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Abstract: This research paper presents novel condensed CNN architecture for the recognition of
multispectral images, which has been developed to address the lack of attention paid to neural
network designs for multispectral and hyperspectral photography in comparison to RGB photographs.
The proposed architecture is able to recognize 10-band multispectral images and has fewer parameters
than popular deep designs, such as ResNet and DenseNet, thanks to recent advancements in more
efficient smaller CNNs. The proposed architecture is trained from scratch, and it outperforms a
comparable network that was trained on RGB images in terms of accuracy and efficiency. The study
also demonstrates the use of a Bayesian variant of CNN architecture to show that a network able to
process multispectral information greatly reduces the uncertainty associated with class predictions in
comparison to standard RGB images. The results of the study are demonstrated by comparing the
accuracy of the network’s predictions to the images.

Keywords: long short-term memory (LSTM); 3D-CNN; hyperspectral image segmentation (HSI)

1. Introduction

Hyperspectral remote sensing has matured into a trustworthy instrument for Earth
observations in recent years [1]. Because HSIs can collect so much information in both the
spectral and spatial domains, they have found use in many different fields [2]. These fields
include agriculture, geology, food science, and even military target reconnaissance. The
classification of hyperspectral images will have profound effects on the aforementioned
areas of study. Improved hyperspectral imaging methods have made high-resolution HSIs
available to the public, making it simpler for researchers to push the state of the art in HSI
segmentation forward [2–5].

Several methods for recognizing and segmenting hyperspectral images have imple-
mented standard approaches from the field of machine learning [2]. Several methods,
including kernelized support vector machines (k-SVMs), Markov random fields (MRFs),
sparse representation (SR), morphological transformations (MTs), and composite kernels or
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spatial–spectral kernels [2,6,7], can be used to classify or segment images by combining
the spectral and spatial information carried by the images. You can find tools to help with
the categorization and division of datasets. Traditional methods have worked well and
produced satisfying results; however, improving their classification performance has been
challenging due to a lack of knowledge on how to best utilize the rich feature information
of hyperspectral images.

Traditionally, hyperspectral image analyses have relied on methods such as principal
component analysis (PCA) and linear discriminant analysis (LDA) to extract features from
the images. These methods are based on linear algebra and are effective at reducing the
dimensionality of the data, but they can fail to capture the non-linear relationships and
complex patterns present in hyperspectral images. Additionally, traditional methods often
involve the manual selection of features, which can be time-consuming and subjective.
This can lead to the inclusion of irrelevant features and the exclusion of important ones,
which can negatively impact the performance of the analysis. Furthermore, traditional
methods, such as PCA and LDA, are not able to learn features from the data in the way
that deep-learning models, such as CNNs, can. CNNs are able to automatically learn
features from the images, which can lead to more accurate and robust results. This is
particularly important in hyperspectral image analyses where the data is high-dimensional
and complex. In summary, traditional methods for hyperspectral image analyses, such
as PCA and LDA, are not able to fully exploit the rich feature information present in
the data, which can limit the performance of analyses. Deep-learning models, such as
CNNs, are better suited for this task as they can automatically learn features from the
data, which can lead to more accurate and robust results [8–10]. This is especially true
of deep learning, a field where technological capabilities have grown rapidly in recent
years. Its ability to autonomously extract rich deep features is the key to its outstanding
performance in image/video processing, speech recognition, and other domains. Natural
language processing and understanding are two additional subfields. The use of deep-
learning techniques in the evaluation of hyperspectral images is also being considered by
researchers [11–13]. Convolutional neural networks, also known as CNNs, have shown
to be especially useful in the field of computer vision. Conventional neural network
architecture (CNN) has stood the test of time in the realm of deep learning. Over the past
few years, CNNs have established themselves as reliable classification aids for HSI probes.
Using CNNs that are constructed on two-dimensional convolution yields significantly
more accurate results than more traditional machine-learning-based HSI classification
techniques [10,14–16].

Several factors make hyperspectral image classification a difficult process, including
overlap and layering, as well as high degrees of similarity and diversity among classes.
Because spectral and spatial information are both necessary for HSI, two-dimensional
convolutional neural networks are a useful classification method. Although 3D-CNNs
can be computationally intensive, they appear to be a viable option for enhancing HSI’s
accuracy. This is due to the fact that HSI is multi-dimensional in both space and time.
Furthermore, these models may fail to extract quality feature maps from areas with similar
textures. The quality of the data presents one of the greatest obstacles for HSI. Refs. [17,18]
in particular, hyperspectral data provide access to thousands of high-resolution spectral
bands across the electromagnetic spectrum. The “curse of dimensionality” can occur when
this situation is joined with a scarcity of properly labelled training data. This happens
when there are more spectral bands in the data than there are labelled training samples.
Because of this, supervised and semi-supervised learning approaches to HSI classification
(HSI) have average or below-average predictive performance [19].

Either decreasing the number of dimensions or amassing a large number of labelled
training samples would be beneficial, but this would be impractically time-consuming and
costly [20]. Important geographical information associated with HSI may be lost in the
dimensionality reduction process. The goal of this research is to find a computationally
efficient solution to the aforementioned HSI problem that does not require a massive
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amount of labelled training samples or the elimination of potentially useful information.
Additionally, HSI cannot afford to lose any crucial information in the process of fixing
this issue.

In this study, we use deep learning to classify hyperspectral images in a novel way. To
review, a pixel’s predicted class label is influenced by its spectral and spatial contexts. When
scanning a pixel with different spectra, and one obtains spectral values that correspond
to the label given to that pixel. Considering neighboring pixels’ class labels is crucial for
predicting a single pixel’s class label [2,4,21,22]. Therefore, a good spectral factor and spatial
factor should be considered in a classification method for hyperspectral images [22–24].
After praising the virtues of a 2D-CNN model for hyperspectral image classification, we
turn to a 3D-CNN model. The idea behind a 3D-CNN is that it can also gain from the
spectral context, which a 2D-CNN lacks [23,24]. In contrast, a 2D-CNN has only the spatial
context in which to learn [25,26]. However, there are limitations on how much relevant data
can be incorporated into the aforementioned models. As a result, we created a recurrent
2D-CNN classification model and a recurrent 3D-CNN classification model to deal with
the problem of noisy spatial information [23–27].

We compared spectral data to the channels of conventional photography to show how
it could be used. Hyperspectral images are classified by removing a tiny square from the
center of each pixel. Like a multi-channel image, the patch is processed in the same way.
After that, we used three 2D convolution layers and a full connection layer to create a 2D-
CNN model for patch classification. The label of the pixel in the patch’s geographic center
is used as the patch’s overall label. Maximum pooling layers and average pooling layers
are two examples of pooling layers that can be used to reduce the dimensionality of feature
maps and speed up the computation process. However, the classification performance of
the network may be impacted by the use of pooling layers [28,29].

Because we want to preserve as much of the useful context information as possible
in our 2D-CNN model, we opted to not use pooling layers. In this section, we discuss the
various layers that make up a CNN, such as the convolution layer, the pooling layer, and
the fully connected layer.

The 2D-CNN model can make use of spatial context, but it ignores spectral correlations.
For this reason, we came up with a model of a three-dimensional convolutional neural
network with seven convolutional layers and a single fully connected node layer to solve
the problem. This model employs a 3D convolution operator in order to acquire knowledge
about the spectral context in addition to the spatial context, in contrast to the 2D CNN’s
exclusive focus on the spatial context. The 3D-CNN model has the potential to be more
effective than its 2D counterpart because of its ability to analyze the spectral correlations
present within a hyperspectral image, despite having a larger number of network parame-
ters. The 2D-CNN model only considers a small area cantered on the pixel when drawing
conclusions about its categorization, so it is possible that the results are noisy because of
this. The contributions of this study are as follows:

• We build a recurrent 2D-CNN model as a further step toward capitalizing on the
spatial context (R-2DCNN). As the area of the patch gets smaller, the R-2D-CNN is
able to focus more intently on the core pixel, which allows it to extract more mean-
ingful information from it. Experiments show that the R-2D-CNN model performs
significantly better than its predecessor, the 2D-CNN model.

• In order to solve the issue of noisy patches, we develop a spatially and spectrally aware
recurrent 3D-CNN model, which we refer to as R-3DCNN. The R-3D-CNN model
improves the functionality of the 3D-CNN architecture by reducing the patch size in
an iterative manner. As a result, rather than relying on information about patches, the
final classification of each pixel relies significantly on information about individual
pixels. Experiments provide evidence that demonstrates that the R-3D-CNN model
is superior to other models. Most notably, it offers the highest level of classification
accuracy that is practical and converges at a faster rate than other methods.
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• The proposed HSI classification approach outperforms state-of-the-art conventional
and deep-learning-based HSI algorithms with less labelled samples, as shown by
experiments conducted on the Indian Pines, Pavia University, and Salinas HSI bench-
mark datasets.

The paper is divided into five sections. Section 1 discusses the problems and contributions
of this study. Section 2 discusses the related work, while Section 3 discusses the detailed
methodology. Section 4 discusses the results, while Section 5 discusses the conclusions.

2. Literature Review

Hyperspectral imaging (HSI) can be used for numerous purposes. Noise, band corre-
lations, and excessive dimensionality limit such data. ResNet, SSRN, and A2S2K are new
deep-learning network topologies [2]. The last layer (the classification layer), a Softmax
classifier, is not adjusted. Instead, a watershed classifier is recommended. Watershed classi-
fiers outclasses mathematical morphology’s typical watershed operator. This watershed
classifier lacks trainable parameters. In this article, the authors present a novel way to train
deep-learning networks to gain watershed-classifier-compatible representations. The wa-
tershed classifier exploits connection patterns to increase inference. The authors show that
the triplet watershed may obtain state-of-the-art results in supervised and semi-supervised
situations by using these properties. These results have been verified in datasets from
IP, UP, KSC, and UH, all of which rely on a simple convent design with a quarter of the
features of previous state-of-the-art networks (UH).

Zhang et al. [30] presented variable region-based CNN to encode semantic context-
aware representation and create meaningful features. CNN-based representations are
sensitive to spatial and spectral contexts that are required for effective pixel classification.
The suggested method uses inputs that change by location to learn contextual interaction
features, resulting in better discriminatory power. Rich spectral and spatial information
is delivered to a softmax layer to predict pixel vector labels. The suggested method beats
state-of-the-art classifiers and all existing deep-learning-based algorithms.

Gao et al. [31] used convolutional neural networks (CNNs) for hyperspectral image
categorization (HSI). When trying to extract features from a dataset with few labelled
samples and mixed pixels, overfitting the model becomes a problem. Improving the CNNs’
extraction capabilities by increasing the model’s depth and convolution kernel complexity
is usual practice. This article suggests a spectral CNN for HSI (SFE-SCNN). SFE-SCNN
uses spectral feature enhancement to make data reflect more discriminative spectral detail,
reducing mixed-pixel interference. A lightweight sandwich convolution neural network
considers the preprocessed data structure. First, re-extraction is utilized to fully extract
spectral characteristics. The suggested technique enhances classification accuracy in three
real-world hyperspectral datasets.

Hyperspectral pictures are unmatched at spotting items on the Earth’s surface. Most
item classifiers employ simply spectral data, ignoring geographical context. This research [4]
uses a convolutional neural network to classify hyperspectral images by their spectral and
spatial features (CNN). The hyperspectral image is patchy. CNN builds each patch’s high-level
spectral and spatial characteristics, and the multi-layer perceptron classifies features. Our
simulations reveal that CNN classifies hyperspectral pictures most accurately.

Remote sensing researchers are studying the classification of hyperspectral images
(HIC). Hyperspectral pictures create large data cubes that are difficult to acquire, store,
transmit, and analyze. The authors of this study [7] present a deep-learning HIC approach
that uses compressive measurements from coded-aperture snapshot spectrum imagers
(CASSIs), rather than recreating the whole hyperspectral data cube. In this paper, we
propose a 3D coded convolutional neural network (3D-CCNN) to efficiently tackle the
classification problem by treating the hardware-based coded aperture as a pixel-wise
linked network layer. A thorough training approach is designed to optimize the network
parameters and periodic aperture topologies. Using deep learning and coded apertures, the
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author improves classification accuracy. Many hyperspectral datasets are used to compare
the recommended method against state-of-the-art HIC methods.

Liu et al. [32] described convolutional neural networks (CNNs) for dense, pixel-wise
satellite image classification. We employ convolutional neural networks (CNNs) to classify
input photos. The authors create convolutional architecture to solve dense classification.
We propose a two-step training technique in which CNNs are first taught with a huge volume
of reference data before being retrained with accurate labels. The author created a multi-scale
neuron module that does not sacrifice recognition for localization. Experiments indicate that
our networks use contextual information to build fine-grained categorization maps.

Kumar et al. [33] reviewed the research on deep-learning algorithms for HSI classifica-
tion. The authors structured their literature analysis according to the five most common
deep-learning models, summarizing the primary feature extraction strategies for each. This
study may set guidelines for future research.

Gao et al. [34] suggested utilizing CNNs to categorize hyperspectral images (HSIs) due
to their improved feature representation and performance. In this study, they used both con-
volutional neural networks (CNNs) and multiple feature learning to better predict HSI pixel
class labels [29,30]. The CNN was trained using photo features [31,32]. The network feeds
all feature maps it feels are needed to adequately represent the input into a concatenating
layer, which outputs a single feature map [33,34]. The generated joint feature map is used
to forecast hyperspectral pixel labels. The proposed approach takes advantage of CNNs’
increased feature extraction and spectral and spatial information simultaneously [35,36].
A CNN-based multi-feature learning framework enhances classification accuracy in three
benchmark datasets [37,38].

This research [39,40] uses four deep-learning models built on internal data, ignoring
HSI data [41,42]. This type of data collecting via conveyor belts is prevalent in industrial
settings. This study develops deep-learning-based HSI segmentation methods and provides
methods to analyze line-scanner hyperspectral data [43,44]. Using deep-learning-trained
hyperspectral imaging systems [45–47], semantic segmentation for automated food quality
inspections may be possible. The results were validated using k-fold cross-validation [48–51].
After reviewing the previous studies, the following challenges may be drawn:

(a) Developing a robust and efficient method for automatic land cover classification
using hyperspectral images. The problem addresses the need for a fast and accurate
method for land cover classification, which is important for applications such as urban
planning and natural resource management.

(b) Improving the performance of anomaly detection in hyperspectral images using
deep-learning models. The problem addresses the challenge of detecting anomalies in
high-dimensional and complex hyperspectral data, which is important for applications
such as mineral exploration and environmental monitoring.

(c) Investigating the use of multi-dataset hyper-CNN for hyperspectral image segmen-
tation of remote sensing images. The problem addresses the need for an effective
method for segmentation of hyperspectral images, which is important for applications
such as object detection and tracking in surveillance and monitoring.

(d) Investigating the use of 3D-CNN for hyperspectral image classification. The problem
addresses the need for an efficient and accurate method for hyperspectral image
classification, which is important for applications such as land cover mapping and
mineral exploration. Table 1 displays a meta-analysis of prior state-of-the-art studies.
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Table 1. Comparative Analysis.

Reference Dataset Techniques Accuracy

Haut et al. [35] PINE VGG 16 89%
Lee et al. [36] PAVIA CNN 84.5%
Sharma et al. [1] PINE CNN + LSTM 83%
Li et al. [37] PINE ANN 82.3%
Hu et al. [38] PAVIA CNN 81%

3. Methodology

We present the proposed methodology in the form of a flowchart and describe the
associated dataset. To classify hyperspectral images, we additionally detailed the unique
structure of a 3D convolutional neural network (CNN). The research process is depicted in
Figure 1:
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In this research, we used the proposed innovative architecture to conduct hyperspectral
image classification on the following three datasets: Indian Pines; Salinas Valley; and Pavia.

3.1. Dataset Description

There are three datasets used in this investigation. There is a description and chart for
each dataset shown below.

3.1.1. Indian Pines

The Indian Pines dataset (Kaggle.com, accessed on 13 August 2022) is used to practice
segmentation techniques on hyperspectral images. A hyperspectral image of a single
Indiana landscape (from the Indian Pines dataset) measures 145 × 145 pixels. There are
220 individual spectral reflectance bands, each corresponding to a specific wavelength in
the electromagnetic spectrum, that are used to represent each pixel in the dataset. Training
data for the Indian Pine dataset can be found in a numpy array and is freely accessible to
anyone interested in using it. The dataset is very small (145 × 145 × 220) and serves as a
fantastic introduction to hyperspectral remote sensing. Figure 2 displays some color-coded
images from the Pines dataset.
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3.1.2. Pavia Dataset

The images in the Pavia University dataset (Kaggle.com, accessed on 2 September 2022)
were captured by a reflection optics system imaging spectrometer high above the Italian city of
Pavia (ROSIS-3). With a resolution of 610 × 340 pixels, this image contains 115 individual color
channels. The collection’s 42,776 labelled samples are divided into nine categories. Asphalt,
gravel, trees, metal sheet, bare soil, bitumen, brick, and shadow are all examples of these
categories. Figure 3 shows the outcomes of the Pavia dataset’s image classification.
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Figure 3. Pavia Hyperspectral Images Dataset (a) Segmented Image; (b) Ground truth labelled image.

3.1.3. Salinas Valley Dataset

The 224-band AVIRIS sensor in California’s Salinas Valley (Kaggle.com, accessed on
5 October 2022) collected the data for the high-resolution hyperspectral Salinas Scene
dataset (3.7-m pixels). Totaling 512 lines and 217 samples, the dataset is quite sizable. The
water absorption ranges [108–112, 154–167] and [224] were disregarded. Only radiance
data from the sensor were available, so this picture had to be sufficient. Plants, such as
vegetables, weeds, and vining plants, are cultivated here as well. There are sixteen distinct
varieties of Salinas ground truth architecture. An example of a correctly labelled image
from the Salinas Valley dataset can be seen in Figure 4.
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3.2. Architecture of 3D-CNN

Figure 5 shows the proposed novel architecture of 3D-CNN for hyperspectral
image classification.

Kaggle.com


Processes 2023, 11, 435 9 of 18

Processes 2023, 11, x FOR PEER REVIEW  9  of  20 
 

 

Figure 4. Images taken from Salinas Dataset (a) Segmented Image; (b) Ground truth labelled im‐

age. 

3.2. Architecture of 3D‐CNN 

Figure 5 shows the proposed novel architecture of 3D‐CNN for hyperspectral image 

classification. 

 

Figure 5. Proposed 3D‐CNN Architecture. 

A 3D convolutional neural network (CNN) is a type of deep‐learning model that is 

designed to process 3D data, such as voxel data from 3D medical imaging or video data. 

The unique structure of a 3D‐CNN is composed of several layers, including the following: 

Input Layer: The input layer receives the 3D data, such as a 3D image or video, and 

passes it to the next layer. 

Convolutional Layer: The convolutional layer applies a convolution operation to the 

input data using a set of 3D kernels. The convolution operation extracts features from the 

3D data by sliding the kernels over the input and performing element‐wise multiplication. 

ReLU (Rectified Linear Unit) Layer: The ReLU layer applies an activation function to 

the output of the convolutional layer. The activation function is used to introduce non‐

linearity  into  the model and allows  the CNN  to  learn more complex  features  from  the 

data. 

Pooling Layer: The pooling layer is used to down sample the output of the convolu‐

tional layer. This helps to reduce the dimensionality of the data and make the model more 

computationally efficient. 

Fully Connected Layer: The fully connected layer is used to classify the features ex‐

tracted by the previous layers. The output of the fully connected layer is passed to a soft‐

max layer to produce a probability distribution over the classes. 

Output Layer: The output layer produces the final classification or segmentation re‐

sults. 

These layers can be stacked multiple times to form a deep 3D‐CNN. The 3D‐CNN 

can learn the spatial context of the pixels and the spectral characteristics of the materials 
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A 3D convolutional neural network (CNN) is a type of deep-learning model that is
designed to process 3D data, such as voxel data from 3D medical imaging or video data.
The unique structure of a 3D-CNN is composed of several layers, including the following:

Input Layer: The input layer receives the 3D data, such as a 3D image or video, and
passes it to the next layer.

Convolutional Layer: The convolutional layer applies a convolution operation to the
input data using a set of 3D kernels. The convolution operation extracts features from the
3D data by sliding the kernels over the input and performing element-wise multiplication.

ReLU (Rectified Linear Unit) Layer: The ReLU layer applies an activation function
to the output of the convolutional layer. The activation function is used to introduce
non-linearity into the model and allows the CNN to learn more complex features from
the data.

Pooling Layer: The pooling layer is used to down sample the output of the convolu-
tional layer. This helps to reduce the dimensionality of the data and make the model more
computationally efficient.

Fully Connected Layer: The fully connected layer is used to classify the features
extracted by the previous layers. The output of the fully connected layer is passed to a
softmax layer to produce a probability distribution over the classes.

Output Layer: The output layer produces the final classification or segmentation results.
These layers can be stacked multiple times to form a deep 3D-CNN. The 3D-CNN

can learn the spatial context of the pixels and the spectral characteristics of the materials
present in the scene. It can also learn the relationships between different bands in the image,
which can improve classification performance.

3.3. Principle Component Analyses

In order to distinguish the copied area, principal component analyses (PCA) were
used in the process of identifying duplicate images. Beginning with an M × N image, L × L
overlapping chunks are created. By computing the PCA for each image block, features can
be extracted. To find the PCA reconstruction Equation (1) with the least amount of loss, we
have as the following:
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PCA

e =
1
2

N

∑
i=K+!

λi . . . (1)

To begin, we give a Nb-element array that contains the pixel values of an image block.
The array containing the grayscale image’s pixel values is L by L in size. When working
with a color image, we have two options to compute its features using principal component
analysis (PCA): (1) doing PCA on each color channel independently; or (2) flattening the
image block pixel to a two-dimensional array 3b, where b is the side of the image block.
When calculating an eigenvalue of a block, we may then define the number of dimensions.
The next step is to construct a new one-dimensional array from the image blocks in order
to find their primary components.

Next, the principal component of each image block is used to determine the order
of the matrices via a lexicographical method. As a result, picture blocks with the same
or comparable principal components are clustered closely together. Following this, the
program generates an array and populates it with the xi, yi coordinates of the picture blocks
(xj, yj). Offsets for each array element are then calculated by the algorithm. Each pair of
coordinates in the array with an offset smaller than the threshold Nf is thrown out. We also
exclude any sets of coordinates where the offset is less than Nd.

3.4. Feature Mapping

A 16 × 16 window is taken around each found key point, I, and further divided
into 16 sub blocks, each of which is 4 × 4 in size, to produce extremely distinguishable
descriptors against viewpoint and illumination shifts. With 8-dimensional histograms
plotted against each 4 × 4 subblocks, the resulting feature descriptor has 128 dimensions.
Gradients are used in the feature vector. When an image is rotated, the gradient directions
likewise shift. We can make the gradients rotation invariant if we subtract the orientation
of the key point from each gradient orientation. Therefore, the gradient direction is now a
relative measure to the key point direction.

The parameters of the affine transformation that ties the model to the image are
determined using a linear least-squares solution, and this approach is repeated for each
found cluster to ensure accuracy. The affine transformation from model point [x, y] T to its
equivalent image point is shown below in Equation (2).

Model interpretation [
u
v

]
=

[
m1 m2
m3 m4

][
x
y

]
+

[
tx
ty

]
. . . (2)

Corresponding image point represented by Equation (3) as shown below.

x · · · 1
...

. . .
...

0 · · · y




m1
m2
m3
m4
tx
ty

 =


u
v
.
.

 . . . (3)

In this equation, each additional match adds two rows to the first and last matrices,
and the number of rows might grow infinitely large. If at least three identical moves are
made, the answer is found.

Because the dimensions of the image B(x, y) are (m × n), denoting the row and column
indices from which the block is extracted, the formula used to determine the extracted
values is shown in the following Euations (4) and (5):

The row and column headers of the block

B(x, y) = f (x + c, y + r) . . . (4)
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N = (H − h + 1)x(W − w + 1) . . . (5)

As demonstrated, W can be sectioned off into N overlapping blocks.
The output is a coefficient matrix C with SIFT coefficients Equation (6), and its dimen-

sions are (m × n).
In a matrix C of coefficients, the size is (m × n)

C(p, q) =∝p∝q

h−1

∑
x=0

w−1

∑
h=0

A cos
(

π (2x + 1)
2h

)
cos
(

π (2y + 1)
2w

)
. . . (6)

3.5. Flatten Layers

The flatten function cell is expressed as shown in Equation (7):

f = a
((

b f + xU f

t + ht−1V f
))

. . . (7)

The product of the previous state with the flatten gate yields an expression of the form((
b f + xU f

t + ht−1V f
))

as its output. Following the forget gate/state loop, the product is
shown in Equation (8):

st = st−1x f x g . . . (8)

3.6. Output Layers

The output gate of 3D-CNN is expressed as Equation (9):

O = a
((

bo + xUo

t + ht−1Vo
))

(9)

Finally. the product of all gates is represent by Equation (10):

hi = tan h
(

a
((

bo+ f+s+i + xUo+ f+s+i

t + ht−1Vo+ f+s+i
)))

. . . (10)

We utilize measures of accuracy, confusion matrices, and true positive and false
negative rates to assess the efficacy of our suggested approach.

The methods’ efficacy was evaluated using criteria such as accuracy, precision, recall,
and F1 score. This was categorized and reclassified numerous times, as the confusion
matrix demonstrates [52]. Figure 6 below displays the investigation’s metrics.
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4. Results
4.1. Image Segmentation

The results of our proposed architecture on all datasets are shown below in Figures 7–9.
Segmenting the image and extracting features to make a feature map is the first stage by
using Equation (11).

Xo = F
(

tan h
(

bg + xUg

t + ht−1Vg
))

(11)
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4.2. Detection

As mentioned in Figure 2, the Indian Pines dataset was analyzed using a CNN Model
to detect and classify individual sections (Figure 10).
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Figure 3 of the Pavia dataset demonstrates the use of the CNN model for part detection
and classification, and Figure 11 below illustrates this.
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Below in Figure 12 is a screenshot of the Salinas image dataset’s CNN model being
used to detect and classify portions.
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Figure 12. Detection of Areas in Salinas Dataset: (a) Segmented Image; (b) Detection.

4.3. Performance

On the test datasets of Indian Pine and Pavia, our model achieved 97.56 and 97.55 per-
cent accuracy, respectively. The results obtained using CNN are shown in Figure 13 for
various datasets.
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The performance of the proposed 3D-CNN in each dataset depends on several factors,
including the architecture of the model, the quality of the dataset, and the specific evaluation
metrics used. It is best to report the performance of the proposed 3D-CNN by using different
evaluation metrics, such as accuracy, precision, recall, F1 score, and confusion matrix. These
metrics give a clear picture of how well the model is performing in classifying the different
classes of land cover present in the Indian Pines dataset.

It is also important to consider the training and testing dataset, if the model is over-
fitting or underfitting, and compare the results with other state-of-the-art methods for
that specific dataset. In general, the performance of the proposed 3D-CNN would likely
be influenced by factors such as the complexity of the dataset and the model’s ability to
effectively learn the spectral characteristics of each class of land cover. The results, shown
in Table 2, are specific to the dataset and the experimental setup used, and it is crucial to
compare the results with other methods for that specific dataset.

Table 2. Comparison with other methods.

Dataset Techniques Accuracy Reference

Pines CNN 94.6% [12]
Pavia CNN 96.55% [4]
Pines 3D-CNN 98.9% Our Proposed
Pavia 3D-CNN 97.56% Our Proposed
Salinas 3D-CNN 97.55% Our Proposed

The 3D-CNN is a type of CNN that can process three-dimensional data, such as videos
or volumetric images. In the case of the Indian Pines dataset, a 3D-CNN could be used
to classify the different types of land cover present in the images. The 3D-CNN can take
advantage of the temporal information present in the dataset, making it more effective than
traditional 2D-CNNs for this task.

If the proposed method of using a 3D-CNN for the classification of the Indian Pines
dataset is found to produce better results than other methods, such as a traditional 2D-
CNN, it could suggest that the 3D-CNN is better suited to the task of analyzing this type
of hyperspectral data. This could be due to its ability to effectively process the additional
temporal dimension present in the dataset.
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It is important to note that the results will depend on several factors, such as the
architecture of the model, the quality of the dataset, and the choice of evaluation metrics.
A rigorous experimental setup should be followed to compare different methods and to
support the conclusion.

5. Conclusions

There has been a disproportionate amount of focus on developing neural network
architecture for RGB images, while multi- and hyperspectral photography have received
comparatively less attention. We developed compact convolutional neural network (CNN)
architecture that can classify multispectral images with 10 bands using fewer parameters
than traditional deep designs. As a means to this end, we made use of the state of the
art in compact, efficient convolutional neural networks (CNNs). The results show that
the network’s classification accuracy and sampling efficiency are better than those of a
comparable network trained on RGB images. On top of that, we used a Bayesian variant of
our CNN architecture to demonstrate how a network capable of processing multispectral
information greatly diminishes uncertainty when making class predictions. A CNN helped
us accomplish this task. Forward hyper-tuning and optimization of this model is possible.
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