mean
spherical Gaussian priors are considered on the user and movie feature vectors and
can be formulated as:

p
(
U |σ2

U

)
=

N∏
i=1

N
(
Ui|0, σ2

U I
)
, (2)

p
(
V |σ2

V

)
=

M∏
j=1

N
(
V j|0, σ2

V I
)
. (3)
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Fig. 1 A 5*5 filter is replaced with double 3*3 filters (stride = 1).
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Fig. 2 The architecture of basic inception model with multiple convolutional kernels (inception-a).

Note that I in the above equation is not an indicator function, it represents a diago-
nal matrix. The L2 regularization term is applied to avoid over-fitting, and the loss
function can be formulated as:

L(U,V) =
1
2

N∑
i=1

M∑
j=1

Ii j
(
Ri j − UT

i V j
)2
+
λU

2

M∑
i=1

∣∣∣∣∣∣∣∣Ui

∣∣∣∣∣∣∣∣2
F
+
λV

2

M∑
j=1

∣∣∣∣∣∣∣∣V j

∣∣∣∣∣∣∣∣2
F
, (4)

where λU = σ
2/σ2

U , λV = σ
2/σ2

V , and ‖ · ‖2F denotes the frobenius norm.

3.2 Neural Image Caption Generator

Neural image caption (NIC) generator is an end-to-end network with images as the
input and text sequences as the output. Specifically, NIC integrates GoogLeNet for
extracting the images’ visual features and RNN for converting the visual features into
sequential texts.
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3.2.1 GoogLeNet

Before GoogLeNet, a deep learning structure, was proposed [51], AlexNet, VGG and
other structures used the method of increasing the depth of the network to achieve bet-
ter training results, which would bring negative effects such as over-fitting, gradient
disappearance, gradient explosion and so on. Inception is the basic component of the
GoogLeNet network. The introduction of inception can make effective use of com-
puting resources and obtain more features under the same amount of computation,
which can improve the training effect. Specifically, various sizes of convolutional
kernels (1× 1, 3× 3, 5× 5) are utilized, which can perceive different perceptive fields
and obtain more comprehensive and richer visual feature information. Since the re-
ceptive field of the 5× 5 convolutional kernel is the same as the receptive field of two
3×3 convolutional kernels, the number of training parameters, i.e., 18, will be smaller
than that of previous training parameters, i.e., 25. Therefore, one 5 × 5 convolutional
kernel can be replaced by two 3 × 3 convolutional kernels [52], as shown in Fig. 1.
And Fig. 2 shows the structure of inception [23]. Besides, 1 × 1 convolutional kernel
and pooling operation are used to compute reductions before the expensive 3 × 3 and
5 × 5 kernels. In the GoogLeNet model, 1 × 1 convolutional kernel is mainly utilized
for dimensionality reduction for image data. Although the large convolutional kernel
is very helpful for extracting visual features, it will cause a parameter explosion in the
deep neural network. Therefore, Szegedy et al. decomposed the large convolutional
kernel asymmetrically to reduce the number of parameters [23]. Asymmetrical con-
volutional structure splitting is better than symmetrical convolutional structure split-
ting in processing more and richer spatial features and increasing feature diversity
when reducing the amount of calculation. Specifically, an n × n convolutional kernel
can be replaced by two convolutional kernels, a 1 × n kernel followed by an n × 1
one. In addition, the computational cost saved by the replacement can increase sig-
nificantly with the increase of n. Finally, the CNN structure is equivalently replaced
by the mini factorization form. The specific value of n is determined according to the
size of the input images. For instance, using a 3 × 1 convolutional kernel followed
by a 1 × 3 one is equivalent to sliding one layer network with the same receptive
field as in a 3 × 3 convolutional kernel. Accordingly, the number of parameters in
training will be reduced from 3 × 3 = 9 to 3 + 3 = 6, which is shown in Fig 3. The
second and third forms of inception are to factorize part of big convolutional kernels
(3 × 3) [23], as shown in Fig. 4(a) and Fig. 4(b). Finally, the above three inception
blocks (Fig. 2, Fig. 4(a), Fig. 4(b)) are combined to the final visual neural network.
The network structures of VGG16 [53], VGG19 [53] and GoogLeNet [23] are shown
in TABLE 1.

3.2.2 Long-Short Term Memory

In order to effectively process the long sequences and solve the problem of gradient
disappearance, long-short term memory (LSTM) is proposed on the basis of tradi-
tional RNN. When LSTM is utilized to process the information of each neuron in
sequences, the true meaning of the current word in the sequence is inferred by the
understanding of a previously seen word. The memory cell c is the core of the LSTM
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Fig. 3 A 3*3 filter is factorized by a 1*3 filter and a 3*1 filter (stride = 1).
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Fig. 4 The architectures of the Inception-b and Inception-c.

model, which encodes the information of the observed inputs at every time step. The
cell’s behavior is controlled by three different gates: input gate, output gate, and for-
get gate. When the value of forget gate is set as 1, the information in LSTM will
be maintained, and 0 means that the information will be forgotten. In particular, the
three gates are used to control whether to forget the current cell value (forget gate
f ), whether to read the input (input gate i), and whether to output the new cell value
(output gate o). The definitions of the gates, cell update, and output are as follows:

it = σ(Wixxt +Wimmt−1), (5)

ft = σ(W f xxt +W f mmt−1), (6)

ot = σ(Woxxt +Wommt−1), (7)

ct = ft � ct−1 + it � h(Wcxxt +Wcmmt−1), (8)

mt = ot � ct, (9)
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Table 1 The network structures of VGG16, VGG19 and GoogLeNet.

Input
VGG16 VGG19 GoogLeNet

2×conv3-64 2×conv3-64 conv3-32
pool2-64 pool2-64 conv3-32

2×conv3-128 2×conv3-128 pool3-64
pool2-128 pool2-128 conv3-64

3×conv3-256 4×conv3-256 conv3-80
pool2-256 pool2-256 conv3-192

3×conv3-512 4×conv3-512 3×inception-a
pool2-512 pool2-512 5×inception-b

3×conv3-512 4×conv3-512 2×inception-c
pool2-512 pool2-512 pool8-2048

2×fc1-4096 2×fc1-4096 fc1-2048
fc1-1000 fc1-1000 softmax1-1000

Output

pt+1 = S o f tmax(mt), (10)

where � represents the product with a gate value. The nonlinearities are sigmoid
σ(·) and hyperbolic tangent h(·). The matrices Wix, Wim, W f x, W f m, Wox, Wom, Wcx,
and Wcm, are the trained parameters. In Eq. (10), mt is fed to the softmax function,
resulting in a probability distribution pt over all words.

3.3 Textual Feature Extraction in RCNN

3.3.1 Recurrent Structure in Convolutional Layer

Recurrent convolutional neural network (RCNN) [54] model embeds the recurrent
structure into the convolutional layer. On the one hand, CNN is utilized to extract the
textual features. On the other hand, it can also use RNN structure to memorize the
full-textual information. Meanwhile, the recurrent structure can obtain the contextual
information as much as possible, which means that less noise may be introduced than
the window-based neural networks. The features extracted by RCNN are used as a
part of the mean of Gaussian distribution in the item latent models. Specifically, in
the RCNN model, a word is combined with both of the left and right contexts to
represent itself in the word representation. Consequently, a word representation of
RCNN contains much richer information with its associated contextual information
than that of CNN. The specific context expressions are as follows:

cl(wi) = ReLU
(
W (l)cl

(
wi−1

)
+W (sl)e

(
wi−1

))
, (11)
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Fig. 5 RCNN model used in this paper.

cr(wi) = ReLU
(
W (r)cr

(
wi+1

)
+W (sr)e

(
wi+1

))
, (12)

where cl(wi) and cr(wi) represent the left and the right contexts of the word wi respec-
tively, e

(
wi

)
represents the word representation of word wi, W (sl) and W (sr) represent

the matrices, which are used to connect the semantics of the current word with the
left and right adjacent words respectively. Furthermore, W (l) and W (r) represent the
matrices, which combine all of the left and right context hidden layers, respectively.
Then the context information and the word representation are cascaded as the whole
word embedding model. Specifically, the word representation xi of word wi with its
context information can be expressed as follows:

xi =

[
cl

(
wi

)
, e

(
wi

)
, cr

(
wi

)]
. (13)

Note that different context window sizes can be utilized to capture different contex-
tual information so as to investigate the performance more comprehensively. For in-
stance, the word representation of wi is represented by

[
x
(
wi−1

)
; x

(
wi

)
; x

(
wi+1

)]
when

the context window size is set to 3. Furthermore, an activation function, i.e., tanh, is
applied to transform xi into y(2)

i as follows:

y(2)
i = tanh

(
W (2)xi + b(2)

)
. (14)

The RCNN model used in this paper is shown in Fig. 5.

3.3.2 Recurrent convolutional matrix factorization

The generated texts are input into the recurrent convolutional matrix factorization
(RConvMF) recommender system, which combines RCNN with PMF. Thereby, the
movie latent model with visual trailer features is obtained by the following equations:

V j = rcnn(W, X j) + ε j, (15)



Title Suppressed Due to Excessive Length 11

conv 3×3/2

conv 3×3/1

conv padded 3×3/1

pool 3×3/1

conv 3×3/1

conv 3×3/2

conv 3×3/1

3×inception-a

5×inception-b

2×inception-c

pool 8×8

softmax

L
S

T
M

L
S

T
M

L
S

T
M

...

L
S

T
M

x0 x1 xN-1

S1 SN-1S0

p1 p2 pN

log p1(S1) log p2(S2) log pN(SN)

Image

Descriptive Text

Textual Features

RCNN

V

R

U

2

U


2

2

V


Rating Prediction

GoogLeNet

NIC model

Fig. 6 The architecture of the proposed Ti-PMF model.

ε j ∼ N(0, σ2
V I), (16)

where X j represents the descriptive texts converted from the visual information ex-
tracted from the movie trailers. In Eq. (15), for each weight wk in W, the zero-mean
spherical Gaussian prior is shown as follows:

p(W |σ2
W ) =

∏
k

N(wk |0, σ2
W ). (17)

Accordingly, the conditional distribution over item latent models is given by:

p(V |W, X, σ2
V ) =

M∏
j

N(V j|rcnn(W, X j), σ2
V I), (18)

where X is the set of descriptive documents of items obtained through the NIC model
from the movie trailers. A document latent vector obtained from the RCNN model
is taken as the mean of Gaussian distribution, and the Gaussian noise of the item is
taken as the variance of the gaussian distribution. In this way, the NIC, RCNN, and
PMF model can be connected seamlessly.

3.3.3 Optimization Methodology

To optimize the variables such as the weights and bias of RCNN, the maximum a
posteriori (MAP) estimation is utilized, which can be expressed as follows.

max
U,V,W

p
(
U,V,W

∣∣∣∣R, X,Y, σ2, σ2
U , σ

2
V , σ

2
W

)
= max

U,V,W

[
p
(
R
∣∣∣∣U,V, σ2

)
p
(
U

∣∣∣∣σ2
U

)
p
(
V
∣∣∣∣W, X,Y, σ2

V

)
p
(
W

∣∣∣∣σ2
W

)]
. (19)

Coordinate descent optimization method is adopted in training. It optimizes a
latent variable iteratively while fixing the other ones. The optimal solution of Ui and
V j can be obtained as follows:

Ui ←
(
VIiVT + λU IK

)−1
VRi, (20)
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V j ←
(
UI jUT + λV IK

)−1(
UR j + λVµ j

)
, (21)

where Ii is a diagonal matrix with Ii j, j = 1, · · · , n as its diagonal elements and Ri is a
vector for user i with

(
ri j

)n
j=1. The back-propagation algorithm is applied to optimize

W. In the whole optimization process, the unobserved rating of user i on movie j can
be predicted as: R̂i j ≈ E

[
Ri j

∣∣∣∣UT
i V j, σ

2
]
= UT

i V j = UT
i

(
µ j + ε j

)
.

4 Ti-PMF Model

A probabilistic neural framework is proposed in this paper to generate the descriptive
documents from images. The mean idea behind the proposed model, named trailer-
inception probabilistic matrix factorization (Ti-PMF), is to convert the images ex-
tracted from the movie trailers into the corresponding description texts, which will
be used in the context-aware recommender system. It is possible to obtain the precise
descriptive sentences of the corresponding images by directly maximizing the likeli-
hood p(S |I) of generating a target sequence of words S . The above description can
be summarized as follows:

θ∗ = arg max
θ

∑
(I,S )

log p(S |I; θ), (22)

where θ is the parameters of the proposed model, I is a set of images, and S is
the set of correct transcriptions of I. Since S represents a sentence with an unfixed
length, it will be appropriate to use the chain rule to model the joint probability over
S 0, · · · , S N . Specifically, the textual information before time t and the input image
information can be used to predict the textual information at t:

log p(S |I) =
N∑

t=0

log p(S t |I, S 0, · · · , S t−1). (23)

The LSTM model can be trained to predict every word in the sentence with the
prerequisite that the images and the preceding words are known, and the probability
of correct prediction is defined by p(S t |I, S 0, · · · , S t−1). Specifically, as for each word
in a sentence, LSTM share the same parameters in all blocks. The output mt−1 at
time t − 1 will be fed to the LSTM at time t. The architecture of the proposed Ti-
PMF model with GoogLeNet is shown in Fig. 6. Note that in the proposed Ti-PMF
model, the GoogLeNet can also be replaced with VGG, the performance comparison
is shown in the next section. In the Ti-PMF model, as shown in Fig. 6, the NIC
model combines the unrolling LSTM and GoogLeNet. Then the RCNN model is
utilized to extract features of the textual information generated by NIC. After that, the
RConvMF algorithm in Sect. 3.3.2 can be used to predict the ratings. The procedure
of the NIC model is represented as follows in Eqs. (24), (25) and (26):

x−1 = CNN(I), (24)

xt = WeS t, (25)

pt+1 = LS T M(xt), (26)
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Table 2 Data statistics of pre-trained datasets.

Datasets Train Test Valid

Flickr8k 6000 1000 1000

Flickr30k 28000 1000 1000

MSCOCO 82783 40775 40504

where t ∈ {0, · · · ,N − 1}, x−1 represents that the visual feature of image I, which is
input into the NIC model at t = −1, S t represents the textual information encoded by
one-hot, We is the word2vec [48] model transition matrix to convert S t into a dense
numeric matrix. Finally, the textual features are input into the PMF model to get an
accurate rating prediction. The negative log-likelihood of the correct word at each
step can be expressed as:

L(I, S ) = −
N∑

t=1

log pt(S t). (27)

The above loss function can be minimized over all the parameters in the LSTM
model, the top layer of the image embedder CNN and the word embeddings We.

5 Experiments

5.1 Datasets

The datasets used in this paper are divided into the following two parts.

– Model pre-training: To avoid overfitting, the GoogLeNet, LSTM, and RCNN
models need to be pre-trained initially. Specifically, the ImageNet dataset is uti-
lized to pre-train the GoogLeNet and VGG models, which are used for compar-
ative experiments, and the datasets consisting of images and English sentences
describing these images (such as MSCOCO, Flickr8k, and Flickr30k) are also
used. The statistics of the datasets are shown in TABLE 2.

– Recommender system: The main objective of the recommender system is to
predict the target users’ ratings of unknown movies. We validate the proposed
Ti-PMF model on three different real-world datasets, including MovieLens-1m
(marked as ML-1M), MovieLens-10m (marked as ML-10M), and Amazon In-
stant Video (marked as AIV). As shown in Fig. 7, we perform simple sentence
length statistics about ML-10M dataset on the length of text sentences. Specifi-
cally, the main statistics of the three datasets are shown in TABLE 3.

Since there is no real-world dataset of movie trailers corresponding to user rat-
ings, we crawl the video clips of the movie ID on Youtube and IMDB. For the few
early movies without trailers, we randomly select a part of the video as the trailer
from the movie. Before using the NIC model to extract the image features and gener-
ate the sentence texts, we need to extract the images from the trailers. We randomly
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Fig. 7 Data statistics of reviews in ML-10M dataset.

Table 3 Data statistics on three real-world datasets.

Datasets Users Movies Ratings Sparsity

ML-1M 6040 3883 1000209 95.73%

ML-10M 71567 10681 10000054 98.69%

AIV 29757 15149 135188 99.97%

select 20 still frames as the input of the NIC model. In addition, since the item de-
scription documents are not contained in the MovieLens dataset, we get them from
IMDB1, Douban2 and Youtube [55].

5.2 Experiment Settings

5.2.1 Model Settings

– NIC model (VGG16/19): Each image in the Flickr8k and Flickr30k datasets has
five reference captions. Accordingly, the part of the MSCOCO dataset that ex-
ceeds five captions is deleted. All of the pre-training images in the datasets are
resized into 224 × 224 × 3. As the VGG network is extremely deep, the Batch-
Normalization [52] method is adopted in each layer to avoid the internal covariate
shift. The dropout rate of the VGG model is set as 0.3 during the training process,
and the mini-batch is set as 128.

– NIC model (Inception): The receptive field of the input image is cropped to
299 × 299 with stride 2. We put the max-pooling layer behind the first layer to
reduce the parameters of the GoogLeNet, and the number of inception-a, b, c

1 http://www.imdb.com/
2 https://movie.douban.com/
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Fig. 8 The effect of the dimension size of word embedding on ML-10M.

is set as 3, 5, 2, respectively. In order to enhance the effect of low-dimensional
feature representation, we set the depth of the convolutional kernel to 2048 as the
layers increase. At the end of the network, a max-pooling layer with 8 × 8 patch
size is set to compress the features to the single-dimension deep feature vector
(1 × 1 × 2048). Finally, the visual features are scaled into (1 × 1 × 1000) through
a fully connected layer.

– NIC model (LSTM): We adopt the tokenization method in the NLTK library
for the word labeling. The NIC model generates the texts, and the maximum
raw text is set as 30. For the word embedding, the word2vec model is utilized
to convert the natural language to machine language. And the word vector is
initialized randomly with dimension size of 200. Fig. 8 shows the RMSE of Ti-
PMF and ConvMF with the dimension of word embedding varying from 50 to
300. As the description texts generated by the NIC model are shorter than the
comment texts, which are used as the textual information in the ConvMF model,
Ti-PMF has a faster convergence speed. We will train these word latent vectors in
the optimization process. Various convolutional window sizes (3, 4, 5) with 100
feature maps are utilized to obtain different contextual information.

– Ti-PMF: The dimensions of user latent vector (U) and item latent vector (V) are
both set as 50, and we initialize U and V with each element randomly selected in
the range of (0, 1). The mini-batch size is set as 128. Thereafter, we put compre-
hensive features into the projection layer and fix the dimension to 50. We set the
precision parameter of CTR and CDL to 1 when ri j is observed, otherwise it is
set to 0. The number of iterations is set as 15 in Ti-PMF. An average value of five
repeated experiments is performed as the final result to reduce the random error.

The NIC network is trained with stochastic gradient descent. We set the batch
size as 64 for 50 epochs, and the model can be achieved using RMSProp with the
decay of 0.9 and ε = 1.0. We set the learning rate as 0.045, and the dropout rate as
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Fig. 9 The BLEU score of NIC model on three different real-world datasets.

0.2 to avoid over-fitting. The Ti-PMF network is trained with the coordinate descent
method utilizing the Theano backend, and the dropout rate of Ti-PMF is 0.4.

5.2.2 Evaluation Metrics

We divide the performance evaluation of the proposed Ti-PMF model into two parts.
The first part is to evaluate the precision of word n-grams. And the other part is to
evaluate the rating prediction accuracy of recommender systems.

– BLEU [56]: Bilingual evaluation understudy (BLEU) is an auxiliary tool for
bilingual translation quality assessment. It is a metric used to evaluate the qual-
ity of machine translation. Since manual processing is too time-consuming and
laborious, the BLEU method is utilized to evaluate the quality of generated texts
by machines. In our experiments, the NIC model is evaluated with four indicators
(i.e., BLEU-1 to BLEU-4). Specifically, BLEU-n respectively represent the value
of n in the n − gram. BLEU is a measure of the matching degree between the
generated textual sequences and the texts in the ground truth.

– RMSE: Before training, each dataset is randomly split into a training set
(
80%

)
,

a test set
(
10%

)
and a validation set

(
10%

)
. Then, to validate the performance of

the proposed Ti-PMF model, we select the root mean squared error
(
RMSE

)
as

the evaluation metric:

RMS E =

√√√√√√√ m∑
i=1

n∑
j=1

(
ri j − r̂i j

)2

∣∣∣N∣∣∣ , (28)

where
∣∣∣N∣∣∣ is the number of test ratings. We set the number of iterations to 30.
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Fig. 10 Comparative experiments of the iterative process between ConvMF and Ti-PMF on the ML-1m
dataset.

5.3 Compared Schemes

– PMF [50]: Probabilistic matrix factorization is a basic method of rating predic-
tion, which uses the rating scores in the form of probability.

– CTR [57]: Collaborative topic regression is a recommendation algorithm, which
combines PMF and the latent Dirichlet allocation. Both the ratings and textual
documents are used in CTR.

– CDL [58]: Collaborative deep learning is a recommendation model that improves
the recommendation performance by using the stacked denoising autoencoder.

– ConvMF [59]: Convolutional matrix factorization is a context-aware recommen-
dation model, which combines CNN and PMF seamlessly to improve the rating
prediction accuracy.

5.4 Results and Discussion

5.4.1 Comparison of VGG and Inception in NIC Model

In the NIC model, comparative experiments are implemented by using GoogLeNet
and VGG models to connect LSTM, respectively. VGG improves the performance
of CNN from the perspective of changing the network depth, while GoogLeNet im-
proves the performance by expanding the network width. In the final result, VGG
performs a bit better than GoogLeNet. However, VGG requires more calculations
during the training process. Therefore, in the application, the GoogLeNet is used to
predict the ratings of the recommender systems. The experimental results compared
with VGG are shown in Fig. 9. BLEU-1 to BLEU-4 represent the accuracy of the
generated textual information under 1 − gram to 4 − gram evaluation metrics. Fig. 9
shows that GoogLeNet achieves better performance in generating the sentences by the
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Fig. 11 Data statistics of descriptive text generated by NIC model in ML-10M dataset.

Table 4 RMSE of overall test sets.

Dataset
Model ML-1M ML-10M AIV
PMF 0.8971 0.8311 1.4118
CTR 0.8969 0.8275 1.4594
CDL 0.8879 0.8186 1.3594

ConvMF 0.8531 0.7958 1.1337
Ti-PMF (VGG19) 0.8120 0.7344 1.0125

Ti-PMF (Inception) 0.8310 0.7369 1.0160
Improved 4.82% 7.40% 10.38%

NIC model. Moreover, in the NIC model, GoogLeNet is superior to VGG in terms of
convergence speed. The superposition of multiple convolutional kernels (5× 5, 3× 3,
1×1) makes GoogLeNet obtain better performance than the VGG with the single-size
convolutional kernel (3 × 3).

5.4.2 Impact of NIC in Ti-PMF Model

Inception model in Ti-PMF is indeed faster than ConvMF model as shown in Fig. 10.
Therefore, it can be considered that the textual information of texts generated by the
NIC model is short and concise. As shown in Fig. 11, for the statistics of image
description texts generated by the NIC model, 98% of the image description texts are
with a length shorter than 10, which is much smaller than that of the users’ comment
texts. The generated textual information is finally input into the RConvMF model.
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5.4.3 Overall Performance

TABLE 4 shows the overall rating prediction performance of the proposed Ti-PMF
and other schemes. Compared with PMF, CTR and CDL, Ti-PMF achieves significant
performance improvement. Compared with ConvMF, the improvements of Ti-PMF
are 4.82%, 7.40%, and 10.38% on ML-1M, ML-10M and AIV datasets, respectively.
The significant improvement of rating prediction performance is due to the model Ti-
PMF combining RCNN and PMF to process the concise text generated by the visual
information of movie trailers to extract richer contextual information, which verifies
the effectiveness of the model. It is worth noting that in Ti-PMF, the training time of
VGG is three times that of Inception, and better experimental results than Inception
are obtained on three datasets. Moreover, the improvement of Ti-PMF on dataset AIV
is much more significant than that on datasets ML-1M and ML-10M. The results in
TABLE 4 show that Ti-PMF achieves a more remarkable improvement when the
dataset is with a higher sparsity, indicating that Ti-PMF can effectively alleviate the
problem of data sparsity in recommender systems.

6 Conclusions and Future Work

In this paper, we propose a trailer inception probabilistic matrix factorization model
called Ti-PMF. The proposed Ti-PMF model combines the neural image caption,
recurrent convolutional neural network, and probabilistic matrix factorization model
as the rating prediction model of recommender systems. We implement the proposed
Ti-PMF model and conduct extensive experiments on three real-world datasets to
illustrate that the proposed Ti-PMF model outperforms the existing ones.

In future work, we will take into account the user attributes (such as gender, age,
and occupations) to promote the performance of rating prediction. Furthermore, we
also consider using the RNN model to extract the video features to improve the rec-
ommendation performance.
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