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Abstract: According to chaos theory, some underlying patterns can disclose the order of disordered
systems. Here, it has been discussed that intermittency of rough rock fractured surfaces is an orderable
disorder at intermediate length scales. However, this kind of disorder is more complicated than
simple fractal or even multi-scaling behaviours. It is planned to deal with some multifractal spectra
that systematically change as a function of the analysed domain. Accordingly, some parameters
are introduced that can perfectly take into account such systematic behaviour and quantify the
intermittency of the studied surfaces. This framework can be used to quantify and model the
roughness of fractured surfaces as a prerequisite factor for the analysis of fluid flow in rock media
as well as the shear strength of rock joints. Ultimately, the presented framework can be used for
analysing the intermittency of time series and developing new models for predicting, for instance,
seismic or flood events in a short time with higher accuracy.
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1. Introduction

After the failure of a single scaling exponent, such as Hurst exponent H [1] or frac-
tal dimension D [2], to statistically model multiscale properties of natural phenomena,
multifractal formalisms have been developed [3–7] to tackle this issue. What is the ori-
gin of multifractal phenomena, and how to predict their scale-dependent exponents as a
non-linear spectrum? These fundamental questions have been addressed in a variety of
different fields and led to the emergence of new formalisms [8–12].

The cause of multifractality is the scale-dependency of the disorder. Rock materials,
for instance, are composed of different constituents including minerals, cement and voids.
Their minerals are formed from crystals with different crystalline systems. Therefore, there
are different degrees of effective anisotropy and heterogeneity in rock materials at different
length scales. If constant boundary conditions are considered, then this kind of disorder
is the first and foremost cause of roughening of fractured surfaces and the root of multi-
affine properties of their Fracture Process Zone (FPZ), as it is reported from experimental
studies [13–15].

At small enough length scales or separations δr, there is a correlation between height
variations ∆h(δr) of fractured surfaces because of local similarities inside different con-
stituents, which is scale-dependence itself. In crystalline igneous rocks like granite, for
instance, at meso-scale (few hundred microns to a few millimetres) there are different
rock-forming minerals with the same local properties, but at micro-scale (few hundred
nanometres to few hundred microns) there are different crystals with different properties
making a single mineral. These apparently uniform crystals at micro-scale are no longer
uniform at nano-scale due to crystal defects. The shorter the separation, the higher the
correlation in a particular resolution [16]. Because of this spatial correlation, the central
limit theorem fails, and the non-Gaussian distribution of height variations with fat tails
can be observed [17,18], which leads to multi-affine behaviour of height variations of the
fractured surfaces. However, for separations larger than a cut-off length δr > ξ2, there is no
correlation and the multi-scaling spectrum of the height variations shows mono-affinity,
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where ξ2 is the critical length scale at which a transition from multi- to mono-affinity
takes place.

Variogram analysis by applying height-height correlation function [19,20] or structure
function [21] together with an elaborate domain analysis for different pairs of δrmin and
δrmax are employed to successfully quantify ξ2 as the minimum of a mono-fractal domain
with no intermittency [22]. In the course of this task, a systematic domain-dependent
multi-scaling behaviour that will be discussed in this paper is observed, which can throw a
spotlight on the behaviour of disordered systems at intermediate length scales.

2. Materials

Four different rock types, including sandstone, marble, fine-grained (FG) granite
and coarse-grained (CG) granite, are studied. This selection covers sedimentary, igneous
and metamorphic rocks with different grain sizes. The topography of fractured surfaces,
illustrated in Figure 1, has been reconstructed from 3D X-ray computed tomography data
with a spatial resolution d of about 16.5 µm. The CT scanning was undertaken on the
Imaging and Medical beamline at the Australian Synchrotron. It is notable that fractured
surfaces are generated under a controlled quasi-static loading rate [23].
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Figure 1. Topographic images of fracture surfaces of sandstone, marble, fine-grained and coarse-
grained granites. Square fractured surfaces are represented here for the sake of clarity. The x-axis and
z-axis correspond to the crack propagation direction and the crack front direction, respectively.
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3. Results and Discussions
3.1. Multi-Fractal Rough Surfaces

This qth root of the qth moment of statistical distribution of the height fluctuations,
known as qth-order structure functions Sq(δr) [24], is utilized to demonstrate scale de-
pendency of the roughness of quasi-brittle fractured surfaces, and their transition from
mono-affine to multi-affine surfaces at small enough separations:

Sq(δr) = 〈|∆h(δr)|q〉1/q = 〈|h(X + δr)− h(X)|q〉1/q
X ∝ δrζq∗1/q, (1)

where angular brackets denote the ensemble average.
The superiority of using Sq(δr) to calculate generalized Hurst exponent H(q) = ζq/q

of turbulent phenomena is discussed in Ref. [25], and the advantages of using this method
for estimating the multi-scaling spectrum are emphasised in Ref. [26]. Following [27], a
relationship between generalized Hurst exponent and fractal dimension Dq can be written
as Dq + H(q) = q + 1 (at least for positive integer moments). Studied rough surfaces
exhibit two distinct scaling regimes: they are almost mono-affine fractals at δr > ξ2, while
they are multi-affine fractals at δr < ξ2. Mono-affine fractal regime can be characterized
by Dq = D0 + 1, H(q) = H, and D0 + H = q; that is both scale and moment invariance.
Intermittent multi-affine fractal regime, however, cannot be characterised by a single scale
invariance exponent H (the original Hurst exponent) along all separations δr and show
different local ζq exponents [28]. The average directional multi-scaling spectra of these
multi-affine fractal regimes are statistically considered multifractals for further analyses.

3.2. Intermittency of Rough Surfaces

The high precision roughness quantification of the studied fractured surfaces reveals
perfect power laws for the intermittency of multi-scaling spectra of such surfaces. These
power laws are further verified analytically as they predict a range of 0 to 1 for the cor-
relation function of rock roughness [24]. According to this finding, the intermittency of
the studied multifractal spectra of rock FPZ can be quantified with a single parameter, i.e.,
the exponent of the power law λ for a particular domain. However, as is discussed, such
intermittency is dependent on the analysed domain. Similar size-dependent power laws of
intermittency of the roughness of burning fronts on papers are reported, and it is argued
that statistical distribution of the height differences can be modelled using stable Levy
distribution [29].

To analyse the effect of a range of analysed length scale on the intermittency, the inter-
mittent exponent λ is computed for length scales between a fixed minimum of 50 microns
and up to the length of FPZ of the studied rock fractured surfaces, which is 400, 1100, 500
and 900 microns for sandstone, marble, FG granite and CG granite, respectively [22]. From
Figure 2, it can be seen that all spectra are converging in a critical moment order qc (Table 1).
The reason behind this convergence is that at qc, the corresponding structure function
shows perfect power laws for all separations δr (Figure 3b). Following this observation, we
tried to find the qc by fitting power laws for different moment order q. Then, the one with
the minimum error corresponds to the convergence point and will give the qc. Therefore,
the fitted curve with the highest R-square (minimum error) corresponds to qc. Figure 3a
shows the R-square values for different moments and rock types.

Table 1. Statistics of the roughness of the studied rock fractured surfaces (by considering ξ1 = 50 µm).
H is the Hurst exponent for a mono-affine domain (δr > ξ2 ).

Rock Type ξ2 [µm] λ qc ψ H

Sandstone 400 0.21 1.8 0.32 0.53
Marble 1100 0.15 3.1 0.29 0.60

FG granite 500 0.17 2.0 0.41 0.52
CG granite 900 0.12 3.6 0.35 0.53
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Figure 2. Intermittency of the studied fracture surfaces at different domains with a fixed minimum
and a maximum incrementing up to ξ2.
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Figure 3. (a) Analysis of the power law fitting errors associated with moment order q; (b) the power
law fitting of the critical moment order qc with the minimum error; and (c) intermittent exponent λ

as a function of the maximum of the fitting domain δrmax.

Using this analysis, one point on multifractal spectra is found. Now, it is required to
predict how the intermittency is changing in other moment order q. Thus, the intermittent
exponent λ as a function of the maximum of the analysed domain δrmax (up to the length
of FPZ) is plotted in Figure 3c to see if any relationship can be found. Surprisingly, the
changes of λ as a function of δrmax with a fixed δrmin of 50 microns can be formulated using
perfect power laws as well. It seems the exponent of these power laws ψ are universal
for a fixed minimum of 50 microns (0.35 ± 0.1). It is notable that other fixed minima
also show similar trends but with different ψ values. Therefore, the intermittency of FPZ
roughness of the rock materials can be fully formulated using two parameters: the critical
moment order qc and the exponent ψ. Table 1 summarises the statistics of the studied rock
fractured surfaces.

4. Concluding Remarks and Future Work

According to the discussed results, a 1D-phase diagram as a function of length scale
is presented in Figure 4, which divides the statistics of roughness into 3 different regimes:
complete disorder, orderable disorder and order. It is notable that the complete disorder
regime cannot be analysed for the studied rock materials because of the resolution of the
data and can be the topic of future research. The introduced disorder analysis method can
model the intermittency of data sets at intermediate length scales that would increase the
prediction power of current statistical models. For instance, more accurate predictive mod-
els can be developed for time series, which can ultimately lead to, for instance, predicting
seismic or flood events in a short time with higher accuracy.
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Figure 4. The schematic 1D phase diagram shows the fractured surface of a crystalline rock at different
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magnifications. It can be clearly seen at length scales smaller than the first cut-off length ξ1, there is a
high correlation (same crystal) and high intermittency (huge height differences between different
crystals). Therefore, the lognormal distribution of these sparse considerable height differences might
be useful for statistical presentation of roughness at this length scales (Nanometre). Stable levy
distribution was found to be a good means to characterise roughness at intermediate length scales,
from ξ1 to ξ2, where there is orderable power law intermittency [29]. At length scales larger than the
second cut-off length of the length of FPZ, there is neither correlation nor intermittency.
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