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Abstract: Heat-related illnesses, which range from heat exhaustion to heatstroke, affect thousands of
individuals worldwide every year and are characterized by extreme hyperthermia with the core body
temperature (CBT) usually > 40 ◦C, decline in physical and athletic performance, CNS dysfunction,
and, eventually, multiorgan failure. The measurement of CBT has been shown to predict heat-related
illness and its severity, but the current measurement methods are not practical for use in high acuity
and high motion settings due to their invasive and obstructive nature or excessive costs. Noninvasive
predictions of CBT using wearable technology and predictive algorithms offer the potential for
continuous CBT monitoring and early intervention to prevent HRI in athletic, military, and intense
work environments. Thus far, there has been a lack of peer-reviewed literature assessing the efficacy
of wearable devices and predictive analytics to predict CBT to mitigate heat-related illness. This
systematic review identified 20 studies representing a total of 25 distinct algorithms to predict the
core body temperature using wearable technology. While a high accuracy in prediction was noted,
with 17 out of 18 algorithms meeting the clinical validity standards. few algorithms incorporated
individual and environmental data into their core body temperature prediction algorithms, despite
the known impact of individual health and situational and environmental factors on CBT. Robust
machine learning methods offer the ability to develop more accurate, reliable, and personalized CBT
prediction algorithms using wearable devices by including additional data on user characteristics,
workout intensity, and the surrounding environment. The integration and interoperability of CBT
prediction algorithms with existing heat-related illness prevention and treatment tools, including
heat indices such as the WBGT, athlete management systems, and electronic medical records, will
further prevent HRI and increase the availability and speed of data access during critical heat events,
improving the clinical decision-making process for athletic trainers and physicians, sports scientists,
employers, and military officers.

Keywords: wearable technology; core body temperature; heat stroke; exertional heat illness;
physiological modeling; machine learning; sports medicine; occupational physiology; athlete
management systems
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1. Introduction

Exertional heat-related illness (HRI) is increasing in incidence as global temperatures
rise, with at least 9000 student athletes and 2000 military members affected in the US each
year [1–4]. The spectrum of illness of HRI ranges from heat-induced muscle cramps to life-
threatening heat stroke, and a rising core body temperature (CBT) during exercise directly
leads to HRI and a subsequent decline in performance [5,6]. Early detection and interven-
tion are critical to improving HRI outcomes, as mortality can drop from 80% in those with
delayed cooling to 0% when elevated CBT is detected and reduced to less than 40 ◦C within
30 min of symptom onset [7–12]. Football players, soccer players, long-distance runners,
military servicemembers, outdoor and manual workers, and emergency responders are all
frequently affected by HRI-related morbidity and mortality (Figure 1) [2,13–19]. Despite
the frequency and potentially fatal consequences of undetected HRI, coaches, trainers,
officers, and employers currently rely on visible cues and subjective assessments of their
athletes and employees for early detection, such as malaise, confusion, thirst, ataxia, or
excessive sweating. This can tragically delay recognition and treatment [7,9,20].
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This review focuses on the monitoring of CBT in athletes and other patients in dynamic environments
such as first responders, oil rig and construction workers, and military, as solutions already exist for
inpatient and neonate monitoring.

The monitoring of CBT can be instrumental in managing internal and external work-
loads to prevent the elevation of CBT to the critical temperatures at which HRI occurs
and performance declines. A healthy resting CBT is considered to be 37 ◦C ± 0.5 ◦C or
98.7 ± 0.9 ◦F [21], and a slightly elevated CBT of around 38.5 ◦C/101.3 ◦F is a normal physi-
ological response to exercise and generally not cause for concern [5,6,22]. Once CBT reaches
40 ◦C/104 ◦F, clinical diagnosis and treatment of HRI begins whether or not symptoms are
present (Figure 2) [20]. CBT can rise as quickly as 1 ◦C every 5 min at near-peak exercise
intensities due to the heat generated from skeletal muscle contraction, increased metabolic
rate, and increased heart rate (HR) [5,22]. Hot and humid climates worsen the rise in CBT
and risk for HRI [11], especially if the patient is not acclimatized to exercising in a harsh
environment [6].

Wearable technology is currently playing a role in actively monitoring the physiologi-
cal status and preventing injury in athletes at all levels, and so, the integration of low-power,
high-fidelity predictive analytics with wearable sensors can enable the monitoring of CBT
to ultimately provide the early detection and prevention of HRI [23–27]. Current CBT
measurement methods during exercise are limited to esophageal, rectal, or telemetric gas-
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trointestinal pill thermometers, which are various combinations of invasive, obstructive
to actively exercising athletes, slow to respond to changing CBT, and excessively costly
for routine use [28,29]. Other CBT measurement methods used in clinical practice, such as
oral, tympanic, axillary skin, and temporal skin, have shown to be unreliable in exercising
subjects [30]. Due to these challenges, there has been a significant effort to develop algo-
rithms that provide accurate estimations of CBT by integrating key physiologic parameters
such as heart rate, skin temperature, and skin heat flux (Table 1) [29–34].

Figure 2. A schematic representation of the CBT at which heat-related illness occurs [5,6,20–22,35].
Includes how wearable CBT measurement systems can provide early intervention to reduce the need
for the treatment and, ultimately, morbidity and mortality of HRI. EAMCs = exercise-associated
muscle cramps.

CBT has thus far proven challenging to predict via algorithms and noninvasive wear-
able sensors due to the influence of a myriad of personal, situational, and environmental
variables on individual rates of heat accumulation and dissipation. Factors such as gender,
age, medication usage, BMI, level of heat acclimatization, exercise workload, sport and
position, clothing level, ambient temperature, and ambient humidity all have shown a
correlation to an individual’s CBT [22,36]. The risk of HRI is increased in hot and humid
environments due to inefficiencies in evaporative cooling mechanisms, but CBT can also
reach critical levels in more temperate environments secondary to prolonged high-intensity
activity or wearing heavy clothing and equipment that independently prevent effective
evaporative cooling [6,11,17,22,28,37–41]. Due to this variability in both individual heat
tolerance and the environments in which people experience heat stress, CBT prediction
algorithms must be validated on a wide variety of subjects and conditions.

Machine learning (ML) platforms applied to CBT prediction algorithms may provide
the opportunity to increase the accuracy of CBT predictions, thereby potentially decreasing
the risk of HRI. ML methods have quickly become widespread in medicine and sports
science, with applications for reduction of the injury burden already in use in baseball,
basketball, soccer, American football, and Australian football [51]. ML can locate and utilize
patterns in the data that are difficult or impossible for a human to identify, especially in
large, multimodal data sets, and higher predictive power can be expected with increased
data input [52]. Causal modeling or dimensionality reduction can be used to distinguish



Sensors 2022, 22, 7639 4 of 16

related variables [53,54], which could simplify the process of algorithm development by
easily identifying which sensors and at what locations are most correlated with CBT.

Table 1. Comparison of methods used to measure CBT in exercising subjects. Summarized from
reference [30]. Commercial devices listed are only those marketed or validated as measuring
exercising CBT.

Method Commercial Devices in Use for
Exercising CBT Measurement Advantages Disadvantages

Gastrointestinal • HQ, Inc. CorTemp [42]
• Accurate measurement of internal CBT
• Results are easily obtained even in

athletic environment

• Requires repeated ingestion
• High cost and requires receiver device
• Injured athletes who need an MRI and

have ingested device cannot be imaged

Rectal
• Henry Schein DataTherm II [43]
• YSI Temperature Sensor [43]
• WelchAllyn SureTemp Plus [43]

• Accurate measurement of internal CBT
• Standard of Care
• Cost-efficient

• Uncomfortable/painful
• Not robust enough for athletic use

Esophageal
• Medtronic Mon-A-Therm [44]
• Circa S-Cath Temperature

Probe [45]
• Accurate measurement of internal CBT

• Highly sensitive to small changes in
CBT—readings constantly changing

• Uncomfortable/unreasonable in
athletic settings

Oral • None
• Results are easily obtained
• Standard of Care and readily available
• Cost-efficient

• Not an accurate measurement of CBT
• Not capable of continuous monitoring

Temporal • None • Quick temperature readings
• Capable of continuous monitoring

• Inaccurate readings
• Requires sensors placed on face
• Could inhibit athletic protective

equipment (e.g., helmets)

Wearable Sensors
(e.g., wrist monitors)

• Nazarian et al. [46]
• Tsadok et al. CW [47]
• Tsadok et al. DW [47]

• Built for athletic use without impeding
athlete movement

• Capable of continuous monitoring

• Not as accurate as rectal monitoring
• Efficacy has yet to be validated during

athletic activities

Epidermal Sensors

• Moyen et al. [31]
• greenTEG CORE [48]
• Equivital EQ02 [49]
• Zephyr BioHarness [50]

• Potential for extremely comfortable
athletic use

• Integration into textiles worn by athletes

• Efficacy has yet to be validated during
athletic activities

• Not as accurate as rectal monitoring

The body of literature investigating CBT prediction systems is now growing, and
algorithms are becoming more complex. Few of these scientifically evaluated algorithms
using wearable devices are being used in practice to reduce the burden of HRI in at-risk
populations. Yet, the number of wearable devices that report CBT measurements are in-
creasing on the market. This systematic review provides a comprehensive understanding
of how the prediction of CBT using wearable technology has been studied and the accuracy,
reliability, and conditions in which CBT predictions have been validated in the literature
(e.g., subject characteristics, exercise conditions, study methodology, and generalizability
to larger populations). The results disseminating from this review will highlight how
CBT is currently being calculated to better understand the gap in translational compati-
bility of this research into practical systems to prevent HRI and optimize performances in
high-risk populations.

2. Materials and Methods

A systematic literature search was conducted in the Web of Science Core Collection
database to identify works from 1 January 2000 until 31 December 2021 in which predicted
CBT was compared to measured CBT in exercising subjects. This database was selected for
its inclusion in both medical and engineering journals. The search used the terms below,
where TS stands for topic and searches the title, abstract, author keywords, and Web of
Science Keywords Plus for the specified term or terms.

TS = (core body temperature OR core temperature OR deep body temperature) AND
TS = (noninvasive OR non-invasive OR wearable OR indirect) AND TS = (exercise*
OR hot* OR heat* OR physical*) AND TS = (model* OR predict* or estimate*)

Studies were excluded if they met any of the following criteria:

1. non-medical or non-human research;



Sensors 2022, 22, 7639 5 of 16

2. systematic and narrative reviews or meta-analyses that did not develop a previously
unreported CBT prediction algorithm;

3. did not include a wearable device (defined below);
4. did not include exercising subjects;
5. validated the CBT prediction model with the same data on which it was developed;
6. did not use a sufficient comparator method (ingestible telemetric temperature pills,

rectal thermometer, or esophageal thermometer);
7. did not predict or measure CBT.

The study selection process and enumeration of CBT prediction algorithms are de-
picted in Figure 3.

Figure 3. Flowchart depicting the search results and methodology of the study selection. Additionally
depicted is the enumeration of multiple prediction models from some studies.

For this review, wearables were defined as epidermal patches, wrist monitors, and
chest straps [54]. Sufficient comparators were defined as ingestible telemetric temperature
pills, rectal thermometers, or esophageal thermometers in accordance with the previous
literature demonstrating the effectiveness of these methods in measuring the core body
temperature [30].

The following data were extracted from papers meeting the inclusion and exclusion criteria:

1. Study metrics and methodology, including participant demographics and testing conditions;
2. Characteristics of the CBT predictive algorithm, including modeling method and

number and locations of sensors;
3. Outcome measures of algorithm prediction accuracy, defined as the root mean square

error (RMSE), mean difference (MD), or standard error of the estimate (SEE).

Studies were also classified as whether they collected prospective data or retrospec-
tive data. The testing conditions were recorded based on the variability of the exercise
environment and the exercises performed. Studies in which the testing environment was
considered variable included a difference of at least 2.0 ◦C and/or 10% relative humidity
within a testing period or between separate testing periods. Studies in which the exercise
intensity or pattern was considered variable between exercises must include at least 2 sepa-
rate exercises in which the exercise performed, exercise intensity, or duration or sequence
of the exercise periods differed.

Each individual algorithm reported and validated by a study was recorded as a
separate data point in this review. In cases where values such as age and the RMSE were
reported based on differing testing conditions but utilizing the same algorithm, a grand
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mean of that value was calculated and reported with weighting based on the number
of subjects in each condition. Only data from wearables and participants used in the
validated algorithm were included. Data from participants or trials used to train or develop
algorithms were excluded.

The primary outcome measure collected from the selected studies was the root mean
square error or deviation (RMSE or RMSD), a commonly used metric for measuring the
goodness-of-fit of a prediction algorithm. The RMSE can be interpreted as the standard
deviation of the unexplained variance between the predicted and actual values. It is an
absolute measure of fit calculated using the square root of the variance of the residuals
and is thus expressed in the same units (◦C) as the compared values. A lower RMSE value
indicates a better fit [55]. When reported, ± 1 standard deviation (SD) of the RMSE was
also recorded.

Where the RMSE was not reported by a study, the mean difference (MD) or standard
error of the estimate (SEE) were collected as the outcome measures, along with their
respective measures of variability.

3. Results
3.1. Article Search Results

The systematic literature search identified 303 potential studies for analysis, 20 of
which reported novel algorithms for CBT predictions using wearable sensors in exercising
subjects that met all the inclusion criteria and none of the exclusion criteria. From those
20 study records, a total of 25 CBT prediction algorithms were identified, because 3 of the
studies reported multiple algorithms. The root mean square error (RMSE) was reported
as an outcome measure in 18 of the 25 algorithms, compared to the mean difference (MD)
reported for 5 out of the 25 algorithms and standard error of the estimate (SEE) for 3 out of
the 25 algorithms. The data used for validation of the algorithms were collected prospec-
tively with the validation of the algorithm for 20 algorithms, while 6 of the algorithms were
validated with retrospective data and one algorithm using both (Table 2).

Table 2. Methodological and demographic details of the included studies. The clothing level
was recorded as follows: light for short sleeve athletic wear, heavy for long sleeves and pants,
and occupational for military or other specialized clothing. PC = Prospectively Collected and
RC = Retrospectively Collected data. NR = Not Reported, V = Variable, O = Occupational Gear,
H = Heavy (long sleeves and pants), and L = light (short sleeves and shorts).

Model Year
Validation

Data
Source

Number of
Validation
Subjects, n

Average
Subject

Age

Average
Subject

Mass
(kg)

Subject
Sex

Subject
Clothing

Level

Variable
Exercise

Conditions

Variable
Exercises

CBT
Comparator

Moyen et al. [31] 2021 PC 27 28.9 75.2 M, F V Y Y GI Pill, Rectal

Nazarian et al. [46] 2021 PC 15 NR NR M, F NR N N GI Pill

Verdel et al. [57] 2021 PC 25 30 77.9 M NR Y Y Rectal

Buller et al. [58] 2020 PC 21 21 80.5 M O N N GI Pill

Tsadok et al. CF [47] 2020 PC 13 25 72 M O Y N Rectal

Tsadok et al. CW [47] 2020 PC 13 25 72 M O Y N Rectal

Tsadok et al. DF [47] 2020 PC 13 25 72 M O Y N Rectal

Tsadok et al. DW [47] 2020 PC 13 25 72 M O Y N Rectal

Hunt et al. [59] 2019 PC 8 26.4 77.4 M O Y Y GI Pill

Eggenberger et al.
MAX [60] 2018 PC 6 28.9 74.1 M V N Y Rectal

Eggenberger et al.
MIN [60] 2018 PC 6 28.9 74.1 M V N Y Rectal

Laxminarayan et al.
KF [56] 2018 RC 166 23.2 76.5 M, F V Y Y Rectal,

Esophageal

Laxminarayan et al.
MM [56] 2018 RC 166 23.2 76.5 M, F V Y Y Rectal,

Esophageal
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Table 2. Cont.

Model Year
Validation

Data
Source

Number of
Validation
Subjects, n

Average
Subject

Age

Average
Subject

Mass
(kg)

Subject
Sex

Subject
Clothing

Level

Variable
Exercise

Conditions

Variable
Exercises

CBT
Comparator

Welles et al. [29] 2018 PC 4 22 76.4 NR O Y Y GI Pill

Mazgaoker et al. [61] 2017 PC 17 24.16 67.8 M L Y N Rectal

Seng et al. [62] 2016 RC 5 NR NR M NR Y Y GI Pill

Seo et al. [63] 2016 PC 27 22.3 78.1 M V Y Y Rectal

Buller et al. [64] 2015 PC 27 29.9 82.5 M O Y Y GI Pill

Niedermann et al. [32] 2014 RC, PC 18 23.5 74.2 M H Y Y Rectal, GI Pill

Buller et al. [34] 2013 RC 83 22.9 81.6 M, F V Y Y GI Pill, Rectal

Richmond et al. [65] 2013 PC 32 38 81.9 NR O Y Y Rectal

Buller et al. [66] 2011 PC 8 27.7 85.7 M O N Y GI Pill

Teunissen et al. [67] 2011 PC 7 25.4 73.2 M, F L Y N Rectal

Gunga et al. [33] 2008 PC 20 39.5 83.5 M O Y N Rectal

Yokota et al. [37] 2008 RC 63 20.7 75.7 M, F V Y Y GI Pill, Rectal

3.2. Aggregate Results

A total of 592 unique subjects were used to validate the analyzed algorithms, with
211 subjects being used to validate more than one algorithm. The average sample size used
to validate an algorithm was 32.1 ± 43.2 subjects, and the average age and mass of the
subjects were 26.4 ± 4.7 years and 76.6 ± 4.4 kg, respectively (Table 2). The largest sample
size used to validate an algorithm was 166 subjects [56], and the smallest sample size
was 4 subjects [29]. All studies that reported the sex of their participants included males,
with 7 out of 25 algorithms also reporting female subjects in validation. Variable exercise
conditions (temperature and relative humidity differences greater than 2.0 ◦C and/or
10%) were reported in 20 out of 25 algorithms. Variable exercise sequences or intensities
were reported in 16 out of 25 algorithms. The telemetric gastrointestinal thermometer pill
was the most used comparator device, reported in 17 out of 25 algorithms, followed by a
rectal thermometer was reported in 12. Several algorithms were validated using multiple
different comparator methods.

Due to the much lower number of algorithms reporting the MD or SEE as compared
to the RMSE, and the inability to directly compare these measures to the RMSE, subsequent
analyses were performed solely on algorithms reporting the RMSE. In addition, the outlier
data from Tsadok et al. DW was excluded from further analysis due to the extremely high
RMSE compared to all other data points.

3.3. Results from Studies Reporting RMSE

The unweighted average RMSE in the 18 algorithms in which it was reported was
0.38 ◦C, and the average standard deviation of the RMSE among those algorithms was
0.23 ◦C. The unweighted average RMSE decreased to 0.28 ◦C if a single outlier (1.97 ◦C in
Tsadok et al. DW) was removed, and the average RMSE SD similarly decreased to 0.14 ◦C
if the same outlier (1.26 ◦C in Tsadok et al. DW) was removed. A total of four algorithms
reporting the RMSE utilized HR sensors alone to predict CBT, with the average RMSE and
SD reported as 0.32 ◦C ± 0.15 ◦C across 139 subjects (Table 3). Algorithms using additional
sensor modalities, such as skin heat flux, combined with HR reported an average RMSE and
SD of 0.25 ◦C ± 0.13 ◦C in nine algorithms and 472 subjects. There were three algorithms
reviewed that did not include HR, with an average RMSE and SD of 0.29 ◦C ± 0.15 ◦C
across 39 subjects (Table 3). The most common wearable device location was the chest,
with eight algorithms including only a wearable at the chest and two algorithms including
a wearable at the chest in addition to devices at other locations. Algorithms with only a
wearable at the chest had an average RMSE and SD of 0.29 ◦C ± 0.14 ◦C across 322 subjects,
while those with a wearable at the chest plus at least one other device reported an average
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0.32 ◦C ± 0.13 ◦C with 184 subjects. No wearable at the chest was included in five of
the algorithms, and the average RMSE of these algorithms was 0.26 ◦C ± 0.15 ◦C across
81 subjects. A single wearable device was reported in 11 algorithms, with an average
value of 0.27 ◦C ± 0.15 ◦C across 269 subjects. Multiple device locations were used in four
algorithms with an average RMSE reported as 0.29 ◦C ± 0.12 ◦C with 354 subjects. The
greatest degree of accuracy (lowest RMSE value) was observed in an algorithm that used
a single wearable at the wrist, reporting a 0.13 ◦C RMSE in 15 subjects [46]. The greatest
degree of accuracy (lowest RMSE value) was observed in an algorithm that used a single
wearable at the wrist, reporting a 0.13 ◦C RMSE in 15 subjects [46] (Figure 4). One study
did not report the location of the sensors used in its algorithm (Table 4).

Table 3. Comparison of the overarching design principles. One study did not report the sensor
location. Model numbers prior to the parentheses indicate the number of models reporting the
RMSE and found in Table 4 only, while the model numbers in parentheses include models listed in
Tables 4 and 5 reporting the RMSE, MD, and SEE. Values in italics indicate the outlier Tsadok et al.
DW [47] was excluded from that data set.

Algorithm Design Principle Number of Models Total Number of Subjects
(Reporting RMSE Only)

RMSE
Mean ± SD

Heart Rate Only 4 (5) 139 0.32 ± 0.15

Heart Rate Plus Others 9 (11) 472 0.25 ± 0.13

No Heart Rate 3 (7) 39 0.29 ± 0.15

Chest Sensor Only 8 (9) 322 0.29 ± 0.14

Chest Sensor Plus Others 2 (4) 184 0.33 ± 0.14

No Chest Sensor 5 (9) 81 0.26 ± 0.15

Single Wearable Device 11 (15) 233 0.29 ± 0.15

Multiple Wearable Devices 4 (6) 354 0.29 ± 0.12

Figure 4. Forest plot depicting the RMSE ± standard deviation of studies reporting this metric.
Tsadok et al. DW [47] is excluded both from the plot and from the displayed average due to its status
as an outlier. The asterisks (*) denote models that did not report a RMSE SD, and so, the error bars
represent ± 1

2 of the reported RMSE. [29,31,32,34,37,46,56,58,59,62,64,66].
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Table 4. Data on the model design and outcomes for models that reported the root mean square
estimate (RMSE). NR: Not Reported and V = Variable.
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Moyen et al. [31] 2021 Extended
Kalman Filter 1 Upper Arm

HR, Skin Temp, Air Temp,
Skin Humidity, Air

Humidity, Accelerometry,
Age, Height, Mass,

Biological Sex

27 0.3 NR

Nazarian et al. [46] 2021 Kalman Filter 1 Wrist HR, Skin Temp, Air Temp 15 0.13 NR

Buller et al. [58] 2020

Extended
Kalman Filter
with Sigmoid

Curve

1 Chest HR 21 0.43 0.20

Tsadok et al. CF [47] 2020 Cross Validation 1 Forehead Heat Flux 13 0.23 0.1

Tsadok et al. CW [47] 2020 Cross Validation 1 Wrist Heat Flux 13 0.31 0.14

Tsadok et al. DF [47] 2020 Drager Tcore 1 Forehead Heat Flux 13 0.34 0.21

Tsadok et al. DW [47] 2020 Drager Tcore 1 Wrist Heat Flux 13 1.97 1.26

Hunt et al. [59] 2019 Extended
Kalman Filter 1 Chest HR 8 0.32 NR

Laxminarayan et al. KF [56] 2018 Kalman Filter 2–11 Chest, Wrist,
Variable

HR, Skin Temp, Activity
Level 166 0.33 0.18

Laxminarayan et al. MM [56] 2018 Mathematical
Model 2–11 Chest, Wrist,

Variable
HR,

Activity Level 166 0.33 0.18

Welles et al. [29] 2018 Kalman Filter 2 Chest HR, Skin Temp, Heat Flux 4 0.18 0.04

Seng et al. [62] 2016 Extended
Kalman Filter 1 Chest HR, Skin Temp 5 0.29 NR

Buller et al. [64] 2015 Extended
Kalman Filter 1 Chest HR 27 0.21 0.11

Niedermann et al. [32] 2014
PCA with

Multiple Linear
Regression

6

Upper Arm,
Lower Arm,

Thigh, Chest,
Back

HR, Skin Temp, Heat Flux 18 0.32 0.09

Buller et al. [34] 2013 Extended
Kalman Filter 1 Chest HR 83 0.3 0.13

Buller et al. [66] 2011

Kalman Filter
with Dynamic

Bayesian
Network

1 Chest HR, Heat Flux,
Accelerometry 8 0.28 0.16

Yokota et al. [37] 2008 Compartmentalization1 NR

HR, Air Temp, Air
Humidity, Air Pressure,

Wind Speed, Body Surface
Area, Height, Mass

63 0.11 NR

3.4. Results from Studies Reporting MD or SEE

The mean difference (MD) was reported for 5 out of the 25 algorithms while the
standard error of the estimate (SEE) was reported for 3 out of the 25 algorithms. The lowest
MD, i.e., greatest degree of accuracy, was seen in the proprietary ML model using one
wearable at the chest at 0.16. The lowest SEE, i.e., greatest degree of accuracy, was seen in
an algorithm using bootstrap modeling with a neck wearable at 0.2 (Table 5).



Sensors 2022, 22, 7639 10 of 16

Table 5. Data on the model design and outcomes for models that reported the mean difference or
standard error of the estimate.

Model Year Model Development
Method

Number of
Devices Worn

Device
Locations

Sensor Types
Used in Model (n) MD MD

SE SEE

Verdel et al. [57] 2021 Machine Learning
(Proprietary) 1 Chest HR, Skin Temp,

Heat Flux 25 0.16 0.27 .

Eggenberger et al.
MAX [60] 2018 PCA with Multiple

Linear Regression 18

Chest, scapula,
forearm, wrist,
forearm, thigh,
calf, hand, arm,

sternum, rib,
forehead

HR, Skin Temp
(Insulated),
Skin Temp

(uninsulated)

6 0.278

Eggenberger et al.
MIN [60] 2018 PCA with Multiple

Linear Regression 2 Chest, scapula HR, Skin Temp 6 0.29

Mazgaoker et al. [61] 2017 Drager Double Sensor 1 Forehead Heat Flux 17 0.21 0.07

Seo et al. [63] 2016 Kalman Filter 1 Chest HR 27 0.26 0.4

Richmond et al. [65] 2013 Bootstrap 1 Back of Neck Skin Temp, Air
Temp 32 0.2

Teunissen et al. [67] 2011 None 1 Aural Canal Aural Temp 7 1.2 0.45

Gunga et al. [33] 2008 Drager Double Sensor 1 Vertex of head Heat Flux 20 0.2 0.75

4. Discussion

This systematic review investigated the wearable devices and algorithms used in CBT
prediction today to better understand the accuracy and reliability of the existing method-
ologies. In addition, this review identified areas where future research and developments
should be directed to improve the translatability of this technology to practical HRI preven-
tion strategies. Our results show that multiple wearable devices ranging from wristwatches
to ear sensors are being used in CBT prediction algorithms that utilize steady-state Kalman
filters, regression, and ML methods such as Leave-One-Out Cross-Validation (LOOCV). A
high accuracy was observed among published algorithms, with 17 out of 18 algorithms
meeting a previously reported clinical acceptance threshold of a RMSE less than or equal
to 0.5 ◦C [32,33,37,60]. The average RMSE of the 18 algorithms reporting this value in this
report was 0.28 ± 0.14 ◦C after removal of the outlier, Tsadok et al. DW, which reported
an RMSE of 1.97 ◦C or nearly five times the next-highest reported RMSE, likely due to its
reliance on a single, distal measurement site, single sensor, and proprietary algorithm. This
outlier was the only algorithm reporting an RMSE above 0.5 ◦C. These critical findings
demonstrate that accurate CBT predictions using wearable devices is achievable under
controlled, prescribed conditions, but algorithms must be validated in a wide range of
conditions and subjects. Increasing the number of wearable devices worn did not appear
to correlate with the increased accuracy in this review (RMSE 0.29 ± 0.15 ◦C in 233 subjects
for single-device algorithms versus 0.29 ± 0.12 ◦C in 354 subjects for multiple-device algo-
rithms; Table 4), showing that sufficient data can be collected for CBT prediction from a
single wearable device.

High accuracy across variable conditions and subjects was observed in the two al-
gorithms in this review that reported the use of ML methods [31,57]. The first algorithm
included ambient humidity and temperature sensors with skin temperature and heart rate
in a single wearable device, the KENZEN, along with user-input individual characteristics,
including age, mass in kilograms, and biological sex [31]. This algorithm showed a high
degree of accuracy across variable conditions and exertion levels ranging from 13.4 to
43.2 ◦C and 32 to 110% predicted max HR (RMSE = 0.30 ◦C) when tested on 27 subjects [57].
The study used LOOCV to evaluate and compare the accuracy of multiple ML algorithms.
The other algorithm using ML methods in this review used a proprietary ML method with
the CORE device to predict CBT from the HR, skin temperature, and heat flux in consistent
environmental conditions. This study reported the lowest MD and thus highest accuracy
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of the algorithms reporting that measure but could not be compared against the algorithms
reporting the RMSE. In addition, this study did not validate the algorithm in varying
environmental conditions or include environmental variables in the algorithm [57]. It also
must be noted that, as a proprietary device and algorithm, the exact methods being used are
unknown; thus, transparency in methods, development, accuracy, and reliability is critical
to using such devices for clinical decision-making. While these studies showed immense
promise for the use of ML methods to predict CBT due to the high accuracy observed,
accurate predictions in controlled clinical and laboratory settings and in similar subjects
may not translate to the variable conditions of a dynamic external environment [30,36].
Thus, the clinical validation of these algorithms in variable environments and larger, more
diverse subject pools is still required.

The above studies using ML methods reflected similar limitations to others in this
review, namely the lack of validity in dynamic real-world environments and lack of diverse
subject pools. Even though 21 out of 25 total algorithms in this review conducted validations
in at least two different environmental conditions (ambient humidity and temperature),
many of these validations were in laboratory settings rather than in the field. Additionally,
all but eight algorithms limited their validation testing to one clothing level [31,34,37,63],
and the clothing level was included as a variable in only one algorithm [37]. Environmental
conditions were included as variables in only three CBT prediction algorithms reporting
the RMSE [31,37,46], including the above-mentioned algorithm using the KENZEN device,
and these three algorithms reported a much more accurate average RMSE than algorithms
not including environmental variables (0.18 ◦C across 105 subjects compared to 0.42 ◦C
across 558 subjects). Additionally, the rates of heat accumulation and dissipation and,
in turn, individual CBT have shown to be affected by individual variables, including
gender, age, level of physical fitness, skin surface to body mass ratio, hydration status,
sleep deprivation, and phase of the menstrual cycle [36]. Studies have also shown that
the chances of HRI are increased by up to 40% in those with previous episodes of HRI;
skin conditions increasing heat storage; cardiac or thyroid conditions preventing proper
thermoregulation; those experiencing alcohol or opioid withdrawal; and those taking
medications that affect the body’s ability to thermoregulate, including anticholinergics,
antipsychotics, antihistamines, and stimulants [9,10,28,35]. However, the subject pools
in the reported studies did not show much variability, with the average subject age and
mass ranging from 21.6 to 31.1 years and 72.1 to 81.0 kg, only a third of the reviewed
algorithms including female subjects in addition to male and most studies standardizing
the results by excluding participants with medical conditions or taking medication. Only
one algorithm included subject characteristics or demographics as variables [31]. While the
reported results were accurate within their constrained conditions and populations, future
algorithms must be validated across varied environments and populations at high risk for
HRI, including athletes, soldiers, first responders, and those working physically intensive
occupations. Ideally, algorithms will also be validated across both normal and pathologic
CBTs, although subject safety dictates stopping exercise once reaching 40 ◦C due to the
high risk of harm at this temperature. There remains a need to validate algorithms for high
school athletes under 19 years of age, as this demographic makes up the largest proportion
(nearly 50%) of HRI presenting to emergency rooms [68].

ML methods offer vast opportunities to address some of the current issues with CBT
prediction with the wearable devices described in this review, namely the individualization
of predictions, wearable device count, and interoperability with the existing HRI prevention
tools. This systematic review demonstrated the ability of the current algorithms to predict
CBT using wearable devices accurately under controlled conditions, as well as in varied
conditions when including environmental variables such as in the algorithms in Moyen
et al., Welles et al. and Nazarian et al. [29,31,46]. While the accuracy from the study is
not in question, future studies should strive to validate CBT prediction algorithms using
wearable devices in dynamic, real-world environments, such as in Moyen et al. and in
a wider variety of subjects at risk for HRI. Rather than limiting the scope of validation
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conditions, future algorithms using ML methods may be able to personalize their results
by including additional data and variables on individual subjects into future algorithms,
thereby better controlling for the inherent variability between users. Additionally, ML
methods such as causal modeling and dimensionality reduction, used to determine the
correlations between variables, can help reduce the number of devices worn and eliminate
redundant data sources, as demonstrated in the study by Eggenberger et al., which showed
the ability to acquire highly similar correlations between two CBT prediction algorithms
using either 18 unique measurement locations or by reducing their algorithms to include
only 2 of those measurements (r2 = 0.70 versus r2 = 0.68, respectively) [60].

Most importantly, the interoperability and integration between wearable CBT predic-
tion algorithms and preexisting tools for injury prevention will decrease the athletic trainer
burden and provide a wholistic platform for expedited clinical decision-making during
times of distress (Figure 5). Existing systems such as EMRs, heat indices such as the wet
bulb globe temperature (WBGT), and the integration of CBT prediction algorithms into
a holistic platform will provide team physicians, athletic trainers, head coaches, sports
scientists, employers, and military officers an integrative platform to ultimately reduce
the incidences of HRI and injury burden more broadly while optimizing performances.
The algorithm could also integrate with the existing tools used in HRI prevention for
athletes and employees, such as the WBGT, which estimates environmental heat stress by
accounting for environmental variables, including the air temperature, humidity, wind
speed, and thermal radiation [69], to estimate the effects of external influences on a subject’s
heat status. This integrated system could also help prevent the under- or overuse of injuries
and maximize performances by identifying problematic patterns and informing coaches,
trainers, and officers on decisions to stop or alter exercises and keep athletes within an
optimal temperature range to prevent HRI and maximize performances [47]. The future of
interoperability between wearable CBT prediction algorithms using ML and the preexisting
tools for injury prevention such as EMRs, heat indices, AMSs and worker management
systems, and treatment algorithms will increase the availability and speed of access of
important data for decision-making, thus preventing injuries and improving care at the
clinic, athletic field, and battlefield.

Figure 5. A workflow schematic depicting the hypothetical interoperability of an algorithm for CBT
prediction using wearable devices [25–27,54]. Both sensor inputs to the CBT prediction algorithm
and its output to other systems are included in the schematic. Heart Rate is used to calculate both the
CBT and internal workload. EMR = Electronic Medical Record, RPE = Rating of Perceived Exertion,
and SmO2 = Muscle Oxygen Saturation.
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5. Conclusions

This systematic review focused on the current state of wearable sensor technology
and predictive analytics towards monitoring the core body temperature in athletes, with
applications in other fields of work in high acuity environments or situations (Figure 6).
The findings of this review demonstrate the opportunity that exists for the development
of accurate and versatile wearable sensors that integrate CBT monitoring algorithms to
accurately predict the onset of and prevent heat-related illness. The overall volume of
currently published literature on the application of wearable technology to monitor the
core body temperature is limited, with only 20 studies and 25 CBT prediction algorithms
for exercising subjects identified in this systematic review. Of the algorithms reporting a
RMSE, 17 out of 18 algorithms reported here met the previously identified clinical validity
standards, with an RMSE lower than 0.5 ◦C. The validation of these algorithms in variable
populations and in real-world situations is still needed. A large opportunity exists for
ML methods to incorporate individual and environmental characteristics, such as ambient
temperature and subject demographics, into CBT prediction algorithms. Improved CBT
prediction methods using ML will more reliably predict and prevent HRI across diverse
environments and populations, but the future of CBT prediction lies in its integration with
the larger HRI and athletic injury prevention space, which includes heat indices such as
the WBGT, athlete management systems, electronic medical records, treatment algorithms,
and RTP protocols. ML algorithms, with their increased data processing abilities, are ideal
candidates for interoperability within these larger systems, as they can both supply input to
the CBT prediction algorithm and use its output, along with other data, to assist in clinical
decision-making, increasing the amount of data available to clinicians and streamlining
transitions of care.

Figure 6. Conclusions from this review and proposed future directions for the technology.
HRI = heat-related illness, CBT = core body temperature, RMSE = root mean square error, WBGT
= wet bulb globe temperature, AMS = athlete management system, and EMR = electronic medical
record.
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