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Abstract
Digital connectivity is revolutionising people’s quality of life. As broadband and mobile
services become faster and more prevalent globally than before, people have started to
frequently express their wants and desires on social media platforms. Thus, deriving in-
sights from text data has become a popular approach, both in the industry and academia,
to provide social media analytics solutions across a range of disciplines, including con-
sumer behaviour, sales, sports and sociology. Businesses can harness the data shared on
social networks to improve their organisations’ strategic business decisions by leveraging
advanced Natural Language Processing (NLP) techniques, such as context-aware represen-
tations. Specifically, SportsHosts, our industry partner, will be able to launch digital mar-
keting solutions that optimise audience targeting and personalisation using NLP-powered
solutions. However, social media data are often noisy and diverse, making the task very
challenging. Further, real-world NLP tasks often suffer from insufficient labelled data due
to the costly and time-consuming nature of manual annotation. Nevertheless, businesses
are keen on maximising the return on investment by boosting the performance of these
NLP models in the real world, particularly with social media data.

In this thesis, we make several contributions to address these challenges. Firstly, we
propose to improve the NLP model’s ability to comprehend noisy text in a low data regime
by leveraging prior knowledge from pre-trained language models. Secondly, we analyse
the impact of text augmentation and the quality of synthetic sentences in a context-aware
NLP setting and propose a meaning-sensitive text augmentation technique using a Masked
Language Model. Thirdly, we offer a cost-efficient text data annotation methodology and
an end-to-end framework to deploy efficient and effective social media analytics solutions
in the real world.
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Chapter 1
Introduction
1.1 Social Media Analytics
As communities frequently express their wants and desires on social media platforms such
as Twitter and Facebook, people are increasingly adopting social media for a variety of
social interactions across numerous channels, thereby increasing its reach, popularity and
relevance. Thus, organisations are keen to understand user behaviour to help them adapt
their business strategies and goals. As a result, a new stream of analytics, known as Social
Media Analytics (SMA), has emerged and focuses mainly on the study of social media data.
To this end, understanding individual user behaviour through social media text data using
Natural Language Processing (NLP) techniques–such as sentiment analysis, intent analysis
[1, 2, 3] and opinion mining–has been an active area of research in the last decade [4, 5, 6].
These NLP applications have captured the attention of both the industry and academia due
to their commercial and non-commercial significance in a plethora of real-world use cases.
These NLP applications have captured the attention of both the industry and academia due
to their commercial and non-commercial significance in a plethora of real-world use cases.

Through engagement with Federation University Australia, SportsHosts expressed its
need, as part of a funded PhD research, for a data-driven solution to boost its global cus-
tomer base. After a careful study of the SportsHosts business model and relevant back-
ground details, we proposed to leverage publicly available social media data to automati-
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cally identify potential customers (i.e., sports fans) from their behaviour by using text min-
ing and Artificial Intelligence (AI) methodologies. SportsHosts, as the client, and Federation
University Australia decided to go beyond naive social media marketing approaches that
are based on keywords or hashtags1 and instead identified potential user behaviour by
leveraging advanced NLP techniques, such as context-aware text representations blended
with recent advancements.

In addition to these objectives, the industry has also been keen on maximising returns
on investment (ROIs) by boosting the accuracy of NLP models in the real world, particularly
with social media platforms. Further, as with other projects in the industry, cost and time
optimisation for NLP applications in social media are crucial to attract investments or stay
within budgets.

1.2 Motivation
SMA enables organisations to monitor social behaviours to make data-driven business de-
cisions. The successful outcomes of the proposed research can enable SportsHosts to lever-
age the proposed framework and identify potential sports fans, significantly expanding its
global customer base and business. However, the performance of many NLP tasks, includ-
ing text classification, relies heavily on the machine’s ability to understand the meaning
conveyed in a sentence or document. For any common individual, understanding what is
being written is practically subconscious and intuitive. We rely on what we already know
about a language and the concepts in a text to comprehend its meaning. However, captur-
ing the meaning conveyed through text is a challenging NLP problem for machines, partic-
ularly with noisy text data obtained from social media platforms, such as Twitter.

The study of a machine’s ability to understand the human language is the focus of Nat-
ural Language Understanding (NLU) [7], a branch of NLP. NLU uses syntactic and semantic
analyses of texts to determine the meaning of a sentence or phrase. This context-aware
approach to understanding meaning is a new wave and evolution in NLP and AI that can ef-

1Introduced by the octothorpe symbol ‘#’, the hashtag is a type of metadata tag used on social networks,such as Twitter and other microblogging services, to apply dynamic, user-generated tagging that helps otherusers easily find messages with a specific theme or content.
2



fectively be used in many real-world scenarios. Context-aware techniques use the context

in which the words appear, which we instinctively know, to play a huge role in conveying
meaning. The idea of integrating semantics into word representations is theoretically ex-
plained by the distribution hypothesis [8, 9], which states that contextually comparable
words have similar semantics. To this end, since 2013, word embeddings [10] have been
popular as a de facto starting point to represent the meaning of words. However, static
word embeddings–such as Word2Vec [11], GloVe [12] and FastText [13]–generally generate
fixed word representations for a given word in a vocabulary. Fundamentally, these tech-
niques cannot be easily adapted to the contextual meaning of a word. Conversely, recent
discoveries of dynamic pre-trained representations, such as ELMo [14] and BERT [15], pro-
duce dynamic representations of a word based on the context.

However, it should be noted that the success of most state-of-the-art language under-
standing techniques, such as pre-trained language models, is heavily dependent on the
availability of an abundance of training data [15]. In other words, in general, NLP mod-
els need a substantial amount of training data to detect patterns to produce acceptable
results, as language understanding is a challenging and complex task. To this end, given
that labelled datasets are often manually annotated, text classification may suffer signifi-
cantly from a lack of accurately labelled training data, imposing a significant challenge in
real-world scenarios. Moreover, SportsHosts, and any other organisation, may look for a
diverse set of text classification use cases over time, making the task of manually labelling
a sufficient amount of training data expensive, time-consuming and error-prone.

Further, as social media data are noisy and diverse, this creates additional challenges
in the context of linguistic comprehension. The diversity of the vocabulary used in mi-
croblogging sites such as Twitter might lead to a higher percentage of out-of-vocabulary

words, thereby affecting the accuracy of the word representation. Apart from that, as pre-
trained language models are trained on datasets containing structured sentences, these
models might not scale well to the unstructured and noisy text of social media platforms.
The syntactic and grammatical structure of noisy sentences can deviate significantly from
standard English sentences (i.e., the training dataset), making it difficult for pre-trained
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language models to understand noisy text effectively.
In this thesis, we focus on developing algorithms to derive meaning from noisy text in

a low data regime. To this end, we develop novel techniques to improve the NLP model’s
ability to comprehend noisy text in a limited labelled data scenario, boosting their perfor-
mance in the real world. We further enhance the accuracies of the NLP models by aug-
menting text data in a context-aware setting. Finally, we combine our findings, including
a cost-effective data annotation methodology, to develop an effective and efficient frame-
work for NLP applications in social media.

1.3 Objectives of the Study
This thesis studies the problem of noisy text classification in the low data regime, focusing
on its suitability for application in a real-world environment. This study focuses on ad-
dressing the challenges in comprehending noisy and unstructured social media data using
a context-aware analysis while reducing the impact of limited labelled data on algorithm
performance in a real-world setting.

Firstly, the proposed work focuses on improving text classification accuracies in the
low data regime by transferring prior knowledge from pre-trained language models. Fur-
ther, we explore strategies for improving noisy text representations, focusing on the overall
meaning of a particular sentence, thereby improving the accuracy of noisy text-based NLP
tasks.

Secondly, to address the data scarcity problem, we focus on generating synthetic sen-
tences to augment the training datasets. However, in a context-aware NLP regime, we can-
not effectively use existing text augmentation techniques–such as synonym replacement,
random insertion or random swap–to generate more training data. These methods tend
to create synthetic sentences with different semantic meanings, thereby introducing many
noisy examples to meaning-sensitive NLP tasks, such as sentiment analysis. Analogously,
text augmentation techniques, such as back translation, generate noisy examples due to
the non-standard spellings and non-grammatical constructions in the social media data.

4



Most importantly, these text augmentation techniques are limited by their ability to add
more diversity and variety to the training data, which is critical when applying machine
learning models to real-world use cases.

Thirdly, the automated classification of interest groups via social media has significant
commercial value for organisations such as SportsHosts. However, developing accurate and
efficient classification methods requires a large amount of annotated training data, which
can be costly and time-consuming to create. Thus, methods for reducing annotation costs
while maintaining accuracy are also explored in the research reported in this thesis.
Thus, throughout this thesis, we plan to fulfil the following objectives:

• derive meaning-rich word embeddings and sentence representations for noisy and
unstructured text to boost the performance of downstream NLP tasks in the low data
regime

• improve the accuracy of meaning-sensitive text classification tasks in a low-resource
setting by augmenting the training dataset with label-compatible and quality syn-
thetic sentences

• design and develop a cost- and effort-efficient method to annotate social media text
data to train NLP models for different text classification tasks across various industry
use cases.

1.4 Contributions
Throughout this thesis, we focus on three main challenges of social media text analytics in
a real-world environment:

1. performance impact due to the noisy nature of the text data
2. poor accuracies due to extremely limited availability of labelled data
3. high cost and effort required to annotate training data.

Our contributions to addressing these challenges are listed below.
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Performance impact due to the noisy nature of the text data.
• We propose using the prior knowledge from pre-trained language models as a strat-

egy to improve the performance of noisy text classification under an extremely low-
resource setting. Our findings include a recommended set of hyperparameters for a
similar scenario.

• We propose a systematic approach to derive generalisable sentence representations
for noisy text, comprising the most important linguistic characteristics, using latent
layers of multilayer pre-trained language models. We achieve state-of-the-art per-
formance with a sentence vector obtained with the proposed approach. Further,
we release a new probing dataset that can serve as a benchmark dataset for future
researchers to study the linguistic characteristics of unstructured and noisy text.

Poor accuracies due to extremely limited availability of labelled data.
• We present a novel text augmentation method that extends the back-translation

technique for meaning-sensitive text classification tasks. Further, our reported find-
ings reveal the importance of maintaining the quality of synthetic sentences while
adequately increasing the diversity of the augmented dataset to reduce the impact
due to overfitting.

• We propose Intelligent Masking with Optimal Substitutions Text Data Augmentation
(IMOSA), a state-of-the-art text augmentation method that focuses on progressively
generating high quality synthetic data rather than augmenting every single sentence
in the original dataset, improving the overall quality and diversity of the augmented
dataset. We demonstrate the superiority of the proposed text augmentation tech-
nique by evaluating the performance of multiple downstream NLP tasks using a state-
of-the-art Transformer-based pre-trained language model as a classifier.

High cost and effort required to annotate training data.
• We propose a novel framework to annotate text data specifically for text classifi-

cation use cases at a significantly lower cost using crowdsourcing platforms. The
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framework consists of multiple steps to address data annotation-related challenges,
such as data imbalance, poor annotation quality and annotation cost and effort. A
real-world text data annotation experiment using the proposed framework reported
over 80% reduction in cost.

• We combine our research findings–pre-trained language models as a strategy to im-
prove the performance of noisy text classification under an extremely low-resource
setting, improved sentence representation for noisy texts, state-of-the-art text aug-
mentation technique and a cost-effective text annotation methodology–to develop
an end-to-end framework to enable data-driven decision-making based on social me-
dia data in a real-world setting.

1.5 Thesis Outline
In Chapter 2, we present an overview of the background information that is necessary to
comprehend the contents of this thesis. We review the fundamentals of NLP and machine
learning. Further, we discuss language models, pre-trained language models and data aug-
mentation in NLP.

In Chapter 3, we study the feasibility of improving the accuracy of noisy text classifica-
tion under the low data regime through inductive transfer learning and context-aware word
embeddings using pre-trained language models. We then propose a systematic approach
to derive generalisable meaning-rich sentence representations for noisy text, comprising
the most important linguistic characteristics, using latent layers of a pre-trained language
model.

In Chapter 4, we first explore the impact of text augmentation in an extremely low-
resource setting and present the importance of label compatibility and the diversity of the
augmented dataset to improve text classification accuracy. Next, using a Masked Language
Model (MLM), we present a novel text augmentation technique that outperforms state-of-
the-art text augmentation techniques.

In Chapter 5, we focus on developing an end-to-end framework to deploy a social me-
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dia intelligence solution, in particular, to identify interested target groups effectively and
efficiently in a real-world setting. To this end, first, we propose a cost-effective annota-
tion framework to obtain the necessary labelled text data. Next, we present a step-by-step
approach to deploying a social media text mining application, combining our findings in
Chapters 3 and 4.

Finally, in Chapter 6, we present a summary of our findings and an outlook into the
future.
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Chapter 2
Literature Review
2.1 Background Preliminaries
This chapter presents a detailed and in-depth review of the literature and current state-
of-the-art research that provides the necessary background knowledge and thus sets the
stage for the work reported in the remaining chapters. First, concepts related to probability,
machine learning and neural networks are introduced. Next, a thorough review of NLP and
its applications in social media platforms is summarised. This is followed by an introduction
to deep learning and transfer learning in NLP. We subsequently delve into language models
and pre-trained language models. Finally, we give an overview of text augmentation.

2.1.1 Probability
The term ‘probability’ simply refers to the likelihood of something occurring. In the context
of probability, a ‘trial’ or ‘experiment’ is a procedure that leads to a well-defined set of pos-
sible outcomes that can be repeated indefinitely. The ‘sample space’ defines the collection
of all the possible results of an experiment. An ‘event’ is a non-empty subset of the sample
space. Thus, in technical terms, probability is the likelihood of a specific outcome or event
occurring as a result of an experiment.

According to the definition, if A is an event of an experiment with n outcomes and S is
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the sample space, then the probability of the event A is,

P (A) =
n∑

i=1

P (Ei) (2.1)

where Ei denotes the outcomes in A. If each outcome of an experiment occurs with equal
probability,

P (A) =
No. of outcomes in A

No. of outcomes in S
(2.2)

Independent events. Two occurrences, A and B, are independent if the knowledge that
one occurred does not affect the chance that the other occurs. Two events are considered
independent if the following conditions hold:

• P (A|B) = P (A)

• P (B|A) = P (B)

• P (A ∩B) = P (A)P (B)

Mutually exclusive. Any two events with non-overlapping outcomes are said to be mutu-
ally exclusive. For instance, if A and B are mutually exclusive, then P (A∩B) = 0. Further,
as A and B are disjoint, P (A ∪B) = P (A) + P (B).

2.1.2 Machine Learning
In 1959, Arthur Samuel described machine learning as ‘the study that gives computers the
ability to learn without being explicitly programmed’ [16]. Machine learning focuses on
developing mathematical models from a dataset. A dataset is composed of examples. An
example is a particular instance of data, typically represented as a vector x ∈ Rd, where
an example consists of d features. Each feature contains the value for one of the data’s
attributes. In this case, a dataset can be represented as a matrix X ∈ Rnxd, where n is the
number of examples.

Learning and inference are the two main goals of machine learning. To discover pat-
terns, a machine learning model uses a dataset, which is generally known as the training
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dataset. This step is commonly known as training the model. Once the model is trained,
the model can be used to transform newer data and output predictions.

Machine learning can be divided into two categories: supervised and unsupervised
learning. A supervised learning algorithm learns the link between given inputs and outputs
(labels) using a training dataset. Each input xi is typically mapped to a separate target yi,
which is usually represented as a vector of labels y. In contrast, for unsupervised learning,
there are no target labels assigned. There are primarily two types of supervised learning:
classification task and regression task. The label yi belongs to one of a predetermined
number of classes or categories in classification. yi is a continuous number in regression.

Linear regression. The formula for a simple linear regression is:

Yi = β0 + β1Xi + εi (2.3)

where Yi is the predicted value for the ith instance, β0 + β1Xi represents a linear
function connecting X to Y, and εi is an error of the estimate. By searching for the regression
coefficient (β1) that minimises the overall error (ε) of the model, linear regression identifies
the line of best fit through training data.

Logistic regression. It is possible to extend the linear regression to perform classification.
In the context of binary classification, we deal with two classes: class 0 and class 1. In
this case, instead of modelling a straight line, the linear regression is modified to obtain a
probability by restricting the output of a linear equation between 0 and 1 using a logistic
regression function. The logistic function, also known as the sigmoid function, is defined
as:

σ(z) =
1

1 + e−z

(2.4)

Gradient descent. Gradient descent [17] is one of the most widely used optimisation tech-
niques for training machine learning models by minimising the difference between desired
and estimated outcomes. In this context of machine learning, optimisation is the task of
minimising the cost function with respect to the parameters of the model. The primary
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goal of gradient descent is to use the iteration of parameter updates to minimise a convex
function.

Evaluation metrics. Machine learning models are generally evaluated for their perfor-
mance on a particular task using a test dataset. Accuracy is a common evaluation measure
for binary classification tasks and is defined as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(2.5)

where TP , TN , FP and FN represent the true positive, true negative, false positive and
false negative counts, respectively. Additionally, the F1 score, which is the harmonic mean
of precision and recall, is used for multi-class classification:

F1 = 2
PṘ

P +R
,P =

TP

TP + FP
,R =

TP

TP + FN
(2.6)

2.1.3 Neural Networks
Neural networks, also known as artificial neural networks (ANNs), are designed to mimic
the human brain using a set of algorithms. At its most basic level, a neural network consists
of four key components: inputs, weights, a bias or threshold, and an output. In general,
a neural network is composed of an input layer, an output layer and zero or more hidden
layers (non-output layers). The number of hidden layers in a neural network is commonly
used to name it. A one-layer feed-forward neural network, often known as a multilayer
perceptron, is a model with one hidden layer. Mathematically, a neural network can be
considered a combination of simple functions, such as linear regression, together with an
activation function, such as the softmax or sigmoid, as follows:

h = σ1(W1x+ b1)

y = softmax(W2h+ b2)

(2.7)
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where σ1 denotes the activation function of the first hidden layer. As shown in Equation
(2.7), each layer has its own weight matrix W and bias vector b. The calculated output of
one layer, h, is provided as an input to the next layer. The last layer, also known as the out-
put layer, produces the neural network’s overall output y. This process is known as forward

propagation. Further, to produce a categorical and Bernoulli distribution, the softmax and
sigmoid functions are commonly utilised in the output layer of a neural network.

Back-propagation. Back-propagation [18], short for ’backward propagation of error’, is
the process of fine-tuning the weights of a neural network based on the error between the
desired output (yi) and the calculated output (ŷi) in the previous iteration using gradient
descent. As the name suggests, the gradient calculation propagates backwards through
the network. This approach calculates the gradients of the error function with respect to
the weights of the neural network as follows:

θt+1 = θt − α
∂E(X, θt)

∂θ
(2.8)

where θt represents the error between the actual output yi and the estimated output ŷi of
the neural network with a particular set of parameters θ at iteration t, and α is the learning
rate. The learning rate controls the magnitude of the change propagated in response to an
observed error.

The mean squared error is a commonly used error function in back-propagation.

E(X, θ) =
1

2N

N∑
i=1

(ŷi − yi)
2 (2.9)

2.1.4 Natural Language Processing
NLP is a technique for teaching computers to understand human speech. We focus on
developing models to map an input x consisting of a sequence of words or tokens to an
output y using different machine learning tools and techniques. To this end, we discuss the
commonly used NLP-specific terminologies and concepts related to our work throughout
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this thesis.

Bag-of-words. In some contexts, we use the bag-of-words technique to represent text
data as an input for machine learning models. In this approach, we represent a unit of text
(phrase, sentence or document) using a vector x ∈ R|V | where V is the vocabulary. Each
element xi indicates the number of occurrences (term frequency) of the corresponding
vocabulary word in a given text document. Term frequency-inverse document frequency

(tf-idf) is an extension to the above approach, where we calculate a weighted frequency to
measure how important the word is to a document.

Tokenization. Tokenization is the task of splitting up a character sequence into units called
tokens. Tokenization is commonly applied to split a sentence into tokens. In general, these
tokens are referred to as terms or words. A simple strategy to tokenize a sentence is to
split all white-space characters. Tokens are frequently used as input for operations such as
parsing and text mining. Tokenization is significant because the meaning of a sentence can
be easily deduced by examining the words in the text.

Part-of-speech (POS) tagging. The technique of categorising a word in its context is known
as POS tagging. To categorise a word into its class, a probability model and extra factors
are employed. These classes are known as word classes or lexical categories. A tagset is a
collection of such classes that are used for a certain NLP task. Tags representing the most
common components of speech may be limited in basic tagsets (e.g., N for noun, V for
verb and A for adjective). It is, however, more customary to distinguish between single
and plural nouns, verbal conjugations, tenses, aspect, voice, and other details.

Stop words. Stop words are words that contribute only slightly to a sentence in any lan-
guage. Articles and pronouns are typically categorised as stop words. Examples of a few
stop words in English are ‘the’, ‘a’, ‘an’, ‘so’, ‘with’. Bag-of-words-based techniques tend to
safely ignore stop words without sacrificing much information from a sentence. However,
context-aware NLP approaches want to keep the stop words intact to understand a word’s
context accurately.
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Dependency parsing. Extracting a dependency between the words of a phrase or a sen-
tence that describes its grammatical structure using a tree structure containing head words
and their relationship with child words is known as dependency parsing. Dependency pars-
ing can be used to approximate the semantic relationship between words to improve au-
tomatic text understanding.

Zero-shot text classification. Zero-shot learning was traditionally used to classify instances
into unseen classes using a model trained on a different set of classes. In the context of NLP,
Veeranna et al. [19] proposed using a semantic embedding of label and document words
and basing the prediction of previously unseen labels on the similarity between the label
name and the document words in this embedding. A given sequence x can be classified
using a sequence embedding model Msent and a set of possible class names C, as shown
in Equation (2.10).

ĉ = argmax
c∈C

cos(Msent(x),Msent(c)) (2.10)
Alternatively, Yin et al. [20] proposed using a pre-trained Multi-Genre Natural Lan-

guage Inference (MNLI) [21] sequence-pair classifier as an out-of-the-box zero-shot to per-
form text classification. Natural language inference focuses on determining whether a
‘hypothesis’ is true (entailment), false (contradiction) or undetermined (neutral) given
a ‘premise’. Models based on Bidirectional Encoder Representations from Transformers
(BERT) [15] can be used to feed both the premise and the hypothesis through the model
as separate segments and train a classification head predicting entailment, neutral or
contradiction.

2.2 Natural Language Processing Applications
NLP applications have recently gained much traction in the industry. While there are many
NLP-related applications, in this thesis, we primarily focus on the challenges and limitations
of NLP applications in social media data, with a particular focus on the unstructured and
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noisy nature of the textual data. Among the plethora of NLP use cases that can be utilised to
gain insights into social media data, sentiment analysis and intent classification are widely
used in the industry to analyse consumer attitudes and behaviour and make data-driven
decisions on business strategies.

Sentiment analysis. Sentiment analysis focuses on extracting user opinion on an entity
(e.g., product, person, organisation and place) from text, helping organisations under-
stand the social sentiment of their products, services or brand. To this end, during the last
decade, social media platforms have become an invaluable place to monitor online conver-
sations to understand user behaviour for various use cases, such as service quality [22, 23],
business performance [24] and tourism [25]. Existing approaches for sentiment analysis
can be broadly categorised into three categories: machine learning approach, lexicon-
based approach and hybrid approach [26], with machine learning as the most widely used
approach. Though machine learning techniques yield high accuracies, sentiment analy-
sis remains an open research field due to several challenges, including negation handling,
word sense disambiguation and a lack of sufficient labelled data [26]. Conversely, lexicon
methods are popular for sentiment analysis in social media [27]. This method has several
drawbacks. For example, the existence of more favourable terms in customer reviews or
any other online text source does not always imply that a review is positive or vice versa.
In most circumstances, using the same lexicon for scoring texts from different domains is
problematic. Thus, throughout this thesis, we propose to focus on improving the machine
learning approach with noisy social media data.

Intent classification. Intent, in the simplest term, can be defined as a purpose for action.
Intent analysis is the idea of identifying intentions present in textual content and recog-
nising a corresponding intent category for every action indicative of intent in a particular
text [28]. Intent Analysis has emerged in a variety of application domains in recent years
[29, 30, 31], including market intelligence, advertising and political vote prediction.

Intent classification primarily attempts to capture a plausible future outcome [28] and
is different from well-known text mining, such as opinion or sentiment classification, where
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they approximate the current state. For example, the sentence ‘I like the colour of iPhone

7’ reflects a positive sentiment, but no intention exists. In contrast, the sentence ’I want to

buy an iPhone 7’ shows a firm buying intention in the near future. Therefore, verbs and key-
words in a piece of text are considered essential features for intent identification. Hence
term-based intent analysis [1, 32, 33] has been a popular approach to detecting intent. Fur-
ther, with the advancement of NLP, researchers have employed more advanced techniques,
such as neural networks, attention and transfer learning, as summarised in [34]. Neverthe-
less, as highlighted by [34], intent analysis using social media data is still challenging and
requires deeper analysis. Moreover, according to the authors, the effectiveness of transfer
learning and deep learning techniques in this context is still underexplored.

2.3 Deep Learning for Natural Language Processing
For a long time, shallow machine learning models and heuristic-based features or shallow
features were used by most techniques that examine NLP problems. These models were
limited in their ability to support NLU. Many recent works related to NLP tasks showed
that neural models can be effectively used in a variety of tasks in NLP, including, but not
limited to, language modelling [35, 36], sentiment analysis [37], machine translation [38],
word-embedding extraction [11, 39] and transfer learning with language models [15, 40].

Figure 2.1: RNN model architecture.
Among many neural models, a Recurrent Neural Network (RNN) [41] is a specialised

neural-based method that processes sequential information effectively [42]. The main
strength of an RNN is the ability to memorise and use the outcomes of previous steps
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in the current step; hence, the capacity to model aspects of linguistic structure and mean-
ing based on the preceding sequence (see Figure 2.1). Subsequently, to overcome various
shortcomings [43, 44], such as the vanishing gradient problem, different variants of RNN
namely Long Short-Term Memory (LSTM) networks [45], Gated-Recurrent Network (GRU)
[46] and Residual Network (ResNet) were later introduced. Further, extensions such as
Bidirectional Recurrent Neural Network (BRNN) [47] have been proposed to enhance its
ability to capture rich linguistic features by considering both past states and future states
[48] in the current state.

Figure 2.2: CNN architecture proposed by [49] for binary sentence classification.
Conversely, the Convolutional Neural Network (CNN), originally invented for Computer

Vision (CV), was first introduced for NLP by Collobort and Watson [50]. Subsequently, CNN
models have been shown to be effective at NLP tasks, including semantic parsing [51] and
sentence classification [52]. CNN models have demonstrated accuracy in identifying effec-
tive clues in contextual windows but preserve no sequential order or long-distance con-
textual information as illustrated in Figure 2.2. Apart from that, for NLP tasks that require
sequence-to-sequence mapping–such as Statistical Machine Translation (SMT), network
models that learn to encode a variable-length sequence into a fixed-length vector repre-
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sentation and decode a given fixed-length vector representation back into a variable-length
sequence, known as Encode-Decoder–were found to be effective [38, 53].

Recently, inspired by the visual attention mechanism found in humans, attention [54]
has become one of the most influential ideas in the NLP community. It allows neural models
to pay attention only to important information in a sequence, rather than relying on the
fixed-length vector representation of a complete sequence, and helps to overcome the
inability of the models to remember longer sequences. Attention has been successfully
applied in many NLP tasks, including machine translation [55, 56], image captioning [57] and
aspect-based sentiment analysis [58]. Further, Zhou et al. [59] proposed Attention-Based
Bidirectional Long Short-Term Memory Networks (AttBLSTM) to automatically capture the
most important semantic information in a sentence, achieving improved performance over
classification tasks.

Despite the success of CNN and RNN, the Transformer–a simple yet powerful network
architecture based solely on the attention mechanism introduced by Vaswani et al. [60]
in 2017–was proven to be superior to both RNN- and CNN-based neural models. It uses
an Encode-Decoder architecture, as shown in Figure 2.3, primarily based on the attention
mechanism to map important linguistic features to the decoder at once rather than se-
quentially, allowing it to learn long-term dependencies easily. Transformer architecture has
been a major contributor to the significant increase in deep learning research in NLP over
the past two years. Groundbreaking pre-trained language models–such as Open AI’s GPT
[61, 62], Google’s BERT, Google and Carnegie Mellon University’s XLNet [63], Facebook’s
RoBERTa [64], and Google and Toyota’s ALBERT [65]–were mainly based on the Transformer
architecture.

2.4 Language Models
Language Model (LM), which provides the word representation and probability indication
of word sequences, is the basis for most common NLP tasks, such as sentiment analysis
and machine translation. The initial application of LM was based on the time-consuming
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Figure 2.3: Model architecture of the Transformer.
and laborious task of manually writing rules and yet mostly captured only a minimal set
of linguistic features. In contrast, static language models focus on developing probabilistic
models [66, 67] to retrieve linguistic information by predicting the next word based on a
set of words that precedes it. Given a sentence s with a sequence of words w1, w2, . . . , wn,
a statistical language model can be modelled as follows:

P (s) = P (w1w2 . . . wn)

= P (w1)P (w2|w1) . . . P (wn|w1w2 . . . wn−1),

(2.11)

Since the model requires an extremely large number of parameters, it was necessary to
use an approximation method. N -gram model is a commonly used approximation method
and was the state-of-the-art model before the introduction of language models based on
neural networks. N is the number of words in the window that is considered the context
of a given word. The approximation of N -gram assumes that the current word depends
only on previous k words (Markov assumption), which is
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P (wt|w1 . . . wt−1) ≈ P (wt|wt−k . . . wt−1) (2.12)
The probabilistic approach to the N -gram model poses major drawbacks, such as the

curse of dimensionality [68] and difficulty in handling long-distance dependencies. In 2000,
Xu and Rudniky [69] attempted to introduce neural networks into LMs. While their model
performed better than standard statistical techniques, it lacked the ability to capture context-
dependent features. In 2003, Bengio et al. [35] proposed to overcome the curse of dimen-
sionality by learning a distributed representation (i.e., a real valued vector), also known as
embedding for words, while introducing the idea to use RNN for LMs to capture contextual
information.

Subsequently, many different types of models were proposed for representing words
as continuous vectors, including Latent Semantic Analysis (LSA) and Latent Dirichlet Allo-
cation. Word2Vec , proposed by Mikolov et al. [11] in 2013, is the most popular word-
embedding model which produces distributed representation of words that capture a large
number of precise syntactic and semantic word relationships based on continuous bag-of-
words (CBOW) or continuous Skip-gram architecture. CBOW is a neural approach to word
embedding, and its goal is to calculate a target word’s conditional probability given the
context words in a given window size. Conversely, Skip-gram is a neural approach to word
embedding, where the goal is to predict the context words surrounding it based on a cen-
tral target word. Word-embedding models [10], including Word2Vec [11], GloVe [12] and
FastText [13], have become popular among researchers as a de facto starting point for rep-
resenting the meaning of words in NLP.

Since early 2018, a paradigm shift has taken place from fixed word embedding for each
word to context-based embedding based on language modelling. Table 2.1 summarises the
popular context-based language models.

Embeddings from LanguageModels (ELMo). ELMo [14] was the first deep contextualised
word representation model that attempted to address the challenge of modelling complex
linguistic characteristics, such as syntax and semantics, and context-based word represen-
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Table 2.1: Pre-trained language models.
LM Architecture YearELMo [14] Bi-LSTM 2018UMLFit [70] AWD-LSTM 2018Open AI GPT [61] Transformer 2018BERT [15] Transformer 2018GPT-2 [62] Transformer 2019XLNet [63] Transformer-XL [71] 2019

tations using the internal states of a deep bidirectional language model (biLM). The ELMo
vector assigned to a word is a function of the entire sequence containing that word allowing
the same word to have different word vectors under different contexts, unlike traditional
word embeddings. The model consists of two bi-LSTM layers with 4,096 units and 512 out-
put dimensions, while residual connections are applied between LSTM layers to improve
the gradient flow and the model is trained to minimise the negative log-likelihood in both
directions, as given in Equation (2.13).

L =
N∑
k=1

(log p(tk|t1, . . . , tk−1; Θx,
−→
ΘLSTM,Θs)+

log p(tk|tk+1, . . . , tN ; Θx,
←−
ΘLSTM ,Θs))

(2.13)

where (t1, . . . , tn) is a sequence of N tokens, and Θx, ΘLSTM and Θs are the parame-
ters for the token representation, the softmax layer that separates the two LSTMs and the
parameters of the LSTM model, respectively.

To evaluate the linguistic features captured by the different layers of the model, ELMo is
used for semantic- and syntax-intensive tasks leveraging representations in different layers
of the biLM. The results showed large improvements across a broad range of NLP tasks.
Further, experiments revealed that the lexical meaning is better captured in the higher
layers, while the linguistic structure is better represented in the lower layers of the model
[14].

Universal Language Model Fine-Tuning for Text Classification (ULMFiT). ULMFiT [70]
introduces transfer learning for NLP tasks using a pre-trained LM with task-specific fine-

22



tuning, similar to CV tasks [72, 73, 74]. The model is based on the AvSGD Weight-Dropped
LSTM(AWD-LSTM) [75] architecture with an embedding size of 400, three layers and 1,150
hidden activations per layer. ULMFiT follows three steps to ensure good transfer learning
results on downstream text classification tasks:

• General LM pre-training–pre-training the language model to capture general proper-
ties of language using 28,595 pre-processed Wikipedia articles and 103 million words.

• Target task LM fine-tuning–fine-tuning the LM on the data of the target task by ex-
posing the pre-trained model to the data distribution of the target task.

• Target task classifier fine-tuning–fine-tuning the classifier with two additional linear
layers, where the last layer outputs a probability distribution using a softmax activa-
tion.

Generative Pre-training Transformer (GPT). Using an approach similar to ELMo, GPT [61]
introduces an unsupervised language model, which uses a huge dataset of 800 million to-
kens of BookCorpus [76] to train an LM, and the model architecture is based on a multilayer
unidirectional Transformer model. The key limitation of GPT is its uni-directional nature,
making it suitable for only the left-to-right context.

BERT. BERT is the first fine-tuning-based language presentation model that achieves state-
of-the-art performance on a large suite of sentence- and token-level tasks, outperforming
many task-specific architectures [15]. BERT architecture includes a multilayer bidirectional
Transformer [60] and an attention mechanism that learns contextual relations between
words (or sub-words) in a text. The Transformer consists of two separate mechanisms–an
encoder that processes the input and a decoder that generates a prediction for the task.
Since BERT is designed to generate a language model, only the encoder mechanism is used.

BERT is trained bidirectionally on a large corpus of unlabelled text, including the entire
Wikipedia and BookCorpus, allowing its models to understand the meaning of a language
more correctly. Thus, it could be used effectively for various target tasks, such as sentiment
classification and intent detection. Two pre-trained BERT models were first introduced–the
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‘BERTBASE’, that includes 12-layer bidirectional Transformer encoder block with 768 hidden
units and 12 self-attention heads, and the ‘BERTLARGE‘ consisting of 24-layer bidirectional
Transformer encoder blocks with 1,024 hidden units and 16 self-attention heads.

Compared to GPT, the most significant contribution of BERT is to enable bi-directional
training, and the ablation study confirms the impact of this improvement.

GPT-2. In February 2019, OpenAI published the GPT-2 [62] language model, a successor
to GPT with slight modifications to the model, which contains 10 times more parameters
(1.5 billion), is trained on 10 times the amount of data and achieves state-of-the-art results
on seven out of eight common NLP tasks. Most noticeably, this performance was witnessed
with no task-related fine-tuning and trained only in a zero-shot setting.

XLNet. XLNet [63] is a generalised autoregressive pre-training method that introduces a
variant of a language modelling, called permutation language modelling, to overcome the
limitations in the BERT model due to the masked ([MASK]) training procedure and parallel
independent predictions. XLNet showed significant improvement upon BERT across 20 NLP
tasks.

2.4.1 Masked Language Models
MLMs predict a ‘masked’ word based on all past and future words in the sequence. An
MLM is traditionally trained by randomly selecting words to be masked, using a special to-
ken [MASK], and substituted with a random token. This allows the model to capture bidi-
rectional information to make predictions. The training objective is to recover the original
tokens at the masked positions: ∑i mi log(P (xi|x1, . . . , xi−1, xi+1, . . . , xn); θT ), in which
mi ∈ 0, 1 indicates whether xi is masked or not, and θT are the parameters in a Trans-
former encoder.

BERT [15] and RoBERTa [64] are two popular MLMs. These MLM models use self-attention
to attend to all past tokens in both directions to learn an embedding for a specific token,
mimicking the behaviour of an autoregressive model and stacking many Transformer en-
coder layers to learn sophisticated and meaningful representations. However, the non-
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autoregressive nature allows the computations to be parallelised, thereby significantly re-
ducing the inference time. Given an input sentence x = (x1, x2, . . . , x3), MLMs such as
BERT first choose a fraction (typically 15%) of tokens in x at random and replace them with
a special token [MASK], then predicts the masked tokens based on the remaining tokens.
Let xm be the masked tokens and xr be the remaining tokens; the objective function of
MLM can be written as

LMLM(xm|xr; θenc) = −
|xm|∑
t=1

logP (xm
t |xr; θenc) (2.14)

where |xm| indicates the number of masked tokens.

2.5 Transfer Learning
Data mining and machine learning techniques have already achieved remarkable success in
many areas of information engineering, including classification, regression and clustering.
However, in general, machine learning models assume that the training data and test data
are drawn from the same distribution. When the data distribution changes, mostly, the
models need to be redeveloped from scratch. A significant challenge hindering the real-
world application of machine learning models is the expensive and tedious task of recollect-
ing necessary training data and rebuilding the models. Transfer learning [77], which focuses
on transferring knowledge across domains, is a promising machine learning methodology
to solve the problem mentioned above. Transfer learning research is motivated by the
fact that previously learned knowledge can be intelligently applied to solve new problems
effectively and efficiently.

2.5.1 Transfer Learning in NLP
While deep learning models achieve state-of-the-art accuracy across many NLP tasks, their
performance is limited by the availability of a significant quantity of data and the demand
for huge computing resources, forcing the exploration of knowledge transfer possibilities.
Figure 2.4 shows the complete taxonomy for transfer learning for NLP developed by Ruder
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[78], based on the transfer learning taxonomy compiled by Pan and Yang [79]. Through-
out this thesis, we mainly focus on two inductive transfer learning techniques: sequential
transfer learning and multi-task learning.

Figure 2.4: A taxonomy for transfer learning [78] for NLP.

Sequential transfer learning. The primary objective of sequential transfer learning [80]
is to transfer knowledge from the model trained on a source task to improve the perfor-
mance of the target model. Sequential transfer learning consists of two steps: pre-training,
where a model is trained on the source data, and adaptation, where the knowledge is trans-
ferred from a previously trained source model to the target model. This transfer learning
approach has shown promising results in CV on the ImageNet Dataset [81]. UMLFiT, ELMo,
the Open AI Transformer and BERT have enabled a sequential transfer learning capability
for language.

Multitask learning. Inspired by the ability of people to learn a new task effectively, often
applying knowledge gathered from previous tasks, multitask learning aims to learn jointly
from different tasks, assuming that knowledge captured from a task can be leveraged by
another task.

Definition ‘Given m learning tasks {Ti}mi=1 where all the tasks or a subset of them are
related, multitask learning aims to help improve the learning of a model for Ti by using the
knowledge contained in all or some of the m tasks’ [82].
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2.5.2 Transfer Learning with Language Models
With the success of distributed representations [10, 11, 13] of words, neural network models
have achieved superior results compared to traditional approaches, such as SVM and lo-
gistic regression, mainly due to their ability to capture a linguistic structure of the language
and the lexical semantics of words.

In early 2018, Howard and Ruder [70] introduced the ULMFiT method, which was the
first transfer learning technique applied to NLP, similar to the transfer learning paradigm
in CV. Interestingly, ULMFiT was able to match the performance of models trained from
scratch with 100 times more data, only with 100 labelled instances. The paper presented
novel techniques to retain previous knowledge and avoid catastrophic forgetting [83, 84,
85, 86] during the transfer learning process. Motivated by the fact that various architec-
tures identify different layer-specific language representations [87], ULMFiT proposed dis-

criminative fine-tuning, a technique to tune the model using different learning rates for
each layer.

ELMo feeds embeddings as additional features to a customised model of a target task
to transfer the previously captured knowledge, while GPT fine-tunes the same base model
end-to-end for all target tasks [61]. Strubell and McCallum [88] revealed that the per-
formance of strong neural network models can be further improved, incorporating lin-
guistic structures by combining ELMo with the Linguistically-Informed Self-Attention (LISA)
[89] model, a strong, linguistically-informed neural network architecture for Semantic Role
Labelling (SRL). Further, Zhang et al. [90] proposed an improved language representa-
tion model, Semantics-aware BERT (SemBERT), to incorporate explicit contextual semantics
from pre-trained SRL, obtaining new state-of-the-art or substantially improving results on
10 reading comprehension and language inference tasks.

Yosinki et al. [91] revealed that features learned by different layers of a deep neural
network transit from general to task-specific from the first layer to the last layer. To this end,
Howard and Ruder [70] introduced discriminative fine-tuning, where they apply different
transfer learning rates (gradually decreasing learning rate for lower layers), allowing them
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to achieve better results.

2.5.3 Supply Chain for NLP
The advancements in transfer learning techniques for languages have enabled a new AI
supply chain for NLP tasks, as illustrated in Figure 2.5.

Figure 2.5: AI supply chain for NLP.

Large technology firms, such as Google and Amazon, have published massive pre-trained
language models that require a great deal of time and effort to train. The research commu-
nity and organisations can use transfer learning techniques to extract knowledge captured
in a pre-trained model and easily apply it to another task. Numerous experiments have re-
vealed that various NLP tasks achieved state-of-the-art performance along with this emerg-
ing paradigm. Thus, the AI community has adopted pre-trained language models as the
backbone for downstream tasks instead of developing and training models from scratch.
In this case, organisations can use pre-trained language models to solve business problems
effectively at a significantly low cost and time.

2.6 Language Understanding
Recently, word embedding [10] has become popular as a de facto starting point for repre-
senting the meaning of words. However, static methods–such as Word2Vec [92], GloVe [12]
and FastText [13]–generally generate fixed word representations in a vocabulary. Hence,
these techniques cannot easily be adapted to identify the contextual meaning of a word.
Recent discoveries of dynamic, pre-trained language representations–such as ELMo, a deep
contextualised word representation [14] and BERT [15]–produce dynamic representations
of a word based on its context. The BERT architecture includes a multilayer bidirectional
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Transformer [54] and an attention mechanism that learns contextual relations between
words (or sub-words) in a text. The Transformer consists of two separate mechanisms–an
encoder that processes the input and a decoder that generates a prediction for the task.
BERT–which is trained bidirectionally on a large corpus of unlabelled text, including the en-
tire Wikipedia and BookCorpus–allows its models to understand the meaning of a language
more correctly.

Further, several other Transformer-based language models perform well at a broader
range of tasks beyond document classification, such as common sense reasoning, seman-
tic similarity and reading comprehension. Transformer-XL [93], a Transformer-based au-
toregressive model, enables the capture of longer-term dependencies in a sentence and
achieves better performance on NLP tasks with both short and long sequences. Generative
Pre-trained Transformer 3 (GPT-3) [94], the third-generation language prediction model in
the GPT-n series created by OpenAI, is an auto-regressive Transformer model that performs
reasonably well on unseen NLP tasks.

These recent models capture many facets of language relevant for downstream tasks–
such as long-term dependencies, context and hierarchical relations–to provide state-of-
the-art performance [95, 96]. Further, previous research [97, 98, 10] has demonstrated that
deep learning models with complex architectures that leverage the contextual meaning of
words can significantly improve learning abilities.

2.6.1 Language Understanding with BERT
Goldberg [95] assessed the extent to which the BERT model captures the syntactic structure
of a sentence using three stimuli tasks related to subject-verb agreement. Though the
results were not directly comparable with previous work due to the BERT’s bidirectional
nature, the results suggest that purely attention-based BERT models are likely capable of
capturing syntactic information at least as well as sequence models, if not better.

Jawahar et al. [99] performed a series of experiments using conventional and standard
English sentences extracted from books to identify the linguistic information learned by
BERT. These experiments were based on the probing datasets developed by [100] using
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the Toronto BookCorpus [101], which was one of the two data sources used to train the
BERT model. They showed that BERT’s intermediate layers encode a rich set of linguistic
characteristics, with surface features at the bottom, syntactic features in the middle and
semantic features at the top. This indicates that specific regions or layers of BERT are better
suited to comprehending different aspects of the English language.

Similarly, Liu et al. [102] examined the linguistic knowledge captured by contextual
word representations derived from different layers of large-scale neural language models.
They showed that the frozen contextual representations are competitive with state-of-the-
art, task-specific models in many cases but fail on tasks requiring fine-grained linguistic
knowledge. These studies focused only on structured and clean English sentences. They
paid little attention to combining the layer representations based on linguistic knowledge
to derive a meaning-rich sentence vector. Tenny et al. [103] introduced ‘edge probing’
tasks covering syntax, semantic meaning and dependency relations to study how contex-
tual representations encode sentence structures. Their results using BERT and a few other
pre-trained language models concluded that these models encode syntactic phenomena
strongly but demonstrate comparable minor improvements on semantic tasks compared
to a non-contextual baseline. However, these experiments focused only on the top layer
activations of the BERT model, so they may not reveal the full nature of BERT’s ability to
encode syntactic features. Further, Hewitt and Manning [104] showed that the contextual
word representations provided by pre-trained language models, such as BERT, embed syn-
tax trees in their vector representations.

Conversely, Clark et al. [96] analysed the BERT’s attention mechanism and showed
that a specific set of attention heads correspond well to linguistic notions of syntax and
coreference. Further, they demonstrated the ability of BERT’s attention heads to capture
important syntactic information using an attention-based probing classifier.

However, Wang et al. [105] more recently concluded that complex pre-trained language
models like BERT do not necessarily translate noisy text to better representations. Further,
they highlighted that more exploration is needed in this area.
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2.6.2 Probing Tasks
Shi et al. [106] and Adi et al. [107] introduced general prediction tasks to understand the
language information captured by sentence vectors. Shi et al. [106] investigated whether
Neural Machine Translation systems learn source language syntax as a by-product of train-
ing by analysing the syntactic structure as a by-product of training. Adi et al. [107] proposed
a framework that facilitates a better understanding of the encoded representations using,
tasks to predict a sentence’s length, detect a change in word orders and identify the words
in a sentence.

Extending the work of [106] and [107], [100] has introduced ten classification problems
known as probing tasks. A probing task is a text classification problem that focuses on a
grouping of sentences based on the simple linguistic characteristics of sentences. The per-
formance of this classification model depends on the richness of the linguistic information
packed into a sentence representation. Further, these probing tasks have been assigned to
three groups–surface information, syntactic information and semantic information–based
on the primary linguistic feature required to perform the task effectively. The surface in-
formation tasks can rely only on surface properties (e.g., sentence length) to perform the
classification successfully, and no linguistic knowledge is required. The tasks grouped un-
der syntactic information are sensitive to a sentence’s syntactic properties (e.g., depth of
the syntactic tree). In contrast, semantic information-related tasks require some under-
standing of the meaning of a sentence and the semantic structure.

2.7 Text Augmentation
‘Data augmentation’ is a term used to describe ways of increasing the variety of training
examples without explicitly collecting new data. Data augmentation is an essential ele-
ment for tasks where good generalisation is challenging, primarily when working with small
datasets. Further, manually labelling data to develop models in the context of evolving
business requirements can be time-consuming and expensive. Thus, accurate and effi-
cient data augmentation techniques could provide a cost-effective method for obtaining
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more training data without losing accuracy. Moreover, advancements in neural-model ar-
chitectures generally demand more data to deliver the expected performance [108, 109].
In contrast to regularisation techniques–such as dropout [110], batch normalisation [110],
transfer learning [111] and pre-training [112], and one-shot and zero-shot learning [113, 114]–
data augmentation attempts to address the root problem of limited labelled data.

Data augmentation is a widely studied topic in CV, though the usage of data augmen-
tation in NLP has been limited. Since it is non-intuitive to use the signal transformation-
based augmentation techniques used in CV for natural languages, text data-specific ap-
proaches have been adopted. To this end, rule-based text data augmentations provide
efficient methods to generate text sequences based on predefined transformations, such
as random insertions and deletions. Easy Data Augmentation [115] is such a method that
generates new sentences using token-level perturbation operations, such as random inser-
tions, deletions and swaps. Further, researchers have proposed more advanced methods
to replace words using adjacent words in a continuous representation or synonyms from
lexical databases, such as WordNet [116, 117]. Zhang et al. [118] proposed replacing words
with randomly chosen synonyms selected from WordNet based on the semantic closeness
to the most frequently seen meaning. Wang et al. [119] augmented the training dataset by
replacing each word in a Tweet with neighbouring words in a continuous representation.
These techniques pay very little attention to the syntax and semantics of sentences, mak-
ing it hard to maintain invariance. Further, synonyms are very limited, and synonym-based
techniques struggle to add sufficient diversity to augmented datasets.

With the popularity of deep generative models, such as GANs [120] and VAEs [121], re-
searchers have attempted to develop novel text generation techniques, combining deep
generative models with a sequential decision-making process. Zhang et al. [122] proposed
using LSTM and CNN models as generators and discriminator, respectively. Further, Yu et

al. [123] proposed a novel technique combining GANs with reinforcement learning to by-
pass the generator differentiation problem by directly performing gradient policy updates,
achieving significant improvements over strong baselines at that time. However, it is a chal-
lenging task to generate meaningful and grammatically correct synthetic sentences while
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maintaining label compatibility.
With the rise of context-aware representations, NLP models are more sensitive to the

syntactic and grammatical correctness of a sentence [124]. To this end, Kobayashi [125]
proposed a novel data augmentation technique by stochastically replacing words based
on the context using a bidirectional LSTM-RNN [45] language model. Further, Kobayashi
introduced a conditional constraint to ensure label compatibility by embedding the label
of a sentence with a hidden layer of the feed-forward network in the bidirectional lan-
guage model. Nevertheless, the performance improvements by the proposed method
were sometimes marginal. Wu et al. [126] proposed a text data augmentation technique
with more varied substitutions using BERT [15] as an MLM. Additionally, the authors modi-
fied the BERT model to embed label information, introducing Conditional BERT, a new con-
ditional MLM, to maintain the label compatibility of the synthetic sentences. Ng et al. [127]
proposed using MLMs as a denoising autoencoder (DAE) [128] to reconstruct randomly cor-
rupted input tokens by sampling from the underlying natural language distribution. To label
preservation, the authors proposed to preserve the original label or use a teacher model
trained on original data to obtain a label for more sensitive tasks.

These data augmentation approaches have something in common, in that they gener-
ate a predefined number of synthetic sentences for each original sentence provided and
pay no or little attention to identifying the most favourable tokens to mask or perturb.
The focus is more on augmenting individual sentences with the proposed techniques than
improving the overall quality and diversity of the augmented dataset. Apart from that, in
most of the experiments [125, 126, 115], the effectiveness of text data augmentation has not
been evaluated in a context-aware environment using state-of-the-art Transformer mod-
els such as BERT. In this case, the results might not reflect the model’s ability to generate
meaningful synthetic sentences. However, to some extent, attempts have been made to
use bidirectional RNN and CNN models to evaluate the performance of downstream tasks
[125, 126].
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2.8 Summary
In this chapter, we have conducted a detailed review of existing literature and highlighted
the strengths and weaknesses of current state-of-the-art techniques of text comprehen-
sion in the low data regime and data augmentation in the domain of NLP. Starting with
the background knowledge in probability and machine learning basics necessary for the
subsequent chapters, we proceeded to introduce neural network methods and NLP tasks.
Further, recent developments in transfer learning in NLP, pre-trained language models and
language understanding were discussed in detail.

Section 2.7, on text augmentation, in particular, sets the scene for Chapter 3. We em-
phasise that the context-aware NLP in a noisy text environment, especially under limited
labelled data conditions, is an important research area. Moreover, we explore avenues to
further improve the comprehension of noisy text. In the next chapter, we discuss these
issues in greater detail and present novel methods to deal with these problems.
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Chapter 3
Noisy Text Comprehension
3.1 Introduction
In the previous chapter, we carried out an in-depth review of the methods related to text
augmentation in low data regime for NLP. In this chapter, we focus on the intricacies of
noisy text comprehension and transfer learning.

Text comprehension occurs when readers derive meaning as a result of intentionally
interacting with the text. To this end, in the recent past, word embedding [10] has become
popular as a de facto starting point for representing the meaning of words. However, static
methods, such as Word2Vec [11], GloVe [12] and FastText [13], generally generate fixed word
representations in a vocabulary, and hence these techniques cannot easily be adapted to
a contextual meaning of a word. Recent discoveries of dynamic pre-trained representa-
tions such as ELMo, a deep contextualised word representation [14], and BERT, a language
modelling framework [15], produce dynamic representations of a word based on the con-
text. They capture many facets of language relevant for downstream tasks, such as long-
term dependencies, hierarchical relations and context, to provide superior performance
[129, 130]. Deep learning techniques with superior algorithms and complex architectures
that leverage the contextual meaning of the words [97, 98, 10] can significantly improve
learning abilities. It may, however, be noted that the success of these dynamic represen-
tation models–to a greater extent–is heavily dependent on the availability of a massive
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volume of labelled training data [131, 132].
Conversely, the labelled datasets being often manually annotated, real-world super-

vised text classification tasks may suffer significantly from a lack of sufficient labelled train-
ing data, imposing a significant challenge. Further, different organisations may be inter-
ested in entirely different use cases, requiring them to redo the manual annotation pro-
cess. Moreover, the same organisation may look for a diverse set of target classes over
time. These real-world business requirements have exacerbated the lack of training data
for NLP tasks, thereby significantly impacting the performance of NLP models in real-world
settings.

Apart from that, noisy and diverse social media data creates further challenges. Most
NLP tools, such as tagger and parser, including the latest pre-trained language models, have
been designed to operate on structured and grammatically correct text. As unstructured
and noisy text significantly deviates from the distribution of the original text data used
to train these models, the performance of such models reduces drastically [133]. Further,
given the diversity and evolving nature of social media content, handling out-of-vocabulary
(OOV) words is crucial for the performance of social media content based NLP models.

Considering the aforementioned challenges, this chapter proposes techniques to im-
prove noisy text classification accuracies under a low data regime while exploring the im-
pact of text data augmentation on the proposed techniques. We study the feasibility of
transferring prior knowledge from language models pre-trained using clean and structured
text for noisy text classification to overcome the problems related to data scarcity. Further,
we pay attention to the additional challenges due to the difference between the distribu-
tion of the training data and the test data. As the first step, we study the effectiveness of
encoding words in a noisy sentence with context-aware representation. Next, we propose
a novel technique to improve the model’s ability to provide a better encoding to boost
the performance of downstream NLP tasks. Additionally, we explore the usefulness of text
data augmentation in the context of large-scale language models in a limited training data
scenario due to their data-hungry nature. These improvements will enable SportsHosts
to effectively use popular microblogging platforms, such as Twitter, which mainly contains

36



noisy and unstructured content, to understand consumer behaviour and opinion more ac-
curately.

The rest of this chapter is organised as follows. Section 3.2 proposes a mechanism to im-
prove text classification accuracies in the low data regime by transferring prior knowledge
from pre-trained language models. Further, it examines the role of text data augmenta-
tion in the context of large-scale pre-trained language models. Section 3.3 presents a new
generic technique proposed to derive meaning-rich sentence representation for noisy texts
using pre-trained multilayer language models. Further, in this section, we present new
noisy probing datasets that can serve as a novel benchmark dataset for NLP researchers to
study the linguistic characteristics of unstructured and noisy text representations.

3.2 Inductive Transfer Learning with Pre-Trained Language
Models

In this section, we focus on transferring prior knowledge from pre-trained language mod-
els, as a strategy, to overcome the challenges posed by the availability of extremely low
training social media data in a text classification task. To this end, the proposed research in
this section focuses on an intent classification task, which is a subset of text classification,
and enhancing its performance further with pre-trained language models.

Currently, various classifier designs and techniques, incorporating the complexities of
the automated intent classification task, have been reported using both heuristic methods
and machine learning strategies. Recently, Hollerit et al. [1] proposed a binary classification
method to identify the commercial intent of a Tweet, applying supervised learning mod-
els using word n-grams and part-of-speech n-grams, as features. However, this method
fails to capture the semantic representations of the words. Pandey et al. [3] presented
and evaluated an intent classification model for Twitter posts using semantic features with
the help of a convolutional neural network. However, the method uses only static word
representations, and the model architecture makes it difficult to disregard the noise and
focus on its relevance [60]. Most of these approaches [1, 3, 33] leverage bag-of-words rep-

37



resentations or static embeddings learned from shallow neural networks, limiting these
techniques since they suffer from the absence of dynamic representations of the words
in a sentence. The dynamic representation is crucial as it enables understanding of the
human intentions contained in a sentence.

3.2.1 Methodology
Our methodology proposes using an attention-based pre-trained language model with se-
quential transfer learning, a type of inductive transfer learning, to address the scarcity of
data when working with noisy social media data in a context-aware setting. The proposed
methodology uses BERT, a Transformer-based language model, to derive context-aware
representations for the words in a noisy text, while its sub-word-based tokenization helps
deal with misspelling and OOV words in a social media text. We leverage a sequential
fine-tuning process to transfer the prior knowledge learned from a large corpus. Apart
from that, we propose using the back-translation method to augment text data to study
its impact in the low data regime, particularly in a context-aware learning setting involving
complex deep learning models such as BERT.

The following sections present the main components of the proposed technique and
the process to transfer the prior knowledge.

3.2.1.1 Architecture of the Pre-Trained Language Model
BERT is the first fine-tuning based language presentation model that achieves state-of-the-
art performance on a broad suite of sentence-level and token-level tasks, outperforming
many task-specific architectures [15]. BERT architecture includes a multilayer bidirectional
Transformer [60] and an attention mechanism that learns contextual relations between
words (or sub-words) in a text. The Transformer consists of two separate mechanisms–an
encoder that processes the input and a decoder that generates a prediction for the task.
Since BERT is designed to generate a language model, only the encoder mechanism is used.

BERT is trained bidirectionally on a large corpus of unlabelled text, including the entire
Wikipedia and BookCorpus, allowing the model to understand the meaning of a language
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more accurately than a static language model. Thus, it could be used effectively for var-
ious downstream NLP tasks, such as sentiment classification and intent detection. Two
pre-trained BERT models were first introduced–‘BERTBASE’, that includes 12-layer bidirec-
tional Transformer encoder block with 768 hidden units and 12 self-attention heads and
also ’BERTLARGE’ consisting of 24-layer bidirectional Transformer encoder blocks with 1024
hidden units and 16 self-attention heads.

The processes of the tokenization of an input sentence for the BERT model involves
splitting the input text into a list of tokens that are available in the vocabulary. To deal with
the words not available in the vocabulary, BERT uses a technique called byte-pair-encoding
(BPE) [134] based WordPiece tokenization[135]. ‘BERTBASE-uncased’ version of the BERT
models convert all the words of an input sentence to lower-case and uses a vocabulary of
30,522 words.

The input layer representation is a summation of WordPiece embeddings [135], posi-
tional embeddings and the segment embedding. Since Transformers do not encode the
sequential nature of an input sentence, positional embedding is used to introduce a tem-
poral property. Segment embedding is used to distinguish a sentence pair, and it has no
impact on a task based on a single sentence, such as text classification. A special classifi-
cation embedding ([CLS]) is prefixed as the first token of a sentence, and a special token
([SEP]) is appended as the final token. The final hidden state corresponding to the [CLS]
token is used as the aggregate sequence representation for classification.

3.2.1.2 Inductive Transfer Learning
Transfer learning refers to the improvement of learning of a particular task by infusing the
knowledge from prior learnings of a related task. Transfer learning has played an essen-
tial role in many NLP applications [136, 11], and the learning strategy improves the per-
formance on the target task by leveraging the knowledge gained from a different but a
related concept or skill [137, 138]. Recently, Universal Language Model Fine-tuning (ULM-
FiT), introduced by Howard and Ruder [70], was seen as an effective inductive transfer
learning method that can be applied to any task in NLP. However, with a similar approach,
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Figure 3.1: The architecture of the BERT model extended for multi-class classification. Tirepresents the WordPiece tokens of an input sentence. [CLS] is the special token intro-duced for classification tasks. OCLS is the final hidden state corresponding to [CLS]. Y isthe classification probability vector.
the BERT model achieved superior state-of-the-art results [15]. In the proposed method,
we use sequential transfer learning, the most frequently used inductive transfer learning
technique, where we transfer information from the pre-trained BERT model to improve the
performance of the intent classification task in the low data regime, as discussed in Section
3.2.1.3 below.

3.2.1.3 Fine-Tuning
An intent classification, viewed as a multi-class classification problem with a predefined set
of intent categories, can be accurately modelled using BERT. As shown in Figure 3.1, each
Tweet can be fed into the BERT model after tokenizing the Tweet into WordPiece tokens
T = [[CLS], T1, T2, . . . , TN ], to obtain the output O = [Ocls, O1, O2, . . . , ON ].

By leveraging the hidden state of its first special token ([CLS]), denoted Ocls ∈ RH ,
where H is the number of hidden units in the BERT model, the intent of each sentence Si

is predicted [15] as
Y i = softmax(WOi

cls + b) (3.1)
The only new parameters to be added [15] during the fine-tuning are for the classification
layer W ∈ RK×H and also for b ∈ RK , where K is the number of classifier labels and H
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is the number of hidden units. Further, a dropout layer is added before the classification
layer, with the dropout probability set to 0.1. This extension of the BERT model for multi-
class classification is shown in Figure 3.1.

To train the model, first, the standard Softmax function is applied to normalise the
output of the classification layer Y ∈ RK into a probability distribution of K probabilities.
Then, the model is fine-tuned simultaneously, by considering all the parameters of BERT
along with the classification layer weights W for minimising the negative log-likelihood
objective function.

3.2.1.4 Back Translation
We use back translation to create synthetic sentences to augment the training data to re-
duce the impact of labelled data scarcity in a context-aware NLP regime where complex
and huge deep learning models are in action. In NLP, back translation is a text augmenta-
tion method, first proposed by [139] for context-aware Neural Machine Translation, which
works as follows:

1. consider an input text from a source language (e.g., English)
2. translate the input text to an intermediate target language (e.g., English→Germany)
3. translate back the previously translated text into the source language (e.g., Germany
→ French)

In this step of data augmentation, we combine sequential transfer learning with text data
augmentation to tackle the data scarcity while improving the accuracy of the NLP task
through context-aware word and sentence representations.

3.3 Noisy Text Comprehension
In this section, we focus on the complex problem of machine reading comprehension to
improve the performance of NLP tasks using meaning-rich sentence representations. This
problem has been traditionally studied by researchers as a problem of NLU, a sub field of
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NLP. Among several challenges facing NLU, the representation of sentences incorporating
all their linguistic elements is considered highly complex. Due to the benefit of accurate
sentence representations (e.g., sentence classification, text summarisation and machine
translation), it has become necessary to develop new NLU methods that incorporate all
linguistic elements to improve accuracy. While a plethora of techniques have already been
proposed, representing sentences as vectors of real numbers in high dimensional continu-
ous space is attracting considerable attention [140, 141].

For vector representation, both word and sentence embeddings have influenced the
representation following the rapid rise of Word2Vec [92]. Recently, unsupervised, pre-
trained language models, such as BERT [15], have been successful in achieving state-of-the-
art results in various NLP tasks (e.g., sentence-level text classification), thereby introducing
a major paradigm shift in sentence representations. It may be noted that, unlike the shal-
low word vector models (i.e., Word2Vec [92] and GloVe [12]), the deep models, such as
BERT, are contextual.

Widespread use cases, such as sentiment analysis and intent analysis, mandate sophis-
ticated sentence representations since these models essentially involve identification of
intricate linguistic patterns [142, 143]. With the increasing proliferation of social media
data, such as Tweets, it has further become inevitable to represent noisy texts as vectors
to improve the model performance. For this reason, the BERT model is being applied ex-
tensively to Tweets to achieve state-of-the-art accuracies [144, 145, 146, 147].

However, the application of pre-trained language models, such as BERT, in such scenar-
ios is not easy because the Tweets follow a different distribution [148, 149] than the train-
ing inputs. While the BERT model is pre-trained on BookCorpus and English Wikipedia,
the Tweets exhibit a significant deviation from this mainstream English language usage.
Further, such challenges become extremely overwhelming as Tweets cover different do-
mains (e.g., day-to-day activities, sports, politics and science), and hence are significantly
different. For these reasons, the language representation should clearly express non-task-
specific general-purpose priors for solving AI-tasks [150].

Although BERT is a general-purpose language model, the reason behind its overall suc-
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cess has not been understood clearly. In [95] and [99], efforts were made to understand
BERT’s ability to learn the structure and syntax of the English language. It was observed
that different layers and regions of BERT capture different traits of the English language.
However, it is not reported how these findings can enhance the quality of word or sen-
tence embeddings. Further, given that BERT is trained on datasets containing structured
sentences, it is not clear whether BERT’s sentence representations can scale to unstruc-
tured, noisy text data on social media. Apart from this, there is also a recent emergence
of various pre-trained language models comprising of multilayer architectures [151]. Thus,
a technique based on the latent representations of multilayer models is vital to optimising
the vector representations so that these can be used for use cases involving unstructured
and noisy texts.

To address these research gaps, we use BERT as the multilayer pre-trained language
model and appropriate Tweets to represent noisy texts. We propose a systematic approach
to derive a diverse set of sentence vectors combining and extracting various linguistic char-
acteristics. For this, we have developed new probing datasets using noisy texts based on
the definition of specific probing tasks in [100] to analyse BERT’s behaviour across differ-
ent linguistic territories centred on noisy texts. We derive generalisable sentence repre-
sentations for noisy texts, comprising the most important linguistic characteristics. More
specifically, our key contributions for enabling BERT in deriving meaning-rich sentence rep-
resentation from the noisy text are as follows:

• New noisy probing datasets can serve as benchmark datasets for future researchers
to study the linguistic characteristics of unstructured and noisy texts. These datasets
are available in the public domain (https://bit.ly/3rK0g7P) and available on re-
quest.

• The proposed novel methodology allows researchers to dissect the BERT model and
systematically combine the latent layers and token embeddings to derive various
sentence representations capturing different linguistic characteristics. This allows
studying the linguistic comprehension of multilayer language models effectively.
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• Being generic, the proposed technique can be to generate sentence vectors using a
pre-trained multilayer language model.

The sections below discuss the probing dataset generation approach and the strategy
to generate sentence embeddings focusing on linguistic richness. The proposed method
uses probing tasks to efficiently validate the BERT’s ability to capture linguistic information
and to derive meaning-rich sentence representations for noisy and unstructured text.

In this methodology, we propose a novel technique to generate sentence embeddings
by bisecting BERT into regions and then combining the hidden layers and token vectors us-
ing two pooling operations. This allows us to analyse a diverse set of sentence vectors and
their ability to capture linguistic information effectively. Next, we discuss our approach to
generate probing datasets covering five probing tasks under noisy text conditions. These
noisy probing datasets are crucial in determining sentence vector’s ability to capture nec-
essary linguistic patterns to classify sentences to the target classes of each probing task.

Further, we propose a systematic approach to study the linguistic behaviour of multi-
layer, pre-trained language models by dividing the layers into multiple regions. This frame-
work can be easily extended to study the language comprehension capabilities of similar
multilayer language models.

The details of the methodology and its components are presented below.

3.3.1 Sentence Vector Generation
Our proposed methodology uses pre-trained language models to generate sentence rep-
resentations. We use the ‘BERTBASE-uncased’ model [15] to obtain word embeddings from
different hidden layers to produce sentence vectors. This allows for exploration of the lin-
guistic features of unstructured and noisy text, such as Tweets, as learned by different
regions (see Figure 3.2) or different hidden layers of the BERT model.

Further, apart from this, we use pre-trained Word2Vec [92] and Stanford’s GloVe [12]
models to derive sentence vectors. In contrast to BERT, although these models are shal-
low and non-contextual, they offer 10 to 100 times more vocabulary, thereby providing
a vibrant vocabulary to outweigh the benefits of a context-aware pre-trained model with
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Figure 3.2: The twelve layers (L1 to L12) of the BERTBASE model have been partitioned into3 regions. Rn-i represents the ith layer in the nth region.
a minimal vocabulary (e.g., BERT) in a noisy language setting. Moreover, a word vector
trained with the GloVe algorithm using two billion Tweets also enables the performance
impact of Twitter-specific pre-trained language models to be evaluated.

The following section explains the strategy to generate multiple sentence embeddings
using the pre-trained BERTBASE-uncased model. It may be noted that for the remaining
paper the term BERT is used to represent BERTBASE-uncased.

Sentence representations using multilayer pre-trained language models. An input sen-
tence is represented as set of input tokens T = [t0, t1, . . . , tn], where t0 is the special [CLS]
token that needs to be prepended for the out-of-the-box pooling schema to work. BERT
produces a set of hidden layer activationsH0, H(1), . . . , H(L), whereH(l) = [h

(l)
0 , h

(l)
1 , . . . , h

(l)
n ]

are the activation vectors of the lth hidden layer. We have ignored the H0 which consists
of non-contextual WordPiece embeddings to generate sentence representations.

To generate a sentence representation based on multiple hidden layers, we propose to
generate token representation vector wi for each token ti in T using a layer pooling strat-
egy. For this, three layer pooling strategies are studied–(i) SUM-layer-strategy, (ii) MEAN-
layer-strategy and (iii) CONCAT-layer-strategy. The SUM-layer-strategy and the MEAN-layer-
strategy calculate the sum and mean of all the activation vectors hi ∈ Rd of the selected
hidden layers, respectively, producing wi ∈ Rd, where d is the size of the hidden vector
h. Thus, for each sentence, the Mean-layer-strategy and SUM-layer-strategy produces a
matrix W ∈ Rn×d. Conversely, the CONCAT-layer-strategy concatenates the correspond-
ing hidden activation vectors hi in the order of the layer numbers to generate wi ∈ Rkd,
where k is the number of BERT layers selected to generate the sentence representation.
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The CONCAT-layer-strategy produces a sentence representation W ∈ Rn×nd.
Then, to derive the sentence vectorS = [s1, s2, ..., s||wi||], we apply multiple token pool-

ing strategies for the sentence representationW (obtained after applying the layer pooling
strategy), where each token representation wi is a row. For this, we study two token pool-
ing operations–(i) MEAN-token-strategy and (ii) MAX-token-strategy. MEAN-token-strategy
and MAX-token-strategy are calculated as sj = E

1≤j≤n
Wij and sj = max

1≤j≤n
Wij , respectively.

Further, the proposed MEAN-MAX-token-strategy concatenates the MEAN-token-strategy
and the MAX-token-strategy output vectors to derive a sentence vector of twice the size of
wi.

Table 3.1: Strategy to generate sentence embeddings from each region(see Figure 3.2) of the BERT model.
Layers No. of Layers Layer Pooling Token PoolingRn-1 1 - mean, maxRn-2 1 - mean, maxRn-3 1 - mean, maxRn-4 1 - mean, maxRn-1, Rn-2 2 sum, mean, concat mean, maxRn-3, Rn-4 2 sum, mean, concat mean, maxRn-1 to Rn-4 4 sum, mean, concat mean, max

Note: Rn-i represents the ith layer in the nth region. We combineeach layer pooling strategy with every token pooling strategy acrossidentified layers to generate multiple sentence embeddings. Layerpooling is not applicable for the sentence embeddings generatedusing a single vector.
As shown in Figure 3.2, for each region Rn (n ∈ 1, 2, 3) different combinations of four

layers have been considered to generate sentence embeddings. We apply the layer pooling
and token pooling strategy combinations, as listed in Table 3.1, across each BERT region Rn

to systematically generate a diverse set of sentence embeddings using the pre-trained BERT
model.

Sentence-BERT. Our experiments also utilise the state-of-the-art sentence embedding
model Sentence-BERT (SBERT) [152], which uses Siamese and triplet network structures to
derive semantically meaningful sentence vectors from the pre-trained BERT model. We
propose using a pre-trained model optimised for Semantic Textual Similarity (STS), as this
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model is recommended for general-purpose use. SBERT uses a mean pooling strategy to
derive sentence vectors from word embeddings.

Static embeddings. We propose using two shallow pre-trained models, namely Word2Vec
and GloVe, to generate sentence vectors for unstructured and noisy sentences. These lan-
guage models are rich in vocabulary compared to BERT. Social media data such as Tweets
frequently lack grammatical structure and contain misspelled words and acronyms. Hence,
a language model that ensures a lower percentage of OOV words may provide better sen-
tence representations than a deep pre-trained model with a smaller vocabulary. In con-
trast, BERT uses a technique called byte-pair-encoding (BPE) [153] based WordPiece tok-
enization [154] to deal with OOVs.

We use the MEAN-token-strategy to derive sentence embeddings using Word2Vec and
GloVe.

3.3.2 Noisy Probing Datasets
Probing datasets have a crucial role in the proposed study, as they validate the model’s abil-
ity to comprehend linguistic characteristics. Studies reported earlier (e.g., [100]) have fo-
cused only on language comprehension of structured and grammatical sentences. Hence,
the existing probing datasets [100] contain structured and grammatical sentences and rely
on the pre-trained Probabilistic context-free grammar (PCFG) model [155] and part-of-speech,
constituency and dependency parsing information provided by the Stanford Parser. Al-
though the PCFG model reported close to 87% accuracy for regular English sentences, it
is poorly suited for noisy texts [156]. Further, the available Twitter-specific dependency
parsers reported a low overall accuracy level with further reductions if the test set topics
differed from the training dataset. Thus, we propose using noisy datasets that have been
manually annotated with the required linguistic labels to generate quality probing datasets
from noisy texts. While the dataset’s specifications are essentially based on those pro-
posed by [100], we avoid using automatic part-of-speech or automatic dependency parsing
as suggested by them. We use ‘Tweebank v2’, a collection of English Tweets annotated in
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Universal Dependencies [157], as it can be exploited to generate the required noisy probing
datasets.

Earlier research [157] did not focus on specific aspects of linguistics, such as dependency
parsing information. Due to the unavailability of these linguistic labels, in this study, we
work only with key five probing tasks. This does not cause any major disadvantage on the
analysis as the key probing tasks are selected such that they continue to cover the three
important linguistic categories (i.e., surface, syntactic and semantic), thereby enabling us to
analyse the richness of the sentence vectors across all three levels of linguistic information
and ensuring the quality of the findings. Further, we have introduced additional criteria
explained below to adapt the dataset to noisy conditions. The probing tasks in this study
are explained in the following sections:

Sentence length. In this classification task, the goal is to predict the sentence length in
eight possible bins (0–7) based on their lengths; 0: (5–8), 1: (9–12), 2: (13–16), 3: (17–20),
4: (21–25), 5: (26–29), 6: (30–33), 7: (34–70). These bins are the same as those proposed
earlier [107]. This task is referred to as ‘SentLen’.

Word content. We consider a 10-class classification task with 10 words as targets consid-
ering the available manually annotated instances. The aim is to predict which of the target
words appears in the given sentence. Words that are not part of vocabulary are split by
BERT into sub-words and characters. In this case, word embeddings might not reflect the
best meaning of the word. Hence, we propose to use only the words that appear in the
BERT vocabulary as target words. We constructed the data by picking the first 10 lower-
cased words occurring in the corpus vocabulary ordered by frequency and having a length
of at least four characters. This restriction helps to improve the reliability of the dataset as
this is a noisy dataset. Further, each sentence contains only a single target word, and the
word occurs precisely once in the sentence. The task is referred to as ‘WC’.

Bigram shift. The purpose of the Bigram Shift task is to test whether an encoder is sen-
sitive to legal word orders. Two adjacent words in a Tweet are inverted, and the classifier
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performs a binary classification to identify inverted and non-inverted Tweets. The task is
referred to as ‘BShift’.

Tree depth. The Tree Depth task evaluates the encoded sentence’s ability to understand
the hierarchical structure by allowing the classification model to predict the depth of the
longest path from the root to any leaf in the Tweet’s parser tree. The dataset contains six
different classes (i.e., two to seven) based on the tree depth. The task is referred to as
‘TreeDepth’.

Semantic oddman out. The Tweets are modified by replacing a random noun or a verb o

with another noun or verb r. The task of the classifier is to identify whether the sentence
gets modified due to this change. The task is called ‘SOMO’ in the paper.

These five probing tasks, covering the three key linguistic information levels are pre-
sented in Table 3.2.

Table 3.2: Grouping of probing tasks.
Group Probing TasksSurface information SentLen, WCSyntactic information BShift, TreeDepthSemantic information SOMO

3.3.3 Sentence Vector Evaluation Framework
The most commonly used approach to generate sentence vectors is to average the BERT
output layer (BERT embeddings) or by using the output of the first token (the [CLS] token).
We extend the common sentence vector generation with our sentence embedding genera-
tion technique and combine it with the new probing datasets to develop a sentence vector
evaluation framework, as shown in Figure 3.3. This framework enables us to assess the
ability of various sentence vectors to capture linguistic information that can be useful for
various downstream tasks. Probing datasets consist of the noisy datasets we developed
using manually annotated Tweets. As discussed in Section 3.3.1, the Embedding Generator
shall generate a diverse set of sentence vectors based on the BERT model while generating
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sentence vectors using various other pre-trained models. Next, sentence vectors are for-
warded to a classification model. We propose to use a logistic regression (LR) model and a
multilayer perceptron (MLP) model to analyse the relationship between different sentence
vectors and the shallowness or the deepness of the network.

Figure 3.3: Framework.

3.4 Experiments
This section presents various experiments to evaluate the proposed methods’ effective-
ness in improving noisy text classification accuracy under a low data regime. Section 3.4.1
presents experiments related to inductive transfer learning technique with the BERT lan-
guage model. Section 3.4.2 explains the experiments conducted related to new sentence
vectors and their linguistic behaviour across different probing tasks. At the end of each
experiment, we analyse, discuss the results and provide a conclusion.

3.4.1 Experiments on Transfer Learning with Language Models
The following experiments are carried out to study the effectiveness of transferring prior
knowledge from pre-trained language models for noisy text classification tasks. Further, we
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investigate the application of text data augmentation to boost the classification accuracies
in a limited labelled data context.

3.4.1.1 Dataset
As a benchmark, a dataset developed and studied earlier [33] is considered. This dataset
contains 2,130 manually annotated Tweets across seven intent categories, as shown in Ta-
ble 3.3. Table 3.3 also shows the distribution of the dataset in these seven categories.

Table 3.3: Composition of the dataset.
Intent Category Number of Tweets

Career 159 (7.46%)Event 321 (15.07%)Food 245 (11.50%)Goods 251 (11.78%)Travel 187 (8.78%)Trifle 436 (20.47%)Non-intent 531 (24.92%)

Let
DT be the entire labelled data comprising of 50 instances for each intent category were

randomly sampled (to simulate limited data scenario)
DV be the remaining labelled data left unused.
We perform the hyperparameter tuning for the BERT model using the five-fold cross-

validation by taking only 10 random instances for each intent class (i.e., DU ) from DT to
train the model, andDV is used to test the model (similar to [33]), as depicted in Figure 3.4.

Figure 3.4: Data splitting for fine-tuning.
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3.4.1.2 BERT Fine-Tuning
The transfer learning is through fine-tuning the BERT model, as discussed in Section 3.2.1.3.
To fine-tune, it is recommended to set most of the BERT model parameters to the original
values assigned during pre-training. However, a range of appropriate values for the batch
size, learning rate and number of epochs across specific text mining tasks are reported
[15, 158]. To meet our requirements, we explore the optimal task-specific hyperparameters
for noisy text classification under the limited availability of labelled data.

To derive the optimal batch size, learning rate and number of training epochs, we run an
exhaustive search over the following task-specific hyperparameters of the extended BERT
model. Apart from the range of possible values recommended for the hyperparameters
[15], we also introduce values for tiny batch sizes (i.e., four and eight), since we are using
a very small set of labelled-data for fine-tuning. The Adam optimiser (β1 = 0.9, β2 =

0.999, L2 weight decay of 0.01) [159] with a learning rate warmup over the first 10% of
the training steps, and linear decay of learning rate afterwards (similar to [15]) is used to
optimise the objective function. We use accuracy as the evaluation metric. The hyperpa-
rameter settings chosen for our experiments are

• Batch size: 4, 8, 16
• Learning rate (Adam): 2e-5, 3e-5, 4e-5, 5e-5
• Number of epochs: 3, 4.
To obtain the test set accuracies, the ten-fold cross-validation is carried out with 10

randomly sampled instances from DT as training data, and using DV as test data. The
cross-validation prevents the model from overfitting the data. As the fine-tuning can some-
times be unstable due to the small training data set, several random restarts for each cross-
validation experiment are performed.

For the experiments, we use the pre-trained BERT models provided by the PyTorch-
Transformers library.1 In our simulation experiments for very small training datasets, we

1https://github.com/huggingface/transformers
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observed the best performance to be consistently obtained for the mini-batch sizes four
and eight. We also observed the optimisation difficulties (i.e., a high variance in scores
between the folds) associated with large batch sizes during the k-fold cross-validation due
to overfitting. In contrast, small batch sizes achieved the best training stability, indicating
improved generalisation performance.

3.4.1.3 Data Augmentation with Back Translation
To explore the influence of text data augmentation, we augment the training dataset using
the back-translation technique across three target languages to create a new dataset DS

that consists of three synthetic sentences for each sentence in DU , as shown in Figure 3.4.
Next, similar fine-tuning steps, as discussed in Section 3.4.1.2, are carried out using the
augmented training dataset as training data.

3.4.1.4 Results and Discussion
Table 3.4 presents the accuracies obtained by transferring prior knowledge through fine-
tuning the BERT model with a limited labelled dataset and an augmented dataset. We
consider accuracies reported by Wang et al. [33] as the benchmark. Experiments with
fine-tuning the BERT model, as depicted in Figure 3.1, shows the performance of intent
classification with the same dataset and a similar training conditions as [33]. Further, our
next experiment shows the performance boost due to text augmentation in a limited data
context.

Table 3.4: Noisy text classification accuracies.
Class Wang’s BERT (fine-tuning) BERT + AugmentationCareer 45.73 42.62 66.99Event 27.13 48.8 60.94Food 54.63 66.79 83.46Goods 43.25 47.21 60.26Non-intent 35.56 39.32 40.65Travel 58.64 56.85 71.4Trifle 20.04 41.98 49.36Micro-F1 42.21 50.75 58.69Macro-F1 40.71 49.08 61.87
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The effectiveness of the inductive transfer learning with a pre-trained language model
becomes clear with the results of several experiments reported in the previous section. We
note that the magnitude of the performance gains using the pre-trained language model
is significant, even with minimal data being used for training. Despite using only ten in-
stances from each intent category as training data, the BERT model, fine-tuned only with
only four epochs, has performed remarkably well. It resulted in competitive accuracies
against the more sophisticated semi-supervised learning models that require complex algo-
rithms [33]. The fine-tuned BERT model obtains a significant absolute accuracy (Macro-F1)
improvement of 8.4% over the state-of-the-art semi-supervised learning accuracy reported
by Wang et al. [33]. Several experiments carried out clearly validate the effectiveness of
the proposed technique. These results suggest that the pre-trained language models can
have satisfactory performance even with noisy texts, and hence, they can be effectively
utilised for other NLP applications having noisy data.

Conversely, it was evident that the accuracy of two classes–Career and Travel–in the
benchmark dataset [33] have suffered though the overall accuracy for BERT fine-tuning
was higher than the benchmark. However, text augmentation has shown promising results
with a remarkable improvement of over 20% over the state-of-the-art benchmark accuracy
while showing significant improvement across all the individual categories. The results
confirm that while fine-tuning pre-trained models were effective in a limited data context,
more data helps to achieve significantly better results.

With intent analysis, while the intended action can be inferred from the text, it may
often require some contextual knowledge. The real-world applications of intent analysis
are very much challenged by the scarcity of labelled data, hindering its successful applica-
tion. The above experiments show that significant improvements in prediction accuracy
can be achieved by transferring knowledge from the pre-trained language models to the
intent analysis model. The pre-trained language model helps on two fronts–it allows the
intent analysis model to understand the natural language efficiently and provides relevant
knowledge learned from an extensive collection of unlabelled data that can be effectively
used when the target task lacks sufficient labelled training data to identify important pat-
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terns. This research shows that using a pre-trained language modelling tool and a text data
augmentation technique can improve noisy text classification in a low labelled data regime.

3.4.2 Experiments on Noisy Text Comprehension
3.4.2.1 Dataset Development
As discussed in Section 3.3.2, we developed five different probing datasets for these dif-
ferent probing tasks. The probing datasets are developed based on the ‘Tweebank v2’
dataset2 developed by [160]. ‘Tweebank v2’, a collection of English Tweets annotated in
Universal Dependencies [157], is useful since it can be exploited for training NLP systems
to enhance their performance on social media texts. Table 3.5 shows the distribution of
Tweets for training, validation and testing across the five probing datasets.

Table 3.5: Probing task datasets.
Dataset Train Validation TestSentLen 1530 684 1141WC 439 186 328BShift 1639 710 1201TreeDepth 1071 433 757SOMO 1003 444 727

3.4.2.2 Sentence Embedding Generation
As shown in Table 3.6, we leverage a few commonly used pre-trained language models
and the Sentence-BERT embeddings model under each of the base language models dis-
cussed in Section 3.3.1. For training, standard sentences from the Google News dataset and
Wikipedia was used for ‘GoogleNews’ and the ‘glove 6b’ pre-trained models while BERTBASE
model was trained using BookCorpus and Wikipedia data. Similarly, the SBERT-NLI-base
sentence Transformer was trained on the SNLI [161] dataset, whereas the ‘glove twitter’
language model was trained with a large number of Tweets.

2https://github.com/Oneplus/Tweebank
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Table 3.6: Pre-trained language models.
Base Model Pre-Trained Model Vocab. Size DimensionWord2Vec GoogleNews 3M 300GloVe glove 6b 400K 300GloVe glove twitter 1.2M 200BERT BERT-base 30522 768S-BERT SBERT-NLI-base 30522 768

3.4.2.3 Probing Task Classification
We used SentEval toolkit [162] to evaluate different sentence encoders. As in [163], we
employed MLP, a deeper network, and a LR classifier to make the findings more practical
while reducing the undesirable side effects, such as preference for embeddings of larger
size. We used the classifier and the validator provided with the SentEval toolkit3[162] after
modifying it to accommodate proposed sentence embeddings. Following Conneau et al.

[162], we applied the parameters, shown in Table 3.7, for LR and MLP. However, to cope with
the computational constraints, we have modified the value of the ‘batch size’ parameter
to 32.

Table 3.7: Parameters for the classifiers.
Parameter LR MLPnhid 0 200optimiser ‘adam’ ‘adam’batch size 32 32tenacity 5 5epoch size 4 4

3.4.2.4 Results
This section first analyses the effectiveness of the proposed pooling strategies–layer pool-
ing and token pooling. Next, we analyse the distribution of the language understanding
(i.e., surface, syntactic and semantic) across the various regions of the BERT model pro-
posed for this study. Finally, we analyse the performance of the sentence vectors gener-
ated by combining these findings along with the existing sentence vector generation mech-
anisms, including the state-of-the-art techniques.

3https://github.com/facebookresearch/SentEval/
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Table 3.8: Sentence vector sizes derived using different pooling strategies with four hiddenlayers.
Layer Pooling Token Pooling Embedding Size

concat max 3072mean 3072mean max 6144
mean max 768mean 768mean max 1536
sum max 768mean 768mean max 1536

Pooling strategy analysis. Since the CONCAT-layer-strategy and MEAN-MAX-token-strategy
significantly increase the resulting sentence vector size, by four times and two times, re-
spectively, we considered sentence embeddings derived by using all four layers of each
BERT region. Table 3.8 shows the resulting sentence vector sizes for each combination of
layer and token pooling strategies when applied for four hidden layers of BERT. From the
results shown in Table 3.9, we note that the LR model achieves the best results with sen-
tence vectors of size 6,144, whereas the MLP model achieved the best results, in most
cases, with 1,536 vector size. From this, it becomes evident that simpler models, such as
LR, require huge sentence vectors to identify linguistic patterns, while the complex models
can achieve improved results with significantly lower-sized sentence vectors.

Similarly, Table 3.10 shows that the LR model achieved–in most cases–the best accuracy
with the CONCAT-layer-strategy. However, one of the syntactic information groups’ tasks
and the semantic information task obtained the best results with MEAN-layer-strategy.
Conversely, the MLP model performed satisfactorily with the MEAN-layer-strategy and SUM-
layer-strategy. Both LR and the MLP models prefer MEAN-MAX-token-strategy or MEAN-
token-strategy, while MAX-token-strategy performed poorly across all the probing tasks.

In the rest of the analyses, the results derived with MEAN-layer-strategy and MEAN-
token-strategy using the MLP classifier are used. This enables easy comparisons of the
BERT based sentence embeddings with vectors derived from static pre-trained models by
calculating the average of word embeddings. Further, Sentence-BERT internally uses the
mean of the token embeddings to generate sentence embeddings.
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Region-wise analysis. Figure 3.5 shows a heat map of the accuracies (darker colours
equate to higher accuracy) of each probing task with sentence vectors generated using
each hidden layer of the BERT model. The SentLen and the WC tasks in the Surface Infor-
mation group achieved better accuracies with sentence vectors derived from hidden layers
in the first region (R1), and the performance gradually decreases as we move towards the
last layers of the BERT model. Conversely, higher accuracies were obtained for the Syn-
tactic information tasks–BShift and TreeDepth–with the sentence vectors generated using
the hidden layers from the second region (R2). The initial layers of the R2 have shown the
most contribution to the accuracy, while the hidden layers from the R1 have contributed
poorly to the Syntactic information group tasks. Further, the hidden layers that contribute
to increasing the sentence vectors’ richness for the Semantic information task were found
at the border of the R2 and R3.

1

2

6

7

5

4

3

11

12

10

8

9

Layer SentLen WC BShift TreeDepth SOMO

R
eg

io
n

 1
R

eg
io

n
 2

R
eg

io
n

 3

Figure 3.5: Heat map of probing task accuracy.

Overall, in the context of noisy texts, the hidden layers in the region R1 contain most of
the linguistic characteristics required to address probing tasks in the Surface group. In con-
trast, Syntactic and Semantic group tasks were able to identify necessary linguistic patterns
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from R1 and R2. Nevertheless, the sentence vectors’ performance derived from hidden lay-
ers in the last region (R3) ranges from low to marginal, indicating their inability to capture
linguistic information from noisy texts.

Overall accuracy. Table 3.11 presents the classification accuracies for probing tasks with
sentence vectors derived from GloVe-based pre-trained models, Sentence-BERT and using
different hidden layers from BERTBASE-uncased model. In the context of BERT-based sen-
tence vectors, we have considered sentence vectors derived based on the last hidden layer,
the last four hidden layers, and all 12 layers. Devlin et al. [15] achieved comparable results
for the feature-based approach by using those layers as the input to an artificial recurrent
neural network. Based on our findings, we propose two separate approaches for noisy
texts. The first is based on BERT’s first hidden layer, while the second combines the first
hidden layer of each BERT region–layers 1, 5 and 9 (1-5-9).

The MLP model has achieved the best accuracy for all the probing tasks except for the
SOMO task, which is in the Semantic information group. The LR model has reached the Sur-
face information probing tasks’ best results with the BERT-based sentence vectors derived
only using the first hidden layer. However, LR performed better for Syntactic and Semantic
information probing tasks with sentence vectors generated using all 12 hidden layers of the
BERT model.

Conversely, the best results for the MLP model were mostly achieved with the sentence
vectors derived using the 1-5-9 hidden layers. Only the Semantic information task achieved
the best accuracy with all 12 hidden layers. The WC probing task performed well with the
first hidden layer, and the second-best accuracy was obtained with the 1-5-9 hidden layers.

3.4.2.5 Discussion
The BERT sentence vectors performed exceptionally well on all the probing tasks and per-
formed better than GloVe and Word2Vec, despite these two representations having rich
vocabulary. Specifically, the GloVe model, even though trained on a large corpus of Tweets,
performed poorly. Further, sentence vectors derived from BERT’s hidden layers achieved
significantly better results over the state-of-the-art Sentence-BERT model. The latter hid-
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den layers of BERT performed poorly in capturing linguistic information compared to the
shallow layers. The unstructured nature of the Tweets, we observe, benefit more from the
initial layers that capture shallow information rather than the later layers, which capture
more complex hidden information.

Further, the experiments relating to the length of the sentence vector revealed that
the simpler predictive models perform better with large sentence vectors, while complex
models prefer significantly smaller vectors. The complex models are better at identifying
intricate patterns from compressed vectors that contain rich information. However, simpler
models prefer higher dimensions to achieve better results as they cannot identify complex
patterns.

We presented a methodology to systematically analyse the knowledge distribution within
a multilayer pre-trained language model while generating sentence vectors that can cap-
ture various linguistic characteristics. This technique could be directly applied to most
multilayer pre-trained language models to understand the linguistic properties captured
by latent representations. Further, the noisy probing datasets developed in this study can
complement future research in NLU by providing researchers with additional datasets that
cover the domain of noisy data. While the current study focused on a representative set
of five probing tasks that covered all linguistic attributes, future work could also explore
additional probing tasks to further validate our results.

Future research could focus on analysing the impact of pre-processing the Tweets to
reduce the noise level on the linguistic knowledge distribution and the derived sentence
representations. Moreover, the same probing dataset could be used to examine the rela-
tionship between the BERT’s attention layers and the meaning-rich sentence embeddings.
This could help to derive more meaning-rich sentence vectors.

The research work reported in Section 3.4.2 demonstrates that the general language
understanding of pre-trained language models such as BERT can be effectively exploited
to comprehend noisy texts. Further, the proposed methodology can effectively gener-
ate sentence vectors encoding different linguistic aspects using latent representations of
multilayer pre-trained language models. We observe that the shallow layers of the BERT
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model are better at capturing linguistic information of noisy and unstructured texts than
the deeper layers for general English sentences [99]. Further, it can be noted that simple
predictive models prefer large sentence vectors, while complex models are more successful
with significantly smaller sentence vectors. It is worthwhile noting that the first layer or a
combination of BERT layers from each region can be used to derive generalisable sentence
vectors for noisy and unstructured texts.

We believe that our new noisy probing datasets can serve as benchmark datasets for
future researchers to study the linguistic characteristics of unstructured and noisy texts.

3.5 Summary
Our research work reported in this chapter shows that the pre-trained language can effec-
tively transfer prior knowledge to noisy text classification tasks to achieve state-of-the-art
accuracy under a low labelled-data regime. Further, the meaning-rich sentence represen-
tations derived from latent layers of a pre-trained language model proved to be highly
effective in capturing the linguistic characteristics of a sentence.

However, although transferring prior knowledge from pre-trained language models helps
to improve the performance of low-resource text classification tasks, results also confirm
that the text augmentation technique helps boost the performance further. Hence, in the
next chapter, we focus on developing a novel text augmentation technique to address the
root cause of data scarcity by generating quality synthetic sentences to augment the train-
ing dataset.
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Chapter 4
Meaning-Sensitive Text Augmentation
4.1 Introduction
In the previous chapter, though we boosted the performance of NLP models through trans-
fer learning and text comprehension, it was evident that the data scarcity significantly af-
fected the accuracy of large-scale NLP models, and data augmentation helped alleviate this
problem. Most importantly, data scarcity is a common problem in many real-world applica-
tions, including for organisations such as SportsHosts. Thus, it will be challenging to achieve
the desired results through NLP-powered solutions without an effective mechanism, such
as data augmentation, to address this limitation.

‘Data augmentation’ is a term used to describe ways to generate various training ex-
amples without gathering new data [164]. In computer vision, data augmentation can be
easily performed by transformations, such as cropping, rotating, resizing, mirroring and
colour shifting, which generate new training samples without losing important informa-
tion. In contrast, for text-based data, data augmentation is challenging, as universal trans-
formation methods generate random text sequences that tend to lose valuable information
about the syntax and semantics of a sentence. Even a minor revision to a sentence could
change the overall meaning of the sentence and disturb its grammatical structure, thus,
having a significant negative impact on the accuracy of downstream NLP tasks.

In recent times, due to the rapid growth of rich text data (e.g., social media data, re-
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views and emails), a plethora of NLP use cases have captured the attention of both the
industry and academia. However, the accuracy and scalability of these machine learning
approaches are often challenged by two key factors, the scarcity of labelled data and imbal-
ances in the data. Further, due to the sheer volume of text data generated every day and
passed through trained models for inference, models are increasingly exposed to unseen
data, significantly affecting the model performance. Conversely, with the recent popular-
ity of deep neural network-based models in NLP tasks, attention to text augmentation has
increased, as the limited size of training data tends to significantly affect the accuracy of
large models due to overfitting. While the state-of-the-art pre-trained language models,
such as BERT, trained via MLM, benefit many downstream NLP tasks, the performance of
such models can be greatly improved with more training data [143].

The rest of the chapter is organised as follows. Section 4.2 proposes a semantic text
augmentation technique based on the back-translation approach. Further, it explores the
impact of adding increasingly more synthetic sentences to the accuracy of the downstream
NLP tasks. Section 4.3 presents a novel MLM-based text augmentation algorithm, IMOSA,
which can significantly optimise the overall quality and diversity of the augmented dataset.
Further, we conduct an extensive experiment to ascertain the robustness of IMOSA against
two state-of-the-art text augmentation techniques across multiple NLP tasks.

4.2 Semantic Data Augmentation
In this section, we present a novel semantic data augmentation method that generates syn-
thetic sentences to mitigate the impact of small, labelled data problems while preserving
the meaning of the synthetic sentence and label compatibility.

In the proposed method, we generate additional (i.e., synthetic) data via the transfor-
mation of a specific Tweet. The available sentences are augmented without violating their
meaning by applying the back-translation strategy (translating from English to any other
language and then back to English) [139], which generates new semantically appropriate
sentences that preserve the meaning of the original sentence–thereby synthesising more
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data. While generating synthetic sentences, it is necessary to ensure that the synthetic
sentence preserves the semantic similarity with the original sentence to reduce the risks
of introducing a label noise.

A schematic diagram illustrating the proposed semantic data augmentation method is
shown in Figure 4.1. The key components of this semantic data augmentation architecture
are back translation, sentence embedding and similarity threshold, as discussed next.

Figure 4.1: Semantic data augmentation using back translation and sentence similarity fil-tering based on sentence embeddings extracted from the Sentence-BERT (SBERT) [152]model.

Back translation. A new synthetic sentence is obtained by applying back translation, which
translates a Tweet in English into any target language, langx, and then re-translates it back
into English. The chosen target languages are those that belong to the Indo-European
language family (i.e., same language family as English.) so that multiple target languages
can be used effectively. For this research, the three target languages chosen are German,
French and Italian.

Sentence embedding. While the diversity of words and sentences is essential, the STS
of the sentences is also crucial to underpinning performance improvement, primarily if
the meaning of the sentence exists in the downstream segment. The proposed method
leverages STS to reduce the distortion or changes in the meaning of the original sentence.
For this, we use SBERT, an existing built-in algorithm with the pre-trained BERT network,
which uses the Siamese and triplet network structures to derive semantically meaningful
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sentence embedding [152].

Similarity threshold. Let
So be the source sentence
Sbt be the synthetic sentence generated using a second language.

For data augmentation, we propose to use only sentences that are semantically meaningful
by comparing the sentence embedding of the original sentence (S⃗o) with the transformed
example S⃗bt. Sbt is considered a valid sentence (Ŝo) if and only if cos(S⃗o, S⃗bt) ≥ T , where
T is a chosen threshold value for semantic similarity.

To determine the similarity threshold level, we propose a novel method based on the
probability density function of the cosine-similarity scores between Sbt, obtained using all
the target languages and corresponding original sentenceSo, as depicted in Figure 4.3. The
method uses pth percentile (πp) to determine a set of candidate threshold values {Tmin,
Tp}, where p ∈ 15, 25, 50. Tp is calculated using Equation (4.1), whereas the minimum
threshold value Tmin, based on the standard interquartile range (IQR) rule (i.e., 1.5 × IQR
rule), is calculated using Equation (4.2).

Tp =

∫ πp

−∞
f(x) dx (4.1)

Tmin = T25 − 1.5(T75 − T25) (4.2)
Since the augmentation dataset comprises transformed sentences using multiple languages,
a question then arises as to whether the different threshold values per target language
might be more effective in identifying semantically meaningful sentences. This approach
is cumbersome and may be costly when many target languages are used. However, the
proposed method is meaningful only if the behaviour of the target languages are approxi-
mately similar to each other.
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4.2.1 Augmentation Methodology
Based on the above considerations in text data augmentation, the following systematic
and novel step-by-step methodology is proposed for applying the linguistic model BERT for
intent classification with limited data availability.

1. Translate a source sentence (So) into a second language and then back to English.
Multiple target languages can be used to generate multiple synthetic sentences from
a givenSo. LetSbt be a synthetic sentence generated andAi be a set ofSbt generated
by each second language i for a given set of source sentences.

2. Obtain deep contextualised word representation vector Se
o for each source sentence

and Se
bt for corresponding back-translated sentences from Ai using SBERT, a modifi-

cation of the pre-trained BERT network that uses Siamese and triplet network struc-
tures to derive semantically meaningful sentences.

3. Compute the cosine similarity C (−1 <= C <= 1) between the sentence em-
bedding pair (So, Sbt) for all the sentences in Ai. Steps 4–8 below determine the
semantic similarity threshold.

4. Let us propose a hypothesis that the two probability density distributions being com-
pared are equal. Verify the equality of the probability density functions of the se-
mantic similarity scores of synthetic sentences in each Ai against each other and
with reference to the probability density functions of the semantic similarity scores
of all the back-translated sentences A′ based on Equation (4.3).

A′ =
n⋃

i=1

Ai (4.3)

5. The null and alternative hypothesis for the Kolmogorov–Smirnov (KS) Test can be
formally stated as

H0 : f(C) = f0(C) for all C
H1 : f(C) ̸= f0(C) for at least one C.
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Apply the two-sample KS test [165], as it is sensitive to deviations in both location
and shape of the empirical cumulative distribution functions of the two samples.

6. As identifying any difference between the probability density distributions of the
mixture of all back-translated sentences A′ and back-translated sentences gener-
ated by a target language Ai is complex, a global threshold value for all the target
languages are determined based on the probability density distribution of all back-
translated sentences, as depicted in Figure 4.3, without applying individual threshold
values for each second language.

7. If there is not enough evidence unavailable to identify any difference between the
probability density distributions of the mixture of all back-translated sentences A′

and back-translated sentences generated by a target language Ai, we accept H0. In
this case, we determine a global threshold value for all the target languages based
on the probability density distribution of all back-translated sentences, as depicted
in Figure 4.3, without applying individual threshold values for each second language.

8. Apply a threshold, T , on C to retain only the back-translated sentences semantically
close to the source sentence. T is a hyperparameter of the proposed semantic data
augmentation model.

9. Finally, fine-tune the extended BERT model using the augmented dataset with the
optimal values for task-specific properties of the BERT model (i.e., batch size, learning
rate and the number of epochs) and the semantic similarity threshold T , identified
during hyperparameter tuning.

4.2.2 Experiments on Semantic Data Augmentation
This section describes the experiments carried out to study the proposed semantic data
augmentation technique to overcome the problem of labelled data scarcity and evaluate
the effectiveness of pre-trained language models in intent classification, which is a chal-
lenging NLP task. We use the same intent related dataset developed by [33] that we studied
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earlier in Section 3.4.1 of Chapter 3. Table 3.3 shows the intent categories and distribution
of the records across different intent categories.

We extend the same experiment discussed in Section 3.4.1.3 of Chapter 3 to fine-tune
the BERT model with a fresh augmented dataset created using the semantic data augmen-
tation technique proposed in Section 4.2 of this chapter. We discuss the extension of the
experiment in detail in the following section.

4.2.2.1 Ablation Study
To augment the text data using back translation, we chose three target languages: German,
French and Italian. We then apply Google Translate API (‘googletrans’) to translate the
10 randomly selected instances of each category from DT . After removing the synthetic
sentences that are exactly similar to the original sentence, the augmented dataset DA

is obtained. With this approach, for each training dataset sample, we generated three
augmented datasets using the target languages. Let each augmented dataset generated
using different target languages be denoted as Di

A, where i ∈ 1, 2, 3,
Sentence-BERT1 is applied to generate sentence embeddings for original So and syn-

thetic sentences Sbt in Di
A. To evaluate the semantic similarity between So and Sbt, we

chose the cosine-similarity score (cosine of the angle between two embedding vectors), a
widely implemented metric in information retrieval. The probability density distributions
of the semantic similarity scores for back-translated sentences in each Di

A and for the mix-
ture of all the back-translated sentences are shown in Figure 4.2.

The hypothesis tests between the empirical distribution function of the mixture of all
back-translated sentences and the distribution of the back-translated sentence generated
using each of the target languages revealed very high p-values for each KS test. This in-
dicates weak evidence against the null hypothesis, thereby failing to reject the null hy-
pothesis. Therefore, a global threshold value is applied instead of all the back-translated
sentences generated using different target languages, as shown in Figure 4.3.

For fine-tuning, with the augmented dataset Di
A, we follow the same BERT model ar-

1https://github.com/UKPLab/sentence-transformers
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chitecture, as depicted in Figure 3.1. We perform hyperparameter tuning with five-fold
cross-validation using Di

A to obtain the optimal batch size, learning rate, number of train-
ing epochs and, additionally, the semantic similarity threshold of the proposed data aug-
mentation technique. As depicted in Figure 4.4, we obtained the best model performance
on the training dataset for all Di

A when the threshold value was set to Tmin. For each Di
A,

the test accuracies were obtained using ten-fold cross-validation with 10 randomly sampled
instances from DT as training data, with DV being used as test data.

None Tmin T15 T25 T50
Threshold
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Figure 4.4: Evaluation accuracy.
To evaluate the effectiveness of our approach, we conducted several experiments. Ta-

ble 4.1 presents the accuracies obtained by different strategies. Experiment 1 gives the
baseline accuracies from Wang et al. [33]. Experiment 2 shows the performance of in-
tent classification using the model based on BERT, as depicted in Figure 3.1, with the same
dataset and a similar training set-up as [33]. Further, Experiments 3, 5 and 7 report the per-
formance of our models, which were fine-tuned with Di

A (i = 1, 2, 3, respectively), without
applying any semantic similarity threshold Tp. However, for Experiments 4, 6 and 8, we
apply the optimal semantic similarity threshold obtained during hyperparameter tuning to
eliminate noisy synthetic sentences.

As shown in Table 4.1, we achieved 1.41%, 0.68% and 0.55% average accuracy (Micro-
F1) improvement for Experiments 4, 6 and 8, respectively, which signifies the effectiveness
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of the proposed semantic similarity threshold. This threshold, which controls the amount
of noise removed from the synthetic dataset, contributes to the improvements. We ob-
serve that the highest accuracy with the proposed semantic data augmentation technique
is obtained with two back translations, with a similarity score threshold value of 0.8797
(Tmin). Figure 4.5 shows the performance of our approach with different threshold values
for each Di

A. As shown in Figure 4.4, the model trained with a semantically augmented
training dataset outperforms the model trained with the full augmented dataset in terms
of average test accuracy. Interestingly, we observe an overall drop in accuracy when there
is an increase in the number of back translations from two to three. This is possibly because
the synthetic sentences are not providing any further diversity and variety to the training
data, despite adding additional target languages, thereby resulting in the model overfitting
the training data.

01 02 03
No. of back-translations

62.0

62.5

63.0

63.5

64.0

64.5

M
ac
ro
-F
1

back-translation (no threshold)
semantic data augmentation

Figure 4.5: Average test accuracy.

4.2.2.2 Discussion
Examples (a)–(d) in Table 4.2, for back-translated sentences with corresponding semantic
similarity scores, proclaim that the proposed approach is more effective compared to the
naive back translation. Interestingly, as observed in examples (a) and (b) in Table 4.2, our
approach was able to easily eliminate the meaningless back-translated sentences gener-
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Table 4.2: Examples of synthetic sentences and semantic similarity scores.

(a) Original sentence I need ice cream to put out fire -.-Back-tr. (German) I need ice fire extinguished -.- 0.72Back-tr. (French) I need ice cream to extinguish the fire -.- 0.96
(b) Original sentence I need to hit up the mall .Back-tr. (German) I need the Mall beating. 0.83Back-tr. (Italian) I have to hit the mall. 0.94
(c) Original sentence I want to buy i-phone .Back-tr. (German) I love shopping i-phone. 0.68
(d) Original sentence. I want chinese buffet for lunch .Back-tr. (German) I like Chinese buffet for lunch. 0.90
(e) Original sentence I should really get some sleeeep !Back-tr. (French) I should really sleep! 0.55Back-tr. (Italian) I really should get some sleep ’! 0.56
(f) Original sentence I would like to get a type writer ...Back-tr. (German) I want to get a typewriter ... 0.79Back-tr. (Italian) I would like a typewriter ... 0.79
(g) Original sentence I should slerp with you . HmmBack-tr. (German) I want to sleep with you. Hmm 0.37

ated with German as the target language while continuing to retain the meaningful and
diverse synthetic sentences generated using French and Italian languages. Further, as ob-
served in examples (c) and (d), the translations are acceptable in a general context. How-
ever, these synthesised sentences express an opinion rather than an intent [28]. The pro-
posed semantic data augmentation technique maintains label compatibility in such situa-
tions.

In contrast, examples (e)–(g) in Table 4.2 show valid synthetic sentences, but these had
low semantic similarity scores due to repeated sequential letters (e.g., sleeeep), incorrect
word separations (e.g., type writer) and spelling mistakes (e.g., slerp) respectively. We may
minimise the impact caused by such aberrations by introducing pre-processing tasks, such
as spelling correction and removal of additional letters in a word with repeated sequential
letters.
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4.3 Meaning-Sensitive Data Augmentation with Intelligent
Masking

The work proposed in this section focuses on generating synthetic sentences to improve
the performance of context-aware NLP tasks while maintaining a good balance between
both the overall quality and diversity of the augmented dataset.

With recent advances in NLP technology, researchers have started paying more atten-
tion to improving the quality of data augmentation algorithms via context-aware tech-
niques [125]. To this end, researchers have recently studied MLM-based approaches [126,
166, 127] using pre-trained language models to generate context-aware and label-compatible
synthetic sentences. These methods generate a fixed number of synthetic sentences for
each example in the original dataset. While MLM-based techniques tend to improve the
quality of the generated sentences when compared to other augmentation techniques,
such as EDA [115], augmenting every single sentence might introduce low-quality sentences
to the augmented dataset, affecting the overall accuracy of downstream NLP tasks, espe-
cially in low-resource settings. Conversely, the performance improvements afforded by
augmented data have only been evaluated using architectures based on recurrent or con-
volutional layers, which pay less attention to the context of the words than state-of-the-art
Transformer-based models [54, 96], thereby being less sensitive to meaning and grammat-
ical structure deviations of the synthetic sentences.

Synthetic sentences that are too similar to the original sentences may lead to greater
overfitting, while sentences that are too different may lead to poor performance. While
data augmentation techniques such as EDA [115] produce synthetic sentences without pay-
ing much attention to the meaning, Conditional BERT Contextual Augmentation (CBERT)
[126] and Self-Supervised Manifold Based Data Augmentation (SSMBA) [127] focus on gen-
erating more meaningful sentences. However, both CBERT and SSMBA do not concentrate
on selecting the most favourable sentences or words to optimise the overall quality and
diversity of the augmented dataset. In this section, we propose IMOSA, a novel text aug-
mentation method that focuses on generating more synthetic data progressively where
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plausible rather than augmenting every single sentence in the original dataset. IMOSA
includes simple yet powerful techniques to control the quality and diversity specific to a
particular dataset. The proposed method consists of novel and intelligent mechanisms to
identify the most favourable sentences from the training dataset to ensure that the gener-
ated synthetic sentences are of high quality. Further, we focus on augmenting the datasets
in the low data regime, where the quality and variety of the synthetic sentences play a more
significant role in improving the performance of downstream NLP tasks. We demonstrate
the superiority of the proposed text data augmentation technique by evaluating the per-
formance of downstream NLP tasks using a state-of-the-art Transformer-based pre-trained
language model.

Briefly, the research reported in this section presents the following novel contributions:
• The novel text data augmentation technique can improve the overall diversity of the

original dataset by identifying the most suitable sentences to augment while gener-
ating an optimum number of quality synthetic sentences from a selected sentence.

• The novel technique proposed adds additional diversity to the augmented dataset
while maintaining a constant percentage of masked input tokens.

• Being generic, the proposed intelligent masking and optimal substitution technique
can be applied to improve several existing MLM-based algorithms.

• The proposed IMOSA method performs better than several state-of-the-art tech-
niques, as evidenced through rigorous experiments in a context-aware setting.

4.3.1 IMOSA Methodology
In this section, we describe the components and process of the proposed meaning-sensitive
text data augmentation strategy in detail. As depicted in Figure 4.6, at a high level, our data
augmentation framework consists of three main steps:

1. conditional MLM pre-training
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2. generation of masked candidate sentences using intelligent masking
3. generation of synthetic sentences using optimal substitution.

IMOSA is capable of identifying the most favourable tokens to mask and derive multiple
masked inputs for a particular sentence (e.g., example no. 1 has two corresponding masked
inputs–1a and 1b) using intelligent masking. Further, optimal substitution allows IMOSA
to generate multiple high-quality sentences per masked input (e.g., 1a has two synthetic
examples–1a.1 and 1a.2). Apart from that, intelligent masking, together with optimal sub-
stitution, helps to eliminate source sentences that might not have the potential to gener-
ate quality synthetic sentences (e.g., 1b, 3a and 3b). Moreover, Conditional Fine-Tuning
ensures that IMOSA generates label-compatible synthetic examples.

Figure 4.6: High-level steps for generating synthetic sentences using IMOSA.
The proposed methodology primarily uses the BERT model as an MLM for text data

augmentation in different stages of the process, as discussed in each section below.

4.3.1.1 Conditional Masked Language Model Pre-Training
The proposed framework leverages the same original architecture of BERT and focuses
on fine-tuning BERT for generative tasks to leverage the language model for MLM tasks.
Further, to maintain the label compatibility, we fine-tune the BERT model on a particular
task using a conditional MLM proposed by [126]. To this end, we modify the input repre-
sentation and training procedure to perform a conditional MLM task. We blend the label
information of a particular text sequence with its input representation and use a labelled
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dataset to fine-tune the BERT model to obtain a label-conditional BERT model. To achieve
this, as shown in Figure 4.7, we alter the segmentation embedding to label embeddings
derived using the annotation label of the sentence. More details on this technique are
available in [126].

Figure 4.7: Preparation of BERT inputs for masked sentences.

4.3.1.2 Intelligent Masking
The proposed intelligent masking technique is composed of two key steps: Pruned Masking
and Masked Multiplier.

Prunedmasking. In the pruned masking task, we select candidate tokens to mask a given
sentence S effectively. In the context of text data augmentation, replacing words such as
proper nouns, pronouns, coordinating conjunctions or determiners (e.g., ‘a’, ‘an’ and ‘the’)
in a sentence add little or no diversity to the original dataset. Further, having multiple in-
stances of very similar sentences could cause overfitting. Thus, we select a highly effective
set of candidate words or tokens in our approach, eliminating ineffectual words using POS
for masking. To optimise the selected candidate tokens, with the help of a stop words list,
we further eliminate some common words that would not add required diversity when
replaced.

For this, as shown in Figure 4.8, we tokenize S to obtain an array of words W =

[w0, w1, . . . , wm] using a white-space tokenizer. We pass W through POS and a stop-word
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Figure 4.8: Key steps in the intelligent masking phase.
tagger to obtain POS tags P = [p0, p1, . . . , pm] and stop-word flags O = [o0, o1, . . . , om].
However, as we use the BERT model, we obtain an array of tokens T = [t0, t1, . . . , tn] by
tokenizing S using BERT’s sub-word tokenizer to prepare the inputs. BERT uses a Word-
Piece tokenizer, where one word can be broken into multiple tokens producing equal or
more tokens (i.e., |T | >= |W |) than the white-space tokenizer. Hence, we align P and
O with T to map the POS tags and stop-word flags considering sub-words produced by
the WordPiece tokenizer. This approach enables us to accurately apply the required tags
to each token ti ∈ T . Next, we select only the tokens tagged with parts of speech (i.e.,
noun, verb, adjective, adverb, preposition and interjection) as candidate tokens for mask-
ing. We disqualify any token flagged as a stop word, optimising the candidate tokens fur-
ther. For simplicity, we use C to represent these candidate tokens selected for masking. To
mask the tokenized sentence for augmentation, we pick a subset M ∈ Rr from C, where
r = min(|T | × 0.15, |C|).

While |M | can contain up to 15% of the tokens, this approach allows IMOSA to consider
the most influential tokens concerning text data augmentation. Further, it is worth noting
that |M | can be 0 if no candidate tokens were selected (i.e., C = ∅). This is one of the two
methods used by IMOSA to completely eliminate input examples that might not support
effective text data augmentation.
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Masked multiplier. Though we optimise the masking process to identify the most suit-
able candidates (i.e., tokens) to replace and generate a synthetic sentence, the pruned
masking alone cannot guarantee that we select the most favourable subset to mask the
tokens in a sentence. Further, allowing only a single subgroup of masked tokens per sen-
tence limits the data augmentation algorithm’s ability to introduce the necessary diversity
to the augmented dataset.

Thus, we propose to generate multiple masking subsets Mj with non-overlapping to-
kens using C. In this way, we create a pool of masked input tokens Tm

j for replacement by
masking the corresponding tokens in T based on the tokens in each Mj . This technique
allows us to generate multiple distinct masked sequences from the same original sentence
to improve the diversity of the dataset while enabling the algorithm to select the most
favourable masking to generate a high-quality synthetic sentence. A parameter α controls
the maximum number of masked sequences generated per sentence.

Figure 4.9: Generation of the most probable synthetic sentences from masked token pre-dictions.
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4.3.1.3 Optimal Substitution
In this stage, we use the fine-tuned Conditional BERT model to obtain predictions for the
masked tokens in an input sentence. Figure 4.9 shows the main steps to obtain synthetic
sentences for a particular sentence. We input Tm

j where j <= α and capture the BERT
predictions (token and the corresponding probability) for each masked token in Tm

j . We
retain only the top-k highest probability predictions for each masked token in Tm

j , if, and
only if, the probability of such a token is greater than a threshold, β. We use slti and plti to
represent lth predicted token and its probability, respectively, where ti is the correspond-
ing masked token of the original sentence. If plti >= β, we regard slti as an important
token. In this case, we may end up with no predicted tokens (0 ≤ l ≤ k) for some masked
tokens. For such masked tokens, we consider s0ti = ti. Similar to pruned masking (4.3.1.2),
this technique optimises the effectiveness of the proposed algorithm by replacing only the
highly potential tokens in a particular sentence. Further, this is the second technique em-
ployed by IMOSA to eliminate some less effective input examples entirely.

Next, we consider set possible permutations Qj of |Tm
j | items by taking one token slti

with plti at a time from each set of predictions corresponding to each masked token in
Tm
j . The ith permutation is represented as an array Qj

i ∈ R|Tm
j | and each rth item in Qj

i

consists of a predicted token qtr and the corresponding probability qpr . Then, we calculate
the likelihood of the token replacements LQj

i
for a particular sentence by calculating the

joint probability between the new tokens qti :

LQj
i
=

|Tm
j |∑

r=0

∏
qpr (4.4)

We place each Qj
i in a priority queue of K elements, corresponding to |Tm

j |, where the
priority is the LQj

i
. This approach allows the proposed augmentation method to select the

most optimal substitutes to generateK synthetic sentences from a source sentence against
a particular mask combination Tm

j . The parameter K controls the maximum number of
new synthetic sentences generated per mask combination for a particular sentence.
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4.3.2 Experiments on IMOSA
To empirically evaluate our proposed text data augmentation technique, we study three
benchmark datasets and compare the performances against two state-of-the-art MLM-
based data augmentation methods: SSMBA [127] and CBERT [126]. As discussed earlier,
the experiments focus on the challenging task of text data augmentation in the low data
regime. Apart from that, we evaluate the outcome of the proposed algorithm in alignment
with context-aware representations, which are recent advancements in NLP.

Datasets. We select three text classification datasets, as listed in Table 4.3. Since our
focus is on generating synthetic sentences under extreme low data settings, we ignore any
train/test split in the original datasets and merge all the splits to create a single dataset.
Table 4.3 provides summary statistics of the datasets.

Table 4.3: Datasets.
Dataset Size Vocabulary Num. ClassesSST-2 8741 9613 2SUBJ 10000 21323 2RT 10662 20287 2

For convenience, a brief description of each dataset is provided:
• SST-2. The Stanford Sentiment Treebank (SST) [167] is a corpus of fully annotated

parse trees that enables a thorough examination of sentiment in natural language.
It contains movie reviews and human annotations of their sentiment. The binary
classification (negative and positive) dataset on whole sentences of SST is known as
SST-2, or SST-binary [168].

• SUBJ. A Subjectivity analysis is a task that is similar to sentiment analysis, with the
purpose of classifying an opinion as subjective or objective. The Subjectivity dataset
(SUBJ) [169] contains sentences or phrases that are at least 10 words long, drawn
from movie reviews or plot summaries.

• RT-polarity. A Sentiment polarity dataset is another movie review dataset published
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by Pang and Lee [169]. The reviews are extracted from the website RottenTomatoes
(RT) and are automatically annotated based on review ratings.

Data splitting. Data splitting is widely used in machine learning to divide data into train,
test and validate sets. We use this method to discover the hyperparameters of a model and
estimate its generalisation performance. We specifically employ double cross-validation
(DCV) [170] to conduct the experiments to improve the reliability of the results. The DVC
process comprises two nested cross-validation loops: internal and external. We divide each
dataset into two subsets referred to as training and test sets. We use the training dataset
in the internal loop of DCV for hyperparameter tuning and model building. The test set is
used exclusively for model assessment in the external loop.

To simulate an extremely low labelled data scenario, we use 80% of the dataset as test
data (DS) and use this data only to assess the model. Out of the remaining 20% (training
set), we select only a set of 50 records (DT ) to train the model in the inner loop. The rest of
the training set examples (DV ) are used as a validation dataset for hyperparameter tuning.
Table 4.4 shows the size of the splits for each dataset. For each dataset, using five random
seeds, we create five different groups Gi (each containing different examples for DT , DV

and DS), where i ∈ (1, 2, 3, 4, 5).
Table 4.4: Dataset splits.

Dataset Internal Loop External LoopTrain Validation TestSST-2 50 1749 6942SUBJ 50 2000 7950RT-polarity 50 2133 8479

4.3.2.1 Baselines
We compare the proposed algorithm against two state-of-the-art text data augmentation
methods. CBERT [126] is an MLM-based text data augmentation algorithm that fine-tunes
BERT using a label-conditional LM architecture to generate new sentences. SSMBA[127]
reconstructs corrupted text with MLMs. SSMBA ensures that the new sentences lie within
the manifold neighbourhood of the original example.
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4.3.2.2 Augmentation Settings
We augment the training dataset DT in each group Gi using CBERT, SSMBA, and the pro-
posed technique, IMOSA. We discuss below the details related to each of the data augmen-
tation techniques. We use the pre-trained BERTBASE-uncased version as an MLM across all
the experiments. Additionally, to evaluate the performance in a state-of-the-art context-
aware setting, we use the same pre-trained BERT model as a text classifier for the down-
stream tasks.

CBERT. We fine-tune the Conditional BERT model (see Section 4.3.1.1) using the training
dataset DT , which contains only 50 records, separately for each group Gi. We use three
epochs and 5e-5 as the learning rate. Wu et al. [126] achieved the best results for the SST-2
dataset with these parameters. Further, we use a batch size of four, as recommended by
Kasthuriarachchy et al. [124], for fine-tuning BERT under limited labelled data settings.

Next, we use the trained Conditional BERT model to generate synthetic sentences for
the original sentences in DT . For augmentation using CBERT, 15% of the input tokens were
randomly masked (i.e., sample ratio = 15%). We generate two synthetic sentences per
original sentence by setting the sample num parameter to two. We keep the default val-
ues for the other properties.

To conduct the experiments, we use Wu’s [126] implementation in the released code.2

Table 4.5: IMOSA configurations for each dataset.
Dataset IMOSA Parameters

sample ratio α K k βSST-2 0.15 4 2 8 0.4RT-polarity 0.15 4 2 8 0.45SUBJ 0.15 4 2 8 0.6

IMOSA. We use the same Conditional BERT model trained in Section 4.3.2.2 to generate
new sentences using IMOSA. Similar to CBERT, for IMOSA, we set the sample ratio to 15%.
However, in the context of IMOSA, the actual percentage of masked tokens can vary from

2https://github.com/1024er/cbert_aug
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0% to 15% due to pruned masking (see Section 4.3.1.2). Additionally, we set the number of
masks per sentence α to four and the number of samples K (i.e., the maximum number of
synthetic sentences per original sentence) to two, allowing IMOSA to generate a maximum
of eight new sentences per original sentence. Further, we set the top-k most probable
tokens selected for replacing a masked token to (α·K), the default value for the parameter
k. Finally, we set the probability threshold β to different values, as shown in Table 4.5,
instructing IMOSA not to replace a masked token if the predicted token has a probability of
less than β. Table 4.5 summarises the IMOSA configurations used for each of the datasets.

We select the parameters of IMOSA mentioned above, primarily focusing on keeping
the augmented dataset size close to the CBERT output above to ensure comparable re-
sults. The optimal parameter values of IMOSA are task-specific; however, we found that
the following range of values works well across all tasks:

• Number of masks (α): 2, 3, 4
• Number of samples (K): 1, 2
• Threshold (β): 0.3, 0.4, 0.5, 0.6

SSMBA. In the context of SSMBA, we set the probability for selecting a token for noising
(noise prob) to 0.15. Selected tokens are then masked, randomly replaced or left the same.
Further, as suggested by the SSMBA authors, we set the top-k most probable tokens (topk)
to unrestricted (i.e., -1), as SSMBA works best when it can explore the manifold without
any restrictions. In this case, SSMBA draws samples from the full probability distribution
of predicted tokens. Finally, we set the number of augmented samples to generate for
each input example (num samples) to two to ensure comparable results. We keep the
default values for the other parameters. However, as per the experiments performed by
the SSMBA authors, they observed peak performance at 45% corruption. Thus, we carried
out an additional set of experiments assigning 0.45 as the new noise prob value. This new
experiment is identified as SSMBA-45.

To conduct the experiments, we use Ng’s [127] implementation in the released code.3
3https://github.com/nng555/ssmba
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4.3.2.3 Evaluation Method
Pertaining to performance evaluation, we focus on two crucial aspects: context-aware NLP
setting and generalisability. To this end, we fine-tune the pre-trained BERT-base-uncased
model to classify text into specific sets of categories.

Next, to guarantee the generalisability of the results while minimising the impact of the
generally unstable fine-tuning process, we employ a variation of DCV (see Section 4.3.2)
to evaluate the performance of the proposed text data augmentation technique, IMOSA.
During the internal loop, we perform a grid search to identify the best parameters for the
model and build a model at the end of the internal loop usingDV and the selected parame-
ters. The optimal hyperparameter values of BERT are task-specific. Thus, as recommended
in [15], we consider the following range of possible values during the grid search:

• Learning rate: 5e-5, 3e-5, 2e-5
• Number of epochs: 2, 3, 4.

Since we focus on text generation under extremely low labelled data conditions, we use
a smaller batch size of four, which is recommended for text classification in the low data
regime using pre-trained BERT models [124].

Subsequently, we assess the trained model using DS in the external loop. The perfor-
mances of the models are averaged across seeds (i.e., groups) to obtain the overall achieve-
ment of a particular model. We use F1-score [171], which emphasises false positives and
false negatives, to evaluate the models.

4.3.2.4 Results
This section presents the results of text classification, as summarised in Table 4.6. For each
experiment, the table shows the average F1 score across five independent experiments
conducted using a different set of examples in each group Gi, where i ∈ (1, 2, 3, 4, 5).
Similarly, the number of sentences and vocabulary size is calculated by taking the averages
for five groups.
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Table 4.6: Accuracies.
Dataset Aug. Method Num. Sentences Vocab. Size F1 Score
SST-2

None 50 386 75.15CBERT 150 472.2 (+22.3%) 80.08SSMBA 149.2 632.2 (+63.8%) 79.77SSMBA-45 149.2 912.6 (+136.4%) 77.56IMOSA 152 421 (+9.1%) 81.15
SUBJ

None 50 517.2 90.0CBERT 150 645.4 (+29.9%) 91.72SSMBA 150 811.2 (+58.9%) 91.60SSMBA-45 150 1161 (+128.3%) 91.15IMOSA 138.8 571.4 (+12.7%) 92.34
RT-polarity

None 50 448.4 69.53CBERT 150 582.4 (+24.8%) 72.66SSMBA 150 712.8 (+56.8%) 71.37SSMBA-45 150 1023.8 (+124.9%) 71.69IMOSA 147.4 505.4 (+10.5%) 76.45
We consider classification accuracy with no data augmentation (i.e., None) as the base-

line. Further, CBERT and SSMBA provide the benchmark accuracies using the data augmen-
tation techniques proposed by Wu et al. [126] and Ng et al. [127], respectively. Additionally,
SSMBA-45 shows the accuracy of the SSMBA method with the best-performing parameters
reported in [127]. All the text data augmentation techniques, including IMOSA, reported
considerable performance improvements across all three downstream tasks, confirming
the distinct advantage of text augmentation under extremely low labelled data conditions.
Across all datasets, models trained with IMOSA outperformed benchmark models. IMOSA
obtained a significant absolute accuracy (F1 score) improvement over the state-of-the-art
MLM-based data augmentation technique, CBERT, across all three datasets. Neverthe-
less, CBERT outperformed both SSMBA and SSMBA-45 against all three datasets under
extremely low labelled data conditions. Interestingly, SSMBA surpassed SSMBA-45 against
SST-2 and SUBJ datasets while showing almost similar performance with the RT-polarity
dataset.

The SSMBA method recorded a relative increase of close to 60% over the original vo-
cabulary size of the training dataset in all three downstream tasks, whereas SSMBA-45
reported an upturn of over 120%. These outcomes show the SSMBA’s ability to extensively
improve the diversity of the augmented dataset. However, the results suggest that diver-
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sity alone is not sufficient to guarantee state-of-the-art performance, particularly under
the low data regime. Further, it is worth noting that the significant increase in the vocab-
ulary size with SSMBA-45, despite 45% of input tokens being selected for replacement,
did not help the model to perform better. Conversely, our text data augmentation tech-
nique, IMOSA, increased the vocabulary size by approximately 10%, under multiple strict
restrictions applied to maintain the quality of the synthetic sentences. IMOSA considers
only a subset of tokens from the entire set of tokens due to pruned masking (see Section
4.3.1.2), and the remaining tokens are ignored. Further, a β value of 0.4 or greater has
been considered for IMOSA. In this case, only the predicted tokens with a probability of
40% or more are retained to generate synthetic sentences. Despite the tight restrictions,
the results revealed that IMOSA could add sufficient diversity to the augmented dataset.
It can be observed that adding diversity under controlled conditions to ensure the quality
of the synthetic sentences is highly effective.

The overall accuracy across the three datasets suggests that the RT-polarity task is more
challenging. IMOSA achieved an absolute accuracy (F1 score) improvement of 1.06% and
0.62 over CBERT, the second-best performer, in SST-2 and SUBJ datasets, while recording a
relatively more remarkable improvement of 3.8% over CBERT in the RT-polarity task. This
confirms IMOSA’s robustness and its ability to perform under challenging conditions. A
more in-depth analysis of the key features in IMOSA that contributes to these achievements
is discussed next.

4.3.2.5 Analysis and Discussion
In this section, we analyse the factors that influence IMOSA’s performance.

Number of synthetic sentences. The average number of sentences in the augmented
datasets in Table 4.3 revealed that both CBERT and SSMBA augmented almost all the orig-
inal examples (two new sentences per original example). Although SSMBA technically has
the ability to ignore sentences by retaining the corresponding original token of a masked
token, this aspect of the algorithm did not play a noticeable role. In contrast, IMOSA heavily
relied on identifying the most favourable sentences to augment.
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Figure 4.10: Frequency distribution of the number of synthetic sentences generated peroriginal example in the training set.
Figure 4.10 illustrates the frequency distribution of the number of sentences generated

by IMOSA against an original example. We have reported the average frequency across the
five groups of data splits, Gi. It is important to note that while SSMBA and CBERT were
allowed to generate a maximum of two examples for each original sentence, IMOSA’s con-
figurations enable it to create a maximum of eight (α ·K). The number of actual synthetic
sentences generated for each original example varies from zero to five, where zero rep-
resents the original sentences that were ignored while replacing words to generate new
examples. Approximately 10% of the original sentences in the training dataset have not
been considered, showing IMOSA’s ability to focus on the most favourable examples to
generate synthetic sentences. Further, the distribution reveals how IMOSA focuses on pro-
gressively developing more quality sentences using appropriate original examples. While
over 30% of the training examples were utilised to generate two synthetic sentences, a few
examples were extensively used to create five new sentences.

Diversity. The configurations of IMOSA allow it to mask 15% (i.e., sample ratio = 15)
of input tokens that are considered candidates for replacement. However, due to pruned
masking (see Section 4.3.1.2), the percentage of tokens eligible for masking could be less
than 15%. Conversely, the substitution threshold, β, discussed in Section 4.3.1.3, might
decide not to replace a masked token if the probability of a predicted token is less thanβ. As
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Figure 4.11: Distribution of percentage of masked tokens.
these features were designed to maintain the quality of synthetic sentences, the effective
number of tokens replaced can be significantly less than the sample ratio value, hindering
IMOSA’s ability to add diversity to the augmented dataset. As depicted in Figure 4.11, if we
consider individual examples, the percentage of tokens replaced was significantly below
the expected 15%. Based on the density plot for individual sentences, most values are
located at 5.1%, 3.8% and 3.4% for SST-2, RT-polarity and SUBJ, respectively.

While pruned masking and substitution thresholds are essential to generate meaning-
ful synthetic sentences, the right-skewed density plots with very low mode values revealed
their significant impact on adding new words to the training dataset. To this end, IMOSA
is equipped with Masked Multiplier, a technique that allows IMOSA to add sufficient diver-
sity to the augmented dataset using a particular sentence. As discussed in Section 4.3.1.2,
Masked Multiplier is capable of generating multiple distinct masked sentences for a given
original sentence, enabling IMOSA to consider a significantly large percentage of favourable
tokens for replacement. As shown in Figure 4.11, Masked Multiplier has shifted the density
plot to the right drastically with peak values at 15.6%, 10.8% and 7.5% for SST-2, RT-polarity
and SUBJ, respectively, confirming its effectiveness.

Further, it is worth noting that, overall, the Masked Multiplier was able to replace a
significantly higher percentage of tokens than the specified value for the sample ratio
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while keeping the replacements per synthetic sentences below the sample ratio value.
Moreover, this technique helps to mitigate the impact on the quality of the predictions
due to large sample ratio values since BERT neglects dependency among predicted tokens
[15]. While this is one of the key reasons behind IMOSA’s performance, SSMBA-45, which
masked 45% of the input tokens, performed poorly compared to SSMBA.

Nevertheless, IMOSA recorded only a peak replacement percentage of 7.5% with the
SUBJ dataset compared to 15.6% with SST-2 dataset. This is mainly due to the highβ value in
the IMOSA configurations used with the SUBJ downstream task, favouring very high quality
over diversity. In this case, IMOSA focuses more on maintaining the meaning and quality
of the synthetic sentences, replacing masked tokens only with high probable predicted to-
kens. In the context of these experiments, we used a significantly high β value, mainly to
control the augmented dataset size, enabling us to compare the results against the perfor-
mance of CBERT and SSMBA.

4.4 Summary
In this chapter, we have presented two novel text augmentation techniques that focus on
creating synthetic sentences that maintain similar meaning to the original sentences. Our
study on semantic data augmentation proves the importance of maintaining the semantics
of synthetic sentences to further contribute to the overall performance of context-aware
NLP tasks. Moreover, we evaluated our novel text augmentation technique, IMOSA, on
various NLP tasks and found that it outperforms several state-of-the-art text augmentation
techniques.

In the next chapter, we introduce novel optimisation for manual data labelling, one of
the critical challenges in real-world NLP tasks. For this, we propose a cost-effective text
annotation methodology using crowdsourcing platforms. Further, we present an end-to-
end framework to build and develop social intelligence solutions using NLP.
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Chapter 5
Social Media Intelligence and Text
Analytics
5.1 Introduction
In Chapters 3 and 4, we presented novel techniques to significantly improve the perfor-
mance of NLP models with noisy text content under limited labelled data conditions. Our
contributions can be applied to boost the effectiveness of SMA solutions in the real world.

SMA refers to the gathering of data from social media sites and blogs to analyse and
inform business decisions. SMA goes beyond the standard monitoring or the rudimentary
study of Retweets or ‘likes’ to generate a more comprehensive understanding of the social
consumer. Further, social media listening, which is a branch of SMA, focuses on tracking
direct reference to an entity, such as a person, event or organisation, to understand the
audience’s behaviour around a theme [172]. However, social media intelligence is required
to provide a complete and sophisticated understanding of a target audience [172]. In social
intelligence projects, organisations use social media data to answer specific questions or
solve a problem.

In the context of social intelligence, it is a popular approach in the industry and academia
to derive insights from texts to provide solutions across many disciplines, including con-
sumer behaviour, politics, disaster management and sociology [173, 174, 175]. Unstructured
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data in microblogging platforms, such as Twitter and Facebook, have seen rapid growth
and are among popular text data sources for such use cases, given their popularity with
users for the sharing of opinions and thoughts that could be relevant for business decision-
making. However, the unstructured and informal nature of social media data can introduce
significant noise and diversity, thus making the task very challenging. Further, the text clas-
sification frequently suffers from insufficient labelled data because the labelled datasets
are often manually annotated.

This chapter aims to develop a social media intelligence framework, focusing on text
analytics use cases, to provide a more efficient and effective approach for real-world ap-
plications. This framework can help SportsHosts to deploy an AI-driven digital marketing
solution that optimises audience targeting and personalisation. SportsHosts can combine
social listening with novel AI and NLP techniques to identify prospective sports fans across
the globe more efficiently and effectively using popular social media platforms, such as
Twitter. Firstly, to address a crucial step, we present a cost-effective data annotation tech-
nique to obtain manually annotated training data required for many NLP tasks, including
text classification. Secondly, in Section 5.3, we introduce an end-to-end framework for text
classification based social intelligence solutions, combining our key contributions discussed
in Chapters 3 and 4 and the proposed cost-effective text annotation framework in Section
5.2.

5.2 Cost-Effective Data Annotation
Modern technologies and media, such as social media and smart devices, have made avail-
able vast quantities of text-based data, including microblogs, reviews, personal messages
and news articles. Further, social media platforms such as Twitter, Facebook and Reddit
have captured the attention of both the industry and academia due to the wealth of user-
generated information they hold. The popularity of using Twitter data for research and
real-world use cases in the NLP domain remains high due to its huge active user base and
the tremendous number of text messages (Tweets) every day.
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However, any effort to study and generate insights from informal discussions on social
media sites will require at least a minimum number of labelled data for evaluation pur-
poses. For instance, SportsHosts will require labelled data related to sports fans to deploy
a supervised text classification model to identify potential sports fans using Twitter mes-
sages. Traditionally, domain experts or the researchers themselves have annotated the
necessary training data, often at considerable costs in terms of time and money. Recently,
however, crowdsourcing platforms, such as Amazon’s Mechanical Turk (MTurk), have been
leveraged to create large training corpora at significantly lower costs [176].

Nevertheless, creating labelled datasets for various use cases remains challenging, as
the percentage of useful Tweets is scarce in most of the scenarios. This is mainly due to the
high volume of Twitter messages posted by individual users and organisations to promote
a product or service. These messages tend to contain a set of keywords (hashtags) similar
to useful Tweets, making it harder to differentiate them. Further, in the context of text
classification tasks, often, useful Tweets are highly skewed across target classes. Thus, it
is inevitable that we annotate a large corpus of Tweets to obtain a sufficient amount of
labelled training data for each target class. In the context of data annotation, the quality
of the labels received from annotators varies. Some annotators may provide an incorrect
label due to a genuine misinterpretation of the definition. Given that annotators are paid
a small amount per task completed on MTurk, some annotators may also rush to complete
tasks to maximise earnings, thus providing random or poor quality labels at the expense of
accuracy.

To overcome these challenges, we propose a novel framework to annotate text data
specifically for Twitter-based text classification use cases at significantly lower costs using
crowdsourcing platforms. The proposed framework leverages zero-shot text classification
to pre-annotate the unlabelled dataset to develop specialised sub-datasets based on the
target labels. These sub-datasets can be used to address the challenges of data imbalance
across target classes. Further, we propose to introduce additional labels to the annotation
task to ensure annotation quality. These additional classes will help to reduce genuine
errors due to misjudgement and misinterpretation. Moreover, the annotation framework
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consists of a two-stage annotation process to reduce cost while maintaining annotation
quality.

The rest of this section is organised as follows. Section 5.2.1 introduces the proposed
annotation framework, and the subsequent sections present the key components of the
framework: meaning-sensitive pre-processing, novel pre-annotation using zero-shot text
classification and specialised sub-datasets. Section 5.2.6 discusses a multi-phase approach
to annotating a dataset using the proposed framework.

5.2.1 Text Annotation Framework
The main components of the complete framework are depicted in Figure 5.1. This system-
atic, step-by-step methodology is proposed to create training datasets for text classification
tasks using a crowdsourcing platform. The main steps of the framework are as follows.

Step 1: Tweet extraction. Tweets can be extracted based on suitable keywords using Twit-
ter’s standard search Application Programming Interface (API) without any financial cost.
However, the number of Tweets that can be extracted per request is limited. Thus, Tweets
need to be collected over some time to obtain the required number of Tweets. Addition-
ally, lang : en and −is : retweet parameters are used to obtain only Tweets that are in
English and original (i.e. eliminating Tweets that have been re-posted by another user),
respectively.

Step 2: Raw dataset preparation. In Step 2, we extract the user.id, idstr and full text

fields from the extracted Tweet objects to create a ‘Raw’ dataset. Further, we filter out any
record with user.verified = true to eliminate Tweets authored by known organisations
or companies, who are more likely to post promotional Tweets.

Step 3: Meaning-sensitivepre-processing As the third step, we perform meaning-sensitive
pre-processing on the ‘Raw’ dataset, as discussed in detail in Section 5.2.2. This helps to
improve the accuracy of the zero-shot text classification, as we propose to use a state-of-
the-art BERT model trained on MNLI. The BERT model is sensitive to the structure of the
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Figure 5.1: Annotation framework.
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input sentences, as it was trained on datasets with structured sentences [15].

Step 4: Pre-annotation. Next, we forward the pre-processed instances through a zero-
shot text classification model to obtain class probabilities, as discussed in detail in Section
5.2.3.

Step 5: Specialised sub-dataset generation. The probabilities obtained for the identified
target classes in Step 4 are used to generate specialised sub-datasets for each target class.
As discussed in Section 5.2.4, the majority of the instances in each sub-dataset are expected
to be from a single class. These subsets play a key role in reducing the impact of class
imbalance.

Step 6: Mini-batch annotation. In Step 6, we generate mini-batches using specialised
sub-datasets as discussed in Section 5.2.6.1 and submit them to a crowdsourcing platform
for annotation in a two-stage process (see Section 5.2.6.2). Further, the proposed frame-
work recommends a phase-wise approach to perform the mini-batch annotation, as dis-
cussed in Section 5.2.6.1.

Step 7: Labelled dataset generation. In the last step, we combine all the ‘Reconciled’
batches generated in Step 6 to create the final training dataset.

5.2.2 Meaning-Sensitive Pre-Processing
Meaning-sensitive pre-processing is one of the novel components of the proposed anno-
tation framework. In this section, we discuss the details of the meaning-sensitive pre-
processing module.

Pre-processing is a preliminary step in text classification, and identifying a suitable pre-
processing technique plays an important role in model accuracy [177]. Traditionally, pre-
processing techniques–such as stemming, lemmatising and handling negation by adding a
prefix, ‘NOT ’–have been demonstrated as effective [178]. However, these pre-processing
techniques add more noise to a sentence from the perspective of context-aware language
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models such as BERT. The BERT model is more sensitive to sentence structure, as it was
trained bidirectionally on a large corpus of unlabelled text, including the entire Wikipedia
and BookCorpus [15]. Thus, we propose to use only the pre-processing techniques that
have the least impact on the sentence structure and meaning, as follows.

Replace elongated words. We replace elongated words with their source words.

Spelling correction. We correct any spelling mistakes using a corrector. While no correc-
tor is perfect, they have some–usually high–accuracy of success [179].

Split hashtag. We propose using word segmentation [180] to split a hashtag of a Tweet
into meaningful words. This pre-processing technique is specific to Tweets and helps to
improve the intended meaning of a Tweet.

Replace usermentionswith apronoun. Replacing user mentions (another account’s Twit-
ter username, preceded by the ‘@’ symbol) with a keyword, such as ‘AT USER’, is a com-
monly used pre-processing technique for Tweets. However, this approach interferes with
the structure and meaning of the sentence. Thus, we propose to replace user mentions
with pronouns. We randomly replace a single user mention at the beginning and mid-
dle/end of a sequence with ‘he/she’ and ‘him/her’, respectively. Further, if it is a sequence
of multiple user mentions, we replace the set of user mentions at the beginning of a se-
quence with ‘they’ and with the word ‘them’ otherwise. Moreover, we avoid using the
most common and popular techniques such as stemming, lemmatising and removing stop
words, as they can affect the meaning of a sentence.

5.2.3 Pre-Annotation with Zero-Shot Classification
The zero-shot classification module is one of the novel components that we introduce to
this framework. This section discusses the zero-shot classification module of the annota-
tion framework in detail.
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Hypothesis. As the proposed zero-shot text classification technique is based on a sequence-
pair classification, the hypothesis plays an important role in obtaining better results. We
propose to identify multiple hypotheses H i

c based on the business definition of each class
c ∈ C. Multiple hypotheses will help to capture most of the relevant data for a selected
class c.

Zero-shot text classification. We propose to use a BERT model trained on MNLI, includ-
ing the last layer, which predicts one of the three labels–contradiction, neutral, and
entailment–to pre-annotate the dataset. Kasthuriarachchy et al. [181] have shown that
BERT-based models can be effectively used with noisy texts such as Tweets.

As we have multiple hypotheses for each candidate label, each sentence/hypothesis
pair is forwarded through the model as a premise/hypothesis pair, and we obtain Oh ∈

Rk×3, which contains logits for these three categories for each hypothesis. k is the total
number of hypotheses across all the candidate labels. Afterwards, we perform a softmax
over entailment logits over all the hypotheses H i

c, where c ∈ C, to derive corresponding
probabilities. Finally, we calculate the probability Pc =

∑
i PHi

c
, for each candidate label,

thereby obtaining O ∈ R|C| containing the pre-annotation probabilities for the candidate
classes. Finally, we obtain ĉ by calculating the argmax() of the calculated probabilities O.

5.2.4 Specialised Sub-Datasets
The pre-annotation probabilities obtained for each text sequence using the zero-shot clas-
sification module can be used to generate specialised sub-datasets Dc for each class c ∈
C. For each text sequence, we obtain the predicted class ĉ based on the highest pro-
annotation probability. Each sub-dataset Dc contains text sequences where c = ĉ and
Pc >= 0.5. Thus, each Dc contains a high proportion of potential class c instances.

5.2.5 Handling Promotional Tweets
A significantly large percentage of Tweets are posted to promote a product or service, but
these Tweets typically have no relevance for most text classification use cases. As the pro-
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portion of promotional Tweets can be significantly high in an unlabelled dataset, impulsive
submission of such promotional Tweets to MTurk for annotation can become very expen-
sive for little gain. Further, these Tweets may easily confuse non-expert annotators, leading
to inferior annotation quality. Hence, the proposed framework includes a mechanism to
manage promotion Tweets, which is a crucial component in managing the data imbalance
and reducing the annotation cost.

We introduce an additional class to the annotation task to identify promotion Tweets.
For Tweet-specific use cases, we consider a ‘promotion’ class to be included in the set
of classes C. We use a separate hypothesis during the pre-annotation process to assign
a separate promotion-specific probability to each text sequence, as discussed in Section
5.2.3. We generate a promotion user list by identifying the authors of Tweets for which
ĉ =‘promotion’ and Ppromotion > 0.8. There is a high probability that these Tweets are
promotion Tweets. We use this list of promotion users to filter out potential promotion
Tweets while generating mini-batches. Further, we update the promotion user list after
each mini-batch annotation based on the promotion Tweets in the ‘Reconciled Batch’.

5.2.6 Multi-Phase Approach
We propose using a novel multi-phase approach to annotate a training dataset for improv-
ing the quality of the annotation while reducing the cost further. Firstly, a phase-wise ap-
proach to annotating the full dataset using the proposed annotation framework is intro-
duced. This approach involves performing an end-to-end annotation of mini-batches in
multiple phases as opposed to annotating the full dataset in a single pass. This helps to
improve the annotation quality significantly, as discussed below. Secondly, we propose a
two-stage process to annotate a single mini-batch to reduce the cost while maintaining the
quality of the annotations. We discuss the two-stage batch annotation process in detail in
the Section 5.2.6.2 below.
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5.2.6.1 Phase-Wise Annotation
Mini-batch annotation. Annotating mini-batches is one of the key concepts in the phase-
wise annotation process. We recommend submitting small batches of unlabelled data for
annotation and increasing the batch size gradually once the annotation quality and data
distribution are reasonably consistent. This approach allows us to manage the issue re-
lated to substandard annotation quality and data skewness while significantly reducing the
annotation cost. Further, mini-batch annotation allows us to develop a training dataset in
multiple phases, enabling further quality improvements. We use different strategies to
generate mini-batches in each phase, as discussed in Section 5.2.6.1.

Annotation phases. We propose a phase-wise (three phases) approach to improve the
quality of the annotations by revising the annotation schema based on the analysis per-
formed after each mini-batch annotation. The proposed phases are meant to help reduce
annotator disagreement rates and incorrect annotation percentages (both the annotators
agree, yet the label is incorrect). Table 5.1 shows the key characteristics of each phase
based on the purpose of each phase discussed below.

Table 5.1: Characteristics of phases.
Characteristic Phase 1 Phase 2 Phase 3
batch size small medium largeannotator disagreements high low lowincorrect annotation percentage high low very lowannotation schema revisions major minor none

Phase 1. During Phase 1, a mini-batch from each sub-dataset is generated and submitted
for annotation as per the mini-batch annotation process discussed in Section 5.2.6.1. We
recommend using a smaller batch size (i.e., 100 to 500 instances) for each mini-batch in
Phase 1. Then, we obtain a ‘Reconciled Batch’ (Step 6.3 in Figure 5.2) for each annotated
mini-batch and perform an analysis to obtain the following details:

• proportion of instances from each class c in each sub-dataset
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• inter-annotator agreement (IAA)
• incorrect annotations (by manually analysing a sample of 100 annotated instances).
The above information is evaluated to decide the suitability of the annotator schema

and the quality of the annotations. We recommend revising the annotation schema to
increase the IAA while reducing incorrect annotations. We propose to introduce additional
classes to handle incorrect annotations. This is intended to reduce confusion and increase
the annotator’s attention towards those classes, thereby improving the overall annotation
quality. For instance, if most of the promotion-related instances are incorrectly labelled,
we can introduce ‘promotion’ as an additional class so that annotators are obliged to focus
more on promotion-related text sequences.

We recommend repeating the above steps multiple times until the results are satisfac-
tory.

Figure 5.2: Two-stage mini-batch annotation process (Step 6 of the annotation framework).

Phase 2. In Phase 2, we propose generating mini-batches where class labels are uniformly
distributed based on the sample distribution of each sub-dataset obtained in Phase 1. Fur-
ther, this phase focuses on verifying the consistency of the annotation quality by analysing
the inter-annotator agreements of each annotated mini-batch. We recommend applying
minor modifications to the annotation schema if necessary.

Phase 3. As we have ensured the consistency of the annotation quality and distribution
of the class labels, mini-batches with larger batch sizes are generated and submitted to
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complete the annotation of the remaining unlabelled data.

5.2.6.2 Two-Stage Batch Annotation
Callison-Burch [182] revealed that MTurk is cheap enough to collect redundant annotations,
which can be utilised to ensure annotation quality. However, when multiple labels are
necessary, although a single label is cheap, the costs can accumulate quickly. Thus, in our
framework, we propose a two-stage annotation process to obtain redundant annotations,
reducing the cost further while maintaining the annotation quality. Figure 5.2 illustrates
the complete process followed for each mini-batch.

In the first stage, known as ‘initial submission’ (see Figure 5.2), each instance shall only
be annotated by two random annotators. Once the annotations are available, we set aside
instances with agreed annotations (i.e., instances with the same annotation from both the
annotators) and resubmit the disputed instances to MTurk. In the second stage, known as
‘reconciliation submission’ (see Figure 5.2), each instance in the disputed mini-batch shall
only be annotated by one random annotator, which can be used to break the tie. Finally,
we generate a ‘Reconciled Batch’ containing annotated Tweets from each mini-batch.

Further, for improved annotation quality, we recommend obtaining three and two ran-
dom annotations in Stages 1 and 2, respectively.

5.3 Social Intelligence Framework
This section presents an overarching framework to deploy social media text analytics mod-
els in the real world efficiently and effectively. The proposed framework combines sequen-
tial transfer learning and text augmentation to overcome the impact due to data scarcity
while leveraging state-of-the-art sentence representations to boost the performance of the
NLP task. Further, the framework consists of a text annotation methodology to obtain the
required labelled data quickly and cost-effectively. Figure 5.3 shows the key stages involved
and the main steps of each stage, including the enhancements proposed throughout this
thesis. The following sections discuss the functionality of the key stages of the framework.
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Figure 5.3: High-level framework.
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5.3.1 Business Requirement
The first step to achieving social media intelligence using text data is to understand the
signals that customers leave every day in billions of text messages and reviews. In this case,
organisations must first identify the problem to solve using social intelligence based on
their business strategy. Thus, generating a clearly defined business requirement is crucial
to ensure the success of a social media intelligence strategy. Next, to evaluate and test
the business idea, we must formulate testable, precise and discrete hypotheses. These
hypotheses shall drive the next stages of a social media intelligence solution.

5.3.2 Data Preparation
The data preparation stage (Stage 2) focuses on extracting required text data from a social
media platform to develop the necessary training data to train AI and ML models. De-
pending on the platform, APIs or any other mechanism provided can be used to collect the
data. According to the hypothesis, information such as keywords, location or language is
specified to optimise the collection of useful data. Next, a dataset needs to be prepared
after removing duplicates or unnecessary text data for manual annotation. The guidelines
for annotations are designed based on the business use case and hypotheses developed.
Finally, the annotation framework proposed in Section 5.2 is used to create the labelled
dataset at a significantly reduced cost and time.

5.3.3 Model Development
The performance of context-aware NLP models developed using unstructured social me-
dia data in a real-world setting is significantly affected by two factors: insufficient labelled
training data and difficulty in comprehending the meaning due to the noisy and diverse
nature of social media content. To directly address the training data scarcity, the proposed
framework leverages a novel text augmentation technique, presented in Section 4.3. This
step ensures that the diversity of the training dataset is improved by introducing label-
compatible synthetic sentences to the training dataset. Further, in the model development

107



step, as proposed in Section 3.2, sequential transfer learning techniques are considered
to transfer prior knowledge from pre-trained language models to reduce the impact on
model performance due to limited labelled data. Apart from that, the noisy texts are rep-
resented using the novel sentence embedding technique based on a pre-trained language
model, presented in Section 3.3. These sentence embeddings capture essential linguis-
tic features to improve the ML model’s ability to comprehend the noisy text, improving
text classification accuracy. The use of state-of-the-art pre-trained language models in-
duces context-aware word representations, improving the semantic capabilities of the NLP
model, thereby boosting the overall performance of the NLP task.

Finally, the model’s performance is evaluated against the hypotheses to verify the ef-
fectiveness of the AI and NLP-based approach in solving the identified business problem.

5.3.4 Evaluation
Prior to deploying a machine learning model, its effectiveness needs to be validated in a
real-world setting. For this, an A/B test is designed based on the initial hypotheses. When
performing an A/B test, the first step is to establish the business objective based on the
hypotheses. In the context of social intelligence solutions, we compare the two versions of
the solution to the initial business problem: the social intelligence solution and the general
solution. This is achieved by splitting the audience into two groups and treating each group
with the two versions of the solution. The sample size of each group is estimated based
on the expected statistical significance. The performances of both versions of the solution
are compared statistically to verify the effectiveness of the social intelligence approach.

After validating the significant improvements of the social intelligence solution, the
organisation can roll out new models for production.

5.3.5 Model Deployment
Once the effectiveness of the AI model is established, the solution is deployed to produc-
tion. Although the model’s performance has been verified, the model must continue to
be monitored post-deployment to ensure that it continues to perform as expected. As the
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model is trained using historical data, ever-changing environments in the real world might
produce unfamiliar data, degrading model performance over time. This phenomenon is
known as model drift. The AI model must be monitored and maintained along with a re-
training strategy to address this issue.

5.4 Experiments
This section describes the results of experiments conducted to evaluate our proposed text
annotation framework’s effectiveness at pre-annotation and the phase-wise approach in
developing an annotated dataset.

Use case. We applied the proposed framework to annotate Tweets to train a model for
identifying sports fans. We considered this a binary classification problem and decided to
label the Tweets into two classes–‘Sports Fan’ and ‘Other’. For this use case, we restricted
the identification of fans to a single selected sport, say X, based on Tweets related to a
popular league. As per the business requirement, a sports fan was defined as someone
who has attended or wants to attend/watch Sports X. Further, the business is interested in
sports fans who positively talk about a game or a related topic.

Dataset. We used the official hashtag to extract Tweets related to the selected league of
Sports X using the Standard Twitter API. Further, we applied filters to specify the language
as English (lang:en) and to ensure that we collected only original Tweets (-is:retweet). We
collected 48,782 Tweets and filtered out Tweets authored by verified accounts to eliminate
accounts of public interest while generating the raw dataset. The raw dataset consists of
45,508 Tweets, and we manually annotated 100 Tweets to understand the distribution of
the dataset. There were only 11% ‘Sports Fans’ Tweets. Most importantly, there were 86%
of promotion Tweets in the sample we analysed.

Meaning-sensitive pre-processing. We used Norvig’s spelling corrector1 to automatically
correct spelling mistakes. We split the hashtags into meaningful words using a text pro-

1http://norvig.com/spell-correct.html
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cessor developed by Baziotis, Pelekis and Doulkeridis [183], which is based on the Viterbi
algorithm and utilises word statistics (unigrams and bigrams) from an unlabelled dataset.
Further, we replaced user mentions in the Tweets with pronouns, as suggested in the pro-
posed framework. Moreover, we replaced elongated words with their source words.

Table 5.2: Hypotheses for pre-annotation.
Class Hypothesis
Sports Fan H1

sportsFan: This text is about watching a game.
H2

sportsFan: This text is about attending a game.
Promotion H1

promotion: This text is about a promotion.
H2

promotion: This text is about gambling.

Pre-annotation. As per the pre-annotation task of the proposed framework, we identi-
fied two classes–‘Sports Fan’ and ‘Other’–based on the business requirement. Further, to
manage the promotion Tweets, we also included a ‘Promotion’ class in the pre-annotation
classification. Based on the business definition of a sports fan, as recommended in the pro-
posed framework, we identified multiple hypotheses to detect relevant Tweets, as listed
in Table 5.2. We did not specify a hypothesis to identify sports fans who positively talk
about a game or a related topic since such a hypothesis is generic and would result in
an increased amount of false positives. Further, we introduced two hypotheses to detect
promotion Tweets. We introduced one hypothesis for the promotion class, specifically
to identify gambling-related Tweets, as we observed a large portion of Tweets promoting
gambling-related activities. Any Tweet that is not classified as ‘Sports Fan’ or ‘Promotion’
was labelled as ‘Other’.

Next, we used a BERT model trained on MNLI and forwarded a sentence together with
each hypothesis in Table 5.2 to obtain a matrix of logits Oh ∈ R4×3. Afterwards, we per-
formed a softmax over entailment logits over all the hypotheses - H1

sportsFan, H2
sportsFan,

H1
promotion, andH2

promotion - to obtain probabilitiesP (H1
sportsFan),P (H2

sportsFan),P (H1
promotion),

and P (H2
promotion) for each hypothesis respectively. Finally, we calculate the probabilities

PsportsFan andPpromotion by calculating theP (H1
sportsFan)+P (H2

sportsFan) andP (H1
promotion)+

P (H2
promotion), respectively.
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Specialised sub-datasets. We generated two sub-datasets for ‘Sports Fan’ and ‘Promo-
tion’ by selecting Tweets based on the conditionsPsportsFan >= 0.5 andPpromotion >= 0.5,
respectively. All the remaining Tweets were classified into the ‘Other’ dataset.

Phase-wise annotation. We used Amazon MTurk as the crowdsourcing platform to anno-
tate the Tweets. In our submissions, we offered US$0.05 for each annotation. As proposed
in the framework, we requested two annotations for the initial submission of a mini-batch
across all the phases. Any Tweet with non-agreeing annotations in a mini-batch (‘Disputed
Batch’) was resubmitted for a single annotation to resolve the dispute. This section dis-
cusses the tasks that we performed using the proposed framework to complete the anno-
tation of the Tweets in a phased approach.

Table 5.3: Annotations schemata.
Version Annotation Schema
v1

Positive: author of the Tweet is a Sports X fanNegative: author of the Tweet doesn’t like Sports XNeutral: neither positive or negative (e.g., stating a fact)N/A: promotions, text cannot be understood
v2 Sports Fan: author of the Tweet is a Sports X fanDoesn’t like X: author of the Tweet doesn’t like Sports XN/A: promotions, text cannot be understood
v3

Sports X Fan: author of the Tweet is a Sports X fanPromotion/Ad: Tweets related to promotionsDoesn’t like X: author of the Tweet doesn’t like XN/A: text cannot be understood

As recommended by the proposed framework, during the initial round of Phase 1, we
submitted mini-batches of 450 Tweets (i.e., 150 Tweets from each of the three classes). We
used Version 1 (v1) of the annotation schema, as shown in Table 5.3, to obtain two annota-
tions for each Tweet. Then we conducted a post-analysis to calculate the IAA. Further, we
manually annotated a sample of 100 Tweets from the already-annotated mini-batches to
identify incorrect annotations. Table 5.4 shows the post-analysis results for the first round
and the subsequent rounds. The IAA was inferior mainly due to confusion between the
Neutral and the Positive labels. Further, the incorrect annotation percentage was high as a
significant amount of promotion Tweets were either labelled as Positive or Neutral. We as-
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sumed that these results were mainly due to misinterpretation of the guidelines provided
to the annotators, so we decided to revise the annotation schema to reduce confusion.

Table 5.4: MTurk annotation quality.
Phase Round Schema Version IAA Incorrect Labels1 1 v1 31% 26%1 2 v2 47% 17%1 3 v3 62% 3%2 1 v3 64% 4%2 2 v3 64% 2%

For the second-round submission, we developed a more use case-specific annotation
schema (v2), as specified in Table 5.3. Although we improved the IAA and the incorrect label
percentage, we still observed a significantly higher percentage of promotion Tweets nega-
tively affecting the annotation quality. Thus, as suggested in the proposed framework, we
decided to introduce an additional class for promotion-related Tweets in the third version
(v3) of the annotation schema as shown in Table 5.3. We were able to obtain satisfactory
results for the third round submissions along with the annotation schema v3. Hence, we
decided to progress to Phase 2 of the annotation process with the annotation schema v3.
Figure 5.4 and 5.5 show the options provided for the MTurk Worker and the final set of in-
structions provided in the MTurk project, respectively. At the end of Phase 1, we calculated
the class distribution of each specialised sub-dataset using the reconciled mini-batches of
each sub-dataset across all three rounds. Table 5.5 shows the identified class distributions.

Table 5.5: The class distribution in specialised sub-datasets.
Label Specialised Sub-DatasetSports Fan Promotion OtherSports Fan 76% 5% 13%Promotion 14% 93% 78%Other 10% 2% 9%

To generate balanced mini-batches for Phase 2 of the annotation process, we decided
to follow a ratio of 0.6:0.1:0.3 between ‘Sports Fan’, ‘Promotion’ and ‘Other’ specialised
sub-datasets based on the class distributions. A balanced mini-batch roughly contains an
equal percentage of sports fan Tweets and other/promotion Tweets. We completed two
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submission rounds of 1,000 Tweets each, and we were able to verify the quality of the
annotations through post-analysis, as shown in Table 5.4.

Figure 5.4: MTurk project–annotation labels.

Figure 5.5: MTurk project–annotation instructions.

Finally, we moved into the last phase (Phase 3) of the annotation process to complete
the remaining annotations with larger mini-batches compared to the mini-batches used in
Phase 2.

5.4.1 Discussion
This section discusses the effectiveness of the proposed framework in developing a train-
ing dataset using social media text data to train a classification model. We note that the
magnitude of the cost-saving using the proposed annotation framework is significant, even
while developing a small training dataset. Further, we focus on the annotation quality im-
provements we achieved using the proposed framework.
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Annotation schema evolution. Table 5.3 summarises the evolution of the annotation
schema during Phase 1 of the annotation process. We revised the annotation schema twice
to obtain a better version (Version 3) based on the post-analysis of each mini-batch anno-
tated in Phase 1. Table 5.4 shows the improvement in the annotation quality due to the
proposed revisions. Introducing a more use case-specific annotation scheme (v2) helped
to improve the quality of annotation. Further, as proposed in the framework, introducing
additional labels, such as ‘promotion’, to the annotation schema boosted the annotation
quality. This technique helped to direct the attention towards important aspects, thereby
improving the annotation quality.

Cost-effectiveness analysis. Considering the distribution of the raw dataset (only 11%
sports fan Tweets), to generate a dataset with approximately 5,000 sports fans (identi-
fying sports fans is the key business requirement), we need to annotate almost the com-
plete raw dataset (45,508 Tweets). Further, a minimum of three annotations is required to
maintain the same annotation quality. Thus, the total annotation cost is close to US$6,800.
Although this general approach allows us to obtain a large number of annotated Tweets,
the usefulness of the training dataset is poor due to its highly skewed class distribution
with only a small percentage of relevant data.

Table 5.6 shows the mini-batch submissions (including dispute resolution submissions)
and the associated MTurk cost (based on the batch size, the number of annotations and the
number of disputed annotations) to annotate the dataset using the proposed framework.
The total cost to generate a training dataset with approximately 5,000 sports fan Tweets
(and 6,342 other Tweets) was around US$1,320. The cost-saving was more than 80%. The
cost-saving might vary based on the use case and original data distribution, yet it is evident
that the proposed annotation framework leads to significant cost reductions.

In addition, the training dataset development task is highly efficient and effective since
we dealt mostly with data that is highly useful for a particular use case or a business re-
quirement.
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5.5 Summary
In this chapter, we have proposed a novel text annotation methodology to significantly
reduce the time and cost of manually annotating the text data required to train NLP models
in the real world. Applying this methodology in the real world showed cost-savings of over
80%. Apart from that, we presented an overarching framework consisting of stages and
steps to improve the efficiency and effectiveness of social intelligence solutions using NLP
in the real world.

In the following final chapter of this thesis, we summarise our findings and contribu-
tions made in this dissertation and present the scope for future work.
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Chapter 6
Conclusion
NLP focuses on extracting a comprehensive meaning representation from natural text. Us-
ing NLP for social intelligence is a popular strategy adopted by many organisations due to
the sheer volumes of publicly available text data on various social media platforms, which
can be used to gain a competitive advantage over business rivals. Recent advancements
in the NLP domain, such as Transformer-based pre-trained language models and constant
advances in processing power, have boosted NLP adoption, providing performance levels
acceptable to organisations across various NLP tasks. Nonetheless, NLP continues to be an
emerging and evolving technology for real-world applications.

Despite the popularity of NLP techniques applied to social media data to provide so-
cial intelligence for business, the noisy and diverse nature of social media data has posed
significant challenges. It is difficult to comprehend noisy and unstructured text compared
to structured, grammatical sentences. Further, the diverse and fast-changing vocabulary
used on social media makes it difficult for machine learning models to perform well in real-
world environments. Further, creating the labelled data required for most of the NLP tasks
is a time-consuming and costly task, and these manual text annotation activities must be
repeated for new use cases to retrain the existing models. Thus, having insufficient la-
belled data to train NLP models significantly affects the performance of these solutions in
real-world applications.

The industry needs to overcome these challenges to use NLP-based social intelligence
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solutions effectively and efficiently to gain a competitive advantage over other businesses.
Throughout this thesis, we have made several significant and novel contributions to over-
come the challenges discussed above, which are summarised in Section 6.1.

6.1 Research Summary
In this thesis, we have made contributions to overcome the three challenges in using NLP
for social intelligence solutions. These challenges are time-consuming and costly manual
data labelling, low performance in NLP models due to data scarcity and difficulty in com-
prehending noisy sentences in a context-aware NLP approach. In Chapter 2, we presented
a comprehensive overview covering the relevant literature.

Chapter 3 presented approaches to leverage context-aware word representations to
improve the performance of NLP models in a low data regime. In particular, we proposed
to transfer prior knowledge from pre-trained language models to mitigate the impact on
model accuracy due to insufficient labelled data while using context-aware representations
to improve overall model accuracy. Further, we presented a novel sentence embedding
technique for noisy sentences, condensing highly relevant linguistic characteristics into the
sentence representation. Moreover, we released a probing dataset that can serve as a
benchmark dataset to study the linguistic characteristics of unstructured and noisy text.

Chapter 4 focused on text data augmentation, particularly MLM approaches. We first
explored the necessity of text data augmentation in the context-aware NLP regime and re-
ported the importance of generating sentences with a closer meaning to the original sen-
tence. To this end, we extended the back-propagation technique, combining it with state-
of-the-art sentence embeddings to propose a novel text augmentation technique suitable
for noisy datasets. Next, we extensively analysed the limitations of existing text augmen-
tation techniques, including MLM-based approaches. We then proposed a novel text aug-
mentation technique, IMOSA, that improves the overall diversity of the original dataset by
identifying the most suitable sentences to augment while generating an optimum num-
ber of quality synthetic sentences from a selected sentence. We evaluated IMOSA across
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several NLP tasks where it outperforms the state-of-the-art algorithms.
Finally, Chapter 5 addressed the problem of manual text data annotation challenges

faced by organisations while launching social intelligence solutions using NLP. To overcome
these challenges, we proposed a novel framework that combines all our contributions for
an effective and efficient end-to-end process to deploy NLP-based social intelligence solu-
tions in the real world.

6.2 Research Findings
Over the course of this study, we have designed and developed multiple novel methods
for various challenges in the context of social intelligence solutions using NLP. This section
recapitulates how our methods have identified and addressed the identified challenges
and further summarises our contributions and findings.

Sequential transfer learning addresses limited labelleddata. State-of-the-art pre-trained
language models, such as BERT, have shown superior performance across various NLP tasks
mainly due to their ability to provide context-aware meaning to the words or tokens of a
sentence. Apart from that, our experiments on sequential transfer learning, where we
transfer prior knowledge from pre-trained language models to an NLP task under a low
data regime, have contributed significantly towards improving the model accuracy (see
Section 3.2).

Meaning-rich noisy text comprehension. To obtain meaning-rich sentence representa-
tions for the noisy text, we proposed a novel sentence embedding technique based on
the linguistic characteristics, boosting the performance of downstream NLP tasks (see Sec-
tion 3.3). Combining meaning-rich sentence representations with sequential transfer learn-
ing has produced significant improvements in context-aware NLP tasks, such as sentiment
analysis.
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Meaning-sensitive text augmentation. NLP models usually demand a high volume of
training data due to the complexity of natural language. Apart from that, massive neural
models with millions of trainable parameters, such as Transformer-based models, require
more data to deliver the expected performance. Our initial experiments supported this
claim and highlighted the importance of text data augmentation to boost performance.
To this end, we extended the back-translation technique along with sentence embeddings
to augment the training dataset with synthetic sentences only with a meaning closer to
the original sentence (see Section 4.2). Further, the experiments confirmed the criticality
of adding sentences with a closer meaning to the original sentence while adding diversity
to the training dataset. Next, to overcome these challenges and the limitation in existing
text augmentation methods, we proposed a novel text augmentation technique, IMOSA,
which helps to generate new sentences to augment the training dataset (see Section 4.3).
IMOSA focuses on maintaining label compatibility while introducing sufficient diversity to
the training dataset through pruned masking. Further, the model adds synthetic sentences
with a close meaning to the original sentences using the optimal substitution step. The
proposed method outperforms a couple of state-of-the-art text augmentation techniques
across multiple NLP tasks, proving its superiority.

Cost-effective data annotation framework. Creating labelled data efficiently and effec-
tively is crucial for the success of any text-based social intelligence solution. The proposed
data annotation methodology helps organisations expedite the text data annotation pro-
cess through crowdsourcing while reducing the cost significantly through innovative tech-
niques, such as zero-shot text classification (see Section 5.2). Further, the text annotation
framework consists of multiple strategies to improve the quality of the annotations. This
methodology helps eliminate the lack of labelled data that appears to prevent most organ-
isations from using NLP solutions by enabling them to obtain quality annotations quickly
and cost-effectively.

NLP for social intelligence. We presented a comprehensive framework to improve the ef-
ficiency and effectiveness of social intelligence solutions that rely on NLP models. The pro-
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posed framework combines our research contributions, providing improvements in three
areas: data annotation, text data augmentation and noisy text comprehension in the low
data regime (see Section 5.3). The cost-effective text annotation methodology helps or-
ganisations obtain the required labelled data in a shorter time and at a lower cost than
before. The novel text data augmentation technique helps address data scarcity by adding
high-quality and label-compatible synthetic sentences to the training dataset. The pro-
posed NLP model uses a sequential transfer learning technique to extract prior knowledge
from pre-trained language models to reduce the impact of limited labelled data further.
Apart from that, the context-aware meaning representations provided by the Transformer-
based pre-trained language models combined with the novel noisy text sentence embed-
ding technique boost the machine learning model’s ability to comprehend the noisy text,
improving the overall performance of the NLP task. These upgrades to the text-based so-
cial intelligence solutions will directly enhance the ROI, strengthening any business case
using NLP solutions for their competitive advantage.

6.3 Future Directions
The research, carried out over a three-year period of PhD candidature, has covered key
and vital research topics in linguistic comprehension and text augmentation with noisy
and unstructured text, particularly in the low data regime. However, this area of research
is recent and evolving with potential for further research. In this section, we will provide an
outlook on potential future research avenues and possible key extensions to the research
reported here.

As part of future research, it will be interesting to deep dive into the area of inductive
transfer learning to explore the possibilities of using multitask learning, which will allow
deep neural networks to learn from related tasks via sharing parameters with other net-
works. This technique might help to address the difficulties in comprehending social media
content due to the diversity and brevity of those messages and posts. Thus, it is possible to
study a multitask learning model with multiple decoders covering NLP tasks, such as text
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inference, text similarity, named entity recognition and relation extraction.
In the context of social intelligence solutions using NLP, identifying entities in a social

media post is vital to enhance the NLP model’s ability to comprehend the meaning con-
veyed by the author. There is a scope to improve existing techniques to deliver improved
performance in real-world use cases due to the brevity and noisy nature of social media
text. Further, domain-specific knowledge can be embedded into the solution to accurately
interpret the entities. For instance, for a use case in the sports domain, the NLP models can
understand the sports-related entities, such as team names, players and stadiums. Thus,
future work can focus on developing ontologies and knowledge graphs that can evolve over
time to improve the overall performance of NLP models.

Finally, further improving the text augmentation technique can lead to improvements
in the overall accuracy of the NLP models further, as this might help to reduce the model
drift due to the evolving vocabulary on social media. To this end, the use of generative
language models for text data augmentation can be considered.
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[141] Alexis Conneau, Douwe Kiela, Holger Schwenk, Löıc Barrault, and Antoine Bordes.Supervised learning of universal sentence representations from natural language in-ference data. In Proceedings of the 2017 Conference on Empirical Methods in Natural

Language Processing, pages 670–680, Copenhagen, Denmark, Sep 2017. Associationfor Computational Linguistics.
[142] O. Coban and G. T. Ozyer. Word2vec and clustering based twitter sentiment analy-sis. In 2018 International Conference on Artificial Intelligence and Data Processing

(IDAP), pages 1–5, 2018.
[143] Buddhika Kasthuriarachchy, Madhu Chetty, Gour Karmakr, and Darren Walls. Pre-trained language models with limited data for intent classification. In International

Joint Conference on Neural Network (IJCNN), 2020.
[144] Marcos Grzeça, Karin Becker, and Renata Galante. Drink2vec: Improving the classifi-cation of alcohol-related tweets using distributional semantics and external contex-tual enrichment. Information Processing & Management, 57(6):102369, 2020.

135



[145] Jonathas G.D. Harb, Régis Ebeling, and Karin Becker. A framework to analyze theemotional reactions to mass violent events on twitter and influential factors. Infor-
mation Processing & Management, 57(6):102372, 2020.

[146] Zhancheng Ren, Qiang Shen, Xiaolei Diao, and Hao Xu. A sentiment-aware deeplearning approach for personality detection from text. Information Processing &
Management, 58(3):102532, 2021.
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