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1. Introduction

Restoring an individual’s movement ability when neuromuscular control and motor

functions have been diminished is a key challenge facing rehabilitation practitioners.

For example, what can practitioners do to reactivate motor function for an individual

experiencing upper limb hemiparesis following a stroke when upper limb movement is

limited? One potential approach not requiring physical movement is motor imagery training

(MIT), the mental simulation of actions in the mind in the absence of overt motor output

(Morris et al., 2005; Schack et al., 2014). There is substantial support for MIT in improving

key outcomes relevant to rehabilitation settings, such as gait patterns and walking speed in

stroke patients (López et al., 2019) and increasedmuscle activation for individuals recovering

from ACL reconstruction (Pastora-Bernal et al., 2021). Of interest to rehabilitation, previous

studies have demonstrated that MIT is capable of inducing changes in neural plasticity

similar to physical action (Debarnot and Guillot, 2014). For example, Lafleur et al. (2002)

reported functional organization in the orbito corticies, rostral portion of the anterior

cingulate, and striatum in learning a sequential foot movement task. These findings were

similar to those observed in a follow up MIT study, which reported increased cerebral

blood flow in the right medial orbitofrontal cortex (Jackson et al., 2003). The potential

beneficial effects of MIT may be associated with activation of similar brain regions as

motor execution, such as the premotor cortex and fronto-parietal regions (Hétu et al.,

2013; Moran and O’Shea, 2020). Alongside neural similarities, MIT may be capable of

increasing the excitability of cortical motor representations, with increases in corticospinal

excitability reported following MIT (Leung et al., 2013). Interpreted through reactivation

theory of poststroke motor recovery, such findings have implications in applying MIT

for motor recovery. According to reactivation theory, increasing the use of affected body

parts through motor execution may reactivate relevant cortical motor representations and

increase excitability, improving sensorimotor function (Murphy and Corbett, 2009). From

this perspective, MIT could support the promotion of the neural plasticity and cortical

excitability needed to re-establish stable, long-term structural changes in motor networks

for motor recovery.

The benefits of MIT for motor learning and re-learning are well established (Lindsay

et al., 2021; Simonsmeier et al., 2021). However, previous research indicates that MIT

is also beneficial for improving muscle weakness, a significant condition affecting many

clinical populations who need rehabilitation (Slimani et al., 2016). Particularly relevant for

clinical practitioners is the potential benefits of MIT to reduce negative adaptations in the

neuromuscular systems, such as strength loss and muscle atrophy because of injury-related
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inactivation of the neuromuscular system (Slimani et al., 2016).

For example, Paravlic et al. (2019) found that four weeks of MIT

combined with physical therapy showed significantly less strength

decrease relative to physical therapy alone in patients rehabilitating

from a total knee arthroplasty. Additionally, the reduction in

strength loss also coincided with significant improvements in chair

sit-to-stand performance. Such findings suggest that MIT could be

an effective tool for clinical practitioners to reduce strength loss and

enhance physical therapy outcomes in clinical settings.

A crucial movement capability is adapting to and navigating the

unavoidable variability arising from individual (e.g., height, weight,

previous experience) and environmental constraints (e.g., change

in walking surfaces) in movement (Davids et al., 2003; Hacques

et al., 2021). From an ecological dynamics perspective, variability is

functional in ensuring that a movement system (i.e., the individual)

remains flexible enough to adapt movement in achieving task

demands (e.g., avoiding a pedestrian unexpectedly walking in front

of you) (Renshaw et al., 2019; Button et al., 2020). Captured

this way, rehabilitation involves developing the capacity to adapt

movement to changing environmental demands while satisfying

task demands (Button et al., 2020). The issue for the practitioner

is how to safely expose the individual undergoing recovery to

potentially dangerous dynamic contexts, such as avoiding a rock on

the ground or stabilizing themselves when an unexpected obstacle

emerges in their path.

The simulated nature of MIT may represent a unique

solution to safe exposure to dynamic movement contexts in

rehabilitation. Grounded in an ecological dynamics perspective,

MIT could safely leverage movement variability (e.g., walking on

unstable surfaces without assistance) in a way that represents

real-world situations, potentially increasing the individual’s ability

to adapt their movements under changing environments. In an

ecological dynamics perspective on motor skill development, the

emergence of cognitive states that support motor execution require

an individual to be continuously coupled to the environment

(Kiverstein and Rietveld, 2018). Although MIT is stimulus-absent,

Lindsay et al. (2022a) suggest that MIT can be decoupled from the

invariant features of the movement context (i.e., stable, unchanging

structure of the movement context) yet coupled to stimulus-

sensitive, variant information (e.g., changing light conditions)

(Sims, 2020). For example, during MIT, a football player would be

decoupled from the action of kicking, but MIT instructions could

facilitate coupling to variant information to guide movements by

describing features such as crowd noise and changes in muscular

forces Lindsay et al. (2022a).

2. Ecological dynamics perspective on
rehabilitation

Traditional approaches tomotor control have viewed variability

as noise that is detrimental to the development of accurate and

consistent movements (Schmidt et al., 2018). In contrast, an

ecological dynamics view proposes that movement emerges from

interactions between individual (e.g., physiological composition,

body structure), environmental (e.g., different walking surfaces),

and task constraints (e.g., the task goal) (Newell, 1986). Thus,

movement variability may be functional in allowing adaptation to

varying constraints while producing successful outcomes through

different joint actions (Chow et al., 2021; Lindsay et al., 2022b).

This process is defined as degeneracy, the ability to achieve different

movement solutions for the same task, enhancing the capacity

of the individual to execute movements under varied constraints

(Davids et al., 2003; Button et al., 2020). There are conflicting

accounts of the role variability plays in rehabilitation contexts.

Some evidence indicates that increased movement variability may

be detrimental to key recovery outcomes, such as balance control,

with higher center of pressure (COP) variability while standing

identified as a key predictor of falls in older adults (Piirtola and

Era, 2006). Whereas, further studies suggest that increased COP

and center of mass (COM) variability is associated with improved

stability for quiet standing in healthy adults (Rajachandrakumar

et al., 2018). Despite this conflicting evidence, it is apparent

that variability is unavoidable, and it is necessary to develop an

individual’s ability to adapt their movements appropriately.

Particularly relevant to rehabilitation contexts, research

suggests that the capacity to successfully adapt movement is

crucial (Caetano et al., 2018; Rajachandrakumar et al., 2018). For

example, Caetano et al. (2018) found that older individuals with

Parkinson’s Disease (PD) demonstrated reduced capacity to adapt

gait patterns to unexpected obstacles and targets, culminating in

poorer step accuracy. Although these results initially appear to

highlight the need to reduce movement variability, an alternative

interpretation that aligns with an ecological dynamics approach

is that incorporating variability may allow individuals to better

deal with changes in environmental constraints (e.g., unexpected

obstacles). It is important to note that higher levels of variability

do not necessarily equate to improved outcomes. In fact, Cardis

et al. (2017) found that to higher movement variability produced

larger errors on a bimanual shuffleboard task relative to low

variability. These results highlight that movement variability is

not akin to increased randomness, rather, it is the purposeful

manipulation of relevant task and environmental constraints to

facilitate exploration in a way that reveals opportunities for action

that appropriately match an individual’s movement abilities and

characteristics of the environment (Hacques et al., 2021).

3. Movement variability and MIT

The ecological dynamics view emphasizes that movement

is an emergent process that occurs in a variable, dynamic

environment. Subsequently, rehabilitation practitioners should

consider accurately representing elements of real-world contexts,

such as variability, in rehabilitation programs. A key issue, however,

arises with how to safely introduce variability into training. MIT

may be a viable solution by presenting simulated variability

without exposing individuals to physical risk. Research reviews

have highlighted the effectiveness of MIT in movement and

rehabilitation contexts, particularly when combined with physical

training (Lindsay et al., 2021; Simonsmeier et al., 2021). For

example, Lebon et al. (2012) found that 12-sessions of MIT in

conjunction with physiotherapy produced greater EMG activation

in the quadriceps for individuals rehabilitating from an ACL tear,

relative to the control condition. Another concern in rehabilitation

is fear of reinjury. Consider a soccer player recovering from an
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ACL injury sustained during change of direction (COD) during

a match, who may experience fear of reinjury and reluctance to

engage in COD tasks during rehabilitation (Rodriguez et al., 2019).

MIT could be effective in reducing fear of reinjury and increasing

confidence of such athletes recovering from ACL reconstructions

(Rodriguez et al., 2019). MIT could also help in training COD tasks

by successfully generating movement relevant variability (McNeil

et al., 2021). Taken together, these findings indicate the potential

of MIT to present realistic training environments that replicate

environmental variability in a way that facilitates learning and

may prepare individuals to successfully engage in physical training

by reducing fear of reinjury. The inclusion of variability through

MIT may allow training to be representative of real-world contexts

without increased re-injury risk.

4. Practical considerations for
incorporating variability in MIT

Returning to normal activities after injury is a dynamic process,

during which practitioners need to consider the reinjury risk of

early introduction of complex movements compared to the benefit

of exposure to crucial elements of real-world situations to facilitate

motor recovery. To optimize patient outcomes, practitioners need

to consider which visual perspective will facilitate effective MIT.

For MIT focused on strength performance, internal imagery has

been found to be effective compared with external imagery (i.e.,

third-person perspective) (Slimani et al., 2016). Internal imagery

involves imaging movements from a first-person perspective or

fromwithin their own body. However, practitioners are encouraged

to consider the type of skill being trained when selecting visual

perspective. For skills that advocate for a specific technique (e.g.,

gymnastics), external imagery may be more advantageous as it

provides more visual information onmovement technique (Wright

et al., 2022). Given that movements generated using MIT cannot

be directly observed, practitioners should consider how they will

ensure their patients are engaging in the prescribed MIT. Though

the exact content of an individuals’ imagery cannot be precisely

known, self-report questionnaires such as the Movement Imagery

Questionnaire-Revised Second Version (MIQ-RS; Gregg et al.,

2010) can provide an indication of an individual’s MI ability and

their potential engagement in MIT.

FIGURE 1

Examples of movement variability incorporated into MIT aligning with the chaos-control continuum (based on Taberner et al., 2019).
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Incorporating movement variability into training requires

repetition of the movement (e.g., walking) but under conditions

requiring varied movement execution to encourage degeneracy

(Button et al., 2020). Though this may imply that practitioners

should aim to recreate high movement variability in learning

environments, practitioners can purposefully manipulate key

constraints to leverage appropriate levels of variability based on

individual constraints. For example, an individual re-learning

to walk after stroke is constrained by reduced neuromuscular

control, subsequently walking on uneven surfaces early in the

rehabilitationmay be overwhelming. A scaffolded approach toMIT

could be beneficial to appropriately scale movement variability to

the individual.

Drawing on an ecological dynamics view of motor control and

constraints-led approach (CLA) to skill acquisition, Taberner et al.

(2019) proposed the chaos-control continuum (CCC) to support

the integration ofmovement variability in the rehabilitation process

in sport. The CCC provides a number of key training principles that

may guide practitioners on incorporating movement variability

into rehabilitation using MIT including: (1) high control—low

movement variability activities such as running in straight lines;

(2) moderate control— manipulate task constraints to increase

variability (e.g., activities that require changing direction with a

sport-specific implement); (3) transition to unpredictable/chaotic

movements— manipulation of task and environmental constraints

to introduce more real-world demands within specified limits (e.g.,

kicking and receiving on the run without defensive pressure);

(4) moderate movement variability—incorporation of dynamic

movement situations with increased movement speed and skill

execution (e.g., catching and passing under high defensive

pressure); and (5) high movement variability—activities reflect

task and environmental demands of real-world contexts with

no limitations such as walking on an uneven surface with

unpredictable pedestrian movements (Taberner et al., 2019).

Figure 1 presents practical examples of how MIT instructions

can utilize the CCC framework to effectively scaffold movement

variability in rehabilitation.

A key benefit of MIT is that it affords rehabilitation

practitioners the ability to reintegrate more complex movements

with limited risk of reinjury andmay allow early activation ofmotor

pathways during periods where movement may be limited or not

possible. Subsequently, MIT provides a unique tool to supplement

physical training approaches to rehabilitation like the CCC,

potentially serving to prime motor pathways and psychologically

prepare individuals for more chaotic movement situations and

encourage them to explore alternative movement solutions

(expressed as movement variability) that match individual motor

capabilities (Renshaw et al., 2019). For example, a footballer

recovering from an ACL injury may be engaged in phase 1 of the

CCC (i.e., high control), during which MIT could be implemented

to engage with phase 2 activities, with instructions detailing COD

tasks with a football. Alternatively, an individual recovering from

lower limb hemiparesis with limited movement may only utilize

MIT with low movement variability early in rehabilitation.

5. Conclusion

The aim of this paper was to provide some considerations for

practitioners in sport and rehabilitation settings incorporating

movement variability in MIT for motor skill development. We

propose that MI may enable safe engagement with movement

variability, potentially supporting adaptation of movement

patterns to changing environmental constraints. Informed by a

CLA and a CCC framework, MIT may facilitate psychological and

neural preparation early in rehabilitation that could contribute

to enhanced motor recovery. Practically, the CLA and CCC

framework provide key training principles that practitioners

can adapt to MIT in moving activities from low variability

to high variability and catering to individual constraints in

rehabilitation. Practitioners are encouraged to consider MIT

as a low-risk strategy for incorporating movement variability

into the rehabilitation process and developing adaptable

movement skills.
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