
2.92.592

Article

Subgraph Adaptive Structure-
Aware Graph Contrastive Learning

Zhikui Chen, Yin Peng, Shuo Yu, Chen Cao and Feng Xia

Special Issue
Advances in Machine Learning Applied to Intelligent Systems and Data Analytics

Edited by

Dr. Linlin You, Dr. Ivan Lee and Dr. Zhicong Chen

https://doi.org/10.3390/math10173047

https://www.mdpi.com/journal/mathematics
https://www.scopus.com/sourceid/21100830702
https://www.mdpi.com/journal/mathematics/stats
https://www.mdpi.com/journal/mathematics/special_issues/Advances_Machine_Learning_Applied_Intelligent_Systems_Data_Analytics
https://www.mdpi.com
https://doi.org/10.3390/math10173047

����������
�������

Citation: Chen, Z.; Peng, Y.; Yu, S.;

Cao, C.; Xia, F. Subgraph Adaptive

Structure-Aware Graph Contrastive

Learning. Mathematics 2022, 10, 3047.

https://doi.org/10.3390/

math10173047

Academic Editors: Mikhail Goubko,

Pedro A. Castillo Valdivieso and

Francesco Calimeri

Received: 3 June 2022

Accepted: 19 August 2022

Published: 24 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Subgraph Adaptive Structure-Aware Graph Contrastive Learning

Zhikui Chen 1, Yin Peng 1, Shuo Yu 2,*, Chen Cao 3 and Feng Xia 4

1 School of Software, Dalian University of Technology, Dalian 116620, China
2 School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
3 Information Networking Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA
4 Institute of Innovation, Science and Sustainability, Federation University Australia,

Ballarat, VIC 3353, Australia

* Correspondence: yushuo@dlut.edu.cn

Abstract: Graph contrastive learning (GCL) has been subject to more attention and been widely

applied to numerous graph learning tasks such as node classification and link prediction. Although it

has achieved great success and even performed better than supervised methods in some tasks, most

of them depend on node-level comparison, while ignoring the rich semantic information contained

in graph topology, especially for social networks. However, a higher-level comparison requires

subgraph construction and encoding, which remain unsolved. To address this problem, we propose

a subgraph adaptive structure-aware graph contrastive learning method (PASCAL) in this work,

which is a subgraph-level GCL method. In PASCAL, we construct subgraphs by merging all motifs

that contain the target node. Then we encode them on the basis of motif number distribution to

capture the rich information hidden in subgraphs. By incorporating motif information, PASCAL can

capture richer semantic information hidden in local structures compared with other GCL methods.

Extensive experiments on six benchmark datasets show that PASCAL outperforms state-of-art graph

contrastive learning and supervised methods in most cases.

Keywords: graph contrastive learning; subgraph learning; network motif; unsupervised node

classification; social network

MSC: 68T07; 05C62

1. Introduction

Nowadays, deep learning technologies such as federated learning and reinforcement
learning are widely used in various fields [1,2]. However, for graph learning, graph neural
networks (GNNs) have gradually become the mainstream methods [3], e.g., GAT [4] and
GraphSAGE [5], which have received considerable attention due to their outstanding
performance in various tasks. Although GNNs have achieved great success, most of the
existing GNNs are supervised methods and commonly rely on a large amount of labeled
data. This is also one of the most widely acknowledged limitations of GNNs. Figure 1a,c
represent the node embeddings of test nodes of GCN [6] and GCNII [7] when trained
with 20 samples per class. Figure 1b,d, respectively, show the embeddings of test nodes
when trained with 40% labeled data. Comparing the left and right columns of Figure 1, we
can find that, depending on whether it is GCN or GCNII, the more labeled data used to
train the model, the higher the quality of node embeddings learned by the model, which
greatly limits the performance of GNNS in downstream tasks. Nowadays, although there
are many data acquisition methods [8,9], we can easily obtain massive data for training
models, but the data quality is often unsatisfactory, especially for social data [10]. On the
one hand, the problem of incomplete data is widespread in practice [11]. On the other hand,
data annotation is too expensive due to the fact that it requires lots of expertise in many
areas [12]. In these contexts, it is difficult for GNNs to achieve excellent performance due

Mathematics 2022, 10, 3047. https://doi.org/10.3390/math10173047 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10173047
https://doi.org/10.3390/math10173047
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://doi.org/10.3390/math10173047
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10173047?type=check_update&version=1

Mathematics 2022, 10, 3047 2 of 18

to the inability to obtain enough labeled data. Therefore, it is extremely meaningful and
necessary to develop unsupervised graph representation learning methods.

(a) (b)

(c) (d)

Figure 1. The testing node embeddings learned by GCN and GCNII on acmv9 when trained with

20 nodes per class and 40% nodes per class, visualized by t-SNE. (a) GCN: 20 nodes per class; (b) GCN:

40% nodes; (c) GCNII: 20 nodes per class; (d) GCNII: 40% nodes.

The main idea of previous unsupervised graph representation learning methods is
to reconstruct the graph topology, such as CSADW [13], VGAE [14], etc. However, these
methods overemphasize the proximity of graphs and perform unsatisfactorily in some
contexts [15]. Unlike traditional grid data, such as images and texts, graphs are a non-
euclidean form of structure data containing complex relational structures. Such structures
generally have specific meanings in different graphs. For example, a triangle structure can
be used to represent the ternary closure in a social network. Meanwhile, it can also represent
a special chemical structure in a chemical molecular network. Therefore, subgraph-aware
methods have been proposed to enhance the effectiveness of downstream tasks in graph
representation learning.

Graph contrastive learning (GCL) is the most representative unsupervised graph learn-
ing method currently [16–18]. Unlike other deep learning techniques [19], the intuition
behind GCL is to learn prior knowledge from the data itself by comparing different views of
the original graph, which can be explained by mutual information (MI) and triplet loss [20].
However, most of the existing GCL methods require node–node-level comparison. In some
scenarios, such as social networks, it is difficult to adequately capture the semantic infor-
mation hidden in the local topology, resulting in sub-optimal performance. Although some
subgraph-based GCL methods (e.g., [21,22]) have been proposed, the subgraph construc-
tion methods they employed failed to capture significant semantic information. Specifically,
they usually use nearest neighbors or random walks to construct subgraphs. These meth-
ods are too simple to fully capture the structural information in some complex networks.
Moreover, some of them have limitations in generalization because these methods can only
be used for specific downstream tasks such as graph classification [23].

Our work. To solve the above problems, we propose a motif-based GCL method, en-
titled the subgraph adaptive structure-aware graph contrastive learning model (PASCAL),
used for unsupervised node classification tasks in this paper. Concretely, we first adaptively

Mathematics 2022, 10, 3047 3 of 18

extract subgraphs for each node based on its motif information to capture rich semantic
information hidden in the local structure. Then, we use the feature masking and edge
dropping augmentation strategies to generate two different graph views. Next, we use our
proposed subgraph aggregation method to calculate subgraph embeddings. The subgraph
embeddings are then regarded as node features fed to the next layer of GNNs. Finally,
the graph encoder is optimized by maximizing the mutual information between the same
nodes in different graph views. We conduct extensive experiments on various academic
and social network datasets. Compared with previous methods, our proposed PASCAL
performs better in most cases. The contributions of this work are summarized as follows:

• Rich sentiment information representation. We propose an effective motif-based
graph contrastive learning method, called PASCAL, for unsupervised node classi-
fication tasks. PASCAL employs motifs to formulate certain patterns containing
rich sentiment information, which significantly enhances the effectiveness of graph
contrastive learning.

• Subgraph aggregation and encoding strategy. We propose a motif-based subgraph
aggregation and encoding strategy, which is a play-and-pug component. The perfor-
mance of models that imports the component can be significantly improved.

• Explainable motif-aware model. To prove the reliability and interpretability of the
model, we analyze the Pearson correlation coefficient between the number of motifs
and learned attention weights, and the learned attention weights are in line with our
intuition. Moreover, we visualize the node embeddings by t-SNE, showing that our
model is explainable and trustworthy.

• Excellent performance on various datasets. The effectiveness of PASCAL is shown
through numerous experiments on various datasets including dblpv7, amazon-computers,
etc. For the unsupervised node classification task, all methods are executed 20 times.
No matter the optimal or average performance, PASCAL greatly outperforms all
methods, including SOTA contrastive learning methods, under most settings.

In the following, we first introduce existing works and the preliminary of these
works in Sections 2 and 3, respectively. Then, we show the details of PASCAL in Section 4.
Section 5 introduces the experimental results. The effectiveness of our proposed motif-based
subgraph aggregation strategy for semi-supervised models is implemented in Section 6.
Moreover, we also analyze the learned attention weights in Section 6, which shows that our
model is explainable.

2. Related Work

2.1. Graph Contrastive Learning

The main idea of graph contrastive learning is to maximize the mutual information
between the anchor node and negative nodes. Deep graph infomax (DGI) [15] firstly learns
node embeddings by maximizing the similarity between node embeddings and graph
embeddings. However, DGI is a graph-level model which requires calculating the whole
graph embedding. It is too expensive for large-scale graphs, thereby some node-level
models are proposed [20,24]. Two strategies, i.e., adaptive negative sampling and data
augmentation, have gradually proved their significance in enhancing the effectiveness of
GCL. Adaptive augmentation can adaptively select the optimal one from a set of multiple
augmentation strategies [25]. It also can be employed to dynamically design the optimal
parameters for a special strategy instead of pre-defining them [16,26]. As for negative
sampling, selecting the optimal negative sample (or high-quality ones) to calculate the
contrast loss is the most significant method [27]. For example, SelfGNN [28] introduces
the bootstrap your own latent (BYOL) mechanism into graph contrastive learning to avoid
explicit negative sampling.

2.2. Motif-Based Graph Learning

The main purpose of motif-based graph learning is to capture high- or local-level
structural information to improve model performance [29], such as [30,31]. An open
question of motif-based graph learning is how to integrate motifs and graph learning

Mathematics 2022, 10, 3047 4 of 18

methods in a reasonable way. Some methods optimize existing models based on graph
motifs [32–34]. In particular, Xia et al. [32] propose a motif-based high-order clustering
algorithm that can effectively improve the clustering efficiency for large social networks.
Some other methods regard graph motifs as auxiliary information to preprocess input
graph [35–38]. For instance, Zhang et al. [36] designs a motif-based clustering algorithm,
which divides the graph into several small networks for traffic speed prediction in the large
urban traffic networks.

In general, under the unsupervised setting, it is more critical to capture the semantic
information hidden in the graph topology as supervised signals to solve the problem of
scarcity of labeled data. Therefore, we design an unsupervised model that can better
capture graph structure information by combining graph contrastive learning with motif.

3. Preliminaries

3.1. Notation

Table 1 summarizes all notations used in this paper. Note that all bold notations
represent a matrix or vector.

Table 1. Notations used in this paper.

Notation Description

Network Related:

G,G1,G2 Input graph and two augmented graph views
V The node set of G
E The edge set of G
|V| The number of nodes in G

A, A1, A2 The adjancy matrix of G,G1,G2

X, V, U The feature matrix of G,G1,G2

F The dimention of nodes’ input feature
C The number of node categories

Y ∈ R
|V|×C The label matrix of G

Hl The node embedding matrix in layer l

Motif Related:
M Motif set we define in this paper

M ∈ M Some type of motif
mt The instance of t type motif
M Motif prototype vector
m The motif embedding
P Motif information of each node
Q The number matrix of each type of motif per node

Si, Si The motif-based subgraph centered on node vi and its embedding

Sl The subgraph embedding matrix in layer l

Operation:
fφ(·) The graph encoder with parameter φ
Tα(·) Augmentation function with parameter α
J (·) The final loss function of the model
δ(·, ·) The function that calculate the MI between inputs
µ(·, ·) The cosine similarity function
g(·) Projection function
D(·) Contrastive loss of a positive pair

Agg(·) Aggregator for aggregating multi vectors
Mean(·) Mean Aggregator
Att(·) Aggregator based on attention mechanism

3.2. Problem Definition

Given an undirected graph G = (V, A, X), where V = {v1, v2, . . . , vN}, A ∈ {0, 1}N×N ,
X ∈ R

|V|×|F| represent the node set, adjacency matrix, and node feature matrix, respectively.
The goal of unsupervised node classification models is to train a graph encoder fφ(·)

Mathematics 2022, 10, 3047 5 of 18

without using node labels. H = fφ(X, A) represents the final learned node embedding
matrix, which can be used to predict the label of nodes by a linear classifier or support vector
machine trained by labeled data, i.e., Ỹ = gw(H), where gw(·) represents the classifier.

3.3. Network Motif

The network motif is a special kind of low-order structure that hides rich semantic
information and frequently occurs in the network [39]. Table 2 shows all types of third-
order and fourth-order network motif. The third- and fourth-order network motifs indicate
that the motif has three and four nodes respectively. In this paper, we use the first five
predefined motifs [35] as auxiliary information for subgraph generation and aggregation,
and their ids in the Table 2 range from 1 to 5. Moreover, we also regard as a special kind
of motif in experiments. It is an edge in a graph, but herein we denote it as a second-order
motif, so there are total six kinds of motifs used for subgraph generation and aggregation.

Table 2. All third-order and fourth-order motifs.

id 1 2 3 4 5 6 7 8

Motif

4. The Design of PASCAL

We propose a motif-based graph contrastive learning method called PASCAL. As
shown in Figure 2, PASCAL mainly consists five components, which are described in detail
in Sections 4.1–4.5.

Figure 2. The over all architecture of the proposed PASCAL for unsupervised node classification,

which uses feature masking as augmentation strategy. The model mainly consists 5 components:

(1) subgraph generator; (2) augmentation; (3) subgraph aggregator; (4) graph encoder; and (5) com-

parator.

4.1. Subgraph Generator

In this work, we use pre-statistical node motif information to adaptively construct
subgraphs for each node separately. As shown in Figure 3, we first find all motifs related
to target node vi, denoted by Mi = {m1, . . . , mn}, where mi = {vi, vj | vj ∈ V, i 6= j}
represents a motif that containing vi. Subsequently, we incroporate all of these motifs
together as the motif-based subgraph centered on node vi. The final subgraph centered on
node vi is represented as:

Si = {ni | ni ∈ mj, mj ∈ Mi} (1)

Mathematics 2022, 10, 3047 6 of 18

where ni represents the ith node in motifs. Algorithm 1 is the pseudocode of the subgraph
construction.

Algorithm 1 Subgraph construction.

Input: Target node vi, the set of motifs containing the target node Mi = {m1, . . . , mn},
node set V , edge set E .

1: for m in Mi do
2: Add all nodes of m to V
3: Add all edges of m to E
4: end for
5: Subgraph G = (V′, E′), where V′ = {vi|vi ∈ V} and E′ = {ej|ej ∈ E}

Output: Subgraph G

Figure 3. The process of generating subgraph for node vi on the basis of its motif information. The red

node represents the target node vi and the blue nodes represent the nodes that appear in the same

motif as vi. For all networks in the middle box, the blue and red nodes represent all motifs containing

the target node.

4.2. Augmentation

We use two augmentation strategies that are commonly used in GCL, feature masking
and edge dropping, to generate two different graph views.

Edge Dropping. All edges of the input graph are dropped with a fixed probability.
Formally, given a graph G = (V, E, A, X), we first randomly sample a mask matrix R ∈
{0, 1}|V|×|V|, which follows a Bernoulli distribution Rij ∼ B(1 − pr) if Aij = 1 for the
input graph, or otherwise Rij = 0. The pr represents the probability of dropping edges.
The adjacency matrix of the augmented graph is computed by Equation (2).

A = A ◦ R (2)

where ◦ represents element-wise product.
Feature Masking. We randomly mask some dimensions of the input node features

with zeros. To be specific, X represents the original feature matrix, we first randomly
sample a vector m̃ ∈ {0, 1}F, where each dimension of it independently follows a Bernoulli
distribution with probability 1 − pm, i.e., m̃i ∼ B(1 − pm), ∀i. The feature matrixes of the
two views are computed by Equation (3).

V = [x1 ◦ m̃11; x2 ◦ m̃12; · · · ; x1N ◦ m̃1N]T

U = [x1 ◦ m̃21; x2 ◦ m̃22; · · · ; x2N ◦ m̃2N]T
(3)

Algothrim 2 summarizes the graph augmentation process of PASCAL.

Mathematics 2022, 10, 3047 7 of 18

Algorithm 2 Graph augmentation.

Input: Input graph G = (V, E, A, X), drop edge probability pr, and mask feature probabil-
ity pm.

1: Construct two empty network G1,G2

2: for i = 1 to 2 do
3: Sample a mask matrix R ∈ {0, 1}|V|×|V|, where Rij ∼ B(1 − pr)

4: A′ = A ◦ R
5: X′ is the augmented feature matrix
6: for node v in V do
7: Sample a mask vector m̃ ∈ {0, 1}F, where each dimension of it independently

follows a Bernoulli distribution with probability 1 − pm

8: X′
v = Xv ◦ m̃, representing the augmented feature of v

9: end for
10: Augmented graph Gi = (V, E′, A′, X′)
11: end for
Output: Augmented graph G1,G2

4.3. Subgraph Aggregator

How to construct and encode subgraphs is the key to subgraph-level GCL. In this
work, we design a motif-based subgraph aggregator to calculate the subgraph embeddings,
which are regared as node features fed into the graph encoder. Specifically, for each
node vi, the motifs set containing vi is represented as Mi = {Mi1, Mi2, . . . , Mit}, where
Mij = {m1

ij, m2
ij, . . . , mn

ij}, and t is the number of motif types. The subscript j represents

the different kinds of motif defined in Section 3.3. Our proposed motif-based subgraph
aggregate strategy consists of the following three steps:

(1) For each motif mt
ij ∈ Mij, we use a sum aggregator Sum(·) to compute the motif

embedding, i.e., mt
ij = Sum(mt

ij) = ∑vi∈mt
ij

vi.

(2) After Step 1, we can obtain all motif embeddings of type j containing vi, denoted
by Mij = {m1

ij, . . . , mn
ij}. Then, we use a mean aggregator Mean(·) to aggregate all

motif embeddings.The prototype of the j type motif containing vi is represented by
mij = Mean(Mij).

(3) For all kinds of motif, Steps 1 and 2 are repeated. After obtaining all six kinds of motif
embeddings containing vi, denoted by Mi, we use an aggregator Agg(·) to compute
the final embedding of the subgraph that centered on vi, denoted by si = Agg(Mi).

For the function Agg(·) used in Step 3, a mean or attention aggregator can be used.
Given the motif prototypes, M ∈ R

|M|×N where |M| represents the number of motif
types and N represents the dimension of node embeddings. The formal definitions are,
respectively, shown as follows:

• Mean Aggregator. The formula of Mean(·) is as follows:

Mean(M) =
∑
|M|
i=1 Mi

|M|
(4)

• Attention Aggregator. We employ the attention mechanism used in UDAGCN [40]
(shown in Equation (5)).

Att(M) = So f tmax(f (M)) · M (5)

where f (·) and So f tmax(·) represent the linear and softmax function, respectively.
Algorithm 3 shows the process of subgraph aggregation.

Mathematics 2022, 10, 3047 8 of 18

Algorithm 3 Subgraph aggregation.

Input: Pre-statistical motif information M, input graph G = (V, E, X).

1: S ∈ R
|V|×h represents the subgraph embedding matrix

2: for node v in V do
3: Mv ∈ M represents the motif information of v
4: for each type t of motifs do
5: Mt

v represents a set of motifs of type t containing v.
6: Calculate each motif embedding by Sum(·), i.e., m = Sum(m) = ∑vi∈m vi

7: Calculate the prototype of each motif by Mean(·)
8: end for
9: Aggregate all motif prototypes as subgraph embedding, i.e., Sv = Agg({m1, .., mn})

10: end for
Output: Subgraph embedding matrix S

Figure 4 shows the process of calculating the triangle motif’s prototype of vi. In the
calculation of motif embeddings and motif prototypes, we use Sum(·) and Mean(·) for
aggregation, respectively. Therefore, in practice, we can simplify the calculation process of
subgraph embeddings to matrix multiplication.

Figure 4. The process of calculating the triangle motif’s prototype of vi. mi
1j represents the triangular

motif containing the target node vi. mi
1j and mi

1 represent the motif embedding of mi
1j and triangular

motif prototype, respectively. “Sum” and “Mean” represent the computation of motif embedding

and motif prototype using the su aggregator and mean aggregator, respectively.

Concretely, we define two matrices, P ∈ N|M|×|V|×|V| and Q ∈ N|M|×|V|, which
represent all involved nodes and the number of motif type, respectively. Ptij represents
the number of vj appearing in the motif of type t containing vi. Likewise, Qti denotes the
number of motifs of type t containing vi. The computing process of subgraph embeddings
is formulated in Equation (6).

S = Agg
(
PX / Q

)
(6)

4.4. Graph Encoder

Two graph encoders, called PASCAL-concat and PASCAL-replace, respectively, are
designed.

• PASCAL-concat adds an aggregation layer before message passing to compute the

subgraph embedding Sl , which are regarded as node embeddings fed into the message
passing layer. The feature update formulas for each layer of the graph encoder are as
follows:

Sl = Agg
(
PHl / Q

)

Hl+1 = σ(ASlWl)
(7)

• PASCAL-replace uses the subgraph aggregation to replace the original neighbor
aggregation in GNN. Therefore, the adjacency matrix is useless in the graph encoder,
as shown in Equation (8).

Mathematics 2022, 10, 3047 9 of 18

Hl+1 = σ(Agg(PHl / Q)Wl) (8)

where Wl is the learnable weight matrix of layer l.

For PASCAL-concat, we use both feature masking and edge dropping augmentation
strategies at the same time. However, as the adjacency matrix is not used in PASCAL-
replace, only the feature masking augmentation strategy is used.

4.5. Comparator

To train a graph encoder capturing rich local semantic information in an unsupervised
manner, similar to GRACE [20], we define a contrastive objective to maximize the mutual
information of the same node in two different graph views. Formally, we use fφ(·) to
represent our motif-based graph encoder, and G1 = (V, A1),G2 = (U, A2) denotes the
two graph views, respectively. For better comparison, we use a projection function gγ(.) :
R

n×dh → R
n×dh to map the node embeddings of the two graph views to the same contrast

space. For any node vi, its embeddings in two views are denoted by ui and vi, which are
treated as the anchor and positive sample, respectively. The pairwise objective for each
positive pair (ui, vi) is defined as Equation (9).

D(ui, vi) = log
eδ(ui ,vi)/τ

N

∑
k=1

eδ(ui ,vk)/τ +
N

∑
k=1
k 6=i

eδ(ui ,uk)/τ

(9)

where δ(u∗, v∗) = µ(gγ(u∗), gγ(v∗)), and τ is a temperature parameter. The distance
function used in µ(·, ·) is the cosine similarity. Moreover, instead of deliberately choosing
negative samples for the anchor, we treat all other nodes in the two graph views as negative
samples. As two views are symmetric, the definition of D(v∗, u∗) is similar to D(u∗, v∗).
Therefore, the final loss of PASCAL is defined as follows:

J =
1

2N

N

∑
i=1

[D(ui, vi) +D(vi, ui)] (10)

Overall, in PASCAL, given the input graph and pre-statistical motif information, we
first extract subgraphs for each node, and then perform graph augmentation to obtain
different graph views and encode subgraphs based on motif information, and finally
optimize the graph encoder by maximizing the mutual information between the same node
in different views. The pseudocode of PASCAL is summarized in Algorithm 4.

Algorithm 4 PASCAL-replace algorithm.

Input: Input graph G = (A, X), motif info P and Q, graph encoders fφ, projection function
gθ , discriminator Θ, loss J. and augmentation function T .

1: for epoch = 1 to n do
2: for i = 1 to 2 do
3: Gi = Tα(G) = (Ai, Xi)
4: H0

i = Xi

5: for l = 0 to k do
6: Sl

i = Agg(P × Hl
i / Q)

7: Hl+1
i = σ(ASlWl)

8: end for
9: end for

10: ∇θ,φJ = ∇θ,φ
1

2N ∑
N
i=1

[
D(Hl

1, Hl
2) + D

(
Hl

2, Hl
1

)]

11: end for
Output: H = f (G)

Mathematics 2022, 10, 3047 10 of 18

5. Experiments

5.1. Experimental Settings

5.1.1. Datasets

To achieve comprehensive comparison, we conduct unsupervised node classification
experiments on six datasets, which can be categorized into two groups: academic and social
networks.

• Academic networks. Citationv1, DBLPv7, and ACMv9 are three citation networks
extracted from Microsoft Academic Graph, DBLP Computer Science Bibliography,
and the Association for Computer Machinery, respectively [41]. These three datasets
have five types of node labels. Totally, they have 8779, 5469, and 8769 nodes, with
13,590, 8090, and 14,798 edges, respectively.

• Social networks. Polblogs [42] is a directed network of hyperlinks between weblogs
on US politics, recorded in 2005 by Adamic and Glance, which contains two cate-
gories of 1224 nodes, and 16,718 edges. In this paper, we treat it as an undirected
graph. Amazon-computers and Amazon-photo [43,44] are segments of the Amazon
co-purchase graph, which contain 10 and 8 kinds of nodes, respectively. The nodes
and edges, respectively, represent the goods and the frequency by which two goods
are bought together.

Detailed information of the six datasets is summarized in Table 3. The data of last five
rows represent the average number of each motif per node, from which we can find that
the five kinds of motifs defined in this paper frequently occur in networks.

Table 3. Dataset statistics. “#Node ” and “#Edge” represent the total number of nodes and edges.

“#Classes” is the number of node types. “#M1_AVG”~”#M2_AVG” represent the average number

of motifs with per node in the motifs with id 1~5 in Table 2.

Dataset Acmv9 Dblpv7 Citationv1 Polblogs Computers Photo

#Node 8779 5469 8769 1224 13,752 7650
#Edge 13,590 8098 14,798 16,718 245,861 119,081

#Classes 5 5 5 2 10 8
#M1_AVG 1.85 1.70 1.97 248 333 39
#M2_AVG 17.42 22.85 33.10 2545 8278 3915
#M3_AVG 1.23 1.26 1.26 1382 1947 1741
#M4_AVG 3.45 3.53 4.50 9074 26,887 13,875
#M5_AVG 3.04 3.05 3.30 3689 8822 4045

5.1.2. Baselines

The baselines can be categorized into two types: unsupervised and supervised meth-
ods. For supervised baselines, we choose GCN [6], SGC [45], GCNII [7], and MORE [35].
As for unsupervised methods, we regard GAE [14], GRACE [20], MVGRL [24], and DGI [15]
as baselines. The details of these methods are as follows:

• GCN [6]: It is a classic semi-supervised GNNs method which learns the latent graph
representation by extending the convolutional neural network to graph structure data
and is widely used in various fields.

• SGC [45]: SGC transforms the nonlinear GCN into a simple linear model, which
reduces the extra complexity of GCNs by repeatedly eliminating the nonlinearity
between GCN layers and folding the resulting function into a linear transformation.

• GCNII [7]: It solves the over-smoothing problem of GNNs by using residual connec-
tion and identity mapping, which greatly improve the performance of GNNs.

• MORE [35]: MORE is a motif-based graph learning method, which regards the motif
information as additional attribute information of nodes, used for social networks.
The general idea of it is close to this work and its performance on social networks is
very comparative.

Mathematics 2022, 10, 3047 11 of 18

• GAE [14]: GAE is an unsupervised graph learning method based on autoencoders,
which learns node representation by reconstructing graph structure.

• DGI [15]: Different from traditional reconstruction-based unsupervised methods, DGI
learns node embedding by maximizing the mutual information between the input
and the output. DGI is groundbreaking graph contrastive learning algorithm and it
also has top-ranked performance.

• GRACE [20]: It is a cutting-edge unsupervised graph representation learning method
based on contrastive learning. GRACE is also the fundamental basis of our proposed
method.

• MVGRL [24]: MVGRL uses graph diffusion for graph augmentation, and then com-
pares the node and graph embedding of different views. It is one of the SOTA graph
contrastive learning methods.

5.1.3. Experimental Details

To ensure the fairness of experiments, all unsupervised methods used in this paper
employ a linear classifier to predict the label of nodes. We set the maximum epoch to 2000
and tolerance to 20, respectively. After the model is fitted, we use 10% data to train the
classifier, and the remaining 90% data are used for testing. If there is no special statement,
the graph encoder is a two-layer GNN, and the node embedding dimension is 128 for all
datasets. We use the Adam with a learning rate of 0.001 to optimize the model. The classifier
used to predict the node label uses a linear classifier or a support vector machine.

For supervised algorithms, the hyperparameters on all datasets are recommended by
the original paper, and the node embedding dimension is 128. As for the dataset division,
to facilitate comparison, we adopt the classic dataset division method used in GCN [6],
that is, 20 samples of each class are used for training, 500 samples are used for validation,
and another 1000 samples are used for testing. To prevent overfitting, we set tolerance to 20,
and the maximum epoch to 1000. Our code is developed based on Python3.7 and Pytorch
1.7.0+cu101. Our model is trained by a V100 with 32G memory.

5.2. Unsupervised Node Classification

For PASCAL, we use the mean aggregator shown in Section 4.2 as the embedding
aggregator. All methods are executed 20 times on each dataset, and the comparison results
on six datasets are summarized in Table 4.

Table 4. Summary of node classification results on 6 datasets. All experiments are carried out

20 times, and “best” and “avg”, respectively, represent the best and average performance of the

model. “PASCAL-replace” and “PASCAL-concate” represent the two PASCAL variants mentioned in

Section 4.4 using different types of encoders. Bold numbers represent the best results on different

datasets.

Methods
acmv9 dblpv7 citationv1 Computers Photo Polblogs

best avg best avg best avg best avg best avg best avg

GCN 66 62.85 67.6 64.94 67.4 66.09 81.6 72.68 91.4 86.59 95.3 94.84
SGC 58.4 56.64 60.4 59.04 63.3 61.13 64.1 59.43 84.1 81.7 95.6 94.79

GCNII 72.3 70.18 73.1 71.66 74.4 71.66 63.6 62.46 70.1 62.3 95.5 94.97
MORE 70.8 67.15 66.7 64.69 65.6 62.87 74.2 72.89 85.9 85.46 95.8 95.66

GAE 50.08 47.62 52.31 50.3 53.19 51.45 82.15 79.61 88.94 88.32 92.3 91.6
DGI 70.46 68.47 70.47 69.02 74.58 73.28 87.25 86.78 92.67 92.26 94.28 92.46

GRACE 70.72 69.17 70.4 67.9 74.63 73.18 77.78 72.35 85.01 82.21 91 89.4
MVGRL 71.19 69.79 72.74 70.58 77.25 76.18 88.02 87.47 93.49 93.09 92.52 90.61

PASCAL-replace 53.49 52.94 57.78 57.05 85.39 85.07 90.08 85.07 94.81 89.75 94.81 94.28
PASCAL-concat 75.57 75.03 73.13 72.22 79.03 78.36 81.26 80.92 89.01 88.71 95 94.58

Some findings can be obtained according to the experimental results in Table 4. First,
compared with all unsupervised methods, our method achieves the best results in acmv9,

Mathematics 2022, 10, 3047 12 of 18

dblpv7, citationv1, and polblogs, with an average performance improvement of almost
4% compared with GRACE. Although our method performs weaker than the SOTA un-
supervised method on the computers and photo datasets, it still outperforms the GRACE
using the same type of comparison framework, which proves the effectiveness of PASCAL.
Second, under the dataset division settings used in GCN [6], our unsupervised method
is superior to all supervised methods on each dataset. Third, we can find that the perfor-
mance of PASCAL-replace is much worse than that of PASCAL-concat. The reason behind
this phenomenon is that PASCAL-replace does not use graph adjacency matrix, which
means that it only employs feature mask during data augmentation. Therefore, the two
augmented views of PASCAL-replace are in low distinction so that the two views cannot
be well contrasted. The semi-supervised experimental results in Section 6 further support
our conjecture.

5.3. Ablation Studies

In this section, we discuss the performance of different variants of PASCAL.
Mean-Agg v.s Att-Agg. When aggregating prototypes of different motifs, we can use

the mean aggregator or the attention aggregator. To compare the impact of different aggre-
gators on model performance, we choose the attention mechanism used in UDAGCN [40]
to aggregate multiple vectors, and both methods use the concat as the main framework.
The experimental results are shown in Figure 5. We find that the model performed compara-
bly in the two different aggregation methods, which shows that our proposed motif-based
subgraph aggregation strategy is effective and reliable.

Figure 5. The performance comparison when using different aggregators to formulate motif proto-

types. “att” and “mean” represent the attention-based and mean-based aggregators, respectively.

The horizontal axis represents the classification accuracy, and the vertical axis represents the dataset.

Motifs. In this part, we study the impact of different variants of our proposed motif-
based subgraph aggregation strategy on model performance. Concretely, we explore four
different combinations between “second-order” and “degree-agg”. Here, “second-order”
indicates whether to use second-order motif when generating subgraphs, i.e., . “degree-
agg” means using a degree-based aggregation to calculate motif embeddings, instead the
Sum(·) aggregator used in Section 4.3. If using Sum(·) to calculate motif embeddings, when
two motifs A and B(the motifs with id 1 and 2 in Table 2) consist of the same three nodes
at the same time, the embedding of them are same. Thus, we introduce a degree-based
motif aggregation method. Specifically, the degree of nodes in the motif is regarded as
weight, and the weighted sum of all node embeddings is regarded as the motif embedding.

Mathematics 2022, 10, 3047 13 of 18

For example, supposing two motifs A and B consist of the same three nodes v1, v2, v3,
represented as ma and mb. The motif embeddings of them are calculated by:

ma = v1 + 2v2 + v3

mb = 2(v1 + v2 + v3)
(11)

As shown in Table 5, we can find that: (1) no matter which combination we use,
our model performs better than GRACE; (2) in most cases, the combination of using
second-order motif without using degree-agg has the best performance; and (3) using the
second-order motif on most datasets can slightly improve the performance of the model.

Table 5. The performance of different variants of PASCAL. “second-order” indicates whether to use

the second-order motif when constructing the subgraph. “degree-agg” indicates whether to consider

node degree when calculating motif embedding. Here check mark means consider it and cross means

not use it. “PASCAL-concat-mean” represents the PASCAL-concat variant in Section 4.4, which uses

the mean aggregator in Section 4.3 to aggregate different types of motif prototypes. Bold numbers

represent the best results on different datasets.

Methods Second-Order Degree-Agg
acmv9 citationv1 dblpv7 polblogs

best avg best avg best avg best avg

GRACE – – 70.72 69.17 74.63 73.18 70.4 67.9 91 89.4

PASCAL-concat-mean

X X 73.58 72.81 78.02 77.43 71.2 70.3 94.7 94.34
X × 75.57 75.03 79.03 78.36 73.13 72.22 95 94.58
× X 72.83 72.15 77.34 76.89 69.66 68.49 94.92 94.35
× × 74.5 73.65 78.19 77.64 70.16 69.04 94.86 94.51

Classifier. In all previous experiments, the unsupervised methods employ a simple
linear classifier to predict node labels. In this section, we compare the effect of different
classifiers on the performance of the model. Specifically, we compare the performance of
models using the linear classifier with that using the support vector machine (SVM) and
the support vector machine (SVM), and the results are shown in Table 6. We can find that:
(1) for both GRACE and PASCAL, using more powerful SVM can significantly improve
model performance; (2) even if using SVM, the performance of GRACE is weaker than the
PASCAL-concat using linear classifier, which shows the power of our proposed model.

Table 6. The performance of GRACE and PASCAL-concat with different classifier. “Linear” and

“SVM” represent the use of linear and SVM as node classifiers, respectively. Bold numbers represent

the best results on different datasets.

Datasets
GRACE PASCAL-Concat

Linear SVM Linear SVM

acmv9 69.17 74.11 75.03 77.56
citationv1 73.18 75.83 78.36 80.19

dblpv7 67.9 71.37 72.22 73.6
computers 72.35 76.89 80.92 82.96

photo 82.21 84.55 88.71 89.03
polblogs 89.4 89.12 94.58 94.25

6. Discussion

Complexity Analysis. Here, we briefly analyze the time complexity of PASCAL and
compare it with GCN and GRACE. Let |E| represent the edge number in the graph; d be the
embedding size; b and m, respectively, denote the batch size and the node number in a batch;
γ denote the edge keep rate in PASCAL; and L represent the number of layers of the encoder.
We compare them from four aspects, and Table 7 summarizes the comparison results.

Mathematics 2022, 10, 3047 14 of 18

• Preprocessing: GCN and GRACE do not need to preprocess data, while PASCAL
needs to collect the motif information of each node which is one of disadvantages
of it. However, the motif information only needs to be analyzed once; the cost of
preprocessing is, therefore, acceptable.

• Adjacency Matrix: For GCN, the adjacency matrix has only 2|E| non-zero elements
since no augmentation is required. GRACE and PASCAL are typical contrastive
learning methods that need to generate two augmented views, so there are two
adjacency matrices containing 2γ|E| non-zero elements.

• Encoder: All three models use a two-layer encoder architecture, so the time complexity
is consistent.

• Loss: For GCN, the time complexity is O(2bd). For GRACE and PASCAL, we only
use a small amount of data to train a simple linear classifier, so the time complexity
mainly depends on the contrastive loss. Both GRACE and PASCAL use other nodes
in the other perspective as negative samples, so the complexity of contrastive loss is
O(bd + bmd).

In general, the time complexity of contrastive learning is higher than that of GCN.
Compared with GRACE, the complexity of PASCAL is higher than the additional data
preprocessing. However, compared with the significant performance of PASCAL, the time
cost of data preprocessing is negligible.

Table 7. Analysis of time complexity.

Datasets GCN GRACE PASCAL

Preprocessing - - O(2|E|)
Adjacency Matrix O(2|E|) O(4γ|E|) O(4γ|E|)

Encoder O(2|E|Ld) O(8γ|E|Ld) O(8γ|E|Ld)
Loss O(2bd) O(bd+bmd) O(bd+bmd)

Attention weight. In the attention variant of PASCAL, we use the attention mecha-
nism to aggregate different types of motifs. Here, we analyze the learned attention weights
to explore something interesting. Specifically, we consider the relation of attention weights
and the number of motifs using the Pearson correlation coefficient, which are used to
measure the correlation between two variables. The results are summarized in Table 8.
From Table 8, we can find that the number of nodes with correlation coefficients greater
than 0.9 in acmv9, citationv1, and dblpv7 is much larger than that in the other three datasets,
which means that the types with more motifs in the computers, photo, and polblogs may
be assigned smaller weights. Actually, this phenomenon is normal. The distribution of the
number of motifs in Table 3 shows that the distribution of motifs in these three datasets is
more uneven. In this case, if the correlation coefficient is large, it will overly attenuate the
influence of other motifs on the model, potentially reducing model performance. Therefore,
the results in Table 8 are intuitive, indicating that the attention weights learned by the
model are meaningful.

Table 8. The statistics of Pearson correlation coefficient between the number of motifs and the learned

attention weights. “#<0” represents the number of nodes with coefficient less that 0, and the same for

others. “#Node” represents the total number of nodes of datasets.

Datasets #<0 #>0.3 #>0.5 #>0.9 #Node

acmv9 4060 2569 2112 1486 8779
citationv1 4496 2374 2007 1524 8769

dblpv7 2352 1658 1403 1074 5469
computers 11,432 3394 1914 52 13,752

photo 6784 1105 499 17 7650
polblogs 586 364 262 74 1224

Mathematics 2022, 10, 3047 15 of 18

Semi-supervised node classification. To further verify the power of our proposed
motif-based subgraph aggregation strategy, we integrate it into GCN and GCNII in a concat
manner for semi-supervised node classification tasks. Specifically, we first perform the
motif-based subgraph aggregation on the output of the previous layer. Then, it is regarded
as the updated node embeddings fed into the next GNN layer. Figure 6a,b, respectively,
show the performance of the four models on the five datasets and incomplete Acmv9.
From Figure 6a, we can find that on most of the datasets, the GCN-Motif and GCNII-Motif
perform better, especially GCNII-Motif, which once again verifies the effectiveness of our
proposed strategy. The performance of all models degrades as the ratio of missing edges
increases. When the ratio of edge dropping is low, the performance of the improved model
is still better than the original model. However, when the ratio of edge loss is too large
(≥30%), the performance of the improved model is comparable to or even worse than that
of the original model, which is in line with our intuition. As the improved model is more
dependent on the graph topology, the performance of the model will be affected more
seriously if the original graph structure is excessively destroyed. Table 9 summarizes the
GCN-Motif performance under the two integration modes of replace and concat. Unlike
the unsupervised framework, in the semi-supervised framework, GCN-Motif-replace and
GCN-Motif-concat perform comparably, which supports our conjecture in Section 5.2.
Note that we use the Mean-Agg as the motif prototype aggregator for all experiments in
this section.

(a) (b)

Figure 6. Performance comparison before and after integrating our proposed motif-based subgraph

aggregation strategy. “GCN” and “GCNII” are two classic GNN models, respectively. “GCN-Motif”

and “GCNII-Motif”, respectively, represent the improved model based on the subgraph aggregation

and encoding strategy proposed in this paper. The horizontal axis of (b) represents the random edge

rate. (a) Node classification on the full dataset; (b) node classification on incomplete Acmv9.

Table 9. Performance of GCN when integrating different variants of our proposed motif-based

subgraph aggregation strategy. “best” and “avg” represent the optimal and average performance

over 20 experiments, respectively. Bold numbers represent the best results on different datasets.

Methods
acmv9 dblpv7 citationv1

best avg best avg best avg

GCN 66 62.85 67.6 64.94 67.4 66.09
GCN-Motif-Replace 70.3 69.2 63.2 62.28 70.6 69.56
GCN-Motif-Concat 71.6 69.28 69.5 68.3 75.5 72.6

Visualization. To more intuitively show the effect of our proposed motif-based sub-
graph aggregation strategy on the GNNs framework, we use the tSNE algorithm to visu-
alize the test set node embeddings learned by the model. Figure 7a,c show the test node
embeddings of GCN and GCNII on citationv1, respectively. Figure 7b,d show the learned
embeddings of GCN-Motif and GCNII-Motif, combined with our proposed subgraph

Mathematics 2022, 10, 3047 16 of 18

strategy on citationv1. Comparing the first and second columns of Figure 7, we find that the
nodes of each category in the second column are more concentrated, and the classification
boundaries are more obvious, which indicates that the quality of learned node embeddings
is significantly improved through integrating our proposed subgraph strategy.

(a) (b)

(c) (d)

Figure 7. Visualization of test node embeddings of GCNII and GCNII-Motif on acmv9 and citationv1

by tSNE. xxx-Motif represents the GNNs integrated with our motif-based subgraph aggregation

strategy. (a) GCN on citationv1; (b) GCN-Motif on citationv1; (c) GCNII on citationv1; (d) GCNII-

Motif on citationv1.

7. Conclusions

In this work, we propose a structure-aware graph contrastive learning model called
PASCAL which considers the subgraph-level embedding. PASCAL adaptively constructs
and encodes subgraphs based on the nodes’ motif information, and further uses them as
the input of the GNN encoder to capture rich semantic information hidden in the local
structure. Extensive experiments on six social and web benchmark datasets show the
outperformance of PASCAL.

Although PASCAL performs well in unsupervised node classification tasks, it is not
flawless. The motifs used in PASCAL are predefined, as it underperforms on some datasets
such as Amazon Photo. The reason behind this phenomenon is the different distribution of
motif types and numbers in different datasets. The five motifs predefined in this study may
not be applicable to Amazon Photo. In future work, we will study how to automatically
design and select the optimal motifs, which can significantly improve the generalization
of PASCAL.

Author Contributions: Conceptualization, Z.C., Y.P. and F.X.; investigation, Y.P. and F.X.; methodol-

ogy, Y.P., S.Y. and C.C.; supervision, Z.C., S.Y. and F.X.; validation, Z.C. and Y.P.; writing—original

draft, Y.P. and Z.C.; writing—review and editing, Z.C., S.Y. and C.C. All authors have read and agreed

to the published version of the manuscript.

Mathematics 2022, 10, 3047 17 of 18

Funding: This work is partially supported by the National Key Research and Development Program

of China under Grant No. 2021ZD0112400, the National Natural Science Foundation of China

under Grant No. 62102060 and No. 62076047, and the Fundamental Research Funds for the Central

Universities under Grant No. DUT22RC(3)060.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All datasets used in this paper are public, and you can download

them from https://drive.google.com/drive/folders/1a1jSiw-2rxv9GClcE5WrEMA-GqTqUK-l?usp=

sharing (accessed on 14 March 2022).

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations

The following abbreviations are used in this manuscript:

GCL graph contrastive learning

GNN graph neural network

GCN graph convolution network

MI mutual information

SOTA state-of-the-art

PASCAL subgraph adaptive structure-aware graph contrastive learning

DGI deep graph infomax

BYOL bootstrap your own latent

References

1. You, L.; Liu, S.; Chang, Y.; Yuen, C. A Triple-Step Asynchronous Federated Learning Mechanism for Client Activation, Interaction

Optimization, and Aggregation Enhancement. IEEE Internet Things J. 2022. [CrossRef]

2. Nasiri, E.; Berahmand, K.; Li, Y. A New Link Prediction in Multiplex Networks Using Topologically Biased Random Walks. Chaos

Solitons Fractals 2021, 151, 111230.: 10.1016/j.chaos.2021.111230. [CrossRef]

3. Xia, F.; Sun, K.; Yu, S.; Aziz, A.; Wan, L.; Pan, S.; Liu, H. Graph Learning: A Survey. IEEE Trans. Artif. Intell. 2021, 2, 109–127.

[CrossRef]

4. Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Liò, P.; Bengio, Y. Graph Attention Networks. In Proceedings of the

International Conference on Learning Representations, Vancouver, BC, Canada, 30 April–3 May 2018.

5. Hamilton, W.L.; Ying, R.; Leskovec, J. Inductive Representation Learning on Large Graphs. In Proceedings of the 31st International

Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 1025–1035.

6. Kipf, T.N.; Welling, M. Semi-Supervised Classification with Graph Convolutional Networks. arXiv 2016, arXiv:1609.02907.

7. Chen, M.; Wei, Z.; Huang, Z.; Ding, B.; Li, Y. Simple and Deep Graph Convolutional Networks. In Proceedings of the International

Conference on Machine Learning, Virtual, 13–18 July 2020; pp. 1725–1735.

8. You, L.; Tunçer, B.; Xing, H. Harnessing Multi-Source Data about Public Sentiments and Activities for Informed Design. IEEE

Trans. Knowl. Data Eng. 2019, 31, 343–356. [CrossRef]

9. You, L.; Zhao, F.; Cheah, L.; Jeong, K.; Zegras, P.C.; Ben-Akiva, M. A Generic Future Mobility Sensing System for Travel Data

Collection, Management, Fusion, and Visualization. IEEE Trans. Intell. Transp. Syst. 2020, 21, 4149–4160. [CrossRef]

10. You, L.; Motta, G.; Liu, K.; Ma, T. CITY FEED: A Pilot System of Citizen-Sourcing for City Issue Management. ACM Trans. Intell.

Syst. Technol. 2016, 7, 1–25. [CrossRef]

11. Lin, Z.; Kang, Z.; Zhang, L.; Tian, L. Multi-View Attributed Graph Clustering. IEEE Trans. Knowl. Data Eng. 2021. [CrossRef]

12. You, L.; Motta, G.; Sacco, D.; Ma, T. Social Data Analysis Framework in Cloud and Mobility Analyzer for Smarter Cities. In

Proceedings of the 2014 IEEE International Conference on Service Operations and Logistics, and Informatics, Qingdao, China,

8–10 October 2014; pp. 96–101.

13. Berahmand, K.; Nasiri, E.; Rostami, M.; Forouzandeh, S. A Modified DeepWalk Method for Link Prediction in Attributed Social

Network. Computing 2021, 103, 2227–2249. [CrossRef]

14. Kipf, T.N.; Welling, M. Variational Graph Auto-Encoders. arXiv 2016, arXiv:1611.07308.

15. Velickovic, P.; Fedus, W.; Hamilton, W.L.; Liò, P.; Bengio, Y.; Hjelm, R.D. Deep Graph Infomax. ICLR (Poster) 2019, 2, 4.

16. Zhu, Y.; Xu, Y.; Yu, F.; Liu, Q.; Wu, S.; Wang, L. Graph Contrastive Learning with Adaptive Augmentation. In Proceedings of the

Web Conference 2021, Ljubljana, Slovenia, 19–23 April 2021; pp. 2069–2080.

17. Hafidi, H.; Ghogho, M.; Ciblat, P.; Swami, A. Graphcl: Contrastive Self-Supervised Learning of Graph Representations. arXiv

2020, arXiv:2007.08025.

18. Pan, E.; Kang, Z. Multi-View Contrastive Graph Clustering. Adv. Neural Inf. Process. Syst. 2021, 34, 2148–2159.

https://drive.google.com/drive/folders/1a1jSiw-2rxv9GClcE5WrEMA-GqTqUK-l?usp=sharing
https://drive.google.com/drive/folders/1a1jSiw-2rxv9GClcE5WrEMA-GqTqUK-l?usp=sharing
http://doi.org/10.1109/JIOT.2022.3188556
http://dx.doi.org/10.1016/j.chaos.2021.111230
http://dx.doi.org/10.1109/TAI.2021.3076021
http://dx.doi.org/10.1109/TKDE.2018.2828431
http://dx.doi.org/10.1109/TITS.2019.2938828
http://dx.doi.org/10.1145/2873064
http://dx.doi.org/10.1109/TKDE.2021.3101227
http://dx.doi.org/10.1007/s00607-021-00982-2

Mathematics 2022, 10, 3047 18 of 18

19. You, L.; Tunçer, B.; Zhu, R.; Xing, H.; Yuen, C. A Synergetic Orchestration of Objects, Data, and Services to Enable Smart Cities.

IEEE Internet Things J. 2019, 6, 10496–10507. [CrossRef]

20. Zhu, Y.; Xu, Y.; Yu, F.; Liu, Q.; Wu, S.; Wang, L. Deep Graph Contrastive Representation Learning. arXiv 2020, arXiv:2006.04131.

21. Qiu, J.; Chen, Q.; Dong, Y.; Zhang, J.; Yang, H.; Ding, M.; Wang, K.; Tang, J. Gcc: Graph Contrastive Coding for Graph Neural

Network Pre-Training. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data

Mining, Virtual, 6–10 July 2020; pp. 1150–1160.

22. Wang, C.; Liu, Z. Learning Graph Representation by Aggregating Subgraphs via Mutual Information Maximization. arXiv 2021,

arXiv:2103.13125.

23. Zhang, S.; Hu, Z.; Subramonian, A.; Sun, Y. Motif-Driven Contrastive Learning of Graph Representations. arXiv 2020,

arXiv:2012.12533.

24. Hassani, K.; Khasahmadi, A.H. Contrastive Multi-View Representation Learning on Graphs. In Proceedings of the International

Conference on Machine Learning, Virtual, 13–18 July 2020; pp. 4116–4126.

25. You, Y.; Chen, T.; Shen, Y.; Wang, Z. Graph Contrastive Learning Automated. arXiv 2021, arXiv:2106.07594.

26. Suresh, S.; Li, P.; Hao, C.; Neville, J. Adversarial Graph Augmentation to Improve Graph Contrastive Learning. arXiv 2021,

arXiv:2106.05819.

27. Lin, S.; Zhou, P.; Hu, Z.-Y.; Wang, S.; Zhao, R.; Zheng, Y.; Lin, L.; Xing, E.; Liang, X. Prototypical Graph Contrastive Learning.

arXiv 2021, arXiv:2106.09645.

28. Kefato, Z.T.; Girdzijauskas, S. Self-Supervised Graph Neural Networks without Explicit Negative Sampling. In Proceedings of

the International Workshop on Self-Supervised Learning for the Web (SSL’21), at WWW’21, Singapore, 15–17 April 2021.

29. Yu, S.; Feng, Y.; Zhang, D.; Bedru, H.D.; Xu, B.; Xia, F. Motif Discovery in Networks: A Survey. Comput. Sci. Rev. 2020, 37, 100267.

[CrossRef]

30. Peng, H.; Li, J.; Gong, Q.; Ning, Y.; Wang, S.; He, L. Motif-Matching Based Subgraph-Level Attentional Convolutional Network

for Graph Classification. In Proceedings of the AAAI, New York, NY, USA, 7–12 February 2020.

31. Cui, Z.; Cai, Y.; Wu, S.; Ma, X.; Wang, L. Motif-Aware Sequential Recommendation. In Proceedings of the 44th International ACM

SIGIR Conference on Research and Development in Information Retrieval, Virtual, 11–15 July 2021; pp. 1738–1742.

32. Xia, F.; Yu, S.; Liu, C.; Li, J.; Lee, I. CHIEF: Clustering with Higher-Order Motifs in Big Networks. IEEE Trans. Netw. Sci. Eng. 2022,

9, 990–1005 . [CrossRef]

33. Yu, S.; Xia, F.; Sun, Y.; Tang, T.; Yan, X.; Lee, I. Detecting Outlier Patterns with Query-Based Artificially Generated Searching

Conditions. IEEE Trans. Comput. Soc. Syst. 2020, 8, 134–147. [CrossRef]

34. Zhang, K.; Yu, S.; Wan, L.; Li, J.; Xia, F. Predictive Representation Learning in Motif-Based Graph Networks. In Proceedings of the

Australasian Joint Conference on Artificial Intelligence, Adelaide, Australia, 2–5 December 2019; pp. 177–188.

35. Xu, J.; Yu, S.; Sun, K.; Ren, J.; Lee, I.; Pan, S.; Xia, F. Multivariate Relations Aggregation Learning in Social Networks. In

Proceedings of the ACM/IEEE Joint Conference on Digital Libraries in 2020, Wuhan, China, 1–5 August 2020; pp. 77–86.

36. Zhang, C.; Zhang, S.; James, J.; Yu, S. An Enhanced Motif Graph Clustering-Based Deep Learning Approach for Traffic Forecasting.

In Proceedings of the GLOBECOM 2020-2020 IEEE Global Communications Conference, Taipei, Taiwan, 7–11 December 2020;

pp. 1–6.

37. Yu, S.; Xia, F.; Xu, J.; Chen, Z.; Lee, I. Offer: A Motif Dimensional Framework for Network Representation Learning. In Proceedings

of the Proceedings of the 29th ACM International Conference on Information & Knowledge Management, Virtual, 19–23 October

2020; pp. 3349–3352.

38. Yu, S.; Xia, F.; Zhang, C.; Wei, H.; Keogh, K.; Chen, H. Familiarity-Based Collaborative Team Recognition in Academic Social

Networks. IEEE Trans. Comput. Soc. Syst. 2021, 1–14. [CrossRef]

39. Bedru, H.D.; Yu, S.; Xiao, X.; Zhang, D.; Wan, L.; Guo, H.; Xia, F. Big Networks: A Survey. Comput. Sci. Rev. 2020, 37, 100247.

[CrossRef]

40. Wu, M.; Pan, S.; Zhou, C.; Chang, X.; Zhu, X. Unsupervised Domain Adaptive Graph Convolutional Networks. In Proceedings of

the Web Conference 2020, Taipei, Taiwan, 20–24 April 2020; pp. 1457–1467.

41. Shen, X.; Dai, Q.; Mao, S.; Chung, F.; Choi, K.-S. Network Toher: Node Classification via Cross-Network Deep Network

Embedding. IEEE Trans. Neural Netw. Learn. Syst. 2020, 32, 1935–1948. [CrossRef]

42. Adamic, L.A.; Glance, N. The Political Blogosphere and the 2004 US Election: Divided They Blog. In Proceedings of the 3rd

International Workshop on Link Discovery, Chicago, IL, USA, 21–25 August 2005; pp. 36–43.

43. Shchur, O.; Mumme, M.; Bojchevski, A.; Günnemann, S. Pitfalls of Graph Neural Network Evaluation. arXiv 2018,

arXiv:1811.05868.

44. Chien, E.; Peng, J.; Li, P.; Milenkovic, O. Adaptive Universal Generalized PageRank Graph Neural Network. In Proceedings of

the International Conference on Learning Representations, Virtual, 26 April–1 May 2020.

45. Wu, F.; Souza, A.; Zhang, T.; Fifty, C.; Yu, T.; Weinberger, K. Simplifying Graph Convolutional Networks. In Proceedings of the

International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; pp. 6861–6871.

http://dx.doi.org/10.1109/JIOT.2019.2939496
http://dx.doi.org/10.1016/j.cosrev.2020.100267
http://dx.doi.org/10.1109/TNSE.2021.3108974
http://dx.doi.org/10.1109/TCSS.2020.2977958
http://dx.doi.org/10.1109/TCSS.2021.3129054
http://dx.doi.org/10.1016/j.cosrev.2020.100247
http://dx.doi.org/10.1109/TNNLS.2020.2995483

	Introduction
	Related Work
	Graph Contrastive Learning
	Motif-Based Graph Learning

	Preliminaries
	Notation
	Problem Definition
	Network Motif

	The Design of PASCAL
	Subgraph Generator
	Augmentation
	Subgraph Aggregator
	Graph Encoder
	Comparator

	Experiments
	Experimental Settings
	Datasets
	Baselines
	Experimental Details

	Unsupervised Node Classification
	Ablation Studies

	Discussion
	Conclusions
	References

