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CenGCN: Centralized Convolutional Networks
with Vertex Imbalance for Scale-Free Graphs

Feng Xia, Senior Member, IEEE, Lei Wang, Tao Tang, Xin Chen, Xiangjie Kong, Senior Member, IEEE,
Giles Oatley, and Irwin King, Fellow, IEEE

Abstract—Graph Convolutional Networks (GCNs) have achieved impressive performance in a wide variety of areas, attracting
considerable attention. The core step of GCNs is the information-passing framework that considers all information from neighbors to
the central vertex to be equally important. Such equal importance, however, is inadequate for scale-free networks, where hub vertices
propagate more dominant information due to vertex imbalance. In this paper, we propose a novel centrality-based framework named
CenGCN to address the inequality of information. This framework first quantifies the similarity between hub vertices and their
neighbors by label propagation with hub vertices. Based on this similarity and centrality indices, the framework transforms the graph by
increasing or decreasing the weights of edges connecting hub vertices and adding self-connections to vertices. In each non-output
layer of the GCN, this framework uses a hub attention mechanism to assign new weights to connected non-hub vertices based on their
common information with hub vertices. We present two variants CenGCN D and CenGCN E, based on degree centrality and
eigenvector centrality, respectively. We also conduct comprehensive experiments, including vertex classification, link prediction, vertex
clustering, and network visualization. The results demonstrate that the two variants significantly outperform state-of-the-art baselines.

Index Terms—Graph Convolutional Networks, Vertex Centrality, Network Analysis, Graph Learning, Representation Learning

F

1 INTRODUCTION

THE graph, as an abstract data type, can represent the
complex relationships between objects in many real-

world networks. Representative networks include social
networks [1], biological networks [2], and academic net-
works [3]. Numerous studies [4], [5], [6], [7] demonstrate
the possibilities of extracting rich information from graph-
structured data, thereby realizing many practical applica-
tions, including vertex classification and link prediction.
However, how to extract useful information from these
data remains a challenging issue and is thus worthy of
exploration in depth.

Recently, extensive studies [8], [9], [10], [11], [12] have
shown that Graph Convolutional Networks (GCNs) are
powerful tools for handling graph-structured data and for
a wide spectrum of graph-based applications, from recom-
mender systems [13], [14] to knowledge graphs [15], [16].
Existing GCNs adopt an information-passing framework
[17], where each vertex aggregates information from its
immediate neighbors and itself, and considers information
from different vertices equally important. However, such
equal importance is counterintuitive when different neigh-
bors pass information with different influence to the central
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vertex. For instance, a person could connect to both friends
and work colleagues in social networks where vertices
denote persons. When recognizing one’s workplace, the
information from colleagues is more relevant than that from
friends. In this instance, we need to weight more highly
the influence of colleagues. Equally aggregating informa-
tion, however, fails to capture this differentiation between
vertices.

Many complex networks in the real world, such as the
Internet and social networks, are scale-free networks [18].
We find in these networks an inequality of information from
different vertices because of vertex imbalance. The scale-free
property, one of the fundamental macroscopic structures of
networks, dictates that the vertex degrees follow a power-
law distribution: the probability distribution decreases as
the vertex degree increases, with a long tail tending to zero.
Therefore, significant vertex imbalance appears in a scale-
free network, and only a few vertices are of high degree and
regarded as hub vertices or simply hubs. The majority of
vertices linking to a high-degree vertex are, however, of low
degree, and not highly connected. In scale-free networks, a
vertex with a high degree is usually the hub of a community,
and the information it contains is more influential than
that from vertices with low degrees. For instance, in social
media, a celebrity that has a great number of followers can
spread more news than a less prestigious person. In this
case, if we wish to tap into a users’ interests, it would be
helpful to consider links to celebrities. Additionally, when
modeling the diffusion, more weight should be given to
edges connecting hub vertices [19].

For scale-free networks, it is possible to implement
new GCNs that capture this differentiation in information
passing between vertices. Since vertex centrality can be
considered a useful measure of the importance of individual
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vertices [20], we propose a centrality-based Graph Convolu-
tion Network. In this paper, we consider various centrality
measurements, rather than solely focusing on vertex degree.
The degree of a vertex is a centrality measurement. The
proposed GCNs allow hub vertices, selected by centrality
indices, to pass more information. Thus, each vertex receives
more information from the hub vertices.

When designing centrality-based GCNs, we need to
address the issue that a vertex with a higher centrality
index may be linked to similar vertices and possibly to
dissimilar vertices due to its high prestige and popularity
[21]. For example, in academia, some distinguished schol-
ars can collaborate with others from outside their research
laboratories. In social networks, a celebrity receives a great
number of followers, but most of them may have totally
different backgrounds.

The relationship between two connected but dissimilar
vertices needs to be weakened. When aggregating infor-
mation, neighboring information with similar features is
aggregated to reinforce the correct features to facilitate
downstream tasks such as classification, while the opposite
effect is achieved if dissimilar information is aggregated.
Therefore, different weights are required. To address the
issue detailed above, we consider the similarity between
vertices in the underlying network structure. We use ran-
dom walk computation in order to calculate this similarity
[22], [23], [24], [25]. Subsequently, a label propagation algo-
rithm is applied over hub vertices to quantify the similarity
between vertices and their hub neighbors. Through these
quantified similarities and vertex centrality indices, we pro-
pose a graph transformation method to increase or decrease
the weights of edges connecting hub vertices and to add
self-connections to vertices. In the transformed graph, the
influence from hub vertices to their similar neighbors is
strengthened, and the influence to dissimilar neighbors is
weakened.

In the transformed graph, vertices are influenced by
their hub neighbors. It is possible that some neighbors of
a vertex are non-hub and these neighbors will also have
an effect. Therefore, we propose a hub attention mechanism
that passes information between non-hub vertices that share
common hubs. This attention mechanism is faster and has
fewer parameters to be learned than the previous graph
attention mechanism [26].

1
2 3

5 6

The hub attention

The graph transformation

4
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Fig. 1. An illustrative example, where v1 and v3 are hub vertices, and
vertex v2 is highly similar to hub vertex v1, but not to hub vertex v3. The
graph transformation is proposed to handle hub neighbors, and the hub
attention is proposed to handle non-hub neighbors.

Fig. 1 presents an example to illustrate how the graph
transformation and the hub attention work. Two hub ver-
tices, v1 and v3, are marked by red. In the network struc-

ture, v2 are similar with v1 but dissimilar with v3. When
the information of v1, v3 and v4 runs into v2, the graph
transformation gives a higher weight to the edge e12, a
lower weight to the edge e23, and the original weight to
the edge e24. v5 shares the same hub with v7 but no same
hub with v6. When the information of v7 and v6 runs into v5,
the hub attention mechanism gives a higher weight to the
edge v57 and a lower weight to the edge v56. Note that self-
connections are omitted for clarification of how to handle
neighbors.

We name our overall framework as CenGCN. In this
paper, we present two variants of CenGCN, CenGCN D
and CenGCN E, based on degree centrality and eigenvec-
tor centrality, respectively. To evaluate their performances,
we conducted four experiments, vertex classification, link
prediction, vertex clustering, and network visualization, on
five datasets. These experiments show that the two vari-
ants outperform state-of-the-art baselines, even by 70.1%
on vertex classification. Though the scale-free property is
based on vertex degree, the finding that CenGCN E, based
on eigenvector centrality, achieves excellent performance in-
spires us to utilise more centrality measurements for GCNs
and additional graph-based methods. Further, experiments
also show that CenGCN D and CenGCN E exhibit a greater
performance over GCNs as the network becomes deeper.
Thus, an observation derived from this study is that we
should explore vertex imbalance and unequal information
by vertex centrality on deeper GCNs.

The contributions of this paper can be summarized as
follows:

• We propose a framework named CenGCN for scale-
free networks. This framework effectively addresses
the unequal importance of information from differ-
ent vertices.

• We propose using label propagation to quantify the
similarity between hub vertices and their neighbors,
a graph transformation method that captures the
influence of hub vertices by vertex centrality, and a
hub attention mechanism that assigns new weights
to non-hub neighbors by the same hubs.

• We present two variants of CenGCN, namely
CenGCN D and CenGCN E. Extensive experiments
show that these two variants outperform state-of-the-
art baselines as well as deeper GCNs.

The remainder of this paper is structured as follows. In
Section 2, we give an overview of related work. In Section
3, we introduce preliminaries related to this study and
then introduce the CenGCN framework in Section 4. We
present extensive experiments to verify the efficacy of this
framework in Section 5. Finally, we conclude this paper in
Section 6.

2 RELATED WORK

In this section, we review related work about GCNs and
scale-free networks.

2.1 Graph Convolutional Networks
Shuman et al. introduce a convolution operation on graph-
structured data using the Fourier basis for signal processing



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 3

in the paper [27]. Based on this study [27], Bruna et al.
[28] define a convolution for graphs from the spectral do-
main using the graph Laplacian. Theoretical analysis shows
that this definition of the convolution operation on graphs
can mimic certain geometric properties of Convolutional
Neural Networks (CNNs) [29]. A significant limitation of
this convolution is that the decomposition of the Laplacian
matrix is not scalable to large-scale graphs. To solve the
efficiency problem, Defferrard et al. [10] propose a K-
localized spectral filter represented by K-order polynomials
in the Laplacian. Through the Chebyshev expansion, we can
recursively and fast compute the localized filter. With K set
to 1, Kipf et al. [8] consider only the first-order neighbors
and define a layer-wise propagation rule. The form of this
propagation rule is a first-order approximation of localized
spectral filters defined in the paper [10]. The first-order
GCNs yield a fascinating performance, and many methods
have been proposed to improve it.

Graph Attention Networks (GATs) [26] observe that
the contributions from neighbors to the central vertex are
unequal and adopt attention mechanisms to learn the rela-
tive weights between two connected vertices. Furthermore,
GATs employ multi-head attention to stabilize the learning
process of self-attention. Hierarchical Graph Convolutional
Networks (H-GCN) [30] address the failure of GCNs to
obtain adequate global information. They repeatedly ag-
gregate structurally similar nodes to hypernodes and then
refine the coarsened graph to the original to restore the
representation for each node in order to increase the re-
ceptive field of each vertex. GCNs are designed for semi-
supervised learning, and to extend to unsupervised learning
DGI [11] presents a general approach for learning vertex
representations within graph-structured data by maximiz-
ing mutual information between patch representations and
corresponding high-level summaries of graphs.

2.2 Scale-Free Networks

The scale-free property describes how vertex degrees follow
a power-law distribution in some networks, such as the
Internet [18]. The study presented in [31] reviews some of
the empirical evidence for the existence of power-law forms
and the theories proposed to explain them. Clauset et al. [32]
present a principled statistical framework for discerning and
quantifying power-law behavior in empirical data. To define
precisely the scale-free graphs, the study [33] provides one
possible measure of the extent to which a graph is scale-free.
Considering the scale-free property of real-world networks,
Jo et al. [34] propose a single-machine based graph engine
equipped with the hierarchical indicator and the block-
based workload allocation.

Despite many studies about the scale-free property, ex-
isting GCNs-based methods have not yet considered it.
Recently, Feng et al. [21] proposed a principle for scale-free
property preserving network embedding algorithms. Feng
et al’s study has three significant differences to our study:
(i) we believe that those neighbors of a high-degree vertex
contain both similar vertices and dissimilar vertices with
it; Feng et al’s study only assumes a high-degree vertex is
dissimilar to its neighbors; (ii) we either reward or punish
hub vertices with high centrality indices; Feng et al’s study

punishes vertices with high degrees; (iii) we learn vector
representations using GCNs, or non-linear deep models;
Feng et al’s study uses spectral cluster and random walk,
both of which are linear.

3 PRELIMINARIES

In this section, we introduce the preliminaries related to this
study, including the definitions of graphs and GCNs.

3.1 Graph

We consider a graph G = (V,E), where V = {v1, v2, ..., vn}
is the vertex set containing n vertices, and E = {eij}1≤i,j≤n
is the edge set. If an undirected edge eij exists between vi
and vj , eij ∈ E. We define the adjacency matrix of G as
A ∈ Rn×n, whereAij = 1 if eij ∈ E, andAij = 0 otherwise.
We use D to denote the degree diagonal matrix with Dii =∑
j Aij . For the considered graph, we define a feature matrix

X ∈ Rn×m, where the ith row Xi is vi’s features, and m is
the number of the features. Each vertex vi has a neighbor
set Ni. If Aij = 1, vj ∈ Ni.

A graph has scale-free property if its vertex degrees
follow a power-law distribution. In this type of graph, only
a few vertices are of high degree and called hub vertices or
hubs. The majority of vertices connected to a high-degree
vertex are of low degree and are not likely to be connected
to each other. Formally, the probability density function of
the vertex degree Dii has the following form:

PDii
(d) = Cd−α, α > 1, d > dmin > 0, (1)

where α is the exponent parameter, and C is the normaliza-
tion term. The power-law form only applies to vertices with
degrees greater than a certain minimal value dmin [32].

In graph theory, centrality has been extensively studied.
A vertex with a higher centrality index usually is more
influential and has greater prestige. To measure vertices’
centrality indices, a number of methods have been put for-
ward [35]. A well-known measure is degree centrality [36],
which regards Dii as the index of vi’s centrality. Another
popular measure is eigenvector centrality [37]. It is defined
as the principal eigenvector of the adjacency matrix defining
the network. Other centrality measurements include close-
ness centrality, betweenness, information centrality, flow
betweenness and others [38].

3.2 Graph Convolutional Networks (GCNs)

The convolution operation on graph G is defined in the
Fourier domain:

y = gθ(L)x = gθ(UΛUT )x = Ugθ(Λ)UTx, (2)

where L = In − D−
1
2AD−

1
2 is the normalized Laplacian.

In is the identity matrix. Λ and U are the diagnonal matrix
of eigenvalues and the matrix of eigenvectors of L, respec-
tively. x is the input signal, and y is the filtered signal. gθ(Λ)
is the parameterized filter defined by [10] as a Kth order
polynomial:

gθ(Λ) =
K−1∑
k=0

θkΛk, (3)



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 4

where the parameter θk is the polynomial coefficient. To
circumvent the multiplication with Fourier basis U that has
O(n2) operations, Defferrard et al. [10] adopt the Chebyshev
polynomial Tk(x) of order k computed by the recurrence
relation Tk(x) = 2xTk−1(x) − Tk−2(x) with T0 = 1 and
T1 = x. Thus, the filter is parameterized as:

gθ(Λ) =
K−1∑
k=1

θkTk(Λ̂), (4)

where Λ̂ = 2Λ/λmax − In is a diagonal matrix of scaled
eigenvalues, and λmax is the maxmium eigenvalue of L.
The filtering operation can then be written as y = gθ(L)x =∑K−1
k=0 θkTk(L̂)x, where L̂ = 2L/λmax − In is the scaled

Laplacian.
Further, let λmax = 2 andK = 1, we can reach the GCNs

[8] defined by a layer-wise convolutional operation with the
following layer-wise propagation rule:

Hk+1 = σ(D̃−
1
2 ÃD̃−

1
2HkW k), (5)

Here, Ã = A + I is the adjacency matrix of the undirected
graph G with added self-connections. I is the identity
matrix. D̃ is the degree diagonal matrix affiliated to Ã. W k

is the learnable weight in kth layer. σ(·) is an activation
function, such as ReLU(·). Hk is the input in the kth layer.
We set H0 = X . From Eq. (5), we can see that GCNs can
be understood as special cases of a simple differentiable
information-passing framework [17], i.e., aggregating infor-
mation from neighbors and itself. One alternative propaga-
tion rule often used [39] is defined as

Hk+1 = σ(D̃−1ÃHkW k). (6)

The above rule can be obtained if L = In −D−1A.

4 THE METHOD

In this section, we first introduce the motivation of this
study and then elaborate on the technical details of our
proposed framework named CenGCN.

4.1 Motivation

From Eq. (5) and Eq. (6), it can be seen that GCNs lever-
age the immediate adjacency matrix to averagely aggregate
information from neighbors and selves, with the belief that
all information from different sources is equally important.
GCNs only consider inter-node connections when aggre-
gating neighbor information, not vertex types and vertex
information. In the real world, some networks have a scale-
free property, such as social networks. In these networks, a
vertex is more likely to be attracted by hub vertices with
high centrality values than by ordinary vertices with low
centrality values. Thus the information from hub vertices
is more dominant. Existing GCNs, however, have not yet
exploited such an important property. In this paper, we
study how to define a generalized and transformed adja-
cency matrix that captures the influence of hub vertices on
their neighbors, and how to use the transformed adjacency
matrix to improve performance of GCNs.

Recently, Yan et al. [40], [41] have proposed a trans-
formed adjacency matrix defined as:

Ã = D(T − I) +BAB, (7)

where B, a biased diagonal matrix with each entry greater
than zero, changes weights of all edges. T , a diagonal
matrix where each entry Tii > 1, adds a self-connection
to each vertex. Because of various B and T , the transformed
adjacency matrix can support a wide variety of centrality
indices and communities and is beneficial to capture un-
derlying network characteristics. In Eq. (7), the weights of
self-connections are limited to multiples of their degrees. To
generalize significantly the transformed adjacency matrix,
we redefine it as:

Ã = T +BAB, (8)

where both Tii and Bii are greater than or equal to one. If
we set T = I andB = I , Ã in Eq. (7) is equal to counterparts
in Eq. (5) and (6). Because of the generality and flexibility of
T and B, we can define manifold Ã, whereby GCNs employ
multiple network characteristics. In this paper, we study
how to incorporate vertex centrality into T and B, which
is particularly important for scale-free networks.

A trivial solution is setting Tii and Bii to the centrality
index of vi. However, one non-negligible issue is that hub
vertices with high centrality are likely to attract dissimilar
vertices, due to their high attractiveness. For instance, we
may follow some persons merely because of their reputation
on social media. Such dissimilarity will be strengthened
if we use centrality indices to weight edges. To weaken
the influence of hub vertices on dissimilar neighbors while
transforming the adjacency matrix, we consider the under-
lying network structure. Numerous studies have indicated
that the network structure implies the similarity between
vertices [22], [23], [42]. A vertex pays more attention to hubs
that show higher similarity with it in network structure.
Therefore, instead of relying on the T and B matrices to
transform the adjacency matrix, we design three functions
to transform the adjacency matrix by combining the vertex
centrality indices and the similarity between vertices, as
compared to Eq. (8). Finally, we define the transformed
adjacency matrix as a combination of three functions:

Ãij =

{
fC(vi) if i = j,

fB(Aij , fC(vi), fC(vj), fS(vi, vj)) if i 6= j,
(9)

where fC : V → R tells us vertices’ centrality indices, and
fS : V × V → R returns the similarity of two vertices
in network structure. fB : R4 → R calculates a new
weight for each pair of connected vertices. This definition
of transforming adjacency matrix has two advantages:

• Incorporating vertex centrality indices, vertices pay
more attention to similar neighbors with higher cen-
trality indices.

• Considering the underlying network structure, the
influence of hub vertices on their dissimilar neigh-
bors is reduced.

It is insufficient for GCNs to directly use the transformed
adjacency matrix. This is because the transformation process
ignores the influence of non-hub neighbors that are ben-
eficial for the central vertex. We propose a hub attention
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A Graph Label Propagation A Transformed Graph GCNs Representations
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Fig. 2. The framework of CenGCN consists of four steps: computing vertex centrality indices; label propagation using hub vertices, highlighted
by red in the above feature; obtaining a transformed graph with self-connections; using multi-layer GCNs with hub attention to generate vector
representations. Note that the dots represent repeated layers of GCNs.

mechanism, by which more information passes through
edges whose two endpoints share many common hubs.

Next, we elaborate on how to define the three functions
fC , fB , and fS and how to inject the hub attention into the
layers of GCNs. Firstly, we describe the overall framework
of CenGCN.

4.2 Overall Framework

The overall framework of CenGCN is shown in Fig. 2. Given
a graph with scale-free property, we first compute the vertex
centrality indices. Any vertex centrality measurement can
be used here. Based on the computed vertex centrality, we
can identify hub vertices and highlight them in red. After
labeling these hub vertices, we propose a label propagation
method to quantify the similarity between hubs and their
neighbors. The proposed method is based on random walk
that can reveal the similarity between vertices in network
structure. Using the quantified similarities and centrality
indices, we transform the given graph to a new graph by
increasing or decreasing the weight of each edge. Then self-
connections are added to the new graph to force nodes
to concentrate on their own characteristics. In the shown
figure, the weight of each edge in the transformed graph is
drawn proportionally as the thickness of the corresponding
line. Then, the transformed graph is used to build multi-
layer GCNs. Meanwhile, the hub attention mechanism is
injected into each layer to enhance CenGCN. The outputs
of GCNs are vector representations of all vertices. These
representations can be used for subsequent tasks, such as
vertex classification.

Next, we detail each step of this framework.

4.3 Vertex Centrality

There exists various centrality measurements. In this study,
we use degree centrality [36] and eigenvector centrality [37],
but other centrality measurements are also applicable.

For degree centrality, we define ci = Dii. For eigenvector
centrality, we first obtain λmax, the maximum absolute
eigenvalue of the adjacency matrix. After that, we compute
the eigenvector ~v that corresponds to eigenvalue λmax,
according to Eq. (10):

λmax~v = A~v, (10)

where ~vi is the centrality index of vi. To ensure every
value in ~v is greater than or equal to one, we define
~v′=abs(~v)/min(abs(~v)), where abs(~v) denotes changing
each element in ~v to its absolute value, and min(abs(~v))
represents the minimum absolute value in ~v. Finally, we
define ci = ~v′i.

After obtaining vertex centrality indices denoted by c,
we define those vertices with very high centrality as hub
vertices. To be specific, vertices whose centrality indices are
in the top r% (0 < r < 100) are hubs. We denote the set
of hub vertices by Nh and use r to denote the proportion of
hub vertices.

The function fC(vi) is defined as:

fC(vi) =

{
ci if vi ∈ Nh,
1 else.

(11)

We only consider the influence of hub vertices. There-
fore, fC is defined to maintain only the centrality indices of
the hub vertices.

4.4 Label Propagation

To capture the similarity between hub vertices and their
neighbors in the underlying network structure, we propose
a label propagation method based on random walk. It is
well established that random walk shows the similarity
between vertices in the network structure [25]. As a result,
it is widely used for community detection [43], [44] and
recommendations [45], [46]. If two vertices are similar, there
is a high probability to move from one vertex to the other
vertex within a small number of hops. This proposed label
propagation outputs the probabilities from hub vertices to
their neighbors. These probabilities reflect their similarities
in the network structure.

We first give each hub vertex a unique label and store
labels in the matrix L ∈ R|N |×|Nh|, where all elements are
zero, but Li,Nh-index(i) = 1 if vi ∈ Nh. Nh-index(i) denotes
the index of hub vertex i in the set of hub points |Nh|. We
define P = D−1A as a probability transfer matrix, with Pij
representing the probability of hopping immediately from
vi to vj .

After one propagation through Eq. (12), vertices obtain
labels from hubs connected with them. Repeated propaga-
tions transmit labels of hubs to more vertices, the proportion
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of labels decreasing as the distance to hubs increases. After t
(t is set to 5 in this paper) propagations (Eq. (13)), we denote
the final label matrix by Lt. The ith row Lti represent the
probabilities of moving from vi to all hub vertices within
5 hops. The label score Ltij is the specific probability of
moving from vi to vj , revealing how similar vertex vi and
hub vertex vj .

L1 = PL, (12)

Lt = PLt−1, t > 1. (13)

Given a vertex vi, a hub vertex vj , and score Ltij , we
cannot immediately decide whether vi and vj are acciden-
tally connected or dissimilar, since Ltij is greater than zero.
If eij connecting vertex vi and hub vertex vj is an accidental
edge that is the dissimilar situation between vertex, the
corresponding value Ltij should be very small, but we need
to decide the extent of the smallness. Here, we assume that a
vertex should have a stronger relationship with hub vertices
connected with it than with hub vertices not connected with
it when no accidental links appear. Given a vertex vi and its
hub neighbors Nh

i , we reward these connected hubs whose
label scores are among the top |Nh

i | scores of Lti and punish
those linking hubs whose label scores are outside the top
|Nh

i | scores. Formally, we sort Lti by decreasing order and
define Ranki(j) as a function returning the rank of Ltij in
the sorted order. The fs(vi, vj) is defined as:

fS(vi, vj) = min(f ′S(vi, vj), f
′
S(vj , vi)), (14)

where

f ′S(vi, vj) =


1 if vj /∈ Nh,
1 if vj ∈ Nh andRanki(j) 6 |N i

h|,
−1 if vj ∈ Nh andRanki(j) > |N i

h|.
(15)

min(·, ·) returns the minimum value, rendering fS(vi, vj)
a symmetric function, i.e., fS(vi, vj) = fS(vj , vi). If
fS(vi, vj) = −1, vi and vi are dissimilar, even though they
link to each other. It is noted that if and only if vi ∈ Nh
or vj ∈ Nh, fS(vi, vj) has a chance of equaling to −1.
The reasons are: (i) hub vertices are more likely to link
to dissimilar neighbors than ordinary vertices; (ii) A low
centrality index is unable to add large weights to neighbors.

4.5 Graph Transformation

Next, we define fB(Aij , fC(vi), fC(vj), fS(vi, vj)) as:

fB(Aij , fC(vi), fC(vj), fS(vi, vj)) ={
Aij ∗ fC(vi)

p ∗ fC(vj)
p if fS(vi, vj) = 1,

Aij ∗ fC(vi)
q ∗ fC(vj)

q if fS(vi, vj) = −1,
(16)

where we use two hyper-parameters p and q (p > 0, q < 0)
to control the influence extent of vertex centrality indices. If
fS(vi, vj) = 1, centrality indices are used to weight Aij .
Otherwise, we reduce the weight of Aij using centrality
indices.

After defining fC , fS and fB , we can obtain the trans-
formed adjacency matrix Ã. The transformed matrix not
only incorporates vertex centrality indices, but also consid-
ers the underlying structure. We summarize this process of
graph transformation in Algorithm 1.

Algorithm 1 Graph Transformation
Input: A graph G = (V,E), the adjacency matrix A, hub

rate r, propagation number T , a centrality measurement,
and hyper-parameters p and q.

Output: A transformed adjacency matrix Ã.
1: Compute centrality index ci for vi ∈ V
2: Obtain hub vertices Nh whose centrality indices are in

top r%
3: Define fC according to Eq. (11)
4: Define label matrix L and probability matrix P
5: L1 = PL
6: for t = 2 to T do
7: Lt = PLt−1

8: end for
9: Define fS according to Eq. (14)

10: Define fB according to Eq. (16)
11: Obtain Ã according to Eq. (9)

4.6 Hub Attention

We define the convolution operation of GCNs at kth layer
as

Hk = σ(D̃−1ÃHk−1W k−1), (17)

where σ an activation functions, set to tanh in this study.
For vertex vi, this operation also can be written as:

Hk
i = σ(

1

D̃ii

∑
vj∈Ni∪{vi}

ÃijH
k−1
j W k−1). (18)

From the above equation, we can see that if vi is con-
nected to a hub vertex with an extremely high centrality
index, the information flowing into vi is almost totally from
this hub. The information from non-hub neighbors plays an
important role in the decision of the central vertex, such
as deciding which class it belongs to. We propose a hub
attention mechanism which assigns new weights to non-
hub neighbors by consideration of common information
from hub vertices. After the convolution of the transformed
graph, non-hubs with many shared hub vertices will have
similar features between them, and the attention mechanism
will assign large weights between vertices with similar fea-
tures. Therefore, a large weight is assigned to two connected
non-hub vertices that share significant hub information. We
define Ñh

i = Ni−Nh
i as the set of non-hub neighbors of vi.

At kth layer, the weight between vi and vj is defined as:

aij =
exp(Hk

i ·Hk
j )∑

vl∈Ñh
i ∪{vi}

exp(Hk
i ·Hk

l )
, (19)

where · represents the dot product of two vectors. Based on
the hub attention, a new convolution is defined as:

H̃k
i = σ(

∑
vj∈Ñh

i ∪{vi}

aijH
k
j ). (20)

The resulting H̃k
i is concatenated withHk

i to enhance GCNs.
Finally, Hk

i is computed anew as Hk
i = Hk

i ||H̃k
i , where

|| represents the concatenation of two vectors. The hub
attention mechanism is significantly different with GATs
[26]. The differences include:
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1) GATs learn individual representations. The repre-
sentations learned by the hub attention is used as
vital complements to GCNs.

2) GATs define many matrices to learn attention
weights and require multi-head attention to main-
tain stability. The hub attention does not need these
and thus it is faster to compute attention weights.

3) GATs learn attention weights using features of the
previous layer. The hub attention learns them using
features of the current layer.

4.7 Optimization
Suppose that CenGCN uses K-layer GCNs, the final vector
representation is Z = HK . The learned Z can be used for
several network-based tasks. To train CenGCN, we consider
both semi-supervised learning and unsupervised learning
in case there is no supervision information available.

Semi-supervised Learning. Let Y denote ground-truth
vertex class and YL denotes the set of node indices that have
class information. We use cross-entropy as the loss function:

L = −
∑
l∈YL

F∑
f=1

Ylf lnZlf , (21)

where Ylf = 1 indicates that vl belongs to class f , while
Ylf = 0 indicates otherwise.

Unsupervised Learning. For unsupervised learning, the
loss function is defined by reconstructing edges in the
original graph:

L = ||(sigmoid(ZZ ′)−A)⊗ Â||2F , (22)

where Z ′ is the transpose of Z . || · ||2F is the squared
Frobenius norm.⊗ represents element-wise matrix multipli-
cation. In the adjacency matrix A, zero elements outnumber
non-zero elements, particularly for sparse networks. As a
result, the unsupervised learning is prone to reconstruct
zero elements of A. In the above equation, we thus define a
matrix Â to attach higher weights to non-zero elements of
A. Specifically, Âij = ρ (ρ > 1) if Aij = 1, else Âij = 1.
Here, we set ρ to 100.

The final loss function is defined as:

Lloss = L+ αLreg, (23)

where Lreg is the regularization loss of all learned weights,
defined as

∑K−1
k=0 ||W k||2F . α is the hyper-parameter set

to 5 × 10−4. To minimize the loss Lloss and update the
parameters of CenGCN, we employ Adam [47], [48] and
Dropout [49], [50] with keep pro = 0.5.

We summarize the overall framework of CenGCN in
Algorithm 2.

4.8 Computational Complexity
The first step of the CenGCN framework is calculating
centrality indices. The time complexity at this step is Θ(n)
when degree centrality is used and Θ(n2) when eigenvector
centrality is used. The next step is label propagation and
can be finished in Θ(Tn2) since here we only calculate T
dot productions of a vector and a matrix. At last, the time
complexity in GCN layers is Θ(Ln2), where L here is the
number of layers. Overall, the computational complexity of
the CenGCN framework is Θ((T + L)n2).

Algorithm 2 The Framework of CenGCN
Input: A graph G = (V,E), the adjacency matrix A, the

feature matrix X , hub rate r, propagation number T ,
a centrality measurement, number of layers K , hyper-
parameters p, q and α, learning rate θ, class information
YL, and a convergence condition.

Output: Well trained CenGCN.
1: Obtain the transformed adjacency matrix Ã and Nh

using Algorithm 1
2: Initialize all weight parameters {W k}0≤k≤K−1
3: while The convergence condition is not satisfied: do
4: H0=X
5: for k = 1 to K do
6: Compute Hk according to (17)
7: ComputeH̃k according to (20)
8: Hk = Hk||H̃k

9: end for
10: Z = HK

11: Compute Lreg =
∑K−1
k=0 ||W k||2F

12: if class information is available: then
13: Compute L according to (21)
14: else
15: Compute L according to (22)
16: end if
17: Compute Lloss according to (23)
18: Minimize Lloss by Adam with learning rate θ
19: end while

5 EXPERIMENTS

In this section, we compare our proposed framework
CenGCN with several baselines by running four experi-
ments: vertex classification, link prediction, vertex cluster,
and network visualization. The results of parameter sensi-
tivities are presented at the end of the section. We have im-
plemented the CenGCN in Python 3.6 with Tensorflow1.15.

5.1 Datasets
We use five datasets, which are introduced in [51], [21] and
[52]. Their statistics are summarized in Table 1.

• Facebook: The data was collected from survey par-
ticipants using the Facebook app. Vertices represent
users, and edges represent friendship.

• Twitter: The data was crawled from public sources.
Vertices indicate users, and edges denote following
relationships.

• Gplus: The data was collected from Google+. Vertices
indicate users, and edges denote following relation-
ships.

• Youtube: The data was collected from a video-
sharing website that includes a social network. Users
are denoted by vertices, and edges denote friendship.

• LiveJournal: The data was collected from a free on-
line blogging community, where users declare friend-
ship with each other. Vertices represent users, and
edges represent friendship.

The above datasets are scale-free networks. Most of the
connections are concentrated in a few centers. In the semi-
supervised learning task (vertex classification), for all five
datasets we use vertex classes as labels.
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TABLE 1
Statistics of datasets. ’—’ means no data available.

datasets Vertices Edges Features Classes

Facebook 3944 87870 1385 8
Twitter 1533 38323 10353 8
Gplus 5331 351726 1988 5

Youtube 4684 19443 — 8
LiveJournal 3009 44599 — 4

5.2 Comparison Algorithms
Based on two different centrality measurements, we define
two variants of CenGCN:

• CenGCN D: Utilizes degree centrality within the
overall proposed framework.

• CenGCN E: Utilizes eigenvector centrality within
the overall proposed framework.

In addition, we define the following variants from
CenGCN D and CenGCN E as complements to demon-
strate the efficacy and necessity of each part of CenGCN.

• CenGCN TD and CenGCN TE: Uses only the trans-
formed adjacency matrix, without the hub attention
mechanism.

• CenGCN AD, CenGCN AE: Uses only the hub at-
tention mechanism, without the transformed adja-
cency matrix.

• CenGCN WD, CenGCN WE: Uses the centrality in-
dices of hub vertices to increase edge weights by
setting p to q.

• CenGCN ID, CenGCN IE: Uses the centrality in-
dices of hub vertices to decrease edge weights by
setting p to q.

To verify the efficiency of CenGCN, we conduct experi-
ments against the following baselines:

• GCN Cheby [10]: Uses fast localized convolutional
filters on graphs using Chebyshev expansion.

• GCNs [8]: Uses a layer-wise convolutional operation
that encodes both local graph structure and vertex
features.

• GATs [26]: Leverages masked self-attentional layers
to specify different weights to different vertices in a
neighborhood.

• DGI [11]: Learns vertex representations in an unsu-
pervised manner, by relying on maximizing mutual
information between patch representations and cor-
responding high-level summaries of graphs.

• H-GCN [30]: Repeatedly aggregates structurally sim-
ilar vertices to hyper-vertices and then refines the
coarsened graph to the original to restore the rep-
resentation for each vertice.

• DPSW [21]: Punishes the proximity between high-
degree vertices using scale-free property preserv-
ing network embedding algorithm. DPSW represents
the best model drawing upon DP-Spectral and DP-
Walker.

5.3 Experimental Setup
We consider the four different network tasks:

• Vertex classification: This is a semi-supervised learn-
ing task. Classes of vertices are the ground truth. 10%
vertices with class information are used as training
examples, and 10% vertices with class information
are validation examples. The remaining vertices are
test examples. The learning rate θ is set to 0.01,
and the iteration number is set to 1000. The best
parameters on validation examples are saved and
then used for test examples. Accuracy is used as the
evaluation metric.

• Link prediction: This is an unsupervised learning
task. We first randomly hide 50% edges as posi-
tive examples and randomly select 50% non-existent
edges as negative examples. The remaining graph
is used to train. According to the paper [23], the
Hadamard operator of two vertices is a good rep-
resentation for their edge. Thus, we construct edge
representations by this operator. Logistic regression
is used for binary classification. The learning rate
θ is set to 0.01. We stop the training when the loss
Lloss remains stable or the iteration number is over
150. AUC (Area Under the Curve) is used as the
evaluation metric.

• Vertex clustering: This is an unsupervised learning
task. The representation Z serves as the input fea-
tures of K-means, a clustering method. Classes of
vertices are the ground truth. Normalized Mutual
Information (NMI) [53] is used as the evaluation
metric. The learning rate θ is set to 0.001, a smaller
rate 0.00001 on Twitter. We stop the training when
the loss Lloss remains stable or the iteration number
is over 150.

• Network visualization: The representation Z ob-
tained in vertex clustering is used here for network
visualization. We feed Z into the standard t-SNE tool
[54] to lay out the network and mask vertices of
the same class with the same color. The network is
visualized in a 2-dimensional space.

In semi-supervised learning, we employ a two-layer
GCN with a 16-unit hidden layer for all variants of
CenGCN. In unsupervised learning, we employ a two-layer
GCN with a 512-unit hidden layer and a 128-unit output
layer for all variants of CenGCN. The settings and sensitivi-
ties of parameters p, q, and r, as well as the number of layers,
are presented in Parameter Sensitivity. The parameters of the
baselines are set in accordance with the original papers.

5.4 Vertex classification

The task of vertex classification is discovering classes of
those vertices that have no class information. We first verify
the efficacies of CenGCN and baselines through this task in
this experiment. Table 2 shows the accuracies of CenGCN’s
variants and baselines on vertex classification. The best
performance is boldfaced. From the table, we can see that on
the five networks, CenGCN D always achieves the best per-
formance and CenGCN E outperforms all baselines. These
results demonstrate the significant superiority of CenGCN
and the necessity to incorporate vertex centrality indices
into GCNs. Besides, the following findings are also striking:
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TABLE 2
The accuracy of vertex classification. The best performance is

boldfaced.

Algorithm Facebook Twitter Gplus Youtube LiveJournal

GCN Cheby 0.915 0.972 0.787 0.812 0.810
GCNs 0.914 0.954 0.716 0.889 0.901
GATs 0.970 0.967 0.732 0.827 0.892
DGI 0.936 0.954 0.771 0.227 0.592

H-GCN 0.982 0.943 0.914 0.915 0.888
DPSW 0.892 0.789 0.922 0.892 0.872

CenGCN D 0.992 0.987 0.949 0.920 0.912
CenGCN TD 0.970 0.982 0.943 0.914 0.897
CenGCN AD 0.970 0.969 0.933 0.915 0.910
CenGCN WD 0.832 0.965 0.941 0.904 0.903
CenGCN ID 0.888 0.967 0.861 0.893 0.893

CenGCN E 0.992 0.987 0.936 0.919 0.903
CenGCN TE 0.912 0.905 0.717 0.873 0.894
CenGCN AE 0.916 0.930 0.742 0.866 0.900
CenGCN WE 0.932 0.973 0.717 0.892 0.895
CenGCN IE 0.912 0.971 0.870 0.902 0.877

• On two networks, Facebook and Twitter, CenGCN D
and CenGCN W have the same performance. But on
the other three networks, CenGCN D outperforms
CenGCN W. Overall, CenGCN D performs better
CenGCN E, owing to the scale-free property based
on vertex degrees. The finding that CenGCN E out-
performs all baselines gives us motivation to explore
more centrality measurements.

• This table shows that CenGCN D and CenGCN E
consistently outperform DPSW on the five networks,
though they are proposed for scale-free networks.
The difference in performance can likely be at-
tributable to the fact that a hub vertex can link to both
similar and dissimilar vertices, while DPSW assumes
that a vertex with a higher degree is more dissimilar
to its neighbors.

• Compared with standard GCNs, CenGCN D and
CenGCN E achieve great performance. On Gplus,
CenGCN D achieves an improvement of 23.6%.
Compared with state-of-the-art GCN-based variants,
CenGCN D outperforms GATs by 22.0% on Gplus,
outperforms DGI by 70.1% on Youtube, and outper-
forms H-GCN by 4.5% on Twitter. These significant
improvements indicate the necessity for GCNs to
utilise vertex centrality.

• CenGCN D outperforms the other four variants of
CenGCN that use degree centrality; CenGCN E out-
performs the other four variants of CenGCN that use
eigenvector centrality. These results indicate that the
transformed graph needs to be combined with the
hub attention mechanism, and we need to consider
both the increase and decrease of edge weights.

5.5 Link Prediction

Link prediction aims at predicting whether two vertices
that are not connected are potentially connected. In this
experiment, we concentrate on the link prediction task and
compare the performance of CenGCN and baselines. Table
3 shows their AUC scores on link prediction. We report the

TABLE 3
The AUC score of link prediction. The best performance is boldfaced.

Algorithm Facebook Twitter Gplus Youtube LiveJournal

GCN Cheby 0.672 0.842 0.725 0.676 0.759
GCNs 0.809 0.729 0.711 0.578 0.711
GATs 0.633 0.852 0.558 0.685 0.757
DGI 0.723 0.862 0.678 0.613 0.621

H-GCN 0.708 0.564 0.601 0.656 0.739
DPSW 0.767 0.581 0.797 0.714 0.753

CenGCN D 0.892 0.873 0.801 0.731 0.848
CenGCN TD 0.854 0.857 0.787 0.718 0.850
CenGCN AD 0.885 0.855 0.775 0.713 0.837
CenGCN WD 0.884 0.850 0.796 0.728 0.831
CenGCN ID 0.882 0.847 0.699 0.713 0.828

CenGCN E 0.891 0.871 0.769 0.727 0.853
CenGCN TE 0.887 0.858 0.753 0.715 0.850
CenGCN AE 0.868 0.856 0.746 0.756 0.841
CenGCN WE 0.808 0.861 0.742 0.698 0.848
CenGCN IE 0.840 0.856 0.776 0.681 0.842

best performance by boldface. From these AUC scores in
the table, we can see that CenGCN performs extremely well.
Among the five maximum scores, CenGCN D achieves four
and CenGCN E achieves one. These results suggest the
vertex centrality is a powerful indicator of link prediction.
More noticeable findings are summarized as follows:

• As a whole, CenGCN D performs better than
CenGCN E. On Livejournal, CenGCN E outper-
forms CenGCN D only by 0.3%. We also notice that
the AUC gap between them is small, except for
Gplus where CenGCN D outperforms CenGCN E
by up to 5.2%. Although the vertex degree is an
intuitive centrality measurement for scale-free net-
works, the results of eigenvector centrality compare
very favourably to these of degree centrality.

• CenGCN D outperforms all baselines, with
the largest improvement of 9.0% on Facebook.
CenGCN E outperforms all baselines in the vast
majority of cases, with the largest improvement of
8.9% on Facebook. It is an unanticipated finding that
DPSW performs better CenGCN E on Gplus. But on
the other four networks, CenGCN E performs better
than DBSW, particularly on Twitter.

• In most cases, CenGCN D is the best among all
variants with degree centrality, and CenGCN E is the
best among all variants with eigenvector centrality.
Contrary to expectations, CenGCN IE outperforms
CenGCN E on Gplus and CenGCN TD outperforms
CenGCN D on Livejournal. Overall, CenGCN D or
CenGCN E performs best only when all designed
parts are used.

5.6 Vertex clustering
Vertex clustering is a typical unsupervised learning task
and is used to find which vertices form a group. In this
experiment, we compare the performance of CenGCN and
baselines through this task. We show the NMI in Table 4,
where the best performance is reported by boldface. Table 4
shows that on the five networks, CenGCN D achieves the
best performance and CenGCN W performs better than all
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(a) GCN Cheby (b) GCNs (c) GATs (d) DGI

(e) H-GCN (f) DPSW (g) CenGCN D (h) CenGCN W

(i) CenGCN TD (j) CenGCN AD (k) CenGCN WD (l) CenGCN ID

(m) CenGCN TE (n) CenGCN AE (o) CenGCN WE (p) CenGCN IE

Fig. 3. Network Visualization using t-sne. Each color represents one class.

baselines, further suggesting the importance to utilise vertex
centrality for GCNs. Other noticeable observations from this
experiment are summarized as follows:

• CenGCN D always outperforms CenGCN E on the
five networks. On Gplus, the NMI gap between
them is 22.2%. These results may be explained by
the fact that the scale-free property is defined based
on vertex degrees. When no class information is
provided, network structures play a major role in
training CenGCN.

• From the table, we can see that the two variants
of CenGCN, CenGCN D and CenGCN E, outper-
form all baselines. CenGCN D achieves significant

improvement on Facebook and Gplus. On Facebook,
CenGCN D achieves improvement of at least 20.2%;
On Gplus, it achieves improvement of at least 27.7%.
Besides, CenGCN E achieves improvement of at
least 10.8% on Twitter.

• It still can be seen that CenGCN D performs
best among variants with degree centrality and
CenGCN E performs best among variants with
eigenvector centrality. The result further indicates the
necessity of each part of CenGCN. It is surprising
to find that only using the transformed graph or
the hub attention is sufficient to achieve significant
performance when we use degree centrality.
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TABLE 4
The NMI of vertex clustering. The best performance is boldfaced.

Algorithm Facebook Twitter Gplus Youtube LiveJournal

GCN Cheby 0.540 0.729 0.389 0.379 0.636
GCNs 0.561 0.656 0.288 0.300 0.657
GATs 0.577 0.756 0.440 0.552 0.685
DGI 0.639 0.799 0.341 0.056 0.143

H-GCN 0.683 0.714 0.317 0.424 0.686
DPSW 0.342 0.506 0.211 0.642 0.512

CenGCN D 0.885 0.911 0.717 0.700 0.783
CenGCN TD 0.860 0.881 0.613 0.668 0.767
CenGCN AD 0.838 0.909 0.620 0.657 0.764
CenGCN WD 0.784 0.808 0.326 0.598 0.738
CenGCN ID 0.581 0.751 0.417 0.207 0.685

CenGCN E 0.752 0.907 0.495 0.670 0.761
CenGCN TE 0.672 0.757 0.441 0.619 0.774
CenGCN AE 0.732 0.905 0.468 0.667 0.739
CenGCN WE 0.709 0.875 0.387 0.654 0.750
CenGCN IE 0.738 0.881 0.240 0.623 0.721

5.7 Network Visualization

Network Visualization helps us explore the network struc-
ture in a low-dimensional space. In this experiment, we
visualize the Twitter network using the learned vector rep-
resentations. Fig. 3 shows the visualized network on a 2-
dimensional space, where each color represents one class.
We summarize observable findings as follows:

• GCN Cheby strongly confuses Red, Orange, and
Light Green, and cannot develop boundaries to sep-
arate them. GCNs and GATs tightly connect Red,
Orange, and Light Green, as well as Grey and Yellow.
DGI poorly separates two subgroups of Grey. H-
GCN poorly separates two subgroups of Sea Green.
DPSW is insufficient to separate points of different
colors. Also the points of the same color are less close
together.

• CenGCN D shows the significant capacity of visu-
alizing the Twitter network, sufficient to separate
points of different colors and tightly cluster the
points of the same color. CenGCN E also shows the
significant capacity of visualizing this network, but
it slightly confuses Yellow and Grey. Thus, these
results suggest the usefulness of vertex centrality for
network visualization.

• From the figure, we can see that some comple-
mentary variants of CenGCN also show significant
performance in this experiment. Examples include
CenGCN AD and CenGCN AE. But CenGCN AD
slightly confuses Orange and Light Green. It can be
seen that CenGCN TE fails to separate Green and
Grey.

For quantitative comparison, we report KL divergences of
algorithms in Fig. 4. KL divergences capture the errors
between the input pairwise similarities and their projections
in the 2-dimensional mapping. A lower KL divergence score
indicates a better performance. We can see that CenGCN D
and CenGCN E achieve the two smallest scores. Thus, they
demonstrate better visualization performance than base-
lines.
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Fig. 4. KL divergence on Twitter

5.8 Parameter Sensitivity

For CenGCN, three crucial hyper-parameters are p, q, and
r. In this section, we investigate how they affect the per-
formance of CenGCN on vertex classification. In addition
to this, we also investigate the influence of the number of
layers. For simplicity, we run experiments on CenGCN D
and CenGCN E, omitting complementary variants.

5.8.1 The ratio of hub vertices
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Fig. 5. Sensitivities w.r.t. r
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Fig. 6. Sensitivities of CenGCN D w.r.t. p and q

We select r in the range from 0.001 to 0.2. A bigger r
implies more hub vertices to be considered. Here, we set p
and q to 1 and -1, respectively. The Fig. 5 shows sensitivities
of CenGCN D and CenGCN E w.r.t. r. From the figure, we
can see different variation tendencies in different networks,
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Fig. 7. Sensitivities of CenGCN E w.r.t. p and q

as r goes from 0.001 to 0.2. We summarize findings in the
five datasets as follows:

• On Facebook, accuracies of CenGCN D and
CenGCN E abruptly become higher when r in-
creases from 0.001 to larger values. CenGCN D
maintains its peak from 0.05 to 0.095. After that, its
accuracy drastically decreases to a low value, which
is maintained as r is from 0.1 to 0.2. CenGCN E
maintains its peak when r is between 0.005 and 0.165.
Finally, its accuracy starts to slowly decrease.

• On Twitter, the accuracy of CenGCN D immediately
reaches its peak when r passes from 0.001. It then
starts to decrease and slowly increases when r is over
0.05. The accuracy of CenGCN E reaches its peak
when r is 0.02. After that, it experiences a decrease,
then an increase and finally a decrease.

• On Gplus, the accuracy of CenGCN D significantly
increases when r passes from 0.001 to 0.01. When
r continues to 0.03, the accuracy gently increases.
Finally, it decreases to a stable value. The accuracy of
CenGCN E maintains an increasing tendency until r
is up to 0.13. This tendency first is very strong and
then becomes slow. After r is over 0.13, the accuracy
starts to decrease.

• On Youtube, the accuracy of CenGCN D has a stable
change. It first gently increases until r is around
0.03. Then it experiences a decrease, an increase and
finally a decrease. The accuracy of CenGCN E has
a drastic increase when r goes from 0.001 to higher
values. It reaches its peak when r is 0.01. After that, it
first decreases and then increases. Finally, it decreases
again when r is over 0.16.

• On Livejournal, the accuracy of CenGCN D immedi-
ately reaches its peak when r is 0.001. As r passes to
0.2, the accuracy first decreases to a stable value and
then increases. The accuracy of CenGCN E reaches
its peak as r goes from 0.001 to 0.05. After that, it
starts to decrease to a value of around 0.895 with
small fluctuations.

5.8.2 The influence extent of vertex centrality
The two parameters p (> 0) and q (< 0) control the
influence extent of vertex centrality. In this experiment, we
investigate the sensitivities w.r.t. p and q. Fig. 6 and Fig. 7
show the sensitivity results of CenGCN D and CenGCN E,
respectively. From the two figures, we can observe the
following findings:

• On Facebook, the accuracy of CenGCN D maintains
stability when p and q are non-zero values. For
CenGCN E, its accuracy has a peak when p is 1 and
q is -1. Outside of the peak, it also maintains a stable
value.

• On Twitter, the accuracy of CenGCN D steadily and
slowly increases as p goes from 0 to 3. With q in-
creasing, the accuracy increases from a stable value
to its peak, where q is -1. For CenGCN, its accuracy
is maximum when p=0.5. As p becomes larger, the
accuracy maintains stability. It is also a stable value
when q is over -3 and below 0.

• On Gplus, the accuracy of CenGCN D has a con-
spicuous peak when p=1.25 and q=-0.75. It is stable
as q goes from -3 to -1.5. Similar to CenGCN D,
the accuracy of CenGCN E also has a conspicuous
peak, where p=0.25 and q=-0.25. We can see that the
accuracy decreases linearly when p is over 0.25.

• On Youtube, CenGCN D needs a small p. As p goes
from 0.25 to 3, its accuracy steadily decreases. The
accuracy slowly increases when q increases to -0.5.
CenGCN e also needs a small p, but it needs a
smaller q of -1.25.

• On Livejournal, the accuracy of CenGCN D main-
tains a stable increase as p becomes larger, and main-
tains a stable decrease as q goes from -2 to 0. The
accuracy of CenGCN E has a peak when p=1.25. On
either sides of this peak, it maintains stability. As q
goes from -3 to -0.75, the accuracy steadily increases.
After that, it drastically decreases.

5.8.3 The number of layers

In this experiment, we investigate how the number of layers
affects the performance of CenGCN D and CenGCN E.
Besides, the performance of GCNs is added here for a
comparison. The p and q are set to their optimal values.
Fig. 8 shows their performance in the five networks when
the number increases from 1 to 10. We summarize noticeable
findings as follows:

• CenGCN D, CenGCN E, and GCNs achieve great
performance when the number of layers is 2. One
exception is that on Gplus, GCNs have the best
performance when the number is 3. Therefore, it is
reasonable for GCN-based models to design a two-
layer neural network.

• When the number is greater than 2 and continues
to increase, the accuracies of GCNs show decreasing
tendencies. When the number increases to 10, the
accuracy of GCNs is below or slightly over 0.2. The
result shows that GCNs suffer from shallow models.

• As the number increases, the extent by which
CenGCN D and CenGCN E outperform GCNs also
increases. On LiveJournal, when the number is at
10, CenGCN D and CenGCN E achieve accuracies
of more than 0.8, significantly outperforming GCNs.
On the other four networks, we can also observe
a large gap between the two variants of CenGCN
and GCNs. These figures demonstrate that CenGCN
deepens GCNs.
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Fig. 8. Sentivities w.r.t. the number of layers

Existing GCN-based methods employ a two-layer neural
network. Such a network merely mines the relationship
between vertices whose distance is at most 2-hop, failing
to exploit global network structure. How to deepen GCNs
is still an open issue and worthwhile to study further. This
experiment shows that CenGCN has excellent performance
compared with GCNs when the number of layers increases
to 10. Therefore, for deepening GCNs, a suggestion from
this experiment is that we can utilise vertex centrality.

6 CONCLUSION

In this paper, we study how to address the inequality
of information from vertices. We propose label propaga-
tion with labeled hub vertices to quantify the similarity
between hub vertices and their neighbors. Based on this
similarity and centrality indices, we transform the graph
to capture the influence of hub vertices. When inputting
the transformed graph into GCNs, we propose a hub at-
tention mechanism to learn new weights linking to non-
hub neighbors from the same hubs. In four experiments,
the two variants, CenGCN D and CenGCN E, demonstrate
their significant improvement over baselines and excellent
performance when the number of layers increases to 10.

GCNs are rapidly developing and proving effective tools
in network modeling and analysis. Although there are many
studies about GCNs, a great number of issues remain to be
addressed. Two serious issues are that GCNs suffer from
local limits and shallow models. This study demonstrates a
way to explore vertex imbalance and unequal information
by vertex centrality, a macroscopic network characteristic, to
enhance and enrich GCNs. In the future, we will consider
more network characteristics, such as subgraphs.
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[2] I. A. Kovács, K. Luck, K. Spirohn, Y. Wang, C. Pollis, S. Schlabach,
W. Bian, D.-K. Kim, N. Kishore, T. Hao et al., “Network-based
prediction of protein interactions,” Nature communications, vol. 10,
no. 1, p. 1240, 2019.

[3] F. Xia, W. Wang, T. M. Bekele, and H. Liu, “Big scholarly data:
A survey,” IEEE Transactions on Big Data, vol. 3, no. 1, pp. 18–35,
2017.

[4] P. Cui, X. Wang, J. Pei, and W. Zhu, “A survey on network
embedding,” IEEE Transactions on Knowledge and Data Engineering,
vol. 31, no. 5, pp. 833–852, 2018.

[5] H. Cai, V. W. Zheng, and K. C.-C. Chang, “A comprehensive sur-
vey of graph embedding: Problems, techniques, and applications,”
IEEE Transactions on Knowledge and Data Engineering, vol. 30, no. 9,
pp. 1616–1637, 2018.

[6] J. Liu, X. Kong, F. Xia, X. Bai, L. Wang, Q. Qing, and I. Lee,
“Artificial intelligence in the 21st century,” IEEE Access, vol. 6,
pp. 34 403–34 421, 2018.

[7] F. Xia, S. Yu, C. Liu, J. Li, and I. Lee, “Chief: Clustering with higher-
order motifs in big networks,” IEEE Transactions on Network Science
and Engineering, 2021.

[8] T. N. Kipf and M. Welling, “Semi-supervised classification with
graph convolutional networks,” in ICLR 2017 : International Con-
ference on Learning Representations 2017, 2017.

[9] Q. Li, Z. Han, and X.-M. Wu, “Deeper insights into graph convo-
lutional networks for semi-supervised learning,” in Thirty-Second
AAAI Conference on Artificial Intelligence, 2018, pp. 3538–3545.

[10] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional
neural networks on graphs with fast localized spectral filtering,”
in Advances in neural information processing systems, 2016, pp. 3844–
3852.

[11] P. Velickovic, W. Fedus, W. L. Hamilton, P. Liò, Y. Bengio, and
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[53] P. A. Estévez, M. Tesmer, C. A. Perez, and J. M. Zurada, “Normal-
ized mutual information feature selection,” IEEE Transactions on
Neural Networks, vol. 20, no. 2, pp. 189–201, 2009.

[54] L. v. d. Maaten and G. Hinton, “Visualizing data using t-sne,”
Journal of machine learning research, vol. 9, no. 11, pp. 2579–2605,
2008.

APPENDIX
SUPPLEMENTARY EXPERIMENTAL RESULTS

This supplementary material provides more detailed exper-
imental results, including standard deviations calculated for
multiple experiments.

On the vertex classification and link prediction tasks,
we perform several experiments to calculate the standard
deviation of the method as a way of verifying the robustness
of the model. Where DPSW is not affected by random seeds
and therefore has a standard deviation of 0. The specific
results are shown in Table 5, 6.
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TABLE 5
The accuracy of vertex classification.

Algorithm Facebook Twitter Gplus Youtube LiveJournal

GCN Cheby 0.915 ± 0.0018 0.972 ± 0.0029 0.787 ± 0.0062 0.812 ± 0.0077 0.810 ± 0.0071
GCNs 0.914 ± 0.0018 0.954 ± 0.0110 0.716 ± 0.0101 0.889 ± 0.0146 0.901 ± 0.0042
GATs 0.970 ± 0.0016 0.967 ± 0.0036 0.732 ± 0.0227 0.827 ± 0.0028 0.892 ± 0.0080
DGI 0.936 ± 0.0013 0.954 ± 0.0023 0.771 ± 0.0087 0.227 ± 0.0015 0.592 ± 0.0136

H-GCN 0.982 ± 0.0015 0.943 ± 0.0045 0.914 ± 0.0032 0.915 ± 0.0045 0.888 ± 0.0011
DPSW 0.892 ± 0. 0.789 ± 0. 0.922 ± 0. 0.892 ± 0. 0.872 ± 0.

CenGCN D 0.992 ± 0.0014 0.987 ± 0.0010 0.949 ± 0.0017 0.920 ± 0.0013 0.912 ± 0.0015
CenGCN TD 0.970 ± 0.0018 0.982 ± 0.0120 0.943 ± 0.0033 0.914 ± 0.0016 0.897 ± 0.0018
CenGCN AD 0.970 ± 0.0012 0.969 ± 0.0121 0.933 ± 0.0026 0.915 ± 0.0025 0.910 ± 0.0045
CenGCN WD 0.832 ± 0.0012 0.965 ± 0.0015 0.941 ± 0.0019 0.904 ± 0.0018 0.903 ± 0.0018
CenGCN ID 0.888 ± 0.0024 0.967 ± 0.0018 0.861 ± 0.0044 0.893 ± 0.0027 0.893 ± 0.0020

CenGCN E 0.992 ± 0.0015 0.987 ± 0.0012 0.936 ± 0.0018 0.919 ± 0.0015 0.903 ± 0.0030
CenGCN TE 0.912 ± 0.0019 0.905 ± 0.0010 0.717 ± 0.0014 0.873 ± 0.0028 0.894 ± 0.0017
CenGCN AE 0.916 ± 0.0011 0.930 ± 0.0072 0.742 ± 0.0027 0.866 ± 0.0026 0.900 ± 0.0015
CenGCN WE 0.932 ± 0.0013 0.973 ± 0.0053 0.717 ± 0.0028 0.892 ± 0.0017 0.895 ± 0.0028
CenGCN IE 0.912 ± 0.0017 0.971 ± 0.0018 0.870 ± 0.0021 0.902 ± 0.0031 0.877 ± 0.0043

TABLE 6
The AUC score of link prediction.

Algorithm Facebook Twitter Gplus Youtube LiveJournal

GCN Cheby 0.672 ± 0.0126 0.842 ± 0.0013 0.725 ± 0.0091 0.676 ± 0.0026 0.759 ± 0.0199
GCNs 0.809 ± 0.0060 0.729 ± 0.0028 0.711 ± 0.0019 0.578 ± 0.0087 0.711 ± 0.0019
GATs 0.633 ± 0.0041 0.852 ± 0.0065 0.558 ± 0.0057 0.685 ± 0.0091 0.757 ± 0.0179
DGI 0.723 ± 0.0081 0.862 ± 0.0016 0.678 ± 0.0031 0.613 ± 0.0022 0.621 ± 0.0041

H-GCN 0.708 ± 0.0180 0.564 ± 0.0206 0.601 ± 0.0204 0.656 ± 0.0145 0.739 ± 0.0024
DPSW 0.767 ± 0. 0.581 ± 0. 0.797 ± 0. 0.714 ± 0. 0.753 ± 0.

CenGCN D 0.892 ± 0.0030 0.873 ± 0.0095 0.801 ± 0.0022 0.731 ± 0.0114 0.848 ± 0.0089
CenGCN TD 0.854 ± 0.0017 0.857 ± 0.0053 0.787 ± 0.0049 0.718 ± 0.0063 0.850 ± 0.0011
CenGCN AD 0.885 ± 0.0098 0.855 ± 0.0026 0.775 ± 0.0026 0.713 ± 0.0298 0.837 ± 0.0245
CenGCN WD 0.884 ± 0.0335 0.850 ± 0.0154 0.796 ± 0.0057 0.728 ± 0.0067 0.831 ± 0.0013
CenGCN ID 0.882 ± 0.0025 0.847 ± 0.0129 0.699 ± 0.0071 0.713 ± 0.0108 0.828 ± 0.0019

CenGCN E 0.891 ± 0.0014 0.871 ± 0.0058 0.769 ± 0.0191 0.727 ± 0.0149 0.853 ± 0.0014
CenGCN TE 0.887 ± 0.0023 0.858 ± 0.0017 0.753 ± 0.0057 0.715 ± 0.0138 0.850 ± 0.0016
CenGCN AE 0.868 ± 0.0012 0.856 ± 0.0069 0.746 ± 0.0024 0.756 ± 0.0114 0.841 ± 0.0015
CenGCN WE 0.808 ± 0.0154 0.861 ± 0.0025 0.742 ± 0.0204 0.698 ± 0.0226 0.848 ± 0.0011
CenGCN IE 0.840 ± 0.0438 0.856 ± 0.0048 0.776 ± 0.0042 0.681 ± 0.0077 0.842 ± 0.0067
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